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Abstract: To study the biological control strategy of aphids, in this paper we propose host-parasitoid-
predator models for the interactions among aphids, parasitic wasps and aphidophagous Coccinellids
incorporating impulsive releases of Coccinellids, and then study the long-term control and limited
time optimal control of aphids by adjusting release amount and release timing of Coccinellids. For the
long-term control, the existence and stability of the aphid-eradication periodic solution are investigated
and threshold conditions about the release amount and release period to ensure the ultimate extinction
of the aphid population are obtained. For the limited-time control, three different optimal impulsive
control problems are studied. A time rescaling technique and an optimization algorithm based on
gradient are applied, and the optimal release amounts and timings of natural enemies are gained. Our
simulations indicate that in the limited-time control, the optimal selection of release timing should be
given higher priority compared with the release amount.
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1. Introduction

The management of crop pest population has always been a complex ecological problem [1]. The
traditional control technology based on chemical insecticides has caused many problems such as grain
yield reduction and environmental pollution, and the development of sustainable agriculture has
prompted people to accelerate the whole process of green control of various diseases and crop
pests ( [2–4]). Aphids are a kind of phytophagous insects, which are widely distributed in the world,
and have a great impact on agricultural crop production in many countries. Therefore, biological
control of aphids is an important measure to promote green development, improve the environment
and enhance food security and ecosystem protection.
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Biological control of aphids is to use the natural enemies of aphids to control or reduce aphid
damage. Aphids have many natural enemies in nature, including insects, fungi, bacteria, viruses and
birds [5]. At present, the existing observation and research show that some insects (such as
aphidophagous Coccinellids) have a significant impact on the number of aphids in the field. In
addition, as a parasite of aphids, parasitic wasps are also an important means to control aphids. Adult
parasitic wasps deposit their eggs in aphids. After the eggs hatch, immature larvae devour the living
host from the inside [1]. There is competition between predators and parasitoids for aphids. Because
the offspring of parasitic wasps develop in aphids, they are also vulnerable to the predation of aphid
natural enemies. The phenomenon of intraguild predation, where more than one species feed on the
same prey and therefore competitors feed on each other ( [6, 7]), widely exists in aphids, parasitic
wasps and aphid predators. The existence of predatory natural enemies in the ecosystem makes it
necessary to carefully evaluate the impact of the introduction of such natural enemies on the existing
aphid parasitoid system before selecting such natural enemies to control aphids.

Experimental data of several researchers show that predation within the system can interfere with
or strengthen the control effect of parasitic wasps on aphids. For example, J. Brodeur et al. found that
intraguild predation leads to the fluctuation of parasitic wasp population, which greatly affected the
effect of parasitic wasps on aphid control [8]. R. G. Colfer and other researchers conducted
inclusion/exclusion experiments at the University of California Student Experimental Farm in
1994 [9]. They evaluated the impact of introducing a predator, the ladybird beetle, Hippodamia
convergens, on the the cotton aphid and the parasitoid Lysiphlebus testaceipes. W. E. Snyder et al.
designed field experiments to study the interaction among the pea aphids, parasitic wasp and the
predator carabid beetles. Their study also illustrated that although intraguild predation can reduce the
density of aphids in a short time, the predation of beetles on parasitic wasps reduces the infection rate
of parasitic wasps of aphids, which hinders the control effect of parasitic wasps on aphids [10]. E.
Bilu et al. [11] analyzed the interaction among these three species and revealed that in the short term,
predators in the system hinder the effect of parasitic wasps on aphids, but the superposition effect of
predation and parasitism produces the best aphid control effect for a long time. L. M. Gontijo et al.
investigated the effect of several types of predators on the inhibition effect of parasitic wasps on apple
aphids [12], and their experiments showed that the introduction of predators gives a better aphid
inhibitory effect. T. Nakazawa et al. [13] constructed an ordinary differential equation model for
intraguild predation composed of aphids, parasitic wasps and Coccinellids, discussed the effects of
parasitic rate and predation intensity on the stability of the system, and compared the dynamic
behavior with the traditional predator-prey system in which prey is infected with diseases.

Although a large number of experimental results show that there are complex interactions among
aphids, parasitic wasps and ladybugs, such as host parasitism, intraguild predation and other
phenomena, there are few mathematical models to describe such phenomena, and most of them are
carried out by establishing ordinary differential equations or delay differential equations. However,
the human release of ladybugs is intermittent and instantaneous. In order to accurately describe the
ladybug release operation, it has more advantages to constructing impulsive delay differential
equation models. Therefore, in this paper we will construct an impulsive differential equation system
to describe the impulsive release behavior of ladybugs, use strict mathematical theoretical analysis
and numerical simulations to explore the impact of this measure on the population development of
aphids, and then evaluate the effect of intraguild predation on aphid control.
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In addition, the timeliness of aphid control is also a matter of concern. In the critical period of crop
growth, the large-scale outbreak of aphids will seriously affect grain yield. Therefore, it is necessary to
reduce the aphid density to an acceptable level within a given limited time. However, traditional aphid
control research focuses more on long-term control, and there are still some theoretical and technical
difficulties when dealing with limited time control problems ( [14–18]). Since natural enemies can be
the deciding factor in preventing pest levels of aphids developing on a particular cropped area within
a growing season [1], and large-scale feeding and release of natural enemies involve high expenditure
of labor and economic costs, it is of great significance to build a mathematical model based on the
interaction relationship among aphids, parasitic wasps and natural enemies, and study the optimal
control strategies of aphids in limited time with impulsive releases of natural enemies.

In this study, we propose host-parasitoid-predator models for the interactions among aphids,
parasitic wasps and aphidophagous Coccinellids incorporating impulsive releases of Coccinellids, and
then study the long-term control and limited time optimal control of aphids by adjusting release
amount and release timing of Coccinellids.

The paper is structured as follows: In Section 2, a host-parasitoid-predator model for the long-term
control of aphids with periodic impulsive releases of Coccinellids is constructed and its dynamical
properties are studied. In Section 3, a limited-time optimal control problem about aphids is proposed.
Several optimal pulse control schemes are studied, and the gradients of cost function with respect to
release timing and release amount of Coccinellids are determined. Then in Section 4, the optimal
release timing and release amount are gained by numerical simulations. Finally, a brief conclusion is
given in Section 5.

