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1. Introduction

Korteweg and de-Vries developed the classical KdV equation in 1895 as a nonlinear PDE to
investigate the waves that occurs on the surfaces of shallow water. Many studies have been conducted
on this exactly solvable model. Many scholars have proposed novel applications of the classical KdV
equation, such as acoustic waves that produces in a plasma in ion form, and acoustic waves which are
produces on a crystal lattice. In [1], the classical KdV equation is as follows

Ut + β1Uxxx + β2UUx = 0. (1.1)

Different variations of Eq (1.1) have been published in the literature, including [2, 3]. In
literature [2], various efficient methods have been used to get solitons solutions of different kinds of
KdV equations. Wang [3] used a quadratic function Ansatz to obtain lump solutions for the
(2+1)-dimensional KdV equation. In [4–6], several systematic techniques were utiltized to investigate
the different types of KdV equations. Wang and Kara introduced a new 2D-mKdV in 2019 [7]. The
new (2+1)-dimensional mKdV equation is given by

ft = 6 f 2 fx − 6 f 2 fy + fxxx − fyyy − 3 fxxy + 3 fxyy. (1.2)

After 1695, the non-integer order or fractional-order derivative (FOD) was described as a simple
academic generalization of the classical derivative. A FOD is an operator that extends the order of
differentiation from Natural numbers (N) to a set of real numbers (R) or even to a set of complex
numbers (C). Fractional calculus has emerged as one of the most effective methods for describing
long-memory processes over the last decade. Engineers and physicists, as well as pure
mathematicians, are interested in such models. The models that are represented by differential
equations with fractional-order derivatives are the most interesting [8–10]. Their evolutions are much
more complicated than in the classical integer-order case, and deciphering the underlying principle is
a difficult task. There are many fractional operators regarding to the kernels involved in the
integration. The most popular fractional operator is Caputo-Liouville which is based on power-law
kernel, but this kernel has issue about the singularity of the kernel. To tackle the limitation of
derivative operators with power-law kernels, new types of nonlocal FOD have been introduced in
recent literature. For example, in literature [11], Caputo and Fabrizio (CF) introduced a FOD that is
focused on the exponential kernel. However, the CF derivative, on the other hand, has some issues
with the kernel’s locality. In 2016, Atangana and Baleanu constructed an updated version of FOD that
is based on the Mittag-Leffler function [12]. This derivative solves the issues of locality and
singularity. The FOD of Atangana-Baleanu in Caputo sense (ABC) accurately describes the memory.
TheABC operator’s most significant applications are available in [13–17].

Certain important techniques have been used to solve fractional order differential equations
(FODEs). Some of these includes the homotopy perturbation method (HPM), Laplace Adomian
decomposition method (LADM) fractional operational matrix method (FOMM), homotopy analysis
method (HAM) and many more [18–22]. In contrast to these techniques, the Laplace-Adomian
decomposition method (LADM) is an important tool for solving non linear FODEs. The ADM and
the Laplace transformation are two essential methods that are combined in LADM. Furthermore,
unlike a Runge-Kutta process, LADM does not require a predefine size declaration. Every numerical
or analytical approach has its own set of benefits and drawbacks. For instance, discretization of data is
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used in collocation techniques that require extra memory and a longer operation. Since the
Laplace-Adomian approach has less parameters than all other methods, it is a useful tool that does not
necessitate discretion or linearization [23]. With the aid of LADM, the smoke model was successfully
solved in [24]. LADM was utilized by the authors to solve third order dispersive PDE defined by
FOD in [22].

Inspired by above literature, in this paper, we study Eq (1.2) under ABC-operator. We use LADM
to solve the proposed equation. Consider Eq (1.2) underABC-operator as

ABCDΨ
t ft = 6 f 2 fx − 6 f 2 fy + fxxx − fyyy − 3 fxxy + 3 fxyy. (1.3)

2. Preliminaries

Definition 2.1. [12] Let 0 < Ψ ≤ 1 and f (t) ∈ H1. ThenABC FOD of order Ψ is expressed as

ABCDΨ
t f (t) =

c(Ψ )
(1 − Ψ )

t∫
0

f ′(η)EΨ

(
−

(t − η)ΨΨ
(1 − Ψ )

)
dη,

where c (Ψ ) is the normalization function such that c (0) = c (1) = 1. The symbol EΨ denotes the
Mittag-Leffler kernel which is defined as:

EΨ (t) =

∞∑
k=0

tk

Γ(Ψk + 1)
.

Definition 2.2. [12] Let 0 < Ψ ≤ 1 and f (t) ∈ H1(0,T ). Then AB fractional integral of order Ψ is
defined as

ABIΨt f (t) =
(1 − Ψ )
c (Ψ )

f (t) +
(Ψ )

c (Ψ ) Γ(Ψ )

∫ t

0
(t − η)Ψ−1 f ′ (η) dη.

