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1. Introduction

Order statistics are important in many probability areas, including reliability theory, auction theory,
and operations research. Denote Xk:n by the k-th order statistic of random variables X1, X2, ..., Xn,
k = 1, 2, ..., n. In reliability theory, Xk:n characterizes the lifetime of a (n − k + 1)-out-of-n system.
Specifically, Xn:n and X1:n can express as the lifetimes of parallel and series systems, respectively. In
auction theory, Xn:n and X1:n represent the first-price sealed-bid auction and final price of the first-price
procurement auction, respectively. Exploring the stochastic behavior of coherent systems is one of the
most important subjects in reliability. Stochastic orders, which are valuable instruments for measuring
the size and variability of random variables, have been frequently employed in stochastic comparisons
of reliability systems.

Many scholars have spent decades studying stochastic comparisons of order statistics from
heterogeneous and independent distributions. The usual stochastic order, the hazard rate order, and the
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likelihood ratio order are all stochastic orders that compare the “magnitude” of random variables. For
example, [1] studied the largest order statistic in terms of the hazard rate and the dispersive order. [2]
obtained ordering properties of the largest order statistic with two independent heterogeneous
exponential samples with respect to the likelihood ratio order and the hazard rate order. [3]
investigated the likelihood ratio order and the stochastic order between the smallest order statistic of
independent and dependent samples. [4] focused on stochastic orders to compare the magnitudes of
two parallel systems from Weibull distributions when one set of scale parameters majorizes the other.
There have been lots of extensions works to the case of stochastic comparisons with independent
heterogeneous Weibull distribution, for example, [5–7]. Besides, we study stochastic orders that
compare the “variability” or the “dispersion” of random variables. The most important and common
orders are the convex and dispersive orders. The variability of order statistics from heterogeneous and
independent random variables has nice applications in the reliability theory and actuarial science, and
has been studied by many researchers. For instance, the convex transform, star, and dispersive orders
are used for comparing variability in probability distributions. [8] proved the star order between the
largest order statistic from heterogeneous(homogeneous) and independent proportional hazard
rates(PHR) models. [9] investigated the stochastic comparisons of the largest and the smallest order
statistics with independent heterogeneous generalized exponential samples in terms of various
stochastic orders. [10] gave some sufficient conditions for stochastic comparisons between the largest
order statistic with exponentiated Weibull samples with respect to the usual stochastic, the likelihood
ratio order, and the dispersive order. [11] compared two of the largest order statistics having
heterogeneous exponentiated Weibull samples in terms of the reversed hazard rate and likelihood ratio
orders. [12] considered stochastic comparisons of the smallest order statistic from the location-scale
family of distributions with respect to different stochastic orders. [13] focused on some stochastic
comparisons between the corresponding order statistics based on modified proportional hazard rates
and modified proportional reversed hazard rates models. [14] presented some new ordering properties
between two parallel systems comprising general independent heterogeneous samples in the sense of
the usual stochastic and reversed hazard rate orders. [15] dealt with some stochastic comparisons of
both the largest and the smallest order statistics comprising dependent Burr Type XII samples under
the Archimedean copula with respect to the star order and the convex transform order. [16] considered
the largest order statistic with Pareto samples and studied the effect of heterogeneity on the skewness
of such systems. [17] established some properties of the new measures for various classes of
symmetric and asymmetric distributions, and characterized the generalized Pareto distribution in
terms of the convex transform order. For more investigations, one may refer to [18–31].

All of the above studies are restricted to the independent case. However, in most practical
scenarios, due to the common environment or share the same workload, which results in the
dependence among the samples. In recent years, the dependent samples of order statistics have
attracted widespread attention in the academic world. [32] investigated the ordering properties of
order statistics from random variables of Archimedean copulas. [33] studied order statistics from
random variables following the scale model with respect to the usual stochastic order of the sample
extremes and the second smallest order statistic, the dispersive order, and the star order of the sample
extremes. [34] further obtained the stochastic properties of the largest and the smallest order statistics
with heterogeneous and dependent PHR samples in the sense of the usual stochastic order. [35]
discussed stochastic comparisons of the largest and the smallest order statistics with heterogeneous
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and dependent resilience-scaled samples. [36] provided sufficient conditions for the hazard rate order
on the smallest and proportional hazard rates or scales, and the reversed hazard rate order on the
largest of the sample with Archimedean copula. [37] obtained the variability of both the largest and
the smallest order statistics of heterogeneous samples, sufficient conditions are established for the
dispersive and the star orders between the smallest order statistic consisting of dependent samples
having multiple-outlier proportional hazard rates and Archimedean copulas. [38] focused on the usual
stochastic, star, and convex transform orders of extreme order statistic comparing heterogeneous and
dependent extended exponential samples under Archimedean copulas. [39] carried out stochastic
comparisons of the largest and the smallest order statistics with dependent heterogeneous Topp-Leone
generated samples in terms of the usual stochastic order and the reversed hazard rate order. [40]
investigated stochastic comparisons on extreme order statistic from heterogeneous and dependent
samples following modified proportional reversed hazard rated and modified proportional hazard rates
models. [41] provided distribution-free results to compare, in the usual stochastic order under some
majorization conditions, coherent systems with heterogeneous and dependent components where the
dependency structure can be defined by any copula. The stochastic comparisons with statistically
dependent samples has attracted widespread attention among a lot of scholars. The interested readers
may refer to [42–54].

Truncated Weibull distributions are comprehensively applied to product reliability, modeling
product failures, quality control and life testing, so it is very meaningful that we research the ordering
statistics results of truncated Weibull models. As discussed in [55, 56], in many sampling settings,
observations are limited to a subset of the population’s potential values. As a result of the limiting
process, only n of N prospective observations remain visible, while (N-n) are deleted. When N(or
N-n) is known, the resulting collection of partial data is referred to as censored; otherwise, it is
referred to as truncated. A defined number of objects are generally evaluated for a fixed amount of
time in life testing, which is aimed to estimate the average life span of, for example, transistors from a
certain production line. Because the lives of things surviving the life test are unknown, this results in a
censored sample of lifetimes. In certain real-life testing circumstances, the total number of items on
the exam is unknown. This happens, for example, when a certain unknown number of products are
put through a life test and one of them has a specific fault that is only discovered after the item fails. If
the lifespan of an item with this specific defect is the variable of interest, the sample is truncated in the
sense that the number of missing observations with lifetime larger than the burn-in or testing period is
unknown. Therefore, conducting sample research with Lower-truncated Weibull distribution has very
important theoretical needs and practical significance. [57] discussed the stochastic comparisons of
extreme order statistics with heterogeneous and independent lower-truncated Weibull samples. A
random variable X is said to have doubly truncated Weibull distribution if its cumulative distribution
function is

G(x) =
F(x) − F(T )
F(L) − F(T )

, 0 ≤ T ≤ x ≤ L < ∞,

where F(x) = 1 − e(−λx)α(x ≥ 0, λ > 0, α > 0). When T = 0 and L → ∞, it becomes two-parameter
Weibull distribution. When T = 0 and L < ∞, it is upper-truncated Weibull distribution, and when
T > 0 and L → ∞, it is lower-truncated Weibull distribution. For more details on Weibull distribution
and its truncated forms, one may refer to [58, 59].