2. Long-term control of aphids

2.1. Model formulation

According to the interaction among aphids, parasitic wasps and aphidophagous Coccinellids, we
proposed the following ODE differential model incorporating intraguild predation

dH(t)
dt
= rH(t)(1 −

H(t)
K

) −
c1H(t)N(t)
1 + h1H(t)

−
c2H(t)P(t)
1 + h2H(t)

,

dN(t)
dt
=

e1c1H(t)N(t)
1 + h1H(t)

−
c3N(t)P(t)
1 + h3N(t)

− m1N(t),

dP(t)
dt
=

e2c2H(t)P(t)
1 + h2H(t)

+
e3c3N(t)P(t)
1 + h3N(t)

− m2P(t),

(2.1)

where K > H(0) = H0 ≥ 0,N(0) = N0 ≥ 0 and P(0) = P0 ≥ 0. H(t),N(t) and P(t) are the densities of
aphids, parasitic wasps and aphidophagous Coccinellids at t, respectively. It is assumed that the
development of aphid population conforms to the law of logistic growth, and r and K are the intrinsic
growth rate and the maximum environmental capacity, respectively. The behaviors of parasitism and
predation are described by Holling type II functional response function

cix
1 + hix

, i = 1, 2, 3. ei is the

conversion rate, and m1 and m2 are the natural mortality of parasitic wasps and Coccinellids,
respectively. All system parameters in (2.1) are positive constants.

For the long-term control of aphids, we consider periodic releases of Coccinellids and propose an
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impulsive differential equation model as follows

dH(t)
dt
= rH(t)(1 −

H(t)
K

) −
c1H(t)N(t)
1 + h1H(t)

−
c2H(t)P(t)
1 + h2H(t)

,

dN(t)
dt
=

e1c1H(t)N(t)
1 + h1H(t)

−
c3N(t)P(t)
1 + h3N(t)

− m1N(t),

dP(t)
dt
=

e2c2H(t)P(t)
1 + h2H(t)

+
e3c3N(t)P(t)
1 + h3N(t)

− m2P(t),


t , kτ, k = 1, 2, · · · ,

H(t+) = H(t),
N(t+) = N(t),
P(t+) = P(t) + σ,

 t = kτ,

(2.2)

where τ is the release period while σ is the amount released each time.
For the long-term control of aphids, we will focus on how to eliminate aphids by adjusting the

release strategy of Coccinellids. To this end, we will first analysis the dynamical behaviors of the
system (2.2).

2.2. Dynamics analysis

Consider an arbitrary solution X(t) = (H(t),N(t), P(t))T of system (2.2), we can know easily that
it is continuous between any two adjacent pulse moments and the right limit of it at the pulse point
X(kτ+) = lim

ε→0+
X(kτ + ε) exists. According to the smooth properties of f = ( f1, f2, f3)T , which is the

function at the right hand of the first three equations in (2.2), the existence and uniqueness of solutions
of (2.2) under given initial values are guaranteed ( [19, 20]).

Firstly, the positivity and boundedness of the solution of system (2.2) are investigated. Clearly,
dH(t)/dt|H=0 = 0, dN(t)/dt|N=0 = 0 and dP(t)/dt|P=0 = 0. Therefore we have

Proposition 1. Suppose that X(t) = (H(t),N(t), P(t))T is a solution of the system (2.2) with X(0) ≥
0, then X(t) ≥ 0 for all t ≥ 0.

Let V0 = {V : R+×R3
+ → R+, continuous on (kτ, (k+1)τ]×R3

+, and lim
(t,Y)→(kτ,X),t>kτ

V(t,Y) = V(kτ+, X)

exists}.

Definition 1. Let V ∈ V0, then for V(t, X) ∈ (kτ, (k+ 1)τ]×R3
+, the upper right derivative of V(t, X)

with respect to the impulsive differential system (2.2) is defined as

D+V(t, X) = lim
h→0

sup
1
h

[V(t + h, X + h f (t, X)) − V(t, X)].

Proposition 2. If e2 > e1e3, then there exists a constant L > 0 satisfying H(t) ≤ L,N(t) ≤ L and
P(t) ≤ L with all t large enough.

Proof. Suppose X(t) = (H(t),N(t), P(t))T is a solution of system (2.2) with non-negative initial
conditions. Let V = e2H(t) + e3N(t) + P(t), then V ∈ V0 and we have

D+V(t) = e2rH(t) −
e2rH2(t)

K
−

(e2 − e1e3)c1H(t)N(t)
1 + h1H(t)

−e3m1N(t) − m2P(t), t , kτ,
V(t+) = V(t) + σ, t = kτ.

(2.3)
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Since e2 > e1e3, for any η > 0 and t , kτ, there is

D+V(t) + ηV(t) ≤ e2(η + r)H(t) −
e2rH2(t)

K
− e3(m1 − η)N(t) − (m2 − η)P(t).

Select a η = η0 ∈ (0,min{m1,m2}), then there must exist K1 > 0 such that

(η0 + e2r)H(t) −
e2rH2(t)

K
− (e3m1 − η0)N(t) − (m2 − η0)P(t) ≤ K1,

and we derive that 
D+V(t) ≤ −η0V(t) + K1,

V(t+) = V(t) + σ, t = kτ,
V(0+) = V(0).

(2.4)

Now we consider the impulsive differential equation
dx(t)

dt
= K1 − η0x(t), t , kτ,

x(t+) = x(t) + σ, t = kτ,
x(0+) = V(0).

