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1. Introduction

In 2016, Mutlu and Grdal [1] introduced the concepts of bipolar metric space and proved fixed point
theorems.

Definition 1.1. [1] Let Γ and Ψ be two non-void sets and ϕ : Γ × Ψ → R+ be a function, such that
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(a) ϕ(σ, ζ) = 0 iff σ = ζ, for all (σ, ζ) ∈ Γ × Ψ .

(b) ϕ(σ, ζ) = ϕ(ζ, σ), for all σ, ζ ∈ Γ ∩ Ψ .

(c) ϕ(σ, ζ) ≤ ϕ(σ,ω) + ϕ(σ1, ω) + ϕ(σ1, ζ), for all σ,σ1 ∈ Γ and ω, ζ ∈ Ψ .

The pair (Γ,Ψ, ϕ) is called a bipolar metric space.

In bipolar metric spaces, a lot of significant work has been done (see [2–10]). In 2014, Ma, Jiang and
Sun [11] introduced the notion of a C?-algebra-valued metric space and proved fixed point theorem. In
2015, Batul and Kamran [12] proved fixed theorems on C?-algebra-valued metric space. In the present
paper, we introduce a new notion of C?-algebra valued bipolar metric space and proved coupled fixed
point theorems. The details on C?-algebra are available in [13–17].

An algebra A, together with a conjugate linear involution map ϑ 7−→ ϑ?, is called a ?-algebra if
(ϑ$)? = $?ϑ? and (ϑ?)? = ϑ for all ϑ,$ ∈ A. Moreover, the pair (A, ?) is called a unital ?-algebra
if A contains the identity element 1A. By a Banach ?-algebra we mean a complete normed unital
?-algebra (A, ?) such that the norm on A is submultiplicative and satisfies

∥∥∥ϑ?∥∥∥ =
∥∥∥ϑ∥∥∥ for all ϑ ∈ A.

Further, if for all ϑ ∈ A, we have
∥∥∥ϑ?ϑ∥∥∥ =

∥∥∥ϑ∥∥∥2
in a Banach ?-algebra (A, ?), then A is known as a

C?-algebra. A positive element of A is an element ϑ ∈ A such that ϑ = ϑ? and its spectrum σ(ϑ) ⊂ R+,
where σ(ϑ) = {υ ∈ R : υ1A − ϑ is noninvertible}. The set of all positive elements will be denoted by
A+. Such elements allow us to define a partial ordering � on the elements of A. That is,

$ � ϑ if and only if $ − ϑ ∈ A+.

If ϑ ∈ A is positive, then we write ϑ � 0A, where 0A is the zero element of A. Each positive element ϑ
of a C?-algebra A has a unique positive square root. From now on, by A we mean a unital C?-algebra
with identity element 1A. Further, A+ = {ϑ ∈ A : ϑ � 0A} and (ϑ?ϑ)1/2 =

∣∣∣ϑ∣∣∣.
2. Preliminaries

In this section, we extend Definition 1.1 to introduce the notion bipolar metric space in the setting
of C∗-algebra as follows.

Definition 2.1. Let A be a C∗-algebra, and Γ, Ψ be two non-void sets. A mapping ϕ : Γ ×Ψ → A+ be
a function such that

(a) ϕ(σ, ζ) = 0 iff σ = ζ, for all (σ, ζ) ∈ Γ × Ψ .

(b) ϕ(σ, ζ) = ϕ(ζ, σ), for all σ, ζ ∈ Γ ∩ Ψ .

(c) ϕ(σ, ζ) ≤ ϕ(σ, γ) + ϕ(σ1, γ) + ϕ(σ1, ζ), for all σ,σ1 ∈ Γ and γ, ζ ∈ Ψ .

The 4-tuple (Γ,Ψ,A, ϕ) is called a C?-algebra valued bipolar metric space.

Lemma 2.2 ( [14, 17]). Suppose that A is a unital C?-algebra with a unit I.

(A1) For any σ ∈ A+, we have σ � I iff ||σ|| ≤ 1.

(A2) If ϑ ∈ A+ with ||ϑ|| < 1
2 , then (I − ϑ) is invertible and ||ϑ(I − a)−1|| < 1.
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(A3) Suppose that ϑ,$ ∈ A with ϑ$ � 0A and ϑ$ = $ϑ, then $ϑ � 0A.

(A4) By A′ we denote the set {ϑ ∈ A : ϑ$ = $ϑ,∀$ ∈ A}. Let ϑ ∈ A′, if $, c ∈ A with $ � c � 0A,
and I − ϑ ∈ A′+ is an invertible operator, then

(I − ϑ)−1$ � (I − ϑ)−1
c.

(A5) If $, c ∈ Ah = {σ ∈ A : σ = σ?} and ϑ ∈ A, then $ � c implies that ϑ?$ϑ � ϑ?cϑ.

(A6) 0A � ϑ � $, then ||ϑ|| ≤ ||$||.

Notice that in a C?-algebra, if 0A � ϑ,$, one cannot conclude that 0A � ϑ$.

Definition 2.3. Let (Γ1, Ψ1,A, ϕ) and (Γ2, Ψ2,A, ϕ) be pairs of sets and given a function Φ : Γ1∪Ψ1 →

Γ2 ∪ Ψ2.

