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1. Introduction

Most of the dynamical systems in science and engineering have the intrinsic nature of time delay
to some degree. Time delays occur in many dynamical systems such as chemical or process control
systems, biological systems, network control systems, etc. As per the practical requirement, the
delays may be time-varying or constant. Many systems, for example, sample data control, aircraft
control, etc., are modelled as time-varying delays, which are the principal cause of instability and
weak control performance. Neutral systems with time delay are the systems in which uncertainty is
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present in the state and derivatives. These systems arise in many areas like population ecology,
distributed networks, etc. Due to various applications in engineering and science, many researchers
worked on the delay differential equation. Besides the above, in control theory, the problem of
controllability is of specific importance. Controllability of the system can handle various problems
like stabilization, pole assignment, and optimal control.

Fattorini [1] introduced the controllability condition on the boundary control system of first and
second-order replacing boundary controls by distributed controls. Park et al. [2,4] gave the results for
the boundary controllability of semilinear nonlocal control systems with the help of the Banach fixed
point theorem. Ahmed et al. [3] derived results for approximate boundary controllability of stochastic
control system of fractional order having Poisson jump and fractional Brownian motion.
Balachandran et al. [5] investigated sufficient conditions for controllability of abstract neutral
integrodifferential control systems having infinite delay using Nussbaum fixed point theorem and
analytic semigroup theory. Radhakrishnan et al. [7] and Kumar et al. [10] studied the controllability
for the integrodifferential control system in Banach space with the help of the Schaefer fixed point
theorem. Cheng et al. [11] presented the exact controllability of fractional control system having
time-varying delay using the theory of propagation family and Leray-Schauder theorem. Applications
of fractional calculus in neural networks can be found in [45-54].

In [12-16, 23] researchers investigated the existence and uniqueness of mild solution for certain
classes of a fractional evolution equation with the help of fixed point theorem, fractional power
operators, semigroup theory, the measure of non-compactness, etc. Guo et al. [21] presented null
boundary controllability and proved nonlinear Cauchy-Kowalevski theorem for 1-D semilinear heat
equations. In [8,9, 17-20, 24-39, 44], researchers studied the approximate controllability for the
semilinear control system of fractional order @ € (1,2], first and second-order using fixed-point
theorem, cosine and sine theory of operators, fractional calculus, Lipschitz continuity and sequential
approach.

Under Lion boundary conditions, the 3D Navier-Stokes system is approximately controllable, as
discussed by Phan et al. [40]. Meraj et al. [41] derived the results for approximate controllability for
a non-autonomous control system having nonlocal initial conditions using Krasnoselski theorem and
evolution system. In modern era, fixed point theory is employed in many areas of mathematics and
engineering. Keeping these utilizations of fixed point theory in mind, some fixed point results are
proved in the structure of partial b-metric spaces and allied abstract spaces which emphasize primarily
the applications for existence of the solution of various functional equations occurring in dynamic
programming, integral equations, boundary value problems, equations representing LCR circuits and
simple harmonic motion. Fixed point theory is a powerful tool to determine uniqueness of solutions to
dynamical systems and is widely used in theoretical and applied analysis.

The main contributions of our paper are:

e We have derived the results for the boundary controllability of integrodifferential neutral control
system having time-varying delays of fractional order.

e The primary outcomes for the systems (2.1)—(2.3) are derived by employing Banach fixed point
theorem, semigroup theory and fractional calculus.

¢ By considering a set of assumptions (A1)—(A10) results can be obtained.

e The research focused on the boundary controllability of proposed systems (2.1)—(2.3) under
consideration are not addressed in the literature to our knowledge, and it supports the current
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findings.
This article’s structure will now be presented as follows:

(1) Section 2 discusses some definitions and assumptions.

(2) Results for boundary controllability are presented in section 3.
(3) An example is demonstrated to validate the theoretical result.
(4) Finally we have given a conclusion section.