In this paper, we will focus attention on the lower-truncated Weibull with cumulative distribution
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function and probability density function

G(x) = 1 − e1−(λx)α , x ≥
1
λ
,

g(x) = αλαxα−1e1−(λx)α , x ≥
1
λ
,

respectively. We denote X ∼ LTW(α, λ) if X has the distribution functions G(x). Motivated by the work
of [57], this paper focus on studying the usual stochastic, the hazard rate, the convex transform and
the dispersive orders of the extreme order statistic from dependent and heterogeneous lower-truncated
Weibull samples. We derive the magnitude and variability with the heterogeneity considered in the
shape and scale parameter. The difference from [57] is that we extend the independent situation to the
dependent situation.

The rest of this paper is organized as follows. In Section 2, we review some definitions of stochastic
orders, majorizations, and some lemmas. In Section 3, we discuss the usual stochastic order and
the hazard rate order of the smallest and the largest order statistics with dependent and heterogeneous
lower-truncated Weibull samples. In Section 4, we get the convex transform and the dispersive orders of
the largest and the smallest order statistics with dependent and heterogeneous lower-truncated Weibull
samples. Finally, Section 5 concludes the paper with some remarks.

2. Preliminaries

Before proceeding to the main results, we briefly introduce some basic concepts about stochastic
orders, majorization, and Archimedean copula, which are very useful tools to compare random
variables arising from reliability theory, operations research, actuarial science, and so on.
Furthermore, the notion ‘a

sgn
= b’ means that a and b have the same sign.

2.1. Stochastic orders

Let X be a non-negative random variable with distribution function FX(t), survival function
F̄X(t) = 1 − FX(t), probability density function fX(t), the hazard rate function hX(t) = fX(t)/F̄X(t), and
the right-continuous inverse F−1

X .

Definition 1. A non-negative random variable X is said to be smaller than Y in the sense of

(i) Usual stochastic order (denoted by X ≤st Y) if F̄X(t) ≤ F̄Y(t) for all t ∈ [0,∞);
(ii) Hazard rate order (denoted by X ≤hr Y) if F̄Y(t)/F̄X(t) is increasing in t ∈ [0,∞) or hX(t) ≥ hY(t)

in t ∈ [0,∞);
(iii) Dispersive order (denoted by X ≤disp Y) if F−1

X (v)−F−1
X (u) ≤ F−1

Y (v)−F−1
Y (u) for all 0 ≤ u ≤ v ≤ 1.

When X and Y have densities fX and fY , respectively, then X ≤disp Y if and only if fY(F−1
Y (t)) ≤

fX(F−1
X (t)) for all t ∈ (0, 1);

(iv) Convex transform order (denoted by X ≤c Y) if F−1
Y FX(t) is convex in t ∈ [0,∞), or equivalently,

X ≤c Y if and only if F−1
X FY(t) is concave in t ∈ [0,∞);

(v) Star order (denoted by X ≤∗ Y) if F−1
Y FX(t)/t is increasing in t ∈ [0,∞);

(vi) Lorenz order (denoted by X ≤Lorenz Y) if LX(t) ≥ LY(t) for all t ∈ [0, 1], where the Lorenz curve
LX is defined as LX(t) =

∫ t

0
F−1

X (u)du/µX, and µX = E[X].
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It is known that

X ≤hr Y ⇒ X ≤st Y and X ≤c Y ⇒ X ≤∗ Y ⇒ X ≤Lorenz Y,

but the reversed statement is not true in general. The convex transform is usually used to describe
skewness. Skewness is an important quantity used for measuring the asymmetry in a distribution. For
a unimodal distribution, nagative skewness indicates that the tail on the left side of the density function
is longer than the right side, while positive skewness indicates that the tail on the right side of the
density function is longer than the left side. The convex transform order in this regard implies that one
distribution is more skewed to the right than the other distribution. It should be noticed that the convex
transform suitable for a non-negative random variable, hence the implication X ≤c Y ⇒ X ≤∗ Y holds
when X and Y are two non-negative random variables (see [60]). For more comprehensive discussions
on various stochastic orders and their applications, one may refer to [61, 62].

2.2. Majorization order

Majorization order is an important tool in establishing various inequaties arising from many
research areas. Denote In = 1, 2, ..., n.

Definition 2. For two real vectors a = (a1, a2, ..., an) and b = (b1, b2, ..., bn) ∈ Rn, a(1) ≤ a(2) ≤ · · · ≤

a(n) and b(1) ≤ b(2) ≤ · · · ≤ b(n) denote the increasing arrangement of the components of a and b,
respectively. Then

(i) Vector a is said to be majorized by vector b (denoted by a
m
⪯ b) if

∑i
j=1 a( j) ≥

∑i
j=1 b( j) for

i = 1, 2, ..., n − 1, and
∑n

j=1 a( j) =
∑n

j=1 b( j);

(ii) Vector a is said to be weakly supermajorized by vector b (denoted by a
w
⪯ b) if

∑i
j=1 a( j) ≥

∑i
j=1 b( j)

for i = 1, 2, ..., n.

Definition 3. ( [63]) A real-valued function φ, defined on a set A ⊆ Rn, is said to be Schur-convex
(Schur-concave) on A if a

m
⪰ b implies φ(a) ≥ (≤)φ(b) for any a, b ∈ A.

It is clear that a
m
⪰ b implies a

w
⪰ b. For more details on majorization, weak majorization and Schur-

convex (Schur-convave) functions, one may refer to [63]. The sufficient and necessary conditions for
the characterization of Schur-convex (Schur-concave) function is presented in the following lemma.

Lemma 1. ( [63]) Let I ⊆ R be an open interval and let ψ : In → R be continuously differentiable.
Then, ψ is Schur-convex (Schur-concave) on I if and only if ψ is symmetric on In and for all i , j,

(xi − x j)
[
∂ψ(x)
∂xi

−
∂ψ(x)
∂x j

]
≥ (≤)0, for all x ∈ In,

where ∂ψ(x)/∂xi denotes the partial derivative of ψ with respect to its i-th argument.