(B1) If Φ(Γ1) ⊆ Γ2 and Φ(Ψ1) ⊆ Ψ2, then Φ is called a covariant map, or a map from (Γ1, Ψ1,A, ϕ1) to
(Γ2, Ψ2,A, ϕ2) and this is written as

Φ : (Γ1, Ψ1,A, ϕ1)⇒ (Γ2, Ψ2,A, ϕ2).

(B2) If Φ(Γ1) ⊆ Ψ2 and Φ(Ψ1) ⊆ Γ2, then Φ is called a contravariant map from
(Γ1, Ψ1,A, ϕ1) to (Γ2, Ψ2,A, ϕ2) and this is denoted as

Φ : (Γ1, Ψ1,A, ϕ1)� (Γ2, Ψ2,A, ϕ2).

Definition 2.4. Let (Γ,Ψ,A, ϕ) be a C?-algebra valued bipolar metric space.

(C1) A point σ ∈ Γ ∪ Ψ is said to be a left point if σ ∈ Γ, a right point if σ ∈ Ψ and a central point
if both hold. Similarly, a sequence{σα} on the set Γ and a sequence {ζn} on the set Ψ are called a
left and right sequence with respect to A, respectively.

(C2) A sequence {σα} converges to a point ζ with respect to A iff {σα} is a left sequence, ζ is a right
point and lim

α→∞
ϕ(σα, ζ) = 0A or {σα} is a right sequence, ζ is a left point and lim

α→∞
ϕ(ζ, σα) = 0A.

(C3) A bisequence ({σn}, {ζn}) is a sequence on the set Γ × Ψ . If the sequence {σn} and {ζn} are
convergent with respect to A, then the bisequence ({σn}, {ζn}) is said to be convergent with
respect to A. ({σn}, {ζn}) is a Cauchy bisequence with respect to A if lim

α,β→∞
ϕ(σα, ζβ) = 0A, hence

biconvergent with respect to A.

(C4) (Γ,Ψ,A, ϕ) is complete, if every Cauchy bisequence with respect to A is convergent in Γ × Ψ .

3. Main results

Theorem 3.1. Let (Γ,Ψ,A, ϕ) be a complete C?-algebra valued bipolar metric space. Suppose

Φ : (Γ2, Ψ 2,A, ϕ)⇒ (Γ,Ψ,A, ϕ)
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is a covariant mapping such that

ϕ(Φ(σ, ζ), Φ(u, v)) � υ?ϕ(σ, u)υ + υ?ϕ(ζ, v)υ for all σ, ζ ∈ Γ, u, v ∈ Ψ,

where υ ∈ A with 2||υ||2 < 1. Then the function

Φ : Γ2 ∪ Ψ 2 → Γ ∪ Ψ

has a unique coupled fixed point.

Proof. Let σ0, ζ0 ∈ Γ and u0, v0 ∈ Ψ . For each α ∈ N, define

Φ(σα, ζα) = σα+1,

Φ(ζα, σα) = ζα+1,

Φ(uα, vα) = uα+1

and
Φ(vα, uα) = vα+1.

Then ({σα}, {ζα}) and ({uα}, {vα}) are bisequences on (Γ,Ψ,A, ϕ). Then, for each α ∈ N,

ϕ(σα, uα+1) = ϕ(Φ(σα−1, ζα−1), Φ(uα, vα))
� υ?ϕ(σα−1, uα)υ + υ?ϕ(ζα−1, vα)υ
= υ?Mαυ,

where

Mα = ϕ(σα−1, uα) + ϕ(ζα−1, vα).

Similarly, we get

ϕ(ζα, vα+1) = ϕ(Φ(ζα−1, σα−1), Φ(vα, uα))
� υ?ϕ(ζα−1, vα)υ + υ?ϕ(σα−1, uα)υ
= υ?Mαυ.

Now,

Mα+1 = ϕ(σα, uα+1) + ϕ(ζα, vα+1)
� υ?[ϕ(σα−1, uα) + ϕ(ζα−1, vα)]υ

+ υ?[ϕ(ζα−1, vα) + ϕ(σα−1, uα)]υ

� (
√

2υ)?Mα(
√

2υ).

By Lemma 2.2 (A5), we have

0A � Mα+1 � (
√

2υ)?Mα(
√

2υ) � · · · � ((
√

2υ)?)αM1(
√

2υ)α.
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On the other hand,

ϕ(σα+1, uα) = ϕ(Φ(σα, ζα), Φ(uα−1, vα−1))
� υ?ϕ(σα, uα−1)υ + υ?ϕ(ζα, vα−1)υ
= υ?Sαυ,

where

Sα = ϕ(σα, uα−1) + ϕ(ζα, vα−1).

Similarly, we get

ϕ(ζα+1, vα) = ϕ(Φ(ζα, σα), Φ(vα−1, uα−1))
� υ?ϕ(ζα, vα−1)υ + υ?ϕ(σα, uα−1)υ
= υ?Sαυ.