2. Preliminaries

Let us assume that V and U are two real Banach spaces having norms || - || and | - | respectively.
Consider that p be a linear, closed and densely defined operator with D(p) € V. Consider ® C X
be linear operator with D(p) and R(®) C X, a Banach space. Now define the nonlocal fractional
integrodifferential boundary control system having time varying delay as:

@

d
——|5(5) + (s, 5(5), s (] =ps(5) + &(s, 5(5), s(ra(5)

ds
S
+ fo ¥(s,0, s(y3(0)do,s € J = [0, D], (2.1)
Os(s) =Eu(s), (2.2)
S(O) + ¢(§1, §25 -0 Sps S()) =350, (23)

where ¢ > 0,¢, < bandg; <gy i=1,2,...p—1and a € (0,1]. The continuous linear operator
E, is defined from U to X. The control function u € L*(J, U), a Banach space of admissible control
functions with U. The delays functions vy, vy, and y3 are continuous. The state s(.) € V, the functions
g, ¢, Yandnparedefinedas g : IXVXV =V, ¢:JPXV -V, Y:AXV - Vandn: JXVXV =YV,
and A = {(5,0),0 <o <¢ < b}

Suppose that the linear operator A : D(A) — V where D(A) C V be defined as: D(A) = {s € D(p) :
®s = 0}, As = ps, for s € D(A). Consider

E.={y:IHl<ricV

We consider the following assumptions:

(A1) D(p) c D(®) where p is closed linear operator having domain D(p) and ® is a boundary operator
having domain D(®). Also the restriction of ® to D(p)is continuous (w.r.t. graph norm).
(Ay) T(s) 1s a compact semigroup having infinitesimal generator A. Also there exist L € (0, )
satisfying
Tl < L.

(A3) There exists an operator E defined from U to V which is continuous and linear, with pE € L(U, V),
O(EU) = E U, Yu € U. In addition, there exist a constant C > 0 such that || Eu|| < C|| Eul| for
every u € U and continuous differentiability is satisfied by Eu(s).

(A4) Foru € Uand 0 < ¢ < b, T(s)Eu € D(A). Also, there is a constant M € (0, o) satisfying
I AT (9l < M.
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(As) The operator W : L2(J,U) — V is linear and explained in the following way

b 00
Wu=a [ [ @te=or a1 -0 mp - AT - o m)|Euterdmde,

where &,(w) is called p.d.f, 0 < @ < oo, see [13, 14]. The operator W~! induced by &,(w), is
invertible and is defined on L2(J, U)/kerW. There exist L;, L, € (0, o) satisfying

IENl < Ly,

and
| Wl < Ly.

(A¢) The function 7, g is continuous in ¢. Also, for every s;,y;,, u;,v; € E,, i = 1,2 and ¢ € J, there
exist Cy, M, € (0, o)

175 101, v1) = (S5 2, v)ll < Coll g = wall + [l vy = wall].
185 51.31) = 8(5. 52,32l < My[ll 51 = sall + 11 y1 = yall].

(A7) The function ¥ is continuous in ¢ and o, there exist Ny € (0, co0) such that for every u,v € E, and
S, 0 €A,
I'¥(s,0,u) = ¥(s, 0, VI < Nill u = vll.

(Ag) There exists a constant H € (0, co0) such that for z;,z, € C(J, E,), we have

I #(S1, 625 -0 §ps 21()) — P(S1, 62, s Spy 2 < H s%pb |l z1($) = 22(S)II-
¢€[0,0]

(Ag) Vsy,s, € V there is a constant p > 0 such that

I 51(vi(6)) = 52y DI < pll 51(8) = 52(l, - for i=1,2.

(A19) There exists a constant r > O such that

|(ZNl soll+LH\ +LC3+Cat M(2rCy+Ca)b"+b" L(2r My + My)+b" L(Nyrb+Nob) )(1+5" M+ LI pll} Ly Lo

+l allLiLob™(M + Ll pl)| < 1,
where the constants M,, C,, C3, C4 and N, will be defined later.

Let us assume the solutions of (2.1)—(2.3) as s(¢). Now, describe z(¢) = —Eu(s) + s(s) and by above
assumption, z(¢) € D(A).
We can express (2.1)—(2.3) as:

@

d
E[m +7(6, 5(8), 51 ()] =Az(6) + pEu(S) + g(s. 5(5), s(y2(S))

S
+f ¥(s, 0, s(y3(0))do, ¢ €J=1[0,b], (2.4)
0

5(5) =z(s) + Eu(s), (2.5)
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5(0) + (1,62, ... S, S(+)) =50. (2.6)

If continuous differentiability on [0, b] is satisfied by u, then we can express z as a mild solution of
given below problem:
d® d®u(s)