Lemma 2. ( [63]) For a real-valued function ψ defined on a setA ⊆ Rn, a
w
⪯ b implies ψ(a) ≤ ψ(b) if

and only if ψ is decreasing and Schur-convex onA.
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2.3. Archimedean copula

Archimedean copula has been used in reliability theory and many other areas due to its capability
of capturing wide ranges of dependence and mathematical tractability. By definition, for a continuous
and decreasing function ϕ : R+ 7→ [0, 1] such that ϕ(0) = 1, ϕ(+∞) = 0, let ψ = ϕ−1 be the pseudo-
inverse,

Cψ (u1, ..., un) = ψ

 n∑
i=1

ϕ (ui)

 , for all ui ∈ [0, 1], i = 1, 2, ..., n,

is called an Archimedean copula with the generator ψ if (−1)n−2ψ(n−2)(x) is decreasing and convex and
(−1)kψ(k)(x) ≥ 0 for all x ≥ 0, k = 0, 1, ..., n − 2. For more discussions on copulas and their properties,
one may refer to [64, 65].

Lemma 3. ( [32]) For two n-dimensional Archimedean copulas Cψ1 and Cψ2 , if ϕ2◦ψ1 is super-additive,
then Cψ1(u) ≤ Cψ2(u) for all u ∈ [0, 1]n.

Lemma 4. ( [34]) For generators ψ1 and ψ2 of Archimedean copulas, if ψ2(ϕ2(t)/n)/ψ1(ϕ1(t)/n)
increases in t, then, for all t ∈ [0, 1], ψ2(nϕ2(t)) ≥ ψ1(nϕ1(t)) and

ψ
′

2(ϕ2(t)/n)
ψ
′

2(ϕ2(t))ψ2(ϕ2(t)/n)
≥

ψ
′

1(ϕ1(t)/n)
ψ
′

1(ϕ1(t))ψ1(ϕ1(t)/n)
.

3. Stochastic comparisons of the magnitude

In this section, we provide the ordering properties of the largest and the smallest order statistics
with dependent and heterogeneous lower-truncated Weibull samples in terms of the usual stochastic
order and the hazard rate order. We denote X ∼ LTW(α, λ, ψ) as the sample arising from non-negative
random variables X1, X2, ..., Xn assembled with an Archimedean copula having generator ψ, where
Xi ∼ LTW(αi, λi) for i = 1, 2, ..., n.

3.1. Orders of the largest order statistic

First, Theorem 1 gives sufficient conditions for the largest order statistic from dependent and
heterogeneous lower-truncated Weibull samples in terms of the usual stochastic order.

Theorem 1. Let X ∼ LTW(α, λ, ψ1) and Y ∼ LTW(β, λ, ψ2). If ϕ2 ◦ ψ1 be super-additive, then, for
λ > 0, x ≥ 1/λ, we have

α
w
⪰ β⇒ Yn:n ≤st Xn:n.

Proof. First, the distribution functions of Xn:n and Yn:n are given by

FXn:n(x) = ψ1

 n∑
i=1

ϕ1

(
1 − e1−(λx)αi

) , x ≥ 1/λ

and

FYn:n(x) = ψ2

 n∑
i=1

ϕ2

(
1 − e1−(λx)βi

) , x ≥ 1/λ,
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respectively. Note that super-additivity of ϕ2 ◦ ψ1 implies

ψ1

 n∑
i=1

ϕ1

(
1 − e1−(λx)βi

) ≤ ψ2

 n∑
i=1

ϕ2

(
1 − e1−(λx)βi

) .
Hence, to obtain the required result, it suffices to show that

ψ1

 n∑
i=1

ϕ1

(
1 − e1−(λx)αi

) ≤ ψ1

 n∑
i=1

ϕ1

(
1 − e1−(λx)βi

) .
Denote Π(α1, α2, ..., αn) = ψ1

(∑n
i=1 ϕ1

(
1 − e1−(λx)αi

))
. According to Lemma 2, we need to show that

Π(α1, α2, ..., αn) is Schur-concave in (α1, α2, ..., αn) and increasing in αs. Taking the partial derivative
of Π(α1, α2, ..., αn) with respect to αs, we have

∂Π(α1, α2, ..., αn)
∂αs

= ψ
′

1

 n∑
i=1

ϕ1

(
1 − e1−(λx)αi

) e1−(λx)αs

ψ
′

1(ϕ1(1 − e1−(λx)αs ))
(λx)αs ln(λx)

= ψ
′

1

 n∑
i=1

ϕ1

(
e1−(λx)αi

)G(αs, x)F(αs, x) ln(λx) ≥ 0,

where G(αs, x) = (ψ
′

1(ϕ1(1 − e1−(λx)αs )))−1, F(αs, x) = (λx)αse1−(λx)αs . Because G(αs, x) is non-positive
and increasing in αs for λ > 0, x ≥ 1/λ, and F(αs, x) is non-negative and decreasing in αs, for λ > 0,
x ≥ 1/λ. Hence, Π(α1, α2, ..., αn) and G(αs, x)F(αs, x) are increasing in αs, for λ > 0, x ≥ 1/λ.
Therefore, for any s , t, we have

(αs − αt)
(
∂Π(α1, α2, ..., αn)

∂αs
−
∂Π(α1, α2, ..., αn)

∂αt

)
= (αs − αt)ψ

′

1

 n∑
i=1

ϕ1

(
1 − e1−(λx)αi

) [G(αs, x)F(αs, x) −G(αt, x)F(αt, x)] ln(λx) ≤ 0.

Thus,Π(α1, α2, ..., αn) is Schur-concave in (α1, α2, ..., αn), the desired result follows from Lemma 2. □

Remark 1. We have to mention that the condition ‘ϕ2 ◦ ψ1’ is super-additive in Theorem 1 is general
and easy to be satisfied for many Archimedean copulas. For example,

(i) The Clayton copula with generator ψ (t) = (θt + 1)−1/θ for θ ≥ 0. Let us set ψ1(t) = (θ1t + 1)−1/θ1

and ψ2(t) = (θ2t + 1)−1/θ2 . It can be observed that ϕ2 ◦ ψ1 (t) = (θ1t + 1)
θ2
θ1 /θ2 − 1/θ2. Taking the

derivative of ϕ2 ◦ ψ1 with respect to t twice, we can see that [ϕ2 ◦ ψ1]′′ ≥ 0 for θ2 ≥ θ1 ≥ 0. Thus,
ϕ2 ◦ ψ1 is super-additivity (c f . Table 4.2.3 on Page 116 of [64]);

(ii) The Gumbel-Hougaard copula with generator ψ (t) = e1−(1+t)θ for θ ∈ [1,∞). Let us set ψ1(t) =
e1−(1+t)α and ψ2(t) = e1−(1+t)β . It can be seed that ϕ2 ◦ ψ1 (t) = (1 + t)α/β−1. Taking the derivative
of ϕ2 ◦ ψ1 with respect to t twice, we can see that [ϕ2 ◦ ψ1]′′ ≥ 0 for α ≥ β ≥ 1 which implies the
superadditivity of ϕ2 ◦ ψ1 (c f . Table 4.2.3 on Page 116 of [64]).