Now,

Sα+1 = ϕ(σα+1, uα) + ϕ(ζα+1, vα)
� υ?[ϕ(σα, uα−1) + ϕ(ζα, vα−1)]υ

+ υ?[ϕ(ζα, vα−1) + ϕ(σα, uα−1)]υ

� (
√

2υ)?Sα(
√

2υ).

By Lemma 2.2 (A5), we have

0A � Sα+1 � (
√

2υ)?Sα(
√

2υ) � · · · � ((
√

2υ)?)αS1(
√

2υ)α.

Moreover,

ϕ(σα, uα) = ϕ(Φ(σα−1, ζα−1), Φ(uα−1, vα−1))
� υ?ϕ(σα−1, uα−1)υ + υ?ϕ(ζα−1, vα−1)υ
= υ?Rαυ,

where

Rα = ϕ(σα−1, uα−1) + ϕ(ζα−1, vα−1).

Similarly, we get

ϕ(ζα, vα) = ϕ(Φ(ζα−1, σα−1), Φ(vα−1, uα−1))
� υ?ϕ(ζα−1, vα−1)υ + υ?ϕ(σα−1, uα−1)υ
= υ?Rαυ.

Now,
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Rα+1 = ϕ(σα, uα) + ϕ(ζα, vα)
� υ?[ϕ(σα−1, uα−1) + ϕ(ζα−1, vα−1)]υ

+ υ?[ϕ(ζα−1, vα−1) + ϕ(σα−1, uα−1)]υ

� (
√

2υ)?Rα(
√

2υ).

By Lemma 2.2 (A5), we have

0A � Rα+1 � (
√

2υ)?Rα(
√

2υ) � · · · � ((
√

2υ)?)αR1(
√

2υ)α.

Now,

ϕ(σα, uβ) � ϕ(σα, uα+1) + ϕ(σα+1, uα+1) + · · · + ϕ(σβ−1, uβ),
ϕ(ζα, vβ) � ϕ(ζα, vα+1) + ϕ(ζα+1, vα+1) + · · · + ϕ(ζβ−1, vβ),

and

ϕ(σβ, uα) � ϕ(σβ, uβ−1) + ϕ(σβ−1, uβ−1) + · · · + ϕ(σα+1, uα),
ϕ(ζβ, vα) � ϕ(ζβ, vβ−1) + ϕ(ζβ−1, vβ−1) + · · · + ϕ(ζα+1, vα),

for each α, β ∈ N, α < β. Then,

ϕ(σα, uβ) + ϕ(ζα, vβ) � (ϕ(σα, uα+1) + ϕ(ζα, vα+1)) + (ϕ(σα+1, uα+1) + ϕ(ζα+1, vα+1))
+ · · · + (ϕ(σβ−1, uβ) + ϕ(ζβ−1, vβ))

=Mα+1 + Rα+2 +Mα+2 + · · · + Rβ +Mβ

� ((
√

2υ)?)αM1(
√

2υ)α + ((
√

2υ)?)α+1R1(
√

2υ)α+1 + · · ·

+ ((
√

2υ)?)β−1R1(
√

2υ)β−1 + ((
√

2υ)?)β−1M1(
√

2υ)β−1

=

β−1∑
i=α

((
√

2υ)?)iM1(
√

2υ)i +
β−1∑
i=α+1

((
√

2υ)?)iR1(
√

2υ)i

=

β−1∑
i=α

((
√

2υ)?)iM
1
2
1M

1
2
1 (
√

2υ)i +
β−1∑
i=α+1

((
√

2υ)?)iR
1
2
1R

1
2
1 (
√

2υ)i

=

β−1∑
i=α

(M
1
2
1 (
√

2υ)i)?(M
1
2
1 (
√

2υ)i) +

β−1∑
i=α+1

(R
1
2
1 (
√

2υ)i)?(R
1
2
1 (
√

2υ)i)

=

β−1∑
i=α

|M
1
2
1 (
√

2υ)i|2 +

β−1∑
i=α+1

|R
1
2
1 (
√

2υ)i|2

� ||

β−1∑
i=α

|M
1
2
1 (
√

2υ)i|2||1A + ||

β−1∑
i=α+1

|R
1
2
1 (
√

2υ)i|2||1A

�

β−1∑
i=α

||M
1
2
1 ||

2||(
√

2υ)i||2||1A + ||

β−1∑
i=α+1

||R
1
2
1 ||

2||(
√

2υ)i||2||1A
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� ||M
1
2
1 ||

2
β−1∑
i=α

||(
√

2υ)2||i||1A + ||R
1
2
1 ||

2||

β−1∑
i=α+1

||(
√

2υ)2||i||1A

= ||M
1
2
1 ||

2
β−1∑
i=α

(2||υ||2)i1A + ||R
1
2
1 ||

2
β−1∑
i=α+1

(2||υ||2)i||1A

→ 0A (as β, α→ ∞)

and

ϕ(σβ, uα) + ϕ(ζβ, vα) � (ϕ(σβ, uβ−1) + ϕ(ζβ, vβ−1)) + (ϕ(σβ−1, uβ−1) + ϕ(ζβ−1, vβ−1))
+ · · · + (ϕ(σα+1, uα) + ϕ(ζα+1, vα))