@[z(g) +1(s, 5(5), 51 ()| =Az(s) + pEu(s) — E de

S
+ g(s, 5(¢), s(y2(s))) + fo ¥(s, 0, s(y3(0)))do,
Z(O) =S80 — EM(O) - ¢(§‘1, C2yeeny gp’ S(O))

The solutions of (2.1)—(2.3) is stated as:
s(¢) = fo (@ T (S"@)[s0 — P(S15 625 -+, §p» $()) — Eu(0)|dw + Eu(s)

S 00 da’
—a fo fo @(s —0)" (@) T ((s - Q)”w)@[n(g, 5(0), s(y1 (g)))]dwdg

d“u(o)
do”®

va [ [ w0 a@ s - orm|pbue) - E S e

va | ) | " w(s - 0" E@T (s - 0 D)|g(0, 50), 5120
+ [ oo stontonofdade )
Now, integrating (2.7), we get
6= [ (@) T D50~ B(S1 60 60 5C) + 100, 50), S (O))]de

= (s, (), s(y1(5)))
—a | ) | " w5 — 0" E@AT((s - 0 e, 5(0), s(ri(0))dedo
-a fo ) fo i @(s —0)" ' &(@)AT (s — 0)"@)Eu(o)dwdp
+a fo ) fo i @(s - 0" éul@)T((s — 0)"®@)|pEu(0) + 8(0, 5(0), 5(72(0)))
- fo w0, s(ys(0))dor |dwdo. (2.8)

Consequently, (2.8) is clearly defined and it is called a mild solution of the systems (2.1)—(2.3).

Definition 2.1. The systems (2.1)—(2.3) is called controllable on the interval J if for all sy, a € V, there
exists a control u € L2(J, U) such that the solutions s(-) of (2.1)—(2.3) meets s(b) = a where b > O is a
final point of J.

The main objective is to transfer the systems (2.4)—(2.6) from s(0) = 5o — ¢(51,62, ..., Sp, S(+)) tO
s(b) = a, see [4].
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3. Main results

Theorem 3.1. If the assumptions (A1)—(Ayo) are fulfilled, then the boundary control of the evolution
systems (2.1)—(2.3) is controllable on J provided

[(LH + LC\(1 + p) + C1(1 + p) + b"MCy(1 + p) + b*LM, (1 + p) + b"L(bN, p))
(1+5%M + Ll pl}Li L) < T, 0<T< 1.
Proof. By applying the invertible operator W~!, for arbitrary function s(-), we present
u(s) = W‘l[a - f ELDT(B"D)[ 50 = B(S1, 625 s 6 S()) + (0, 5(0), 5(y1(0)) [da
0
+ (D, s(b), s(y1(b)))

b 00
+a fo fo @ (b — ) E(@)AT (b - 0) @0, 5(0), s(y1(0))dwdp
b 00
- fo fo @ (b - 0)"'é(@)T((b - 0)"@)g(0, 5(0), s(y2(0)))dwdo
b 00 0
-« fo fo @(b - )" éul@T((b - 0)'w)| fo ¥(o, 0, s(n(a)))da]dwdg](g) (3.1)
Now, we shall observe that, when applying this control u(s), the operator
F:CU,E)—- CWU,E)
given as
(Fx)(s) = fo £ DT (S"D)| 50 = $(S1. §22 s S S()) + (0, 5(0), (71 (0)) | d
—1(s, (), s(y1(5)))
g‘ 00
—a fo fo @(s — )" E(@AT (s — 0) " @)n(0, 5(0), s(¥1(0)))dwdo
-« j; j; w(s - Q)"‘lfa(W)[AT((g —0) @) -T((s- Q)"W)p]
X EW™'|a - fo E@)T(B"D)| 50 = B(51, 625 0> Sp» 5())
+ (0, 5(0), S(71(0)))]dw + (b, s(b), s(y1(D)))

b 00
+a f f @b - )" E@AT (b - ) @)(0, 5(0), s(y1 (0)))dwdor
0 0
b 00
-~ f f @b - )" @T(b - ) @)3(0, 5(0), s(ya(0))dwdor
0 0
b 00
~o [ [ o= e@rae- oo x| [ e soudufdads|oade
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'S oo
+a fo f(; @(s — 0)* (@) T (s — 0)*@)g(0, 5(0), s(y2(0)))dwdo

C T 0
+ aj; ‘fo‘ @(s—0)" & @)T (s - Q)Qw)[\fo Y(o, o, 5(73(0')))d0']dwdg,

has a fixed point. This fixed point is then the solutions of the (2.1)—(2.3). Fx(b) = a, this means that the

control u steers
delays from the

the nonlocal fractional neutral integrodifferential evolution systems with time varying
initial state s( to a in time b provided we can achieve a fixed point of the operator F.