The following Example 1 illustrates the result of Theorem 1.
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Example 1. Consider the case of n = 3. Let generators ψ1(x) = (θ1x + 1)−1/θ1 , ψ2(x) = (θ2x + 1)−1/θ2 ,
θi ≥ 0, i = 1, 2. Set θ1 = 0.1, θ2 = 1, λ = 0.5, α = (0.2, 0.4, 0.6)

w
⪰ (0.4, 0.6, 0.8) = β. One can check all

conditions of Theorem 1 are statisfied. Plot the whole of distribution function curves of X3:3 and Y3:3

on (2,∞). As is seen in Figure 1, the distribution function curve of X3:3 is always beneath that of Y3:3,
that is, X3:3 ≥st Y3:3, which coincided with the result of Theorem 1.

X3:3

Y3:3

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

Figure 1. The distribution function curves of X3:3 and Y3:3.

The proof of Theorem 2 can be obtained similarly that of Theorem 1, thus we omit the proof process
of Theorem 2.

Theorem 2. Let X ∼ LTW(α, λ, ψ1) and Y ∼ LTW(α,µ, ψ2). If ϕ2 ◦ ψ1 be superadditive. Then, for
x ≥ max(1/λ1, 1/λ2, ..., 1/λn, 1/µ1, 1/µ2, .., 1/µn) and 0 < α ≤ 1, we have

λ
w
⪰ µ⇒ Yn:n ≤st Xn:n.

Remark 2. It should be noted that for independent samples, ψ(x) = e−x, thus Theorem 1 and
Theorem 2 generalizes Theorem 3.2 of [57] from independent samples to the case of statistically
dependent components with Archimedean copulas.

Remark 3. Proposition 3.7 in [41] is considerably more generic, because the random variables
studied in such proposition have arbitrary distribution functions, however, in this paper, we explore a
specific sort of distribution function, namely the lower-truncated Weibull distribution. In comparison
to Proposition 3.7 in [41], the Theorem 1 and the Theorem 2 do not need the requirement ψ1 is
log-convex, hence our conditions are weaker for lower-truncated Weibull distribution in the largest
order statistic.

We present the following Example 2 to illustrate the result of Theorem 2.

Example 2. Take ψ1(x) = (θ1x + 1)−1/θ1 , ψ2(x) = (θ2x + 1)−1/θ2 . Set θ1 = 0.2, θ2 = 0.5, α = 0.2,
λ = (0.2, 0.4, 0.6)

w
⪰ (0.4, 0.6, 0.8) = µ. These satisfy all conditions of Theorem 2, and the whole of

distribution function curves of X3:3 and Y3:3 on (5,∞) are plotted in Figure 2, which asserts X3:3 ≤st Y3:3.
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X3:3

Y3:3

6 7 8 9 10

0.02

0.04

0.06

0.08

0.10

Figure 2. The distribution function curves of X3:3 and Y3:3.

3.2. Orders of the smallest order statistic

First, we will give a stochastic comparison of the smallest order statistic from dependent and
heterogeneous lower-truncated Weibull samples in terms of the usual stochastic order.

Corollary 1. Let X ∼ LTW(α, λ, ψ1) and Y ∼ LTW(β, λ, ψ2). If ϕ2 ◦ ψ1 be super-additive and ψ1 is
log-convex. Then, for λ > 0, x ≥ 1/λ. We have

α
m
⪰ β⇒ Y1:n ≥st X1:n.

Proof. The distribution function of X is increasing in α, and the survival function of X is log-concave in
α, which satisfies conditions in Proposition 3.16 of [41]. Hence, according to Proposition 3.16 of [41],
we can easily establish the result of Corollary 1. □

The next Example 3 is provided to explain the result of Corollary 1.

Example 3. Let generators n = 3, ψ1(x) = (θ1x + 1)−1/θ1 , ψ2(x) = (θ2x + 1)−1/θ2 , θi ≥ 0, i = 1, 2. Set
θ1 = 0.2, θ2 = 2, λ = 0.5, α = (0.3, 0.4, 0.5)

m
⪰ (0.5, 0.6, 0.1) = β. It is apparent to the ϕ2 ◦ ψ1 be

super-additive and ψ1 is log-convex. The whole of survival function curves of X1:3 and Y1:3 are display
in Figure 3, which confirmed that X1:3 ≤st Y1:3.

X1:3

Y1:3

4 6 8 10

0.2

0.4

0.6

0.8

1.0

Figure 3. The survival function curves of X1:3 and Y1:3.

Corollary 2. Let X ∼ LTW(α, λ, ψ1) and Y ∼ LTW(α,µ, ψ2). Suppose ϕ2 ◦ ψ1 be super-additive.
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(i) If ψ1 is log-concave and λ
w
⪯ µ, then Y1:n ≥st X1:n for all 0 < α ≤ 1 and

x ≥ max(1/λ1, ..., 1/λn, 1/µ1, ..., 1/µn).
(ii) If ψ1 is log-convex and λ

m
⪰ µ, then Y1:n ≥st X1:n for all α ≥ 1 and

x ≥ max(1/λ1, ..., 1/λn, 1/µ1, ..., 1/µn).

Proof. (i) The distribution function of X is increasing in λ, and the survival function of X is log-
concave in λ for 0 < α ≤ 1, which satisfies conditions in Proposition 3.16 of [41]. As a result,
Corollary 2(i) can be obtained immediately from proposition 3.7 in [41].

(ii) The proof of Corollary 2(ii) can be obtained similarly that of Corollary 2(i), thus we omit the
proof process of Corollary 2(ii).

□
In the following, we will give a numerical example to illustrate the Corollary 2.

Example 4. (i) Consider the case of n = 3. Let generators ψ1(x) = e(1−ex)/θ1 , 0 ≤ θ1 ≤ 1, ψ2(x) =
(θ2x + 1)−1/θ2 , θ2 ≥ 0. Set θ1 = 0.1, θ2 = 1.2, α = 0.5, µ = (0.2, 0.4, 0.6)

w
⪰ (0.4, 0.6, 0.8) = λ. One

can check all conditions of Corollary 2(i) are statisfied. The survival function curves of X1:3 and
Y1:3 are plotted in Figure 4(i), which coincided with the result of Corollary 2(i).