= Sβ + Rβ + Sβ−1 + · · · + Rα+2 + Sα+1

� ((
√

2υ)?)β−1S1(
√

2υ)β−1 + ((
√

2υ)?)β−1R1(
√

2υ)β−1 + · · ·

+ ((
√

2υ)?)α+1R1(
√

2υ)α+1 + ((
√

2υ)?)αS1(
√

2υ)α

=

α+1∑
i=β

((
√

2υ)?)iS1(
√

2υ)i +
α+2∑
i=β

((
√

2υ)?)iR1(
√

2υ)i

=

α+1∑
i=β

((
√

2υ)?)iS
1
2
1S

1
2
1 (
√

2υ)i +
α+2∑
i=β

((
√

2υ)?)iR
1
2
1R

1
2
1 (
√

2υ)i

=

α+1∑
i=β

(S
1
2
1 (
√

2υ)i)?(S
1
2
1 (
√

2υ)i) +

α+2∑
i=β

(R
1
2
1 (
√

2υ)i)?(R
1
2
1 (
√

2υ)i)

=

α+1∑
i=β

|S
1
2
1 (
√

2υ)i|2 +

α+2∑
i=β

|R
1
2
1 (
√

2υ)i|2

� ||

α+1∑
i=β

|S
1
2
1 (
√

2υ)i|2||1A + ||

α+2∑
i=β

|R
1
2
1 (
√

2υ)i|2||1A

�

α+1∑
i=β

||S
1
2
1 ||

2||(
√

2υ)i||2||1A + ||

α+2∑
i=β

||R
1
2
1 ||

2||(
√

2υ)i||2||1A

� ||S
1
2
1 ||

2
α+1∑
i=β

||(
√

2υ)2||i||1A + ||R
1
2
1 ||

2||

α+2∑
i=β

||(
√

2υ)2||i||1A

= ||S
1
2
1 ||

2
α+1∑
i=β

(2||υ||2)i1A + ||R
1
2
1 ||

2
α+2∑
i=β

(2||υ||2)i||1A

→ 0A (as β, α→ ∞).

Therefore, ({σα}, {uα}) and ({ζα}, {vα}) are Cauchy bisequences in Γ × Ψ with respect to A. By
completeness of (Γ,Ψ,A, ϕ), there exist σ, ζ ∈ Γ and u, v ∈ Ψ with

lim
α→∞

σα = u, lim
α→∞

ζα = v, lim
α→∞
uα = σ and lim

α→∞
vα = ζ.
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Since ({σα}, {uα}) and ({ζα}, {vα}) are Cauchy bisequences, we derive that

ϕ(σα, uα) ≺
ε

2
and ϕ(ζα, vα) ≺

ε

2
.

Then,

ϕ(Φ(σ, ζ), u) � ϕ(Φ(σ, ζ), uα+1) + ϕ(σα+1, uα+1) + ϕ(σα+1, uα)
= ϕ(Φ(σ, ζ), Φ(uα, vα)) + ϕ(σα+1, uα+1) + ϕ(σα+1, uα)
� υ?ϕ(σ, uα)υ + υ?ϕ(ζ, vα)υ + ϕ(σα+1, uα+1) + ϕ(σα+1, uα).

As α→ ∞, we have

ϕ(Φ(σ, ζ), u) ≺ ε.

Then,

ϕ(Φ(σ, ζ), u) = 0.

Hence, Φ(σ, ζ) = u. Similarly, we can derive Φ(ζ, σ) = v, Φ(u, v) = σ and Φ(v, u) = ζ. On the other
hand, we derive that

ϕ(σ, u) = ϕ( lim
α→∞
uα, lim

α→∞
σα) = lim

α→∞
ϕ(σα, uα) = 0

and

ϕ(ζ, v) = ϕ( lim
α→∞
vα, lim

α→∞
ζα) = lim

α→∞
ϕ(ζα, vα) = 0.

So, σ = u and ζ = v. Therefore, (σ, ζ) ∈ Γ2 ∩ Ψ 2 is a coupled fixed point of Φ. Let (e, f) ∈ Γ2 ∪ Ψ 2 is
a another coupled fixed point Φ. If (e, f) ∈ Γ2, then

0A � ϕ(e, σ) = ϕ(Φ(e, f), Φ(σ, ζ)) � υ?ϕ(e, σ)υ + υ?ϕ(f, ζ)υ

and

0A � ϕ(f, ζ) = ϕ(Φ(f, e), Φ(ζ, σ)) � υ?ϕ(f, ζ)υ + υ?ϕ(e, σ)υ,

which implies that

0A � ϕ(e, σ) + ϕ(f, ζ) � (
√

2υ)?(ϕ(f, ζ) + ϕ(e, σ))(
√

2υ).

Then,

0 ≤ ||ϕ(e, σ) + ϕ(f, ζ)|| ≤ ||
√

2υ||2||ϕ(f, ζ) + ϕ(e, σ)||.

Since 2||υ||2 < 1, we derive that

ϕ(f, ζ) + ϕ(e, σ) = 0.