Definition 2.3. [12] The formula for the Laplace transform ofABC FOD of f (t) is defined by

L
[
ABCDΨ

0 f (t)
]

=
c(Ψ )

sΨ (1 − Ψ ) + Ψ

[
sΨL

[
f (t)

]
− sΨ−1u(0)

]
.

Theorem 2.4. [25] Let H be a Banach space and X : H → H be a mapping. Then X is said to be
Picard’s X-stable, if ∀ ξ,m ∈ H,∥∥∥Xξ − Xm

∥∥∥ ≤ a
∥∥∥ξ − Xξ

∥∥∥ + b ‖ξ − m‖ ,

where a ≥ 0, and b ∈ [0, 1]. Further, X has a fixed point.

3. Lipschitz condition holds forABC derivative

Theorem 3.1. [12] TheABC derivative holds the following Lipschitz type condition for 0 < z < ∞.∥∥∥ABCDΨ
t f (t) − ABCDΨ

t g(t)
∥∥∥ ≤ z ‖ f (t) − g(t)‖ .
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Proof. By using definition ofABC, we have∥∥∥ABCDΨ
t f (t) − ABCDΨ

t g(t)
∥∥∥

=

∥∥∥∥∥∥∥∥ c(Ψ )
(1 − Ψ )

t∫
0

f
′

(η)EΨ

(
−

(t − η)ΨΨ
(1 − Ψ )

)
dη −

c (Ψ )
(1 − Ψ )

t∫
0

g
′

(η)EΨ

(
−

(t − η)ΨΨ
(1 − Ψ )

)
dη

∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥∥ c(Ψ )
(1 − Ψ )


t∫

0

f
′

(η)EΨ

(
−

(t − η)ΨΨ
(1 − Ψ )

)
dη −

t∫
0

g
′

(η)EΨ

(
−

(t − η)ΨΨ
(1 − Ψ )

)
dη


∥∥∥∥∥∥∥∥ .

Using the Lipschitz condition for the first order derivative, we can find a small positive constant ρ1

such that ∥∥∥ABCDΨ
t f (t) − ABCDΨ

t g(t)
∥∥∥

=

∥∥∥∥∥∥∥∥ c(Ψ )ρ1

(1 − Ψ )
EΨ

(
−

Ψ tΨ

(1 − Ψ )

) 
t∫

0

f
′

(η)dη −

t∫
0

g
′

(η)dη


∥∥∥∥∥∥∥∥

≤
c(Ψ )ρ1

(1 − Ψ )
EΨ

(
−

Ψ tΨ

(1 − Ψ )

) ∥∥∥∥∥∥∥∥
t∫

0

f
′

(η)dη −

t∫
0

g
′

(η)dη

∥∥∥∥∥∥∥∥
≤z

∥∥∥∥∥∥∥∥
t∫

0

f
′

(η)dη −

t∫
0

g
′

(η)dη

∥∥∥∥∥∥∥∥
≤z ‖ f (t) − g(t)‖ ,

where z =
c(Ψ )ρ1
(1−Ψ ) EΨ

(
− Ψ tΨ

(1−Ψ )

)
. Thus Lipschitz condition holds forABC derivative. �

4. Existence theory

Let

Φ (x, y, t; f ) = 6 f 2 fx − 6 f 2 fy + fxxx − fyyy − 3 fxxy + 3 fxyy, (4.1)

Eq (1.3) can be written as

ABCDΨ
t f (x, y, t) = Φ (x, y, t; f ) . (4.2)

Applying theABC FOI to Eq (4.2), we have

f (x, y, t) − f (x, y, 0) =
(1 − Ψ )
c (Ψ )

Φ (x, y, t; f ) +
(Ψ )

c (Ψ ) Γ(Ψ )

∫ t

0
(t − η)Ψ−1Φ (x, y, t; f ) dη.

First we have to verify that the Lipschitz condition holds for the kernel Φ (x, y, t; f ). For this, let us
take two bounded functions, f and g, i.e., ‖ f ‖ ≤ ∆1, and ‖g‖ ≤ ∆2 where ∆1, ∆2 > 0, and consider
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‖Φ (x, y, t; f ) − Φ (x, y, t; g)‖

=


∥∥∥∥(6 f 2 fx − 6g2gx

)
−

(
6 f 2 fy − 6g2gy

)
+

(
fxxx − gxxx

)
−

(
fyyy − gyyy

)
−

(
3 fxxy − 3gxxy

)
+

(
3 fxyy − 3gxyy

)∥∥∥∥
=


∥∥∥∥2 ∂

∂x

(
f 3 − g3

)
− 2 ∂

∂y

(
f 3 − g3

)
+ ∂3

∂x3 ( f − g) − ∂3

∂y3 ( f − g)

−3 ∂3

∂y∂x2 ( f − g) + 3 ∂3

∂y2∂x ( f − g)
∥∥∥∥

≤

2
∥∥∥∥ ∂
∂x

(
f 3 − g3

)∥∥∥∥ + 2
∥∥∥∥ ∂
∂y

(
f 3 − g3

)∥∥∥∥ +
∥∥∥∥ ∂3

∂x3 ( f − g)
∥∥∥∥ +

∥∥∥∥ ∂3

∂y3 ( f − g)
∥∥∥∥

+3
∥∥∥∥ ∂3

∂y∂x2 ( f − g)
∥∥∥∥ + 3

∥∥∥∥ ∂3

∂y2∂x ( f − g)
∥∥∥∥ .