(ii) Let ψ1(x) = (θ1x+1)−1/θ1 , ψ2(x) = (θ2x+1)−1/θ2 , θi ≥ 0, i = 1, 2. Set n = 3, θ1 = 0.1, θ2 = 1, α = 2,
λ = (0.2, 0.3, 0.4)

m
⪰ (0.3, 0.4, 0.2) = µ. As is seen in Figure 4(ii), the survival function curve of

X1:3 is always beneath that of Y1:3, that is, X1:3 ≤st Y1:3, which verified Corollary 2 (ii).

X1:3

Y1:3

6 7 8 9 10

0.1

0.2

0.3

0.4

X1:3

Y1:3

5.5 6.0 6.5 7.0 7.5 8.0

0.005

0.010

0.015

0.020

0.025

Figure 4. The graphs of the survival function of X1:3 and Y1:3, for the lower-truncated Weibull
(α = 0.5) (left) and (α = 2) (right).

The following Theorem 3 carries out stochastic comparison of the smallest order statistics from
dependent and heterogeneous lower-truncated Weibull samples in the sense of the hazard rate order.

Theorem 3. Let X ∼ LTW(α, λ, ψ) and Y ∼ LTW(α,µ, ψ). If ψ is log-concave, and −ψ
′

/ψ is log-
convex. Then, for 0 < α ≤ 1/2 and x ≥ max(1/λ1, ..., 1/λn, 1/µ1, .., 1/µn), then

µ
w
⪰ λ⇒ Y1:n ≥hr X1:n.

Proof. For ease of reference, let us list the following facts.
ϱ1: ψ (x) ≥ 0 and ψ

′ (x) ≤ 0.
ϱ2: The ψ is log-concave implies that ψ

′

/ψ decreasing and hence ψ
′′ (x)ψ (x) ≤

[
ψ
′ (x)

]2
.

ϱ3: The −ψ
′

/ψ is log-convex implies that
{
ψ
′′ (x)ψ (x) −

[
ψ
′ (x)

]2
}
/ψ (x)ψ

′ (x) ≥ 0 increases in x ≥ 0.
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The survival function of X1:n is given by

F̄X1:n(x) = ψ

 n∑
i=1

ϕ
(
e1−(λi x)α

) , x ≥ max(1/λ1, ..., 1/λn, 1/µ1, .., 1/µn),

the hazard rate function of X1:n can be expressed as

hX1:n(x) =
ψ
′
(∑n

i=1 ϕ(e1−(λi x)α)
)

ψ
(∑n

i=1 ϕ(e1−(λi x)α)
) n∑

i=1

ψ(ϕ(e1−(λi x)α))
ψ′(ϕ(e1−(λi x)α))

(
αλαi xα−1

)
= L(x, λ, α, ψ),

x ≥ max(1/λ1, ..., 1/λn, 1/µ1, .., 1/µn).
Likewise, Y1:n gets the hazard rate function hY1:n = L(x,µ, α, ψ). Further denote

A(λ(s,t), x) =
∑
i,s,t

ψ(ϕ(e1−(λi x)α))
ψ′(ϕ(e1−(λi x)α))

(
αλαi xα−1

)
, B(λ, x) =

ψ(
∑n

i=1 ϕ(e1−(λi x)α))
ψ′(

∑n
i=1 ϕ(e1−(λi x)α))

,

Jψ(x) =
ψ
′′

(x)ψ(x) − (ψ
′

(x))2

(ψ(x))2 , C(λ, x) = Jψ

 n∑
i=1

ϕ
(
e1−(λi x)α

) B(λ, x).

Then, for any s, t ∈ In with s , t , we have

∂L(x, λ, α, ψ)
∂λs

= Jψ

 n∑
i=1

ϕ
(
e1−(λi x)α

) B(λs, x)(−αλα−1
s xα)

n∑
i=1

ψ(ϕ(e1−(λi x)α))
ψ′(ϕ(e1−(λi x)α))

(
αλαi xα−1

)
+
ψ
′

(
∑n

i=1 ϕ(e1−(λi x)α))
ψ(

∑n
i=1 ϕ(e1−(λi x)α))

Jψ
(
ϕ(e1−(λs x)α)

)
B3(λs, x)(αλ2α−1

s x2α−1)

+
ψ
′

(
∑n

i=1 ϕ(e1−(λi x)α))
ψ(

∑n
i=1 ϕ(e1−(λi x)α))

B(λs, x)(α2λα−1
s xα−1)

= Jψ

 n∑
i=1

ϕ
(
e1−(λi x)α

) B(λs, x)(−αλα−1
s xα)

×
(
A(λ(s,t), x) + B(λs, x)(αλαs xα−1) + B(λt, x)(αλαt xα−1)

)
+

B2(λs, x)
B(λ, x)

C(λses, x)(α2λ2α−1
s x2α−1) +

B(λs, x)
B(λ, x)

(α2λα−1
s xα−1).

Owing to ϱ3, it holds that C(λ, x) ≥ C(λs, x). Combining ϱ1, ϱ2 with C(λ, x) ≥ C(λs, x) we have

∂L(x, λ, α, ϕ)
∂λs

= −Jψ

 n∑
i=1

ϕ
(
e1−(λi x)α

) A(λ(s,t), x)B(λs, x)(αλα−1
s xα)

−Jψ

 n∑
i=1

ϕ
(
e1−(λi x)α

) B(λs, x)B(λt, x)(α2x2α−1λαt λ
α−1
s )
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−
B2(λs, x)
B(λ, x)

(C(λ, x) −C(λs, x)) (α2λ2α−1
s x2α−1)

+
B(λs, x)
B(λ, x)

(α2λα−1
s xα−1) ≥ 0.

Therefore, L(x, λ, α, ψ) is increasing in λs. Furthermore, for s, t ∈ In with s , t, we obtain

(λs − λt)
(
∂L(x, λ, α, ψ)

∂λs
−
∂L(x, λ, α, ψ)

∂λt

)
= (λs − λt) Jψ

 n∑
i=1

ϕ
(
e1−(λi x)α

) A(λ(s,t), x) (−αxα)
(
B(λs, x)λα−1

s − B(λt, x)λα−1
t

)
+ (λs − λt)2 Jψ

 n∑
i=1

ϕ
(
e1−(λi x)α

)α2x2α−1B(λs, x)B(λt, x)λα−1
t λα−1

s

− (λs − λt)
α2x2α−1

B(λ, x)

×
[
B2(λs, x) (C(λ, x) −C(λs, x)) λ2α−1

s − B2(λt, x) (C(λ, x) −C(λt, x)) λ2α−1
t

]
+ (λs − λt)

α2xα−1

B(λ, x)
(B(λs, x)λα−1

s − B(λt, x)λα−1
t ).