(2.5)

The system (2.5) is a linear impulsive differential equation, According to the basic properties of
linear impulsive differential equation, we give some results of system (2.5) without proof. Interested
readers can refer to [21, 22]. The system (2.5) has a globally asymptotically stable positive periodic
solution 

x̃(t) =
K1

η0
+
σ exp(−η0(t − kτ))

1 − exp(−η0τ)
, t ∈ (kτ, (k + 1)τ],

x̃(0+) =
K1

η0
+

σ

1 − exp(−η0τ)
,

(2.6)

and the solution of the system (2.5) has the form

x(t) = (x(0+) − x̃(0+)) exp(−η0t) + x̃(t),

which satisfies lim
t→∞

x(t) = x̃(t).
By comparison theorem, we have that

V(t) ≤ x(t) ≤
K1

η0
+

σ

1 − exp(−η0τ)
+ |x(0+) − x̃(0+)|, for t ≥ 0,

then V(t) is ultimately bounded by a constant and there exits a positive number L such that H(t) ≤
L,N(t) ≤ L and P(t) ≤ L with all t large enough. This completes the proof. □

According to (2.2), if aphids are eventually eliminated in the system, the population of parasitic
wasps will also go extinct. When both species disappear and only Coccinellids survive in the system,
that is, H(t) = 0,N(t) = 0, then system (2.2) is changed as follows

d(P)
dt
= −m2P(t), t , kτ, k = 1, 2, · · · ,

P(t+) = P(t) + σ, t = kτ.
(2.7)

By system (2.7), similar to the discussion of system (2.5), we have that
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Theorem 1. System (2.2) has a unique aphid-eradication periodic solution (0, 0, P̃(t)), where

P̃(t) =
σ exp(−m2(t − kτ))

1 − exp(−m2τ)
, t ∈ (kτ, (k + 1)τ], k = 0, 1, · · ·

and P̃(0+) = σ/(1 − exp(−m2τ)).

Now we study the stability of the τ−period solution (0, 0, P̃(t)).

Theorem 2. If r <
c2σ

exp(m2τ) − 1
, then the aphid-eradication periodic solution (0, 0, P̃(t)) of

system (2.2) is locally asymptotically stable.

Proof. To discuss the local stability of the aphid-eradication periodic solution (0, 0, P̃(t)), we use the
classical small perturbation method. Let

H(t) = ω1(t), N(t) = ω2(t), P(t) = P̃(t) + ω3(t).

By linearization, (2.2) is transformed into

dω1(t)
dt

= (r − c2P̃(t))ω1(t),
dω2(t)

dt
= −(c3P̃(t) + m1)ω2(t),

dω3(t)
dt

= e2c2P̃(t)ω1(t) + e3c3P̃(t)ω2(t) − m2ω3(t).

Rewrite it in matrix form, then we have

(ω1(t), ω2(t), ω3(t))T = Φ(t)(ω1(0), ω2(0), ω3(0))T ,

and Φ(t) is the solution of

dΦ(t)
dt
=


r − c2P̃(t) 0 0

0 −(c3P̃(t) + m1) 0
e2c2P̃(t) e3c3P̃(t) −m2

Φ(t),

where Φ(0) = I. The forth to sixth equations of system (2.2) are transformed into

(ω1(kτ+), ω2(kτ+), ω3(kτ+))T = (ω1(kτ), ω2(kτ), ω3(kτ))T .

Consider the matrix M = Φ(τ) and we investigate its three eigenvalues. Obviously,

Φ(τ) =


exp
(∫ τ

0

(
r − c2P̃(t)

)
dt
)

0 0
0 exp

(
−
∫ τ

0

(
c3P̃(t) + m1

)
dt
)

0
· · exp(−m2τ)

 .
(·) represents the term which has no need to be calculated for the exact form. For every k = 0, 1, · · ·
and t ∈ (kτ, (k + 1)τ], there is

σ

exp(m2τ) − 1
= P̃(τ) ≤ P̃(t) =

σ exp(−m2(t − kτ))
1 − exp(−m2τ)

≤ P̃(0+) =
σ exp(m2τ)

exp(m2τ) − 1
.
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From the expression of Φ(τ), we know that if r <
c2σ

exp(m2τ) − 1
, then we get r < c2P̃(τ) ≤ c2P̃(t) and

three eigenvalues of Φ(τ) are positive and less than one. According to the Floquet theory, the aphid-
eradication periodic solution (0, 0, P̃(t)) of system (2.2) is locally asymptotically stable. The proof is
completed. □

Remark 1. The suppressing intensity of aphid population is mainly reflected in the release of
Coccinellids, which is determined by the amount of release σ and the length of release interval τ. In
Theorem 2, c2σ

exp(m2τ)−1 is used as a critical value to measure whether the release intensity of Coccinellids
is large enough. If the intrinsic growth rate of aphids r is less than this critical value, then the aphid-
eradication periodic solution (0, 0, P̃(t)) is locally stable.

In the following, we further prove that (0, 0, P̃(t)) is globally attractive.

Theorem 3. Assume r <
c2σ

exp(m2τ) − 1
, then the aphid-eradication periodic solution (0, 0, P̃(t)) of

system (2.2) is globally asymptotically stable if one of the following two conditions holds.
(i) h2K ≤ 1;
(ii) h2K > 1 and r(1 + h2K)2 < 4h2Kc2σ

exp(m2τ)−1 .

Proof. From the third and sixth equation of (2.2), we have
dP(t)

dt
≥ −m2P(t), t , kτ,

P(t+) = P(t) + σ, t = kτ,
P(0) = P0 > 0.

(2.8)

Consider the following corresponding comparison system
dx1(t)

dt
= −m2x1(t), t , kτ,

x1(t+) = x1(t) + σ, t = kτ,
x1(0) = P0 > 0,

(2.9)

and from the relevant conclusions of systems (2.5) and (2.7), we can obtain that

lim
t→∞

x1(t) = P̃(t) =
σ exp(−m2(t − kτ))

1 − exp(−m2τ)
, t ∈ (kτ, (k + 1)τ], k = 0, 1, · · · .

Then for ε > 0 small enough, there exists t1 > 0 such that x1(t) > P̃(t)− ε, t > t1. Thus, it follows from
the comparison theorem that

P(t) ≥ x1(t) > P̃(t) − ε, t > t1.

Since σ exp(−m2τ)
1−exp(−m2τ)

= P̃(τ) ≤ P̃(t) = σ exp(−m2(t−kτ))
1−exp(−m2τ)

, t ∈ (kτ, (k + 1)τ], according the first equation of
the system (2.2), we obtain that for t > t1,

dH(t)
dt
≤ rH(t)(1 −

H(t)
K

) −
c2(P̃(τ) − ε)
1 + h2H(t)

H(t)

=
H(t)[(r − c2(P̃(τ) − ε)) + r(h2 − 1 \ K)H(t) − rh2H2(t) \ K]

1 + h2H(t)
.

(2.10)
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If r <
c2σ

exp(m2τ) − 1
, ε > 0 is small enough and (i) or (ii) holds, then we get r < c2(P̃(τ) − ε) and

dH(t)
dt < 0, thus there must exist t2 > t1 such that 0 ≤ H(t) < ε, t > t2.