Since f and g are bounded functions. Therefore, their partial derivatives satisfy the Lipschitz conditions
and there exists non-negative constants K,L,M,N,O,P such that

‖Φ (x, y, t; f ) − Φ (x, y, t; g)‖

≤

2K
∥∥∥∥( f 3 − g3

)∥∥∥∥ + 2L
∥∥∥∥( f 3 − g3

)∥∥∥∥ +M ‖( f − g)‖ + N ‖( f − g)‖

+3O ‖( f − g)‖ + 3P ‖( f − g)‖

≤

(2K + 2L)
(

f 2 + f g + g2
)
‖( f − g)‖ +M ‖( f − g)‖ + N ‖( f − g)‖

+3O ‖( f − g)‖ + 3P ‖( f − g)‖

=
(
(2K + 2L)

(
∆2

1 + ∆1∆2 + ∆2
2

)
+M + N + 3O + 3P

)
‖( f − g)‖

=κ ‖( f − g)‖ .

Let
κ =

(
(2K + 2L)

(
∆2

1 + ∆1∆2 + ∆2
2

)
+M + N + 3O + 3P

)
,

thus

‖Φ (x, y, t; f ) − Φ (x, y, t; g) ‖ ≤ κ‖ f − g‖.

For further analysis, we make an iterative scheme as

fξ+1 (x, y, t) =
(1 − Ψ )
c (Ψ )

Φ
(
x, y, t; fξ

)
+

(Ψ )
c (Ψ ) Γ(Ψ )

∫ t

0
(t − η)Ψ−1Φ

(
x, y, η; fξ

)
dη,

where f0 (x, y, t) = f (x, y, 0) . Now the difference between two consecutive terms can be taken as

eξ (x, y, t) = fξ (x, y, t) − fξ−1 (x, y, t)

=
(1 − Ψ )
c (Ψ )

[
Φ

(
x, y, t; fξ−1

)
− Φ

(
x, y, t; fξ−2

)]
+

(Ψ )
c (Ψ ) Γ(Ψ )

∫ t

0
(t − η)Ψ−1

[
Φ

(
x, y, η; fξ−1

)
− Φ

(
x, y, η; fξ−2

)]
dη.
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Also, we have

fξ (x, y, t) =

ξ∑
k=0

ek (x, y, t) , (4.3)

with f−1 = 0.

Theorem 4.1. Assume that f (x, y, t) is bounded a function. Then

‖eξ (x, y, t) ‖ ≤
(
(1 − Ψ )
c (Ψ )

κ +
κtΨ

c (Ψ ) Γ(Ψ )

)ξ
‖ f (x, y, 0)‖ . (4.4)

Proof. Consider
eξ (x, y, t) = fξ (x, y, t) − fξ−1 (x, y, t) . (4.5)

The Eq (4.5) gets the form under norm as∥∥∥eξ (x, y, t)
∥∥∥ =

∥∥∥ fξ (x, y, t) − fξ−1 (x, y, t)
∥∥∥ .

To get the required result, we use the concept of mathematical induction. For ξ = 1, one can get

‖e1 (x, y, t)‖ = ‖ f1 (x, y, t) − f0 (x, y, t)‖

≤
(1 − Ψ )
c (Ψ )

‖Φ (x, y, t; f0) − Φ (x, y, t; f−1)‖

+
Ψ

c (Ψ ) Γ(Ψ )

∫ t

0
(t − η)Ψ−1 ‖Φ (x, y, η; f0) − Φ (x, y, η; f−1)‖ dη

≤
(1 − Ψ )
c (Ψ )

κ ‖ f0 − f−1‖ +
Ψ

c (Ψ ) Γ(Ψ )
κ

∫ t

0
(t − η)Ψ−1 ‖ f0 − f−1‖ dη

=
(1 − Ψ )
c (Ψ )

κ ‖ f (x, y, 0)‖ +
Ψ

c (Ψ ) Γ(Ψ )
κ ‖ f (x, y, 0)‖

∫ t

0
(t − η)Ψ−1dη

=
(1 − Ψ )
c (Ψ )

κ ‖ f (x, y, 0)‖ +
Ψ

c (Ψ ) Γ(Ψ )
κ ‖ f (x, y, 0)‖ t

=

(
(1 − Ψ )
c (Ψ )

κ +
κtΨ

c (Ψ ) Γ(Ψ )

)
‖ f (x, y, 0)‖ .