It is easy to verify that B(λs, x)λα−1
s is increasing in λs for 0 < α ≤ 1, therefore

(λs − λt) Jψ

 n∑
i=1

ϕ
(
e1−(λi x)α

) A(λ(s,t), x) (−αxα)
(
B(λs, x)λα−1

s − B(λt, x)λα−1
t

)
≤ 0. (3.1)

By ϱ1, we have

(λs − λt)2 Jψ

 n∑
i=1

ϕ(e1−(λi x)α)

α2x2α−1B(λs, x)B(λt, x)λα−1
t λα−1

s ≤ 0. (3.2)

B2(λs, x)λ2α−1
s is decreasing in λs, for 0 < α ≤ 1/2, which implies that

0 ≤ B2(λs, x)λ2α−1
s ≤ B2(λt, x)λ2α−1

t . By ϱ3, for λs ≥ λt, we have
C(λ, x) −C(λt, x) ≥ C(λ, x) −C(λs, x) ≥ 0. It holds that

− (λs − λt)
α2x2α−1

B(λ, x)
×

{
B2(λs, x)(C(λ, x) −C(λs, x))λ2α−1

s − B2(λt, x) (C(λ, x) −C(λt, x)) λ2α−1
t

}
≤ 0.

(3.3)

Likewise, for λs ≥ λt, then

(λs − λt)
α2xα−1

B(λ, x)
(B(λs, x)λα−1

s − B(λt, x)λα−1
t ) ≤ 0. (3.4)

Combing (3.1)–(3.3) with (3.4), we conclude that L(x, λ, α, ψ) is Schur-concave in (λ1, ..., λn). Thus,
the desired result follows immediately from Lemma 2. □
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Remark 4. It should be noted that for independent samples, ψ(x) = e−x, thus Theorem 1 generalizes
Theorem 3.1 of [57] from independent components to the case of dependent samples.

We present the following Example 5 to illustrate the result of Theorem 3.

Example 5. Take ψ(x) = e(1−ex)/θ, 0 ≤ θ ≤ 0.5(3 −
√

5). Set n = 3, θ = 0.1, α = 0.25,
µ = (0.2, 0.4, 0.6)

w
⪰ (0.4, 0.6, 0.8) = λ. As is seen in Figure 5, the hazard rate function curve of Y1:3 is

always beneath that of X1:3, that is, X1:3 ≤hr Y1:3, which coincides Theorem 3.

X1:3

Y1:3

6 7 8 9 10

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Figure 5. Curves of the hazard rate function hX1:3(X) and hY1:3(X).

Next counterexample 1 explains the result in Theorem 3 couldn’t hold if α ≥ 1/2.

Counterexample 1. Let ψ(x) = e(1−ex)/θ, 0 ≤ θ ≤ 0.5(3 −
√

5). Set n = 3, θ = 0.382, α = 0.55,
µ = (0.2, 0.4, 0.6)

w
⪰ (0.4, 0.6, 0.8) = λ. As is seen in Figure 6, the difference between the hazard rate

functions hX1:n and hY1:n is not always non-negative and this means that Y1:n ⩽̸hr X1:n. So the result in
Theorem 3 couldn’t hold if α ≥ 1/2.

5 6 7 8 9 10

-0.15

-0.10

-0.05

0.05

0.10

Figure 6. Curve of difference functions of hX1:n(X) − hY1:n(X).

4. Stochastic comparisons based on variability orders

In this section, we study the convex transform order and the dispersive order of the smallest and the
largest order statistics from dependent and heterogeneous lower-truncated Weibull samples.
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4.1. Stochastic comparisons based on the convex transform order

First, we compare the smallest and the largest order statistics between dependent and
heterogeneous-homogeneous samples with respect to the convex transform order.

Theorem 4. Let X ∼ LTW(α, λ, ψ) and Y ∼ LTW(α, λ, ψ).

(i) If ψ is log-concave, then Y1:n ≥c X1:n for all 0 < α ≤ 1.
(ii) Yn:n ≥c Xn:n for all 0 < α ≤ 1.

Proof. (i) The survival functions of X1:n and Y1:n are given by

F̄X1:n(x) = ψ

 n∑
i=1

ϕ
(
e1−(λi x)α

) , x ≥ max(1/λ1, ..., 1/λn, 1/λ)

and
F̄Y1:n(x) = ψ

(
nϕ

(
e1−(λx)α

))
, x ≥ max(1/λ1, ..., 1/λn, 1/λ),

respectively. It holds that

F−1
Y1:n

(FX1:n(x)) =
1
λ

1 − lnψ

1
n

n∑
i=1

ϕ
(
e1−(λi x)α

)
1
α

=
1
λ

[1 − ln L(x)]
1
α ,

where L(x) = ψ
(

1
n

∑n
i=1 ϕ

(
e1−(λi x)α

))
. The first and the second partial derivatives of F−1

Y1:n
(FX1:n(x))

with respect to x are

∂

∂x

[
F−1

Y1:n
(FX1:n(x))

]
=

1
λα

[1 − ln L(x)]
1−α
α

(
−L

′

(x)
L(x)

)
and

∂2

∂x2

[
F−1

Y1:n
(FX1:n(x))

]
=

1
λα

1 − α
α

[1 − ln L(x)]
1−2α
α

(
−L

′

(x)
L(x)

)2

+ [1 − ln L(x)]
1−α
α

(
L
′

(x)
)2
− L(x)L

′′

(x)

L2(x)

 ,
respectively. Thus, F−1

Y1:n
(FX1:n(x)) is convex if 0 < α ≤ 1 and

(
L
′

(x)
)2
− L(x)L

′′

(x) ≥ 0, for which
it is sufficient to have 0 < α ≤ 1 and ψ is log-concave.

(ii) The survival functions of Xn:n and Yn:n are given by

FXn:n(x) = ψ

 n∑
i=1

ϕ
(
1 − e1−(λi x)α

) , x ≥ max(1/λ1, ..., 1/λn, 1/λ)

and
FYn:n(x) = ψ

(
nϕ

(
1 − e1−(λx)α

))
, x ≥ max(1/λ1, ..., 1/λn, 1/λ),
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respectively. Note that

F−1
Yn:n

(
FXn:n(x)

)
=

1
λ

1 − ln

1 − ψ 1
n

n∑
i=1

ϕ
(
1 − e1−(λi x)α

)
1
α

=
1
λ

[1 − ln (1 − L(x))]
1
α ,

where L(x) = ψ
(

1
n

∑n
i=1 ϕ

(
1 − e1−(λi x)α

))
. The first and second partial derivatives of F−1

Yn:n
(FXn:n(x))

with respect to x are

∂

∂x

[
F−1

Yn:n
(FXn:n(x))

]
=

1
λα

[1 − ln (1 − L(x))]
1−α
α

(
L
′

(x)
1 − L(x)

)
and

∂2

∂x2

[
F−1

Yn:n
(FXn:n(x))

]
=

1
λα

{
1 − α
α

[1 − ln (1 − L(x))]
1−2α
α

(
L
′

(x)
1 − L(x)

)2

+ [1 − ln(1 − L(x))]
1−α
α

(1 − L(x))L
′′

(x) +
(
L
′

(x)
)2

(1 − L(x))2

}
.

respectively. Thus, for 0 < α ≤ 1, F−1
Y1:n

(FX1:n(x)) is convex in x ∈ R+ .
□

The following Corollary 3 is an obvious consequence of Theorem 4.