Combined with the conclusions we have obtained about H(t) and N(t) and the second equation of
system (2.2), we derive that for t > t2, there is

dN(t)
dt
≤ (

e1c1ε

1 + h1ε
− m2)N(t).

Because ε > 0 is small enough, so e1c1ε
1+h1ε

− m2 < 0 can be guaranteed. There must be t3 > t2 such that
0 ≤ N(t) < ε, t > t3.

Finally, we consider the variable P(t) again for t > t3. From the third and sixth equations of
system (2.2), we derive 

dP(t)
dt
≤ (

e2c2ε

1 + h2ε
+

e3c3ε

1 + h3ε
− m2)P(t), t , kτ,

P(t+) = P(t) + σ, t = kτ,
P(0) = P0 > 0.

(2.11)

Similarly, we construct a comparison system
dx2(t)

dt
= (

e2c2ε

1 + h2ε
+

e3c3ε

1 + h3ε
− m2)x2(t), t , kτ,

x2(t+) = x2(t) + σ, t = kτ,
x2(0) = P0 > 0,

(2.12)

and by the conclusions of systems (2.5), we can obtain that

lim
t→∞

x2(t) = x̃2(t) =
σ exp(( e2c2ε

1+h2ε
+ e3c3ε

1+h3ε
− m2)(t − kτ))

1 − exp(( e2c2ε
1+h2ε

+ e3c3ε
1+h3ε

− m2)τ)
, t ∈ (kτ, (k + 1)τ].

Then for ε > 0 small enough, there exists t4 > t3 such that x2(t) < x̃2(t) + ε, t > t4. Thus, it follows
from the comparison theorem that

P(t) ≤ x2(t) < x̃2(t) + ε, t > t4.

Letting ε → 0 then yields H(t) → 0,N(t) → 0 and P(t) → P̃(t) as t → ∞, which means that
(0, 0, P̃(t)) is a global attractor. The proof is completed. □

Remark 2. To ensure the global stability of the periodic solution of aphid-extinction, only the
condition about the intrinsic growth rate of aphids and release intensity of Coccinellids in Theorem 2
is far from enough, and the environmental capacity of aphids should also be considered. From
Theorem 3, we can see that if the environmental capacity is small enough (condition (i) in
Theorem 3), or the environmental capacity is large but the release strength of ladybug increases to a
certain extent (condition (ii) in Theorem 3), then the aphid-eradication periodic solution (0, 0, P̃(t)) is
globally stable.
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2.3. Long-term control strategies

In this subsection, we study control strategies by exploring the impacts of the release amount σ and
the release period τ of Coccinellids on the population development trend of aphids.

To eliminate aphids in the long term, we can adjust the release parameters σ and τ such that the
conditions in Theorems 2 and 3 are satisfied. To this end, we consider the following function of σ
and τ:

M(σ, τ) = r −
c2σ

exp(m2τ) − 1
. (2.13)

For any fixed release period τ∗,M(σ, τ∗) is monotonically decreasing with respect to σ. Obviously,
M(0, τ∗) = r and M(+∞, τ∗) = −∞. So there must be a threshold of release amount σcrit(τ∗) > 0
such thatM(σcrit(τ∗), τ∗) = 0. Therefore the aphid-eradication periodic solution (0, 0, P̃(t)) of (2.2) is
asymptotically stable provided σ > σcrit(τ∗) according to Theorem 2.

Similarly, for any fixed release amount σ∗, M(σ∗, τ) is monotonically increasing with respect to
τ. It can be obtained by simple calculation that M(σ∗, 0) = −∞ and M(σ∗,+∞) = r. Similarly,
there must be a threshold of release period τcrit(σ∗) > 0 such thatM(σ∗, τcrit(σ∗)) = 0. Therefore the
aphid-eradication periodic solution (0, 0, P̃(t)) of (2.2) is asymptotically stable provided τ < τcrit(σ∗)
according to Theorem 2.

Now we provide examples to demonstrate these results. Choose parameters as follows

r = 2.5, K = 100, h1 = 0.03, c1 = 0.03,
h2 = 0.03, c2 = 0.03, h3 = 0.03, c3 = 0.03, e1 = 3,
e2 = 0.8, e3 = 0.2, m1 = 0.1, m2 = 0.2.

(2.14)

Firstly, we fix the release period τ∗ = 4. Through simple calculation, we obtain that the threshold of
release amount σcrit(4) ≈ 102.1284. Consider the release amount σ = 280, through direct calculation
we get r = 2.5 < c2σ

exp(m2τ)−1 ≈ 6.8543, h2K = 3 > 1 and r(1 + h2K)2 = 40 < 4h2Kc2σ
exp(m2τ)−1 ≈ 82.2516 , which

verify conditions listed in Theorem 3, and the global stability of the aphid-eradication periodic solution
(0, 0, P̃(t)) of system (2.2) is guaranteed. From Figure 1, we can see that solutions from different initial
values all tend to the aphid-eradication periodic solution (0, 0, P̃(t)). We reduce the release amount to
σ = 100 < σcrit(4), then conditions in Theorems 2 and 3 are not satisfied, and we can see that there
exists positive periodic solutions for the coexistence of these species (see Figure 2).

We next keep the same parameters but fix σ∗ = 300, then we can obtain the threshold of release
period τcrit(5) ≈ 7.6303. If we extend the release period to τ = 8 > τcrit(5), we can see that there also
exists positive periodic solutions for the coexistence of these species (see Figure 3). While if we shorten
the release period to τ = 4.5 < τcrit(5), through direct calculation we get r = 2.5 < c2σ

exp(m2τ)−1 ≈ 6.1661,
h2K = 3 > 1 and r(1 + h2K)2 = 40 < 4h2Kc2σ

exp(m2τ)−1 ≈ 73.9929, then conditions listed in Theorem 3 hold
and the aphid-eradication periodic solution is globally stable (see Figure 4).
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Figure 1. The global stability of the aphid-eradication periodic solution (0, 0, P̃(t)) of (2.2)
with σ = 280 and τ = 4.
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Figure 2. Population coexistence of system (2.2) with σ = 100 and τ = 4.
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Figure 3. Population coexistence of system (2.2) with σ = 300 and τ = 8.
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Figure 4. The global stability of the aphid-eradication periodic solution (0, 0, P̃(t)) of (2.2)
with σ = 300 and τ = 4.5.