Now assume that the result is true for ξ − 1, i.e.,

∥∥∥eξ−1 (x, y, t)
∥∥∥ ≤ (

(1 − Ψ )
c (Ψ )

κ +
κtΨ

c (Ψ ) Γ(Ψ )

)ξ−1

‖ f (x, y, 0)‖ . (4.6)

Next, we have to show that

∥∥∥eξ (x, y, t)
∥∥∥ ≤ (

(1 − Ψ )
c (Ψ )

κ +
κtΨ

c (Ψ ) Γ(Ψ )

)ξ
‖ f (x, y, 0)‖ . (4.7)

To get the result (4.4), consider
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∥∥∥eξ (x, y, t)
∥∥∥ =

∥∥∥ fξ (x, y, t) − fξ−1 (x, y, t)
∥∥∥

≤
(1 − Ψ )
c (Ψ )

∥∥∥∥Φ (
x, y, t; fξ−1

)
− Φ

(
x, y, t; fξ−2

)∥∥∥∥
+

Ψ

c (Ψ ) Γ(Ψ )

∫ t

0
(t − η)Ψ−1

∥∥∥∥Φ (
x, y, η; fξ−1

)
− Φ

(
x, y, η; fξ−2

)∥∥∥∥ dη

≤
(1 − Ψ )
c (Ψ )

κ
∥∥∥ fξ−1 − fξ−2

∥∥∥ +
Ψ

c (Ψ ) Γ(Ψ )
κ

∫ t

0
(t − η)Ψ−1

∥∥∥ fξ−1 − fξ−2

∥∥∥ dη

=
(1 − Ψ )
c (Ψ )

κ
∥∥∥eξ−1

∥∥∥ +
κtΨ−1

c (Ψ ) Γ(Ψ )

∥∥∥eξ−1

∥∥∥
=

(
(1 − Ψ )
c (Ψ )

κ +
κtΨ−1

c (Ψ ) Γ(Ψ )

) ∥∥∥eξ−1

∥∥∥
=

(
(1 − Ψ )
c (Ψ )

κ +
κtΨ−1

c (Ψ ) Γ(Ψ )

) (
(1 − Ψ )
c (Ψ )

κ +
κtΨ−1

c (Ψ ) Γ(Ψ )

)ξ−1

‖ f (x, y, 0)‖

=

(
(1 − Ψ )
c (Ψ )

κ +
κtΨ−1

c (Ψ ) Γ(Ψ )

)ξ
‖ f (x, y, 0)‖ .

This ends the proof. �

Theorem 4.2. If the following relation holds at t = t0 ≥ 0, where

0 ≤
(

(1−Ψ )
c(Ψ ) κ +

κtΨ−1
0

c(Ψ )Γ(Ψ )

)
< 1. (4.8)

Then at least one solution of the new 2D KdV equation under theABC fractional derivative exists.

Proof. With the help of Eq (4.3), we have

∥∥∥ fξ (x, y, 0)
∥∥∥ ≤ ξ∑

k=0

‖ek (x, y, t)‖ ≤
ξ∑

k=0

( (1 − Ψ )
c (Ψ )

κ +
κtΨ−1

c (Ψ ) Γ(Ψ )

)k

‖ f (x, y, 0)‖

 ,
for t = t0, we get

∥∥∥ fξ (x, y, 0)
∥∥∥ ≤ ‖ f (x, y, 0)‖

ξ∑
k=0

(
(1 − Ψ )
c (Ψ )

κ +
κtΨ−1

0

c (Ψ ) Γ(Ψ )

)k

.

From the above relation, we can say that

lim
ξ→∞

∥∥∥ fξ (x, y, 0)
∥∥∥ ≤ ‖ f (x, y, 0)‖ lim

ξ→∞

ξ∑
k=0

(
(1 − Ψ )
c (Ψ )

κ +
κtΨ−1

0

c (Ψ ) Γ(Ψ )

)k

.

Since

0 ≤
(

(1−Ψ )
c(Ψ ) κ +

κtΨ−1
0

c(Ψ )Γ(Ψ )

)
< 1, (4.9)
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this implies that sequence fξ (x, y, t) is convergent and therefore the sequence is bounded for each ξ.
Further, assume that

Rξ(x, y, t) = f (x, y, t) − fξ (x, y, t) .

Since fξ (x, y, t) is bounded. It follows that for λ > 0, we have
∥∥∥ fξ (x, y, t)

∥∥∥ ≤ λ. After simple
manipulation like we did in Theorems 4.1 and 4.2, we obtain∥∥∥Rξ(x, y, t)

∥∥∥ ≤ (
(1 − Ψ )
c (Ψ )

κ +
κtΨ−1

0

c (Ψ ) Γ(Ψ )

)ξ+1

λ.

