
http://www.aimspress.com/journal/Math

AIMS Mathematics, 7(4): 6792–6806.
DOI:10.3934/math.2022378
Received: 03 November 2021
Revised: 04 January 2022
Accepted: 10 January 2022
Published: 26 January 2022

Research article

A greedy average block Kaczmarz method for the large scaled consistent
system of linear equations

Li Wen1,2, Feng Yin1,2,∗, Yimou Liao1 and Guangxin Huang3

1 College of Mathematics and Statistics, Sichuan University of Science and Engineering, Zigong
643000, China

2 Sichuan Province University Key Laboratory of Bridge Non-destruction Detecting and Engineering
Computing, Sichuan University of Science and Engineering, Zigong 643000, China

3 College of Mathematics and Physics, Geomathematics Key Laboratory of Sichuan, Chengdu
University of Technology, Chengdu 610059, China

* Correspondence: Email: fyinsuse@163.com.

Abstract: This paper presents a greedy average block Kaczmarz (GABK) method to solve the
large scaled consistent system of linear equations. The GABK method introduces the strategy of
extrapolation process to improve the GBK algorithm and to avoid computing the Moore-Penrose
inverse of a submatrix of the coefficient matrix determined by the block index set. The GABK method
is proved to converge linearly to the least-norm solution of the consistent system of linear equations.
Numerical examples show that the GABK method has the best efficiency and effectiveness among all
methods compared.

Keywords: block Kaczmarz; extrapolated stepsize; greedy strategy; GABK
Mathematics Subject Classification: 65F10, 65F45

1. Introduction

We are concerned with the numerical solution of the large scaled consistent system of linear
equations of the form

Ax = b, (1.1)

where A ∈ Rm×n and b ∈ Rm are known and x ∈ Rn is unknown to be determined.
The Kaczmarz method in [1], which was revised to be applied to image reconstruction in [2] and is

called as an algebraic reconstruction technique (ART), is a simple and of high performance for solving

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2022378

6793

the large scaled system of linear Eq (1.1), and has many applications such as image reconstruction in
computerized tomography [2–5] and parallel computing [4, 6].

The block Kaczmarz methods (BK) have received much attention for its high efficiency for
solving (1.1). Elfving [7] and Eggermont et al. [8] first presented block iterative methods to solve (1.1).
Needell et al. in [9] proposed a randomized block Kaczmarz (RBK) algorithm to solve the linear
least-squares problem by choosing a subsystem from the pre-determined partitions at random, which
converges to the least-norm solution of (1.1) with an expected linear rate of convergence. Needell
et al. in [10] further presented a randomized double block Kaczmarz (RDBK) to solve an inconsistent
linear system (1.1). Chen and Huang [11] improved the error estimate in expectation and obtained a
much better upper bound of the error estimate than that in [10]. Gower and Richtárik in [12] presented
a Gaussian Kaczmarz (GK) method for (1.1). Necoara in [13] developed a unified framework of
randomized average block Kaczmarz (RABK) algorithms with the iteration of the form

xk+1 = xk + αk

∑
i∈Jk

ωk
i
b(i) − A(i)xk

‖A(i)‖22

(A(i))T (1.2)

for the consistent system (1.1), where A(i) denotes the ith row of the matrix A and b(i) denotes the ith
entry of the vector b, ωk

i presents the weight of the ith row of the matrix A at k step iteration. Niu and
Zheng in [14] simplified the greed strategy in [15] to produce a greedy probability criterion

Jk = {i||b(i) − A(i)xk|
2 ≥ εk||A(i)||2} (1.3)

where

εk = η max
1≤i≤m
{
|b(i) − A(i)xk|

2

||A(i)||22

} (1.4)

with η ∈ (0, 1), and proposed a greedy block Kaczmarz algorithm (GBK) with the iteration

xk+1 = xk + A†
Jk

(bJk − AJk xk). (1.5)

It is proved that the GBK method converges linearly to the unique minimum norm least-squares
solution of (1.1). We refer [15–18] more recent work on block Kaczmarz methods. The GBK algorithm
in [14] needs to compute the Moore-Penrose inverse A†

Jk
of AJk at each step and may be expensive

when Jk is large enough.
In this paper, we improve the GBK method in [14] by introducing the strategy of extrapolation

process proposed in [13] to avoid the computing of A†
Jk

in (1.5). The proposed method is called
a greedy average block Kaczmarz algorithm, which is abbreviated as GABK. Numerical examples
in Section 3 shows the GABK method has the best efficiency by the running time and the number of
iterations and the best effectiveness by the convergence of the relative solution error among all methods
compared.