Therefore, e = σ and f = ζ. Similarly, if (e, f) ∈ Ψ 2, then e = σ and f = ζ. Then (σ, ζ) is a unique
coupled fixed point of Φ. �
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Example 3.2. Let Γ = [0, 1], Ψ = {0} ∪ N − {1}, A+ = M2(C) and the map ϕ : Γ × Ψ → A+ is
defined by

ϕ(σ, u) =

[
|σ − u| 0

0 k|σ − u|

]
for all σ ∈ Γ and u ∈ Ψ , where k ≥ 0 is a constant. Let � be the partial order on A given by

(ϑ1, $1) � (ϑ2, $2)⇔ ϑ1 ≤ ϑ2 and $1 ≤ $2.

Then (Γ,Ψ,A, ϕ) is a complete C?-algebra-valued bipolar metric space. Define

Φ : Γ2 ∪ Ψ 2 ⇒ Γ ∪ Ψ

by

Φ(σ, ζ) =
σ + ζ

3
,

∀ σ, ζ ∈ Γ2 ∪ Ψ 2. Then

ϕ(Φ(σ, ζ), Φ(u, v)) =

[
|Φ(σ, ζ) −Φ(u, v)| 0

0 k|Φ(σ, ζ) −Φ(u, v)|

]
=

[
|
σ+ζ

3 −
u+v

3 | 0
0 k|σ+ζ

3 −
u+v

3 |

]
�

1
3

( [
|σ − u| 0

0 k|σ − u|

]
+

[
|ζ − v| 0

0 k|ζ − v|

] )
= υ?ϕ(σ, u)υ + υ?ϕ(ζ, v)υ,

for all σ, ζ ∈ Γ, u, v ∈ Ψ , where

υ =

[ 1
3 0
0 1

3

]
and ||υ|| = 1

3 <
1
√

2
. All the conditions of Theorem 3.1 are fulfilled and Φ has a unique fixed point (0, 0).

Theorem 3.3. Let (Γ,Ψ,A, ϕ) be a complete C?-algebra valued bipolar metric space. Suppose

Φ : (Γ × Ψ,Ψ × Γ,A, ϕ)⇒ (Γ,Ψ,A, ϕ)

is a covariant mapping such that

ϕ(Φ(σ, u), Φ(v, ζ)) � υ?ϕ(σ, v)υ + υ?ϕ(ζ, u)υ for all σ, ζ ∈ Γ, u, v ∈ Ψ,

where υ ∈ A with 2||υ||2 < 1. Then the function

Φ : (Γ × Ψ ) ∪ (Ψ × Γ)→ Γ ∪ Ψ

has a unique coupled fixed point.
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Proof. Let σ0, ζ0 ∈ Γ and u0, v0 ∈ Ψ . For each α ∈ N, define Φ(σα, uα) = σα+1, Φ(ζα, vα) = ζα+1,
Φ(uα, σα) = uα+1 and Φ(vα, ζα) = vα+1. Then ({σα}, {uα}) and ({ζα}, {vα}) are bisequences on
(Γ,Ψ,A, ϕ). Then, for each α ∈ N,

ϕ(σα, vα+1) = ϕ(Φ(σα−1, uα−1), Φ(vα, ζα))
� υ?ϕ(σα−1, vα)υ + υ?ϕ(ζα, uα−1)υ,

ϕ(σα+1, vα) = ϕ(Φ(σα, uα), Φ(vα−1, ζα−1))
� υ?ϕ(σα, vα−1)υ + υ?ϕ(ζα−1, uα)υ,

ϕ(ζα, uα+1) = ϕ(Φ(ζα−1, vα−1), Φ(uα, σα))
� υ?ϕ(ζα−1, uα)υ + υ?ϕ(σα, vα−1)υ,

ϕ(ζα+1, uα) = ϕ(Φ(ζα, vα), Φ(uα−1, σα−1))
� υ?ϕ(ζα, uα−1)υ + υ?ϕ(σα−1, vα)υ.

Let

Mα = ϕ(σα, vα+1) + ϕ(ζα+1, uα),

for all α ∈ N. Then

Mα = ϕ(σα, vα+1) + ϕ(ζα+1, uα)
� υ?[ϕ(σα−1, vα) + ϕ(ζα, uα−1)]υ

+ υ?[ϕ(ζα, uα−1) + ϕ(σα−1, vα)]υ

� (
√

2υ)?Mα−1(
√

2υ).

By Lemma 2.2 (A5), we have

0A � Mα � (
√

2υ)?Mα−1(
√

2υ) � · · · � ((
√

2υ)?)αM0(
√

2υ)α.

Let

Sα = ϕ(σα+1, vα) + ϕ(ζα, uα+1)

for all α ∈ N. Then

Sα = ϕ(σα+1, vα−1) + ϕ(ζα, uα+1)
� υ?[ϕ(σα, vα−1) + ϕ(ζα−1, uα)]υ

+ υ?[ϕ(ζα−1, uα) + ϕ(σα, vα−1)]υ

� (
√

2υ)?Sα−1(
√

2υ).

AIMS Mathematics Volume 7, Issue 5, 7552–7568.



7562

By Lemma 2.2 (A5), we have

0A � Sα � (
√

2υ)?Sα−1(
√

2υ) � · · · � ((
√

2υ)?)αS0(
√

2υ)α.