Corollary 3. Let X ∼ LTW(α, λ, ψ) and Y ∼ LTW(α, λ, ψ).

(i) If ψ is log-concave, then Y1:n ≥Lorenz(∗) X1:n for all 0 < α ≤ 1.
(ii) Yn:n ≥Lorenz(∗) Xn:n for all 0 < α ≤ 1.

Next counterexample 2 explains the result in Theorem 4 (i) couldn’t hold if α ≥ 1.

Counterexample 2. Take ψ(x) = e(1−ex)/θ, 0 ≤ θ ≤ 0.5(3 −
√

5). Set n = 2, θ = 0.382, α = 1.51, λ =
0.2, λ = (0.6, 0.8). As is seen in Figure 7, the curve of ∂2F−1

Y1:2
(FX1:2(x))/∂x2 is not positive and this

means that Y1:2 ⩾̸c X1:2. Hence the result in Theorem 4 couldn’t hold if α ≥ 1.

6 7 8 9 10

-0.0002

-0.0001

0.0001

0.0002

Figure 7. The curve of ∂2F−1
Y1:2

(FX1:2(x))/∂x2.

Theorem 4 indicates that the larger and the smaller order statistics, from dependent homogeneous
lower-truncated Weibull samples, are more skewed to the right than those from dependent
heterogeneous lower-truncated Weibull samples.
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4.2. Stochastic comparisons based on the dispersive order

Aside from the convex transform order, which commonly measures skewness, the dispersive order
also measures skewness from a different standpoint. Theorem 5 looks at the dispersive order of the
smallest order statistic from dependent heterogeneous lower-truncated Weibull samples and dependent
homogeneous lower-truncated Weibull samples with the identical Archimedean copulas.

Theorem 5. Let X ∼ LTW(α, λ, ψ) and Y ∼ LTW(α, λ, ψ). If ψ is log-convex, ψ/ψ
′

is concave and
0 < α ≤ (1/n)

∑n
i=1 αi = ᾱ ≤ 1, λ ≥ 0, then we have Y1:n ≥disp X1:n.

Proof. The survival functions of X1:n and Y1:n are given by

F̄X1:n(x) = ψ

 n∑
i=1

ϕ
(
e1−(λx)αi

) , x ≥ 1/λ

and
F̄Y1:n(x) = ψ

(
nϕ

(
e1−(λx)α

))
, x ≥ 1/λ,

respectively. The corresponding density functions of X1:n and Y1:n can be express

fX1:n = ψ
′

 n∑
i=1

ϕ
(
e1−(λx)αi

) n∑
i=1

ψ(ϕ(e1−(λx)αi ))
ψ′(ϕ(e1−(λx)αi ))

(
αiλ

αi xαi−1
)

and

fY1:n = ψ
′
(
nϕ(e1−(λx)α)

)
n
ψ(ϕ(e1−(λx)α))
ψ′(ϕ(e1−(λx)α))

(
αλαxα−1

)
,

respectively. Note that

F−1
Y1:n

(FX1:n(x)) =
1
λ

1 − lnψ

1
n

n∑
i=1

ϕ
(
e1−(λx)αi

)
1
α

,

therefore,

fY1:n(F
−1
Y1:n

(FX1:n(x)))

= ψ
′

 n∑
i=1

ϕ
(
e1−(λx)αi

) n
ψ( 1

n

∑n
i=1 ϕ(e1−(λx)αi ))

ψ′( 1
n

∑n
i=1 ϕ(e1−(λx)αi ))

αλ

1 − lnψ

1
n

n∑
i=1

ϕ
(
e1−(λx)αi

)
α−1
α

.

Since ψ is n-monotone, ϕ(e1−(λx)α) is increasing and convex in α when ψ is log-convex and when
α ≤ (1/n)

∑n
i=1 αi = ᾱ, we have

ϕ
(
e1−(λx)α

)
≤ ϕ

(
e1−(λx)ᾱ

)
≤

1
n

n∑
i=1

ϕ
(
e1−(λx)αi

)
,

which implies

x ≤
1
λ

1 − lnψ

1
n

n∑
i=1

ϕ
(
e1−(λx)αi

)
1
α

.
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Notice 0 < α ≤ 1, then

αλαxα−1 ≥ αλ

1 − lnψ

1
n

n∑
i=1

ϕ
(
e1−(λx)αi

)
α−1
α

.

It is easy to see that αλαxα−1 is increasing and convex in α. When α ≤ 1
n

∑n
i=1 αi = ᾱ, we have

αλαxα−1 ≤ ᾱλᾱxᾱ−1 ≤
1
n

n∑
i=1

αiλ
αi xαi−1.

Thus

αλ

1 − lnψ

1
n

n∑
i=1

ϕ
(
e1−(λx)αi

)
α−1
α

≤
1
n

n∑
i=1

αiλ
αi xαi−1. (4.1)

Observe ψ/ψ
′

is concave, then we have

−
ψ( 1

n

∑n
i=1 ϕ(e1−(λx)αi ))

ψ′( 1
n

∑n
i=1 ϕ(e1−(λx)αi ))

≤ −
1
n

n∑
i=1

ψ(ϕ(e1−(λx)αi ))
ψ′(ϕ(e1−(λx)αi ))

. (4.2)

Thus

αλ

1 − lnψ

1
n

n∑
i=1

ϕ
(
e1−(λx)αi

)
α−1
α

− ψ(1
n

∑n
i=1 ϕ(e1−(λx)αi ))

ψ′( 1
n

∑n
i=1 ϕ(e1−(λx)αi ))


≤

1
n

n∑
i=1

αiλ
αi xαi−1

−1
n

n∑
i=1

ψ(ϕ(e1−(λx)αi ))
ψ′(ϕ(e1−(λx)αi ))

 . (4.3)

By Chebyshev’s inequality, we have

1
n

n∑
i=1

αiλ
αi xαi−1

−1
n

n∑
i=1

ψ(ϕ(e1−(λx)αi ))
ψ′(ϕ(e1−(λx)αi ))

 ≤ 1
n

n∑
i=1

αiλ
αi xαi−1

(
−
ψ(ϕ(e1−(λx)αi ))
ψ′(ϕ(e1−(λx)αi ))

)
. (4.4)

From (4.1)–(4.4) and ψ
′
(∑n

i=1 ϕ(e1−(λx)αi )
)

is non-positive, we have

fY1:n(F
−1
Y1:n

(FX1:n(x))) ≤ fX1:n(x).