3. Limited-time optimal control problems

In recent years, the use of natural enemies to protect crops from aphids has been widely promoted,
especially in the critical period of crop growth season. However, there are still some obstacles to the
biological control of agricultural pests by natural enemies, such as the large-scale artificial feeding
of natural enemies and the difficulty of field release technology. Therefore, when releasing natural
enemies (such as Coccinellids), it is inevitable to consider the cost. In addition, from the perspective of
ecosystem stability, it is not necessary to completely eliminate pests, but only to control their quantity
within a reasonable range. Therefore in this section, we consider optimal control problems for aphids in
a limited time (for example, the critical period of crop growth season). With the optimization method,
on the one hand, the number of aphid population is restrained, on the other hand, the control cost is
reduced as much as possible. The release moments and release amount of Coccinellids are the main
control parameters.

3.1. Mixed control

Suppose we need to control the number of aphids in the field within a limited time of T . We plan
to achieve this goal through q − 1 releases of natural enemies within this limited time. Suppose that an
amount σk of Coccinellids is released into the field at moments tk ∈ [0,T ], k = 1, 2, · · · , q − 1, where
0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tq−1 ≤ tq = T , then we propose the following limited-time control system

dH(t)
dt
= rH(t)(1 −

H(t)
K

) −
c1H(t)N(t)
1 + h1H(t)

−
c2H(t)P(t)
1 + h2H(t)

,

dN(t)
dt
=

e1c1H(t)N(t)
1 + h1H(t)

−
c3N(t)P(t)
1 + h3N(t)

− m1N(t),

dP(t)
dt
=

e2c2H(t)P(t)
1 + h2H(t)

+
e3c3N(t)P(t)
1 + h3N(t)

− m2P(t),


t , tk, t ∈ [0,T ],

H(t+) = H(t),N(t+) = N(t),
P(t+) = P(t) + σk,

}
t = tk, k = 1, 2, · · · , q − 1

(3.1)

with initial conditions
H(0) = H0,N(0) = N0, P(0) = P0. (3.2)
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Let τk = tk − tk−1 and
0 ≤ τL

k ≤ τk ≤ τ
U
k , k = 1, 2, · · · , q, (3.3)

where τL
k and τU

k are given values used to constrain the interval length between the (k − 1)th and kth
releases. Besides, we also give constrain condition for the amount of the kth release

0 ≤ σL
k ≤ σk ≤ σ

U
k , k = 1, 2, · · · , q − 1, (3.4)

where σL
k and σU

k are predefined constants.
Let Θ = (τ1, τ2, · · · , τq)T and Υ = (σ1, σ2, · · · , σq−1)T , where τk and σk satisfy (3.3) and (3.4)

respectively, and denote the sets of all Θ ∈ Rq,Υ ∈ Rq−1 satisfying (3.3) and (3.4) by Ω1 and Ω2,
respectively.

Since the functions on the right hand of the first three equations of system (3.1) are differentiable, for
each pair (Θ,Υ) ∈ (Ω1,Ω2), the initial value problem of (3.1) and (3.2) has a unique solution ( [19,20]).

Considering the periodic change of aphid population, simple terminal control is not enough to
reflect the control effect. So in this paper, we consider the process control of aphid and define a cost
function as

J(Θ,Υ) =
∫ T

0
H(t)dt + r0

q−1∑
k=1

σk, (3.5)

where r0 is a balance factor between the feeding and release cost of Coccinellids and the aphid
population level. Then we can describe the optimal control problem of aphids as follows:

(P1) For the host-parasitoid-predator system (3.1) with initial condition (3.2), determine a parameter
vector pair (Θ,Υ) ∈ (Ω1,Ω2) such that the cost function J(Θ,Υ) is minimized.

There is a technical difficulty for this kind of optimal impulsive control problem, which is mainly
caused by uncertain pulse effects. In ( [14–18]), the authors introduced a time rescaling method, and
changed these uncertain time points into fixed ones. In the following, we will use the same method
and transform (P1) into an equivalent optimal parameter selection problem, then solve the problem by
using gradient-based optimization techniques.

Let t =
∑k−1

i=1 τi + τks for t ∈ (
∑k−1

i=1 τi,
∑k

i=1 τi], and let

Hk(s) = H(
k−1∑
i=1

τi + τks),Nk(s) = N(
k−1∑
i=1

τi + τks), Pk(s) = P(
k−1∑
i=1

τi + τks). (3.6)

Then system (3.1) with initial condition (3.2) is transformed into q subsystems

dHk(s)
ds

= Fk
1(s) = τk[rHk(s)(1 −

Hk(s)
K

)

−
c1Hk(s)Nk(s)
1 + h1Hk(s)

−
c2Hk(s)Pk(s)
1 + h2Hk(s)

],

dNk(s)
ds

= Fk
2(s) = τk[

e1c1Hk(s)Nk(s)
1 + h1Hk(s)

−
c3Nk(s)Pk(s)
1 + h3Nk(s)

−m1Nk(s)],
dPk(s)

ds
= Fk

3(s) = τk[
e2c2Hk(s)Pk(s)

1 + h2Hk(s)
+

e3c3Nk(s)Pk(s)
1 + h3Nk(s)

−m2Pk(s)],



s ∈ (0, 1], k = 1, 2, · · · , q,

Hk(0) = Hk−1(1),Nk(0) = Ak−1(1), Pk(0) = Pk−1(1) + σk,
}

k = 2, 3, · · · , q

(3.7)
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with
H1(0) = H(0) = H0,N1(0) = N(0) = N0, P1(0) = P(0) = P0. (3.8)

According to (3.7) and (3.8), the cost function (3.5) can be changed as

J1(Θ,Υ) =
∫ 1

0

q∑
k=1

Hk(s)ds + r0

q−1∑
k=1

σk. (3.9)

Then the optimal control problem (P1) is converted into
(P2) For the host-parasitoid-predator system (3.7) with initial condition (3.8), find a parameter

vector pair (Θ,Υ) ∈ (Ω1,Ω2) such that the cost function (3.9) is minimized.
To solve problem, we define the following Hamiltonian functionsHk, k = 1, 2, · · · , q like [23],