Initially, we demonstrate that F' maps C(J; E,) into itself. We can select M, C,, C3,Cy, N, > 0 such

that

M, = max||g(o, 0, 0)Il,
oeJ
C, = max ln(e, 0, 0]l

C; = 0, s(0), Ol
3= dmax {00, s(0), sy (0l

Cy= _max |0, s(), s(y1(b))Il,

s€C([0.61.Er)

N, = max ||'*¥(s, 0, 0)l.
¢,0EA

Moreover, in view of the fact s(-) in ¢ is continuous on J, we consider

H; = max |l¢(s1,62, ..., Sp, SC)II.
seC(J,E;)

From Eq (3.1), we have

Il (Fx)($)ll

+

t)

va |
0
t)

va |
0

Il all +

fo Ea(@)T (" @)n(0, 5(0), s(y1(0))dw

< +

fo El(@)T (6" @) sodw

ﬁ fa(W)T(gQW)(b(gl, §25 -5 Sp> S())d?ﬂ'H

+ I (s, s(5), s(r1 (I

fo @ (s — 0)" E@)AT (s — 0) @0, 5(0), S(yl(g)))dwudg

fo " ols -0 @AT (s - 0"m) - T((s - @>“w>p]de|| Elf| |

fo El@)T (B )| 50 = B(S1, §25 o> Sp» () + 100, 5(0), s(m(())))]de

+ [ 1(b, s(b), s(y1 (D))l

b
+af
0

b
+af
0

b
mf
0

AIMS Mathematics

[ @t -or e@ar - oy ome. s st (a)))dw‘lda

0

[ w-or a@r-orose. o). s(n(cr»)de do

0

[ w-ora@r@-oro)| [ wom 5(73(/1)))dﬂ]dWHdU] (0)do

Volume 7, Issue 5, 7642-7656.



7649

j; @(s —0)" (@) T (s — Q)“W)dwnll 8(0, 5(0), s(y2(0)))lldo

S
va |
0
S
va |
0

< Ll soll + LHy + LC5 + C4 + Maf O Q)‘H[II 1(0, 5(0), s(y1(0))) — n(0, 0, 0|
0

0 0
fo (s —0) ' é@)T((s - Q)“W)dWHH fo Yo, 0, 8(73(0')))d0'Hdg

S
+ 1m0, 0,0)ll|do + e f (¢ — 0)° "M + L|| plbL1 Ly ||l all + L(| soll + Hy + C3) + C4
0

+a fo (b= Ml 500, 51 = (@ 0.0 + 1 e 0,0

+a fo (b= oY L (050, 505 - 8(.0,0) + 1 g0 0, D)o

+a fo - fo " (Wl e sra0) — W e ) + | fo o 0)duH]dcr]dg
+a fo C(s* — 0" L{ll g(o. 5(0), 5(¥2(0))) = 8(0,0,0)lI + Il g0, 0, 0)l}do

+a fog(g _ Q)Q—IL[” f; (\P(Q, o, s(y3(0))) — ¥(o, o, 0))d0'” + H fog Y(o, 0, O)dO'H]dQ
< Ll soll + LHy + LC3 + C4 + M(Q2rCy + C)b" + b*{M + L|| pl|}L, L,

X [|| all + L(|| soll + Hy + C3) + C4 + Mb*(2rC; + C3) + b*L(2rM, + M;)

+ b"L(Ny7b + Nyb) | + bLQ2rM, + My) + b"L(N1rb + Nyb)

< [LII soll + LHy + LC3 + C4 + M(2rCy + Co)b® + b*L(2rM, + M,)