The rest of this paper is organized as follows. Section 2 presents a greedy average block Kaczmarz
algorithm and proves its convergence. Several examples are shown in Section 3 and some conclusions
are drawn in Section 4.

AIMS Mathematics Volume 7, Issue 4, 6792–6806.

6794

2. A greedy average block Kaczmarz algorithm

We introduce the strategy of extrapolation process proposed in [13] for the GBK algorithm in (1.5)
to avoid the computing of A†

Jk
in (1.5) and propose a greedy average block Kaczmarz (GABK) method.

Algorithm 1 summarizes the GABK algorithm. Steps 4 and 5 determine the control index set. Step 6
computes the stepsize which is used to determine the stepsize adaptively and Step 7 presents the
iteration process which avoids the computing of A†

Jk
in (1.5), where the weight ωk

i in (2.1) is chosen
such that 0 < ωk

i < 1 and
∑

i∈Jk
ωk

i = 1. We set ωk
i = 1/Jk in Section 3.

We consider the convergence of the GABK algorithm 1. We first need the following results
presented in [17] to prove the convergence of Algorithm 1.

Algorithm 1: The greedy average block Kaczmarz algorithm (GABK).
Input: A, b, x0, ζ ∈ (0, 1], δ ∈ (0, 1].
Output: the approximation solution xk+1 of the consistent system (1.1).
for k = 0, 1, . . . until converge do

Compute εk = ζ max
1≤i≤m
{γk(i)}, where γk(i) =

|b(i)−A(i) xk |
2
2

‖A(i)‖22
.

Determine the control index set Jk = {i | |γk(i) ≥ εk}.
Compute

αk = (2 − δ)

∑
i∈Jk

ωk
i (b(i)−A(i) xk)2

‖A(i)‖22

‖
∑

i∈Jk

ωk
i (b(i)−A(i) xk)(A(i))T

‖A(i)‖22
‖22

. (2.1)

Update xk+1 = xk + αk
∑

i∈Jk

ωk
i

b(i)−A(i) xk
‖A(i)‖22

(A(i))T .

end

Lemma 2.1. If A ∈ Rm×n is a nonzero real matrix, then it holds that

σ2
min(A)‖x‖22 ≤ ‖Ax‖22 ≤ σ

2
max(A)‖x‖22

for any x ∈ range(AT), where σ2
min(A) and σ2

max(A) denote the minimum and maximum singular value
of A, respectively.

Theorem 2.1. Assume the system of linear Eq (1.1) is consistent and let x∗ be a solution of (1.1). Let
{xk}k≥0 be generated by Algorithm 1 with x0 ∈ range(AT). Assume that the weights fulfill ωk

i ∈ (0, 1) for
all i ∈ Jk and k. Denote by ωmin = min

i∈Jk ,k≥0
{ωk

i } and ωmax = max
i∈Jk ,k≥0

{ωk
i }. Then it holds that

‖xk+1 − x∗‖22 ≤ (1 −
δ(2 − δ)ζ |Jk|ωminσ

2
min(A)

ωmaxλblock
max ‖A‖

2
F

)‖xk − x∗‖22, (2.2)

where λblock
max = max

Jk
{λmax(D)} with D = AT

Jk
diag(1/‖A(i)‖22, i ∈ Jk)AJk .

Proof. With the consistency assumption of the system of linear Eq (1.1), we have Ax∗ = b, and

〈xk − x∗, (A(i)xk − b(i))(A(i))T 〉 = (A(i)xk − b(i))2.

AIMS Mathematics Volume 7, Issue 4, 6792–6806.

6795

According to the update rule of GABK and using the notation of ωk
i =

ωk
i

‖A(i)‖22
, where αk is defined

in (2.1), we have

‖xk+1 − x∗‖22 = ‖xk − αk

∑
i∈Jk

ωk
i (A

(i)xk − b(i))(A(i))T − x∗‖22

= ‖xk − x∗‖22 − 2αk

∑
i∈Jk

ωk
i (A

(i)xk − b(i))2

+ α2
k‖
∑
i∈Jk

ωk
i (A

(i)xk − b(i))(A(i))T ‖22

= ‖xk − x∗‖22 − 2(2 − δ)
(
∑

i∈Jk

ωk
i (A

(i)xk − b(i))2)2

‖
∑

i∈Jk

ωk
i (A(i)xk − b(i))(A(i))T ‖22

+ (2 − δ)2

(
∑

i∈Jk

ωk
i (A

(i)xk − b(i))2)2

‖
∑

i∈Jk

ωk
i (A(i)xk − b(i))(A(i))T ‖22

= ‖xk − x∗‖22 − δ(2 − δ)Lk

∑
i∈Jk

ωk
i (A

(i)xk − b(i))2, (2.3)

in which

Lk =

∑
i∈Jk

ωk
i (A

(i)xk − b(i))2

‖
∑

i∈Jk

ωk
i (A(i)xk − b(i))(A(i))T ‖22

.