Using Eq (4.9), one can get
lim
ξ→∞

∥∥∥Rξ(x, y, t)
∥∥∥ = 0,

it follows that limξ→∞ fξ (x, y, t) = f (x, y, t). This finish the proof. �

Theorem 4.3. If the inequality (4.8) holds at t = t0 ≥ 0. Then the unique solution of proposed equation
exists.

Proof. On contrary, suppose that there are two solutions f and g of the proposed equation such that
f , g. Now

f (x, y, t) − g (x, y, t)

=
(1 − Ψ )
c (Ψ )

[
Φ (x, y, t; f ) − Φ (x, y, t; g)

]
+

Ψ

c (Ψ ) Γ(Ψ )

×

[∫ t

0
(t − η)Ψ−1 [

Φ (x, y, η; f ) − Φ (x, y, η; g)
]
dη

]
.

Taking norm both side

‖ f (x, y, t) − g (x, y, t)‖

≤
(1 − Ψ )
c (Ψ )

‖Φ (x, y, t; f ) − Φ (x, y, t; g)‖ +
Ψ

c (Ψ ) Γ(Ψ )

×

[∫ t

0
(t − η)Ψ−1 ‖Φ (x, y, η; f ) − Φ (x, y, η; g)‖ dη

]
≤

(1 − Ψ )
c (Ψ )

κ ‖ f − g‖ +
Ψ

c (Ψ ) Γ(Ψ )

∫ t

0
κ(t − η)Ψ−1 ‖ f − g‖ dη

≤

(
(1 − Ψ )
c (Ψ )

κ +
Ψ

c (Ψ ) Γ(Ψ )
κ

)
‖ f − g‖

∫ t

0
(t − η)Ψ−1dη

=

(
(1 − Ψ )
c (Ψ )

κ +
κtΨ

c (Ψ ) Γ(Ψ )

)
‖ f − g‖ ,

but

0 ≤
(

(1−Ψ )
c(Ψ ) κ + κtΨ

c(Ψ )Γ(Ψ )

)
< 1.

Using the above inequality, we achieve

‖ f (x, y, t) − g (x, y, t)‖ = 0,

thus, our supposition is wrong. Hence, the solution is unique. �
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5. Solution of Eq (1.2)

In this section, we briefly discuss the solution of the model by applying Ansatz method. For this
purpose, we will consider a test function as

f (x, y, t) = β0 + β1sech (b1x + b2y + b3t) . (5.1)

By putting above equation into classical form of the model, we obtain

6β2
0a1 − 6β2

0b2 + b3
1 − 3b2

1b2 + 3b2
2b1 − b3

2 − b3 = 0,
12β0β1b1 − 12β0b1b2 = 0,

6β2
1b1 − 6β2

1b2 − 6b3
1 + 18b2

1b2 − 18b2
2b1 + 6b3

2 = 0,

solution becomes as

β0 = 0, β1 = ∓b1 ± b2, b3 = b3
1 − 3b2

1b2 + 3b2
2b1 − b3

2,

solution of classical model becomes as

f1,2 (x, y, t) = (∓b1 ± b2) sech
(
b1x + b2y +

(
b3

1 − 3b2
1b2 + 3b2

2b1 − b3
2

)
t
)
.

For b1 = 1 and b2 = −1, the above solution becomes

f1,2 (x, y, t) = ∓
4 exp(x − y + 8t)

1 + exp(2x − 2y + 16t)
. (5.2)

6. Solution of Eq (1.3)

In this section, to obtain analytic solution we applying Laplace transform (LT) on both sides of
equations f (x, y, t) is the source term. Subject to the initial condition f (x, y, 0) = f0(x, y, 0).On utilizing
LT, one can get

L
[
ABCDΨ

t f
]

= L
[
6 f 2 fx − 6 f 2 fy + fxxx − fyyy − 3 fxxy + 3 fxyy

]
,

L
[
f (x, y, t)

]
=

f (x, y, 0)
s

+

[
s(1 − Ψ ) + Ψ

c(Ψ )
L

[
6 f 2 fx − 6 f 2 fy

]
+ fxxx − fyyy − 3 fxxy + 3 fxyy

]
. (6.1)

The approximate solution is represented by

f (x, y, t) =

∞∑
ξ=0

fξ(x, y, t), (6.2)

and the nonlinear term is represented by Adomain polynomials, i.e., G( f ) = f 2 =
∑∞
ξ=0 Aξ, where Aξ

is defined as follows for any ξ = 0, 1, 2, · · ·

Aξ =
1

Γ(ξ + 1)
dξ

dλξ

G
 ∞∑
ξ=0

(
λξ fξ

)

λ=0

.
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Using Eq (6.2), we obtain

L

 ∞∑
ξ=0

fξ(x, y, t)