+ b"L(Nyrb + Nob) |[1 + b"IM + LIl pll\ Ly Lo | + || allLy Lob™ (M + L] pll}

<r

Hence, F maps C(J; E,) into itself.
Next, we demonstrate that F is a contraction on C(J; E,). Indeed,

| Fx1($) = Fxo()ll <

fo E@)T(S D) @515 s Spr 51()) = B(S1, o0 S Sz('))]dWH

+ fo E£@)T(s"@)|7(0, 5(0), 51(71(0)) = 1(0, 5(0), sz<y1<0>))]dw||

+ {| 705, $1(9), s1(¥1(5))) — 11(s, 52(5), 52(y1 (§)))H

+ cxj(; jo‘ w(s - Q)a—lga(w)AT((g - 0)*@)[1(0, 51(0), 51(v1(0)))

= 11(0, $2(0), $2(y1(0))dwdo)|| +

o [ [ wc-orta@iars-oro)
- T((s - )" @)P}EW ™! [ fo El@T (B D) $(S1, -o0r Spr $10)) = B(S15 s S $2() |dT
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+ fo E(@)T(b"@)[1(0, 5(0), 51(71(0)) = 7(0, 5(0), $:(y1(0))|dw

b 00
1B, 515), 5131 (B))) = (b, $52(5), 520 (BY)] + f f b - o) éu()
0 0
X AT((b = )@@, 51(0), 5101 (0))) = 0, 52(0), 521 (W) ddor

b 00
- a f f @(b - )" E(@T((b - ) D)lg(o, 51(0), 51(y2()))
0 0
b 00
— 8(0, 52(0), $:(y2(0)) ldwdor - @ f f @(b - o) (@) T((b - 0)'m)
0 0
x| j: Yo s 513 () = F(o p, s2<y3w>>>du]dwda]H(g)dwdg

_l_

g 00
a fo fo (s - 0 Eu(@)T (s  0)')
X [g(0, 51(0), 51(¥2(0))) — g(0, 52(0), S2(?’2(Q)))]deQH

+

S’ 00
a fo fo @(s—0)" ' &(@)T((s - 0)'w)

x| f: (o, 0 51(13(0)) — ¥(o, s2<y3<a>>>dcr]dwd@‘

< LH sup [|51(¢) = s2()Il + L {ll 51(0) = s2(0)[] + || 51(1(0)) = 52071 (0O))I1}

celJ

+ Ci{ll 51(6) = 20N + Il 51(71(€)) = s2(y 1N} + B*"MC{]] 51(0) — 5200l
+ 11 5171(0) — 271 ()1} + 6% (M + L]| pII)Lle[LH sup[s1(¢) = 52(S)l

ceJ

+ LC{[| 51(0) = 520l + [l 51(¥1(0)) = s2(y1(ONII} + Cidll 51(b) = 52(D)|
+1I 51(71(0) = 21 D)1} + DEMC{| 51(0) = s2(DN + || 51(¥1(0)) = s2(y1 (o)}
+ D"LM{l 51(0) = s2(0)ll + I s1(v2(0) = s2(y2(0)l}
+ DYL{bN  (s1(y3(1)) — Sz(73(,u)))}] + 0 LMl s1(0) — 5200l
+11 51(72(0)) = 272001} + DO LEDN (51 (y3(0)) — $2(y3(0)))}
< [LH +LCi(1 + p)+ Ci(1 + p) +b"MC(1 + p) + b*(M + Ll pl)L, L,

X{LH +LC,(1+p)+Ci(1+p)+b"MC (1 +p)
+bLM,(1 + p) + b*L(DNp)} + b"LM;(1 + p) + b“L(lep)] sup lI'51() = 520l

GE
<[LH + LC{(1+ p)+Ci(1+p)+b*MC(1 + p)+ b*LM;(1 + p)
+ b L(bN p)][1 + b*(M + LI| plDLi Lo ]Il 51(5) = s2(S)l
< | s1(5) = 5209l
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where
IT=[LH+LC,(1+ p)+C(1+p)+b*MC(1+ p)+b"LM(1+ p)+b*L(bN,p)]

[1+5%(M + LIl pIDL1 Lo]-

Since 0 < Il < 1, F is a contraction on C([0, b]; E,). Implementing the Banach fixed point theorem we
obtain a unique fixed point for F in C(J; E,) and which is the mild solutions of (2.1)—(2.3) that fulfills
s(b) = a. Thus, the systems (2.1)—(2.3) is controllable on J. O