Hence, the theorem follows. □

Theorem 6 studies the dispersive order of the smallest order statistic from dependent homogeneous
lower-truncated Weibull samples with different Archimedean copulas.

Theorem 6. Let X ∼ LTW(α, λ, ψ1) and Y ∼ LTW(α, λ, ψ2). If 0 < α ≤ 1, λ ≥ 0,
ψ2(ϕ2(x)/n)/ψ1(ϕ1(x)/n) is increasing in x, we have Y1:n ≥disp X1:n.

Proof. The survival functions of X1:n and Y1:n are

F̄X1:n(x) = ψ1(nϕ1(e1−(λx)α)), x ≥ 1/λ
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and
F̄Y1:n(x) = ψ2(nϕ2(e1−(λx)α)), x ≥ 1/λ,

respectively. The X1:n and Y1:n corresponding density functions are

fX1:n = ψ
′

1

(
nϕ1(e1−(λx)α)

)
n
ψ1(ϕ1(e1−(λx)α))
ψ
′

1(ϕ1(e1−(λx)α))

(
αλαxα−1

)
and

fY1:n = ψ
′

2

(
nϕ2(e1−(λx)α)

)
n
ψ2(ϕ2(e1−(λx)α))
ψ
′

2(ϕ2(e1−(λx)α))

(
αλαxα−1

)
,

respectively. Note that

F−1
Y1:n

(FX1:n(x)) =
1
λ

[
1 − lnψ2

(
1
n
ϕ2(ψ1(nϕ1(e1−(λx)α)))

)] 1
α

,

fY1:n

(
F−1

Y1:n
(FX1:n(x))

)
= ψ

′

2

(
ϕ2

(
ψ1

(
nϕ1

(
e1−(λx)α

))))
n

×
ψ2(1

nϕ2(ψ1(nϕ1(e1−(λx)α))))

ψ
′

2( 1
nϕ2(ψ1(nϕ1(e1−(λx)α))))

αλ

[
1 − lnψ2

(
1
n
ϕ2

(
ψ1(nϕ1(e1−(λx)α))

))] α−1
α

.

By Lemma 4, observe that ψ2(ϕ2(x)/n)/ψ1(ϕ1(x)/n) is increasing in x, we have

ψ2

(
nϕ2

(
e1−(λx)α

))
≥ ψ1

(
nϕ1

(
e1−(λx)α

))
,

which implies

e1−(λx)α ≥ ψ2

(
1
n
ϕ2

(
ψ1

(
nϕ1

(
e1−(λx)α

))))
.

Notice 0 < α ≤ 1, we obtain

αλ

[
1 − lnψ2

(
1
n
ϕ2

(
ψ1

(
nϕ1

(
e1−(λx)α

))))] α−1
α

≤ αλαxα−1. (4.5)

From Lemma 4, by substituting t = ψ1

(
nϕ1

(
e1−(λx)α

))
, we have

ψ
′

2

(
ϕ2

(
ψ1

(
nϕ1

(
e1−(λx)α

)))) ψ2(1
nϕ2(ψ1(nϕ1(e1−(λx)α))))

ψ
′

2(1
nϕ2(ψ1(nϕ1(e1−(λx)α))))

(4.6)

≤ ψ
′

1

(
nϕ1

(
e1−(λx)α

)) ψ1(ϕ1(e1−(λx)α))
ψ
′

1(ϕ1(e1−(λx)α))
.

From (4.5) and (4.6), we have fY1:n

(
F−1

Y1:n

(
FX1:n(x)

))
≤ fX1:n(x). Hence the theorem follows.

□
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The following Corollary 4 derives from Theorem 5 and Theorem 6. Corollary 4 compares the
smallest of two samples, one group from n dependent and heterogeneous lower-truncated Weibull
samples and another group from n dependent and homogeneous lower-truncated Weibull samples with
different Archimedean copulas.

Corollary 4. Let X ∼ LTW(α, λ, ψ1) and Y ∼ LTW(α, λ, ψ2). If ψ1 is log-convex, ψ1/ψ
′

1 is concave
and ψ2(ϕ2(t)/n)/ψ1(ϕ1(t)/n) is increasing in t, for 0 < α ≤ (1/n)

∑n
i=1 αi = ᾱ ≤ 1, λ ≥ 0, then we have

Y1:n ≥disp X1:n.

Proof. Let Zi ∼ LTW(α, λ)(i = 1, 2, ..., n) and the associated Archimedean copula is with generator ψ1.
Then from Theorem 5, we have Z1:n ≥disp X1:n, and from Theorem 6, we have Y1:n ≥disp Z1:n.

□

In reliability, the smallest order statistics represents a series system. Corollary 4 indicates that
the aging rate of dependent and homogeneous lower-truncated Weibull samples is usually faster than
dependent and heterogeneous lower-truncated Weibull samples.

5. Applications

The study of ordering findings of order statistics is critical in many practical domains, including
actuarial science, reliability theory, auction theory and multivariate statistics. In this part, we will look
at how the established theoretical conclusions may be put to use. In industrial engineering areas.
These are referred to as the parallel and series systems, respectively. Consider two series systems with
n dependent components that are modeled using lower-truncated Weibull models. More
heterogeneous scale parameters in the weakly supermajority order yield a series system with a
stochastically longer lifetime, according to Theorem 1. Similar findings may be drawn from
Theorems 2 for more heterogeneous reciprocals of location parameters in terms of weak
supermajority orders.

6. Conclusions

We studied the usual stochastic order, the hazard rate order, the dispersive order, and the convex
transform order in this paper considering dependent and heterogeneous lower-truncated Weibull
samples of both the biggest and smallest order statistics. It is highly significant to compare distinct
extremes order statistics using the convex transform order, which may be used to examine the relative
aging properties of systems from diverse perspectives. These findings generalize several previous
findings in the literature. The fundamental restriction of the researched topic may be the absence of
treatment of the kth order statistic, which has a significant practical impact. However, due to the
complexities of modeling for statistically dependent order statistics, these intriguing problems remain
unsolved and demand more investigation.
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