Now we consider the bound of Lk. According to (2.1), we have

Lk =
‖diag(

√
ωk

i , i ∈ Jk)(AJk xk − bJk)‖
2
2

‖AT
Jk

diag(ωk
i , i ∈ Jk)(AJk xk − bJk)‖

2
2

≥
1

λmax(diag(
√
ωk

i , i ∈ Jk)AJk A
T
Jk

diag(
√
ωk

i , i ∈ Jk))

=
1

λmax(AT
Jk

diag(ωk
i , i ∈ Jk)AJk)

≥
1

(max
i∈Jk

ωk
i)λmax(AT

Jk
diag(1

‖A(i)‖22
, i ∈ Jk)AJk)

≥
1

ωmaxλblock
max

. (2.4)

Substituting the bound (2.4) into (2.3) results in

‖xk+1 − x∗‖22 ≤ ‖xk − x∗‖22 − δ(2 − δ)
1

ωmaxλblock
max

∑
i∈Jk

ωk
i
(A(i)xk − b(i))2

‖A(i)‖22

AIMS Mathematics Volume 7, Issue 4, 6792–6806.

6796

≤ ‖xk − x∗‖22 − δ(2 − δ)
ωminεk|Jk|

ωmaxλblock
max

, (2.5)

where the last inequality holds because of the choice of the index in Step 5 of Algorithm 1, i.e.,
γk(i) =

(A(i) xk−b(i))2

‖A(i)‖22
≥ εk for i ∈ Jk. For k = 1, 2, . . . , since

‖b − Axk‖
2
2 =
∑
i∈[m]

|b(i) − A(i)xk|
2 =
∑
i∈[m]

|b(i) − A(i)xk|
2

‖A(i)‖22

‖A(i)‖22

≤ max
1≤i≤m

γk(i)‖A‖2F},

where [m] = {1, 2, . . . ,m}, then

εk = ζ max
1≤i≤m

γk(i) ≥ ζ
‖b − Axk‖

2
2

‖A‖2F
≥ ζ

σ2
min(A)‖xk − x∗‖22
‖A‖2F

, (2.6)

where the last inequality holds by the lemma 2.1. Thus, substituting (2.6) into (2.5) results in (2.2).
This completes the proof. �

We remark that under the conditions of Theorem 2.1, if the matrix A is a normalized matrix, i.e.,
‖A(i)‖22 = 1 for all i ∈ [m], then the convergence rate of GABK, which is determined by ρGABK =

‖xk+1 − x∗‖2/‖xk − x∗‖2, is subject to 0 < ρGABK < 1. In fact,

1 −
δ(2 − δ)|Jk|ωminσ

2
min(A)

ωmaxλblock
max ‖A‖

2
F

= 1 −
δ(2 − δ)ωmin

ωmax

‖AJk‖
2
F

σ2
min(AJk)

σ2
min(A)
‖A‖2F

≤ 1 −
δ(2 − δ)ωmin

ωmax

σ2
min(A)
‖A‖2F

,

the inequality holds because of the fact
‖AJk ‖

2
F

σ2
min(AJk) ≥ 1. Moreover, 0 < δ(2 − δ) ≤ 1 since δ ∈ (0, 1],

and 0 < σ2
min(A)
‖A‖2F

≤ 1. Then it holds that

0 <
δ(2 − δ)ωmin

ωmax

σ2
min(A)
‖A‖2F

< 1,

Thus 0 < ρGABK < 1, which means that Algorithm 1 has a linear convergence.
We give a special selection of the parameters in Theorem 2.1 as follows, which will be used in

Section 3.

Corollary 2.1. If δ = 1, ωk
i = 1

|Jk |
and ‖A(i)‖22 = 1 for all k and i, then it holds that

‖xk+1 − x∗‖22 ≤ (1 −
ζ |Jk|λ

nz
min(AT A)

mλmax(AT
Jk

AJk)
)‖xk − x∗‖22.

Proof. Since ‖A(i)‖22 = 1, then ‖A‖2F = m and λblock
max = λmax(AT

Jk
AJk), substituting these results and the

assumption that δ = 1 and ωk
i = 1

|Jk |
into the right-hand side of (2.2) results in

1 −
δ(2 − δ)|Jk|ωminσ

2
min(A)

ωmaxλblock
max ‖A‖

2
F

= 1 −
ζ |Jk|λ

nz
min(AT A)

mλmax(AT
Jk

AJk)
,

which implies (2.2). This completes the proof. �

AIMS Mathematics Volume 7, Issue 4, 6792–6806.