4. Application

Let Q be a bounded subset of R” and let boundary of Q be I', which is smooth. Consider the
boundary control nonlocal neutral fractional differential system with time varying delay

a

o= |2(5. ) + (. 2(5. ). 271($). )| =A(s. 5) + 8(. 2(5. ), 2(72(6). 5))

+ fo ¥(5,0,2(y3(5), $))do, in Q = (a,b) X Q, 4.1)

72(¢,0) =u(¢,0)on X = (0,b) xI', ¢ €[0,b], “4.2)
200, 8) + ¢(z(b", 5)) =z0(s), for s € Q, b €[0,b], 4.3)

in which u € L*(Z), 7o € L*(Q), g,V € L*(Q).
Moreover, consider that the functions 7, g, ¥ and ¢ are fulfilled the conditions given as:

Il 7(s, 8, y) —n(s,u, VIl < ailll s —ull + 1|y —vlll,s € J,

Il g(s,8,y) — g(s,u, V)| < aq[ll s —ull + 1|y —vlll,s € J,
” \P(gaga S) - \P(S’,Q,y)” < a3|| A _y”a g’Q € Aa

and
| #(s1(b", 8)) — (52(b", ) < a4 sup || 51(s) = s2(5),

c€[0,b]

where ay, a», as, a4 are positive constants, s,y,z,u,v € E, and s1,s, € C(J;E,). Now, we can take
operators p, E; and ®, the space U, X, V as below, so we can formulate (4.1)—(4.3) as a boundary
control problems of (2.1)—(2.3).

D(p) = {z € L*(Q); Az € LX(Q)},

p = A, E; 1s equal to I, where I denotes identity operator. ® is called trace operator and is defined as
Oz = z|r. Clearly © is well defined and ® € H -2(I).

Also, I2(T) = U, X = H 2(T) and V = LX(Q). A is defined as A = A, D(A) = H)(Q)UH?*(Q), where
HY(Q), H¥(T') and H}(Q) are usual Sobolev space on Q,T.

Then A can be represented as:

(o)

A@) =)~z ze DA,

n=1

AIMS Mathematics Volume 7, Issue 5, 7642-7656.
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where z,(y) = V2 sin ny, n = 1,2, .... is the orthogonal set of eigenvectors of A.
Again, for z € U,

(o)

n2
T(¢)z = Z e 2°(2,2,)Zn.

n=1

It is easy to see that A generates a strongly continuous semigroup {7(s) : ¢ > 0} in U. Hence, the
hypothesis (A1), (A2) are satisfied.

We express the operator E defined from L*(T) to L*(Q) as Eu = w,, w, is the unique solution to the
subsequent system,

Aw, =0 in Q,
w,=u 1in T.

It is proved in [22] that for every u € H ‘%(F), the above system has a unique solution w, € L*(Q)
satisfying [|[Eull;2q) = lwull2) = clllullH,%(r). This shows that (A3) is satisfied. From the above
estimates, it follows by interpolation argument [6] that

, =
AT () Ell 2y 2ay < C's™, VYo >0,

withv(g) = C ’g%, where ¢, C’ are positive constant independent of u. Therefore, hypothesis (A4) is
satisfied. The boundary controllability of the systems (4.1)—(4.3) is discussed in detailed in [1,5]. For
condition (AS), the detailed discussion is presented in [42,43]. Clearly, the functions n, g, 'V, ¢ satisfies
the assumptions (A6)—(A9).

Select b and the remaining constants such that (A;)—(A o) are fulfilled, see [22]. Thus, Theorem 3.1
can be applied for (4.1)—(4.3) and so the systems (4.1)—(4.3) is controllable on [0, b].

5. Conclusions

To sum up it, we explored the sufficient conditions for boundary controllability of neutral
integrodifferential evolution system of fractional order with time varying delay and nonlocal condition
in Banach spaces. To establish the result, we apply the Banach fixed point theorem. In the end, we
stated an application to validate the abstract result. The above researches of (2.1)—(2.3) provides only
an analytic result. This result which is given in (2.1)-(2.3), may be applied to get the numerical
solution of such kind of equation. In future we will try to obtain some results on stability, asymptotic
behavior and some numerical method like HAM. Also researchers can extend boundary
controllability to boundary communication.
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