On the other hand,

ϕ(σα, vα+1) = ϕ(Φ(σα−1, uα−1), Φ(vα, ζα))
� υ?ϕ(σα−1, vα)υ + υ?ϕ(ζα, uα−1)υ.

ϕ(σα, vα) = ϕ(Φ(σα−1, uα−1), Φ(vα−1, ζα−1))
� υ?ϕ(σα−1, vα−1)υ + υ?ϕ(ζα−1, uα−1)υ

and

ϕ(ζα, uα) = ϕ(Φ(ζα−1, uα−1), Φ(uα−1, σα−1))
� υ?ϕ(ζα−1, uα−1)υ + υ?ϕ(σα−1, vα−1)υ

for all α ∈ N. Let

Rα = ϕ(σα, vα) + ϕ(ζα, uα),

for all α ∈ N. Then

Rα = ϕ(σα, vα) + ϕ(ζα, uα)
� υ?[ϕ(σα−1, vα−1) + ϕ(ζα−1, uα−1)]υ

+ υ?[ϕ(ζα−1, uα−1) + ϕ(σα−1, vα−1)]υ

� (
√

2υ)?Rα−1(
√

2υ).

By Lemma 2.2 (A5), we have

0A � Rα � (
√

2υ)?Rα−1(
√

2υ) � · · · � ((
√

2υ)?)αR0(
√

2υ)α.

Now,

ϕ(σα, vβ) � ϕ(σα, vα+1) + ϕ(σα+1, vα+1) + · · · + ϕ(σβ−1, vβ),
ϕ(ζα, uβ) � ϕ(ζα, uα+1) + ϕ(ζα+1, uα+1) + · · · + ϕ(ζβ−1, uβ),

and

ϕ(σβ, vα) � ϕ(σβ, vβ−1) + ϕ(σβ−1, vβ−1) + · · · + ϕ(σα+1, vα),
ϕ(ζβ, uα) � ϕ(ζβ, uβ−1) + ϕ(ζβ−1, uβ−1) + · · · + ϕ(ζα+1, uα),

for each α, β ∈ N, α < β. Then,
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ϕ(σα, vβ) + ϕ(ζβ, uα) � (ϕ(σα, vα+1) + ϕ(ζα+1, uα)) + (ϕ(σα+1, vα+1) + ϕ(ζα+1, uα+1))
+ · · · + (ϕ(σβ−1, vβ) + ϕ(ζβ, uβ−1))

=Mα + Rα+1 +Mα+1 + · · · + Rβ−1 +Mβ−1

� ((
√

2υ)?)αM0(
√

2υ)α + ((
√

2υ)?)α+1R0(
√

2υ)α+1 + · · ·

+ ((
√

2υ)?)β−1R0(
√

2υ)β−1 + ((
√

2υ)?)β−1M0(
√

2υ)β−1

=

β−1∑
i=α

((
√

2υ)?)iM0(
√

2υ)i +
β−1∑
i=α+1

((
√

2υ)?)iR0(
√

2υ)i

=

β−1∑
i=α

((
√

2υ)?)iM
1
2
0M

1
2
0 (
√

2υ)i +
β−1∑
i=α+1

((
√

2υ)?)iR
1
2
0R

1
2
0 (
√

2υ)i

=

β−1∑
i=α

(M
1
2
0 (
√

2υ)i)?(M
1
2
0 (
√

2υ)i) +

β−1∑
i=α+1

(R
1
2
0 (
√

2υ)i)?(R
1
2
0 (
√

2υ)i)

=

β−1∑
i=α

|M
1
2
0 (
√

2υ)i|2 +

β−1∑
i=α+1

|R
1
2
0 (
√

2υ)i|2

� ||

β−1∑
i=α

|M
1
2
0 (
√

2υ)i|2||1A + ||

β−1∑
i=α+1

|R
1
2
0 (
√

2υ)i|2||1A

�

β−1∑
i=α

||M
1
2
0 ||

2||(
√

2υ)i||2||1A + ||

β−1∑
i=α+1

||R
1
2
0 ||

2||(
√

2υ)i||2||1A

� ||M
1
2
0 ||

2
β−1∑
i=α

||(
√

2υ)2||i||1A + ||R
1
2
0 ||

2||

β−1∑
i=α+1

||(
√

2υ)2||i||1A

= ||M
1
2
0 ||

2
β−1∑
i=α

(2||υ||2)i1A + ||R
1
2
0 ||

2
β−1∑
i=α+1

(2||υ||2)i||1A

→ 0A (as β, α→ ∞)

and

ϕ(σβ, vα) + ϕ(ζα, vβ) � (ϕ(σβ, vβ−1) + ϕ(ζβ−1, uβ)) + (ϕ(σβ−1, vβ−1) + ϕ(ζβ−1, uβ−1))
+ · · · + (ϕ(σα+1, vα) + ϕ(ζα, uα+1))