Hk(Hk(s),Nk(s), Pk(s),Θ,Υ) = Hk(s) + (λk
1(s), λk

2(s), λk
3(s))(Fk

1(s), Fk
2(s), Fk

3(s))T , (3.10)

where λk(s) = (λk
1(s), λk

2(s), λk
3(s)) is the corresponding costate which is governed by

λ̇k
1(s) = −

∂H

∂Hk
= −1 − τk[λk

1(s)r(1 −
2Hk(s)

K
) − (λk

1(s) − λk
2(s)e1)

×
c1Nk(s)

(1 + h1Hk(s))2 − (λk
1(s) − λk

3(s)e2)
c2Pk(s)

(1 + h2Hk(s))2 ],

λ̇k
2(s) = −

∂H

∂Nk
= −τk[(λk

2(s)e1 − λ
k
1(s))

c1Hk(s)
1 + h1Hk(s)

−(λk
2(s) − λk

3(s)e3)
c3Pk(s)

(1 + h3Nk(s))2 − m1λ
k
2(s)],

λ̇k
3(s) = −

∂H

∂Pk
= −τk[(λk

3(s)e2 − λ
k
1(s))

c2Hk(s)
1 + h2Hk(s)

+(λk
3(s)e3 − λ

k
2(s))

c3Nk(s)
1 + h3Nk(s)

− m2λ
k
3(s)]

(3.11)

with {
λ

q
1(1) = 0, λq

2(1) = 0, λq
3(1) = 0,

λk
1(1) = λk+1

1 (0), λk
2(1) = λk+1

2 (0), λk
3(1) = λk+1

3 (0), k = 1, 2, · · · , q − 1.
(3.12)

Let xk(s) = (Hk(s),Nk(s), Pk(s))T , and obviously

xk(0) = xk−1(1) + (0, 0, σk−1)T , i = 2, 3, · · · , q.

According to Theorems 4.1 and 4.2 in [23], we have

Proposition 3. The gradients of the cost functional J1 with respect to Θ and Υ are given by

∂J1

∂Υ
=
∂(r0
∑q−1

k=1 σk)
∂Υ

+

q∑
k=1

(λk(0))T (
∂xk(0)
∂Υ

) +
∫ 1

0

q∑
k=1

∂Hk(xk(s),Υ,Θ, λk(s))
∂Υ

and
∂J1

∂Θ
=
∂(r0
∑q−1

k=1 τk)
∂Θ

+

q∑
k=1

(λk(0))T (
∂xk(0)
∂Θ

) +
∫ 1

0

q∑
k=1

∂Hk(xk(s),Υ,Θ, λk(s))
∂Θ

,

respectively.
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Applying these formulas, we obtain the following results.

Theorem 4. The gradients of the cost function J1(Θ,Υ) with respect to the release parameters τk

and σi are determined as follows:

∇τk J1(Θ,Υ) =
∫ 1

0

q∑
i

∂Hi(s,Hi(s),Ni(s), Pi(s),Θ,Υ)
∂τk

ds

=

∫ 1

0
[λk

1(s)(rHk(s)(1 −
Hk(s)

K
) −

c1Hk(s)Nk(s)
1 + h1Hk(s)

−
c2Hk(s)Pk(s)
1 + h2Hk(s)

)

+ λk
2(s)(

e1c1Hk(s)Nk(s)
1 + h1Hk(s)

−
c3Nk(s)Pk(s)
1 + h3Nk(s)

− m1Nk(s))

+ λk
3(s)(

e2c2Hk(s)Pk(s)
1 + h2Hk(s)

+
e3c3Nk(s)Pk(s)

1 + h3Nk(s)
− m2Pk(s))]ds

(3.13)

for k = 1, 2, · · · , q, and

∇σi J1(Θ,Υ) = r0 +

q−1∑
k

(λk+1(0)T )
∂xk+1(0)
∂σi

ds

= r0 + (λi+1
1 (0), λi+1

2 (0), λi+1
3 (0))(0, 0, 1)T

= r0 + λ
i+1
3 (0)

(3.14)

for i = 1, 2, · · · , q − 1.

3.2. Release amount control

A common case of field operations is considered in this subsection. Suppose that Coccinellids are
released periodically in the limited time [0,T ] and the release amount is the same each time, which is
denoted by σ f ix . Similarly, totally q − 1 times of releases are planed, so the release period is τ = T

q .
Then the system (3.1) is transformed into

dH(t)
dt
= rH(t)(1 −

H(t)
K

) −
c1H(t)N(t)
1 + h1H(t)

−
c2H(t)P(t)
1 + h2H(t)

,

dN(t)
dt
=

e1c1H(t)N(t)
1 + h1H(t)

−
c3N(t)P(t)
1 + h3N(t)

− m1N(t),

dP(t)
dt
=

e2c2H(t)P(t)
1 + h2H(t)

+
e3c3N(t)P(t)
1 + h3N(t)

− m2P(t),


t , kτ, t ∈ [0,T ],

H(t+) = H(t),N(t+) = N(t),
P(t+) = P(t) + σ f ix,

}
t = kτ, k = 1, 2, · · · , q − 1

(3.15)

with initial conditions (3.2).
We also give constraint condition

0 ≤ σL ≤ σ f ix ≤ σU , (3.16)

where σL and σU are given constants.
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The cost function of control problem (P1) is converted as follws

J̄(σ f ix) =
∫ T

0
H(t)dt + r0(q − 1)σ f ix. (3.17)

Obviously, σ f ix is the only control parameter, and what we need to do is determining a σ f ix ∈ [σL, σU]
to minimize J̄(σ f ix).