 =
f (x, y, 0)

s
+

s(1 − Ψ ) + Ψ

c(Ψ )
L

6 ∞∑
ξ=0

Aξ

∞∑
ξ=0

∂

∂x
fξ − 6

∞∑
ξ=0

Aξ

∞∑
ξ=0

∂

∂y
fξ

+

∞∑
ξ=0

(
∂3

∂x3 fξ −
∂3

∂y3 fξ − 3
∂3

∂x2∂y
fξ + 3

∂3

∂y∂x2 fξ

) .
The following can be obtain by comparing terms

L
[
f0(x, y, t)

]
=

f (x, y, 0)
s

,

L
[
f1(x, y, t)

]
=

sΨ (1 − Ψ ) + Ψ )
sΨc(Ψ )

L
[
6A0 f0x − 6A0 f0y + f0xxx

+ f0yyy − 3 f0xxy + 3 f0xyy

]
,

L
[
f2(x, y, t)

]
=

sΨ (1 − Ψ ) + Ψ )
sΨc(Ψ )

L
[
6A1 f1x − 6A1 f1y + f1xxx

+ f1yyy − 3 f1xxy + 3 f1xyy

]
,

...

L
[
fξ+1(x, y, t)

]
=

sΨ (1 − Ψ ) + Ψ )
sΨc(Ψ )

L
[
6Aξ fξx − 6Aξ fξy + fξxxx

+ fξyyy − 3 fξxxy + 3 fξxyy

]
.

Applying L−1, we get

f0(x, y, t) = L−1
[

f (x, y, 0)
s

]
,

f1(x, y, t) = L−1
[

sΨ (1 − Ψ ) + Ψ )
sΨc(Ψ )

L
[
6A0 f0x − 6A0 f0y + f0xxx

+ f0yyy − 3 f0xxy + 3 f0xyy

]]
f2(x, y, t) = L−1

[
sΨ (1 − Ψ ) + Ψ )

sΨc(Ψ )
L

[
6A1 f1x − 6A1 f1y + f1xxx

+ f1yyy − 3 f1xxy + 3 f1xyy

]]
...

fξ+1(x, y, t) = L−1
[

sΨ (1 − Ψ ) + Ψ )
sΨc(Ψ )

L
[
6Aξ fξx − 6Aξ fξy + fξxxx

+ fξyyy − 3 fξxxy + 3 fξxyy

]]
.

The required series solution is given as

f (x, y, t) =

∞∑
ξ=0

fξ(x, y, t). (6.3)

Here, we present two special cases of the proposed equation.
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6.1. Case A

For the first case, we take the initial condition as

f (x, y, 0) = −4
exp(x + y)

1 + exp (2(x − y))
.

Using the detail procedure as discussed above, we achieve

f0(x, y, t) = f (x, y, 0) = −4
exp(x + y)

1 + exp (2(x − y))
,

f1(x, y, t) =L−1
[

sΨ (1 − Ψ ) + Ψ

sΨc(Ψ )
L

[
6 f 2

0
∂

∂x
f0 − 6 f 2

0
∂

∂y
f0 +

∂3

∂x3 f0 −
∂3

∂y3 f0

−3
∂2

∂x2 (
∂

∂y
f0) + 3

∂

∂x
(
∂2

∂y2 f0)
]]
,

using Mathematica, we obtain

f1(x, y, t) =

(
1 − Ψ +

Ψ tΨ

Γ(Ψ + 1)

) 32t exp(x + y)
(− exp(2x) + exp(2y))(

exp(2x) + exp(2y)
)2 c (Ψ )

 ,
similarly, other terms can be calculated with the help of Mathematica. The required series solution is
given as  f (x, y, t) = −4 exp(x+y)

1+exp(2(x−y)) + 32t
(
1 − Ψ + Ψ tΨ

Γ(Ψ+1)

)
×

(
exp(x + y) (− exp(2x)+exp(2y))

(exp(2x)+exp(2y))2
c(Ψ )

)
+ . . .

(6.4)

Remark 6.1. When we put Ψ = 1 in Eq (6.4), the solution rapidly converges to the exact classical
solution, i.e.,

f (x, y, t) = −4
exp(x − y + 8t)

1 + exp (2(x − y + 8t))
. (6.5)

6.2. Case B

For the first case, we take the initial condition as

f (x, y, 0) = 4
exp(x + y)

1 + exp (2(x − y))
.