= Sβ−1 + Rβ−1 + Sβ−1 + · · · + Rα+1 + Sα

� ((
√

2υ)?)β−1S0(
√

2υ)β−1 + ((
√

2υ)?)β−1R0(
√

2υ)β−1 + · · ·

+ ((
√

2υ)?)α+1R0(
√

2υ)α+1 + ((
√

2υ)?)αS0(
√

2υ)α

=

β−1∑
i=α

((
√

2υ)?)iS0(
√

2υ)i +
β−1∑
i=α+1

((
√

2υ)?)iR0(
√

2υ)i

=

β−1∑
i=α

((
√

2υ)?)iS
1
2
0S

1
2
0 (
√

2υ)i +
β−1∑
i=α+1

((
√

2υ)?)iR
1
2
0R

1
2
0 (
√

2υ)i
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=

β−1∑
i=α

(S
1
2
0 (
√

2υ)i)?(S
1
2
0 (
√

2υ)i) +

β−1∑
i=α+1

(R
1
2
0 (
√

2υ)i)?(R
1
2
0 (
√

2υ)i)

=

β−1∑
i=α

|S
1
2
0 (
√

2υ)i|2 +

β−1∑
i=α+1

|R
1
2
0 (
√

2υ)i|2

� ||

β−1∑
i=α

|S
1
2
0 (
√

2υ)i|2||1A + ||

β−1∑
i=α+1

|R
1
2
0 (
√

2υ)i|2||1A

�

β−1∑
i=α

||S
1
2
0 ||

2||(
√

2υ)i||2||1A + ||

β−1∑
i=α+1

||R
1
2
0 ||

2||(
√

2υ)i||2||1A

� ||S
1
2
0 ||

2
β−1∑
i=α

||(
√

2υ)2||i||1A + ||R
1
2
0 ||

2||

β−1∑
i=α+1

||(
√

2υ)2||i||1A

= ||S
1
2
0 ||

2
β−1∑
i=α

(2||υ||2)i1A + ||R
1
2
0 ||

2
β−1∑
i=α+1

(2||υ||2)i||1A

→ 0A (as β, α→ ∞).

Therefore, ({σα}, {vα}) and ({ζα}, {uα}) are Cauchy bisequences in Γ × Ψ with respect to A. By
completeness of (Γ,Ψ,A, ϕ), there exist σ, ζ ∈ Γ and u, v ∈ Ψ with

lim
α→∞

σα = v, lim
α→∞

ζα = u, lim
α→∞
uα = ζ and lim

α→∞
vα = σ.

Then for given ε > 0, there exists α1 ∈ N with ϕ(σα, v) < ε
2 for all α ≥ α1. Since ({σα}, {vα}) and

({ζα}, {uα}) are Cauchy bisequences, we derive that

ϕ(σα, vα) ≺
ε

2
.

Then,

ϕ(Φ(σ, u), v) � ϕ(Φ(σ, u), vα+1) + ϕ(σα+1, vα+1) + ϕ(σα+1, v)
= ϕ(Φ(σ, u), Φ(uα, ζα)) + ϕ(σα+1, vα+1) + ϕ(σα+1, v)
� υ?ϕ(σ, vα)υ + υ?ϕ(ζα, u)υ + ϕ(σα+1, vα+1) + ϕ(σα+1, v).

As α→ ∞, we have

ϕ(Φ(σ, u), v) ≺ ε.

Then,

ϕ(Φ(σ, u), v) = 0.

Hence, Φ(σ, u) = v. Similarly, we can derive Φ(u, σ) = ζ, Φ(ζ, v) = u and Φ(v, ζ) = σ. On the other
hand, we derive that

ϕ(σ, v) = ϕ( lim
α→∞
vα, lim

α→∞
σα) = lim

α→∞
ϕ(σα, vα) = 0
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and

ϕ(ζ, u) = ϕ( lim
α→∞
uα, lim

α→∞
ζα) = lim

α→∞
ϕ(ζα, uα) = 0.

So, σ = v and ζ = u. Therefore, (σ, u) ∈ (Γ × Ψ ) ∩ (Ψ × Γ) is a coupled fixed point of Φ. As in the
proof of the Theorem 3.1, one can easily prove uniqueness part. �

Example 3.4. Let Γ = {0, 1, 2, 7}, Ψ = {0, 1
4 ,

1
2 , 3}, A+ = M2(C) and the map ϕ : Γ × Ψ → A+ is

defined by

ϕ(σ, u) =

[
|σ − u| 0

0 k|σ − u|

]
,

for all σ ∈ Γ and u ∈ Ψ , where k ≥ 0 is a constant. Let � be the partial order on A given by

(ϑ1, $1) � (ϑ2, $2)⇔ ϑ1 ≤ ϑ2 and $1 ≤ $2.