Similarly, let t = (k−1)τ+ sτ for k = 1, 2, · · · , q, and then the initial-value problem (3.15) and (3.2)
is equivalent to

dHk(s)
ds

= Fk
1(s) = τk[rHk(s)(1 −

Hk(s)
K

)

−
c1Hk(s)Nk(s)
1 + h1Hk(s)

−
c2Hk(s)Pk(s)
1 + h2Hk(s)

],

dNk(s)
ds

= Fk
2(s) = τk[

e1c1Hk(s)Nk(s)
1 + h1Hk(s)

−
c3Nk(s)Pk(s)
1 + h3Nk(s)

−m1Nk(s)],
dPk(s)

ds
= Fk

3(s) = τk[
e2c2Hk(s)Pk(s)

1 + h2Hk(s)
+

e3c3Nk(s)Pk(s)
1 + h3Nk(s)

−m2Pk(s)],



s ∈ (0, 1], k = 1, 2, · · · , q,

Hk(0) = Hk−1(1),Nk(0) = Ak−1(1), Pk(0) = Pk−1(1) + σ f ix,
}

k = 2, 3, · · · , q

(3.18)

with same initial conditions (3.8).
The cost function (3.17) can be expressed as

J̄1(σ f ix) =
∫ 1

0

q∑
k=1

Hk(s)ds + r0(q − 1)σ f ix (3.19)

and we only need to find a σ f ix ∈ [σL, σU] to minimize J̄1(σ f ix).
Through similar discussion, we get

Theorem 5. The gradient of J̄1(σ f ix) with respect to σ f ix is

∇J̄1(σ f ix) = r0(q − 1) +
q−1∑
k=1

λk+1
3 (0). (3.20)

3.3. Release timing control

Another common case in field operations is considered in this subsection. Suppose that Coccinellids
are released at irregular moments 0 ≤ t1 ≤ · · · ≤ tq−1 ≤ T with a same release amount σ f ix. Then the
system (3.1) is changed as

dH(t)
dt
= rH(t)(1 −

H(t)
K

) −
c1H(t)N(t)
1 + h1H(t)

−
c2H(t)P(t)
1 + h2H(t)

,

dN(t)
dt
=

e1c1H(t)N(t)
1 + h1H(t)

−
c3N(t)P(t)
1 + h3N(t)

− m1N(t),

dP(t)
dt
=

e2c2H(t)P(t)
1 + h2H(t)

+
e3c3N(t)P(t)
1 + h3N(t)

− m2P(t),


t , tk, t ∈ [0,T ],

H(t+) = H(t),N(t+) = N(t),
P(t+) = P(t) + σ f ix,

}
t = tk, k = 1, 2, · · · , q − 1

(3.21)
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with initial conditions (3.2), and tk, k = 1, 2, · · · , q and σ f ix satisfy constraint conditions (3.3)
and (3.16), respectively.

Obviously, the cost function of control problem (P1) can be expressed as

Ĵ(Θ, σ f ix) =
∫ T

0
H(t)dt + r0(q − 1)σ f ix, (3.22)

where Θ = (τ1, τ2, · · · , τq)T , τk = tk − tk−1, and σ f ix and τ1, τ2, · · · , τq are all decision variables.
Let t =

∑k−1
i=1 τi + τks for k = 1, 2, · · · , q, and the system (3.21) is reduced to

dHk(s)
ds

= Fk
1(s) = τk[rHk(s)(1 −

Hk(s)
K

)

−
c1Hk(s)Nk(s)
1 + h1Hk(s)

−
c2Hk(s)Pk(s)
1 + h2Hk(s)

],

dNk(s)
ds

= Fk
2(s) = τk[

e1c1Hk(s)Nk(s)
1 + h1Hk(s)

−
c3Nk(s)Pk(s)
1 + h3Nk(s)

−m1Nk(s)],
dPk(s)

ds
= Fk

3(s) = τk[
e2c2Hk(s)Pk(s)

1 + h2Hk(s)
+

e3c3Nk(s)Pk(s)
1 + h3Nk(s)

−m2Pk(s)],



s ∈ (0, 1], k = 1, 2, · · · , q,

Hk(0) = Hk−1(1),Nk(0) = Ak−1(1), Pk(0) = Pk−1(1) + σ f ix,
}

k = 2, 3, · · · , q

(3.23)

with initial conditions (3.8).
Then cost function (3.22) can be rewritten as

Ĵ1(Θ, σ f ix) =
∫ 1

0

q∑
k=1

Hk(s)ds + r0(q − 1)σ f ix. (3.24)

Then, we can obtain

Theorem 6. The gradients of Ĵ1(Θ, σ f ix) with respect to the release timing τk and release amount
σ f ix are

∇τk Ĵ1(Θ, σ f ix) = ∇τk Ĵ1(Θ, σ f ix), k = 1, 2, · · · , q (3.25)

and

∇σ f ix Ĵ1(Θ, σ f ix) = r0(q − 1) +
q−1∑

k

λk+1
3 (0). (3.26)

Here ∇τk J1(Θ, σ f ix) is defined in (3.13).

4. Numerical simulations for the optimal parameter selection

A series of numerical simulations for the optimal selection of control parameters for systems (3.1),
(3.15) and (3.21) are performed in this section.

For the computation of the cost function and its gradients with respect to the control parameters, we
adopt the approach given in ( [14–17]). Taking (3.1) as an example, we list the following computation
steps.
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(1) Using the initial value condition (3.8), the solution of (3.7) is calculated, and
Hk(s),Nk(s), Pk(s), s ∈ [0, 1], k = 1, 2, · · · , q are obtained.

(2) Applying Hk(s),Nk(s), Pk(s), the solution of (3.11) can be obtained by inverse calculation with
boundary conditions (3.12), then λk

1(s), λk
2(s) and λk

3(s), k = 1, 2, · · · , q are gained.
(3) By (3.9), the cost function J1(Θ,Υ) can be calculated.
(4) Applying Hk(s),Nk(s), Pk(s), λk

1(s), λk
2(s) and λk

3(s), we calculate ∇τk J1(Θ,Υ) for k = 1, 2, · · · , q
and ∇σi J1(Θ,Υ) for i = 1, 2, · · · , q − 1.

In our numerical simulations, time is measured in days and we take 30 days as the total control time,
that is, T = 30. These 30 days will be divided into q = 5 parts, and natural enemies will be released
q − 1 = 4 times in different modes. The balance factor parameter is selected as r0 = 0.01.

In the following, by using parameters given in (2.14), we will study three different optimal strategies
in impulsive control by numerical simulations. Surely there is no guarantee that the optimal solution
we find numerically is unique and global, and we just give a set of optimal ones under some initial
release periods and amounts by the above steps.

Example 1. Release amount control.

For a fixed release period τ = 6, starting with a initial release amount σ f ix = 450, we can obtain
that the cost value J̄0 = 38.4752.