Using the detail procedure as discussed above, we get

f0(x, y, t) = f (x, y, 0) = 4
exp(x + y)

1 + exp (2(x − y))
,

f1(x, y, t) =L−1
[

sΨ (1 − Ψ ) + Ψ

sΨc(Ψ )
L

[
6 f 2

0
∂

∂x
f0 − 6 f 2

0
∂

∂y
f0 +

∂3

∂x3 f0 −
∂3

∂y3 f0

−3
∂2

∂x2 (
∂

∂y
f0) + 3

∂

∂x
(
∂2

∂y2 f0)
]]
,
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using Mathematica, we obtain

f1(x, y, t) =

(
1 − Ψ +

Ψ tΨ

Γ(Ψ + 1)

) −32t exp(x + y)
(− exp(2x) + exp(2y))(

exp(2x) + exp(2y)
)2 c (Ψ )

 ,
similarly, other terms can be calculated with the help of Mathematica. The required series solution is
given as  f (x, y, t) = 4 exp(x+y)

1+exp(2(x−y)) − 32t
(
1 − Ψ + Ψ tΨ

Γ(Ψ+1)

)
×

(
exp(x + y) (− exp(2x)+exp(2y))

(exp(2x)+exp(2y))2
c(Ψ )

)
+ . . .

(6.6)

Remark 6.2. When we put Ψ = 1 in Eq (6.6), the solution rapidly converges to the exact classical
solution, i.e.,

f (x, y, t) = 4
exp(x − y + 8t)

1 + exp (2(x − y + 8t))
. (6.7)

7. Convergence and stability analysis

Here, we derive some results regarding to the convergence and stability of the proposed scheme
with the help of functional analysis. The convergence of the proposed scheme of the is presented in
the following theorem.

Theorem 7.1. Let H be a Banach space and T : H → H be an operator. Suppose that f be the exact
solution of the proposed equation. If ∃ $ such that 0 ≤ $ < 1 and

∥∥∥ fξ+1

∥∥∥ ≤ $ ∥∥∥ fξ
∥∥∥ , ∀ ξ ∈ N ∪ {0},

then the approximate solution
∑∞
ξ=0 fξ converges to the exact solution f .

Proof. We construct a series as

S0 = f0,

S1 = f0 + f1,

S2 = f0 + f1 + f2,
...

Sξ = f0 + f1 + · · · fξ.

We want to prove that the sequence
{
Sξ

}∞
ξ=0

is a Cauchy sequence in H. Let us consider∥∥∥Sξ+1 − Sξ
∥∥∥ =

∥∥∥ fξ
∥∥∥

≤ $
∥∥∥ fξ

∥∥∥
≤ $2

∥∥∥ fξ−1

∥∥∥
≤ $3

∥∥∥ fξ−2

∥∥∥
...

≤ $ξ+1 ‖ f0‖ .
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Now for every ξ,m ∈ N, we have∥∥∥Sξ − Sm

∥∥∥ =
∥∥∥∥(Sξ − Sξ−1

)
+

(
Sξ−1 − Sξ−2

)
+ · · · + (Sm+1 − Sm)

∥∥∥∥
≤

∥∥∥Sξ − Sξ−1

∥∥∥ +
∥∥∥Sξ−1 − Sξ−2

∥∥∥ + · · · + ‖Sm+1 − Sm‖

≤ $ξ ‖ f0‖ +$ξ−1 ‖ f0‖ + · · · +$m+1 ‖ f0‖

≤
(
$ξ+1 +$ξ+2 + · · ·

)
‖ f0‖ =

$ξ+1

1 −$
‖ f0‖ .

Now, limξ,m→∞

∥∥∥Sξ − Sm

∥∥∥ = 0. This implies that
{
Sξ

}∞
ξ=0

is Cauchy sequence in H. So ∃ f ∈ H such that
limξ→∞ Sξ = f . This ends the proof. �

Next, we present the Picard’s X-stability of the proposed scheme in the following theorem.

Theorem 7.2. Let X be a self-mapping which is defined as

X
(

fξ(x, t)
)

= fξ+1(x, t)

= fξ(x, t) +L−1
[

sΨ (1 − Ψ ) + Ψ )
sΨc(Ψ )

L
[
6 f 2

ξ fξx − 6 f 2
ξ fξy + fξxxx + fξyyy − 3 fξxxy + 3 fξxyy

]]
. (7.1)

The iteration is X-stable in L1(a, b), if the condition∥∥∥∥(2K + 2L)
(
Φ2

1 + Φ1Φ2 + Φ2

)
ℵ1 +Mℵ2 − Nℵ3 + 3Oℵ4 + 3Pℵ5

∥∥∥∥ < 1, (7.2)

is satisfied.