Then (Γ,Ψ,A, ϕ) is a complete C?-algebra-valued bipolar metric space. Define

Φ : (Γ × Ψ ) ∪ (Ψ × Γ)→ Γ ∪ Ψ

by

Φ(σ, ζ) =
σ + ζ

5
,

for all σ, ζ ∈ (Γ × Ψ ) ∪ (Ψ × Γ). Then

ϕ(Φ(σ, u), Φ(ζ, v)) =

[
|Φ(σ, u) −Φ(ζ, v)| 0

0 k|Φ(σ, u) −Φ(ζ, v)|

]
=

[
|σ+u

5 −
ζ+v

5 | 0
0 k|σ+u

5 −
ζ+v

5 |

]
�

1
5

( [
|σ − v| 0

0 k|σ − v|

]
+

[
|ζ − u| 0

0 k|ζ − u|

] )
= υ?ϕ(σ, v)υ + υ?ϕ(ζ, u)υ,

for all σ, ζ ∈ Γ and u, v ∈ Ψ , where

υ =

[ 1
5 0
0 1

5

]
and ||υ|| = 1

5 <
1
√

2
. All the conditions of Theorem 3.3 are fulfilled and Φ has a unique fixed point (0, 0).

4. Applications

As an application of Theorem 3.1, we find an existence and uniqueness result for a type of following
system of Fredholm integral equations.

Theorem 4.1. Let us consider the system of Fredholm integral equations

σ(µ) =

∫
E1∪E2

G(µ, p, σ(p), ζ(p))dp + δ(µ), µ, p ∈ E1 ∪ E2,

ζ(µ) =

∫
E1∪E2

G(µ, p, ζ(p), σ(p))dp + δ(µ), µ, p ∈ E1 ∪ E2, (4.1)

where E1 ∪ E2 is a Lebesgue measurable set. Suppose
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(T1) G : (E2
1 ∪ E

2
2) × R × R→ [0,∞) and δ ∈ L∞(E1) ∪ L∞(E2).

(T2) There exists a continuous function κ : E2
1 × E

2
2 → R and θ ∈ (0, 1), such that

|G(µ, p, σ(p), ζ(p)) − G(µ, p, u(p), v(p))|
≤θ|κ(µ, p)|(|σ(p) − u(p)| + |ζ(p) − v(p)| + I − θ−1I),

for all µ, p ∈ E1 ∪ E2.

(T3) supµ∈E1∪E2

∫
E1∪E2

|κ(µ, p)|dp ≤ 1.

Then the integral equation has a unique solution in L∞(E1) ∪ L∞(E2).

Proof. Let Γ = L∞(E1) and Ψ = L∞(E2) be two normed linear spaces, where E1,E2 are Lebesgue
measurable sets and m(E1 ∪ E2) < ∞. LetH = L2(E1) ∪ L2(E2). Consider ϕ : Γ × Ψ → L(H) defined
by ϕ(σ, ζ) = π|σ−ζ |, where πh : H → H is the multiplication operator defined by πh(ω) = h.ω for
ω ∈ H . Then (Γ,Ψ,A, ϕ) is a complete C?-algebra valued bipolar metric space.

Define the covariant mapping Φ : Γ2 ∪ Ψ 2 → Γ ∪ Ψ by

Φ(σ, ζ)(µ) =

∫
E1∪E2

G(µ, p, σ(p), ζ(p))dp + δ(µ), ∀µ, p ∈ E1 ∪ E2.

Set τ = θI, then τ ∈ L(H)+ and ||τ|| = θ < 1. For any ω ∈ H , we have

||ϕ(Φ(σ, ζ), Φ(u, v))|| = sup
||ω||=1

(π|Φ(σ,ζ)−Φ(u,v)|+Iω,ω)

= sup
||ω||=1

∫
E1∪E2

(|Φ(σ, ζ) −Φ(u, v)| + I)ω(µ)ω(µ)dµ

≤ sup
||ω||=1

∫
E1∪E2

∫
E1∪E2

|G(µ, p, σ(p), ζ(p))

− G(µ, p, u(p), v(p))|dp|ω(µ)|2dµ

+ sup
||ω||=1

∫
E1∪E2

∫
E1∪E2

dp|ω(µ)|2dµI

≤ sup
||ω||=1

∫
E1∪E2

[ ∫
E1∪E2

θ|κ(µ, p)|(|σ(p) − u(p)|

+ |ζ(p) − v(p)| + I − θ−1I)dp
]
|ω(µ)|2dµ + I

≤ θ sup
||ω||=1

∫
E1∪E2

[ ∫
E1∪E2

|κ(µ, p)|dp
]
|ω(µ)|2dµ(||σ − u||∞

+ ||ζ − v||∞)

≤ θ sup
µ∈E1∪E2

∫
E1∪E2

|κ(µ, p)|dp sup
||ω||=1

∫
E1∪E2

|ω(µ)|2dµ(||σ − u||∞

+ ||ζ − v||∞)
≤ θ[||σ − u||∞ + ||ζ − v||∞]
= ||τ||[||Φ(σ, u)|| + ||Φ(ζ, v)||].

Therefore, all the conditions of Theorem 3.1 are fulfilled. Hence, the integral equation (4.1) has a
unique solution. �
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5. Conclusions

In this paper, we introduced the notion of a C?-algebra valued bipolar metric space and proved
coupled fixed point theorems. An illustrative example is provided that show the validity of the
hypothesis and the degree of usefulness of our findings.

Acknowledgments

The authors would like to thank the anonymous referees for their valuable comments and
suggestions, which led to considerable improvement of the article. The work was supported by the
Higher Education Commission of Pakistan.

Conflict of interest

The authors declare no conflicts of interest.

References
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