Under constraint 0 ≤ σ f ix ≤ 500, the optimal problem is solved according to the above algorithm by
using Matlab program, and we obtain an optimal release amount σ∗f ix = 360.87 and the corresponding
cost value J̄∗ = 36.0234. In the left figure of Figure 5, the optimal amount control, non-control
and simple impulsive control are compared, and we find that the optimal amount control and simple
impulsive control have almost the same significant control effect, however, the former needs to release
fewer natural enemies.

Besides, the impact of the intensity of each release on the objective function are exploited, see the
right figure in Figure 5. With the release amount σ f ix varies in the interval [0, 500], we find that the
objective function has a minimum value which is consistent with the optimal value we get.
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Figure 5. Release amount control: (a) Comparisons of total aphid population under different
biological controls; (b) Impact of the intensity of each release on the objective function.
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Example 2. Release timing control.

Using the same initial release amount of natural enemies σ f ix = 450 and initial release intervals
τ1 = τ2 = · · · = τ5 = 6. In order to determine optimal parameter value of τk and σ f ix by the algorithm
given above, we give constraints as follows

0 ≤ τk ≤ 10, k = 1, 2, · · · , 5,
5∑
1

Tk = 30 (4.1)

and 0 ≤ σ f ix ≤ 500.
Then we solve the optimal problem and obtain a set of optimal release intervals

τ∗1 = 4.9754, τ∗2 = 6.3439, τ∗3 = 6.2288, τ∗4 = 6.3275, τ∗5 = 6.1244 (4.2)

and an optimal release amount
σ∗f ix = 385.28. (4.3)

The minimum cost value we gained is Ĵ∗ = 30.0030.
The optimal release timing control is compared with non-control and optimal release amount control

(see the left figure of Figure 6), and we find that the former has obvious advantages and it can suppress
the number of aphids at a lower level in the whole control process.

Furthermore, for every σ f ix ∈ [0, 500], we also determine the corresponding optimal time intervals
under constraint (4.1) and then calculate the value of cost function. The results are displayed in the
right figure of Figure 6. With the release amount σ f ix varies in the interval [0, 500], we see that the
objective function also has a minimum value which is consistent with the optimal value we get.
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Figure 6. Release timing control: (a) Comparisons of aphid population under different
biological controls; (b) Impact of the intensity of each release on the optimal cost value.

Example 3. Mixed control.

Still use the initial release intervals τ1 = τ2 = · · · = τ5 = 6 and initial release amounts σ1 = σ2 =

· · · = σ4 = 450, and under the constraint (4.1) and 0 ≤ σk ≤ 500, k = 1, 2, 3, 4, we solve the optimal
problem by the same method, then obtain a set of optimal release amounts
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σ∗1 = 439.65, σ∗2 = 439.65, σ∗3 = 338.15, σ∗4 = 338.15, (4.4)

and a set of optimal release intervals

τ∗1 = 5.1809, τ∗2 = 6.4559, τ∗3 = 6.4541, τ∗4 = 5.9545, τ∗5 = 5.9545. (4.5)

This control strategy is showed in the right figure of Figure 7. Besides, the minimum cost value is
J∗ = 27.1708.

The time series diagrams of aphid population under four types of control modes are showed in the
left figure of Figure 7. We can see that although the optimal mixed control corresponds to a smaller
value of the cost function, and it does show a good control effect in the first stage of the control
process, however we also clearly see that the number of aphid population rebounded significantly in
the last stage of the control process. From this point of view, the comprehensive effect of optimal
timing control is better.

Finally, we compare these three optimal release strategies together (refer to Table 1 and the left
figure in Figure 8). Combining with the right figure in Figure 8, we know that the optimal amount
control releases the least natural enemies in the whole control process, while optimal mixed control
releases the most. Further more, we can see that for process control, compared with the release amount,
the optimal selection of release timing should be given higher priority. In addition, the rebound of
the number of aphids in the last stage of optimal mixed control will bring trouble to the subsequent
population management of aphids.
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Figure 7. Mixed control: (a) Comparisons of aphid population under different biological
controls; (b) Release strategy of the mixed optimal control.
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Figure 8. (a) Release strategies of three kinds of optimal control; (b) Comparisons of total
release amounts of natural enemies for three optimal control methods.

Table 1. Comparison of different release strategies.

Optimal control parameters J∗

Release amount control σ∗f ix = 360.87 36.0234
τ∗1 = 4.9754, τ∗2 = 6.3439,

Release timing control τ∗3 = 6.2288, τ∗4 = 6.3275, 30.0030
τ∗5 = 6.1244, σ∗f ix = 385.28
τ∗1 = 5.1809, τ∗2 = 6.4559,
τ∗3 = 6.4541, τ∗4 = 5.9545,

Mixed control τ∗5 = 5.9545, σ∗1 = 439.65 27.1708
σ∗2 = 439.65, σ∗3 = 338.15
σ∗4 = 338.15

5. Conclusions

In this paper, impulsive dynamical systems for the interaction among aphids, parasitic wasps and
aphidophagous Coccinellids incorporating impulsive releases of Coccinellids are proposed, and the
release strategies of Coccinellids in the long-term and limited- time control of aphids are explored.

We first investigate the long-term control system. The existence and stability of the
aphid-eradication periodic solution are studied. In addition, we discuss the threshold conditions for
the release amount and release period to ensure that the aphid population is eliminated eventually.

For the limited-time control, three different optimal strategies in impulsive control are studied.
Time rescaling technique and an optimization algorithm based on gradient are applied to overcome
the technical difficulty of the impulsive optimal control problem which is caused by uncertain pulse
effects. Gradients of objective function with respect to each control parameter are gained, and optimal
values of control parameters are obtained by numerical simulations. Our simulations indicate that for
process control, the optimal selection of release timing should be given higher priority compared with
the release amount.

In the limited-time control, we focus on process control but ignore terminal control. By comparing
the three control results, we notice that there are some disadvantages in the construction of cost function
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by only emphasizing process control. For example, in the mixed control mode, although the cost
function is reduced to the lowest value, it can be seen that the number of aphids has rebounded greatly
at the end. This can not be said to have achieved a good control effect. Therefore in our future work, we
will consider both terminal control and process control in the limited time control, so as to ensure the
best comprehensive control effect on aphid population. In addition, the selection of model parameters
in this work is more from the perspective of theoretical research. Therefore, in further research in the
future, we will focus on the specific experimental data for numerical fitting, so as to better apply the
research results to practice.
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