Proof. With the help of Banach contraction theorem, first we show that the mapping X possesses a
unique fixed point. For this, assume that the bounded iterations for (ξ,m) ∈ N×N. Let Φ1,Φ2 > 0 such
that

∥∥∥ fξ
∥∥∥ ≤ Φ1, and ‖ fm‖ ≤ Φ2. Consider

X
(

fξ(x, t)
)
− X ( fm(x, t))

= fξ(x, t) − fm(x, t) +L−1
[

sΨ (1 − Ψ ) + Ψ )
sΨc(Ψ )

L
[
2 f 2

ξ fξx − 2 f 2
ξ fξy + fξxxx + fξyyy − 3 fξxxy + 3 fξxyy

]]
− L−1

[
sΨ (1 − Ψ ) + Ψ )

sΨc(Ψ )
L

[
2 f 2

m fmx − 2 f 2
m fmy + fmxxx + fmyyy − 3 fmxxy + 3 fmxyy

]]
= fξ(x, t) − fm(x, t) +L−1

[
sΨ (1 − Ψ ) + Ψ )

sΨc(Ψ )
L

[
2K

(
f 3
ξ − f 3

m

)
− 6L

(
f 3
ξ − f 3

m

)
+M

(
fξ − fm

)
− N

(
fξ − fm

)
− 3O

(
fξ − fm

)
+ 3P

(
fξ − fm

)]]
.

Now, using triangle inequality, we have∥∥∥∥X
(

fξ(x, t)
)
− X ( fm(x, t))

∥∥∥∥
=

∥∥∥ fξ(x, t) − fm(x, t)
∥∥∥ +

∥∥∥∥∥∥L−1
[

sΨ (1 − Ψ ) + Ψ )
sΨc(Ψ )

L
[
2K

(
f 3
ξ − f 3

m

)
−2L

(
f 3
ξ − f 3

m

)
+M

(
fξ − fm

)
− N

(
fξ − fm

)
− 3O

(
fξ − fm

)
+ 3P

(
fξ − fm

)]]∥∥∥∥ .
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Using boundedness of fξ and fm, we have

∥∥∥∥X
(

fξ(x, t)
)
− X ( fm(x, t))

∥∥∥∥
≤

[
(2K + 2L)

(
Φ2

1 + Φ1Φ2 + Φ2

)
ℵ1 +Mℵ2 − Nℵ3

+3Oℵ4 + 3Pℵ5]
∥∥∥ fξ − fm

∥∥∥ ,
where ℵi, i = 1, 2, 3, 4, 5, are functions obtained from L−1

[
sΨ (1−Ψ )+Ψ )

sΨ c(Ψ ) L [∗]
]
. Using assumption (7.2),

the mapping X fulfills the contraction condition. Hence by Banach fixed point result, X has a unique
fixed point. Also, the mapping X satisfies the condition of Theorem 2.4 with

a = 0,
b = (2K + 2L)

(
Φ2

1 + Φ1Φ2 + Φ2

)
ℵ1 +Mℵ2 − Nℵ3 + 3Oℵ4 + 3Pℵ5.

Thus, the mapping X fulfills all conditions of Picard’s X-stable. Hence our proposed scheme is Picard’s
X-stable. �

8. Discussion and conclusions

Thanks to the Mittag-Leffler kernel, which solves the singularity and locality problems with the
Caputo and Caputo-Fabrizio FOD kernels. Since ABC-derivative is based on the Mittag-Leffler
kernel, it has recently become popular for investigating the dynamics of a mathematical model that
governs a physical process. We use ABC-derivative to investigate the soliton solution of the new
modified KdV equation in (2+1) dimension in the current paper. Since the presence of a solution is
essential for the study of a model, we have deduced some results using fixed point theory that
guarantees at least one solution and the unique solution of the proposed equation. There are several
techniques for solving FDEs, but among the analytical methods, LADM is the most effective and
accurate. UnderABC-derivative, we used the LADM to obtain the solution of the proposed equation.
Graphs of the solution are used to observe the method’s convergence. The exact solution and the
approximate solution obtained with the aid of LADM are in good agreement (See Figures 1 and 2).
The dynamics of the solution under the ABC-derivative have been investigated. We can see from
Figures 3 and 4 that the fractional-order solution curves are approaching the integer-order curve when
fractional-order equals 1. Figure 5 shows that theABC-derivative solution curve is much closer to the
exact solution than the Caputo-Fabrizio derivative curve. As a result, the proposed model is better
than Caputo-Fabrizio’s. Figures 6–9 denote the graphical representation of solution obtained in the
Case B. The considered equation will be studied under more generalized fractional operators in the
next paper.
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Figure 1. Two dimensional dynamics of exact and approximate solutions.
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Figure 2. Dynamics of exact and approximate solutions in 3D.
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Figure 3. Dynamics of approximate solution for different fractional orders in 2D.
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Figure 4. Dynamics of approximate solution for different fractional orders in 3D.
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Figure 5. Comparison between solution curves of exact solution, ABC-solution and Caputo-
Fabrizio solution.
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Figure 6. Dynamics of approximate solution in case B for different fractional orders in 2D.
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Figure 7. Dynamics of approximate solution case B for different fractional orders in 3D.
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Figure 8. Two dimensional dynamics of exact and approximate solutions in case B.

0
0.5

1

2

0.4 5

3

4
0.3 3

4

y

2

5

1

x

0.2 0
-1

-20.1
-3

-40 -5

Approximate

Exact

Figure 9. Dynamics of exact and approximate solutions in 3D in case B.
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