6797

We complete this section by analyzing the arithmetic complexity of Algorithm 1. It needs about
(nnz(A)+nnz(AJk)+m+2n+2) complex flops at the kth iteration of the GABK method, where nnz(A) and
nnz(AJk) denote the number of nonzero elements of A and the submatrix AJk respectively. Moreover,
the approximate computing cost of the k-step iteration of the GBK method is (2nnz(AJk)+3n+2|Jk|)K+

n+2n|Jk| complex flops, where |Jk| is the cardinality of the setJk, and in GBK method the computation
of the pseudoinverse is approximated by performing K number of iterations using conjugate gradients
CGLS.

3. Numerical experiments

In this section, several different kinds of examples are given to show the efficiency and effectiveness
of Algorithm 1 (GABK) for solving the consistent system of linear Eq (1.1). The GABK method is
compared with the RABK method in [13], the GBK method in [14] and the fast deterministic block
Kaczmarz (FDBK) in [16]. We run all examples by the soft of Matlab with the R2019b version on a
personal computer with 2.0 GHz Inter(R) Core(TM) i7-8565U CPU processing unit, 8 GB memory,
and 64 bit Windows 10 operating system.

For the RABK method, we consider two cases used in [13], and use the same sampling methods
and choices of blocks, stepsizes and weights, which is listed in Table 1.

Table 1. The sampling methods and parameters of two cases of the RABK method in [13].

Method Sampling method Block size τ Stepsize αk Weights ωk
i

RABK a Uniform sampling 10 Lk
1
|Jk |

RABK a paved Partition sampling b m
‖A‖22
c Lk

1
|Jk |

The partition sampling in Table 1 means that selects randomly from the row partition
Ps = σ1, σ2, . . . , σs at (k+1)th iteration, where s = d‖A‖22e, σi = {b(i−1)m

s c+1, b(i−1)m
s c+2, . . . , bim

s c},
i = 1, 2, . . . , s, and |Jk| is the size of the block control set Jk at the kth iteration.

For the GBK method, we use the parameter η = 1
2 (max

i∈[m]
{εk(i)} +

‖b−Axk‖
2
2

‖A‖2F
) in (1.4), and the block

control set in [16] for the FDBK method. The CGLS algorithm is used to calculate the Moore-Penrose
inverse A†

Jk
at each iteration of both algorithms. For the GABK method, we set ζ = 0.2 in (1.3) to

grasp more rows from the matrix A, δ = 1 and the weights ωk
i = 1/|Jk| in (2.1).

Three types of coefficient matrices A are considered to construct the consistent systems (1.1), i.e.,
overdetermined or underdetermined dense matrices with normally distribution produced by the Matlab
function randn(m,n), large full rank sparse matrices and rank-deficient sparse matrices from the
suitesparse matrix collection in [19]. We let b ∈ Rm in (1.1) be generated by Ax∗, where x∗ ∈ Rn

represents the exact solution produced by the Matlab function randn. The performance of the GABK
and other methods are evaluated in terms of efficiency and effectiveness. The efficiency is defined by
the iteration number denoted by ’IT’ and the CPU time in seconds by ’CPU’. The effectiveness is
determined by the relative solution error (RSE) defined by

RS E =
‖xk − x∗‖22
‖x∗‖22

.

The initial solution x0 is set as 0 in all experiments, and all algorithms do not stop until the RSE

AIMS Mathematics Volume 7, Issue 4, 6792–6806.

6798

satisfies RS E < 10−6. All numerical results reported as follows are arithmetical average quantities with
respect to 50 repeated trials of each method. The speed-up of GABK against other methods is defined
by

speed − up method =
CPU o f a method
CPU o f GABK

.

3.1. Example 1. consistent overdetermined systems

Table 2. IT, CPU and the speed-up of Algorithm 1 (GABK) compared with RABK [13],
GBK [14] and FDBK [16] for solving the consistent system of linear Eq (1.1) with a dense
overdetermined matrix A.

m 1 ∗ 103 2 ∗ 103 3 ∗ 103 4 ∗ 103 5 ∗ 103

n=100 RABK a IT 155.4 147.4 144.7 145.1 142.2
CPU 0.0044 0.0059 0.0067 0.0099 0.0104

RABK a paved IT 32.8 27.4 25.6 25.4 24.5
CPU 0.0014 0.0018 0.0020 0.0023 0.0029

GBK IT 24 14 14 11 11
CPU 0.0013 0.0014 0.0018 0.0023 0.0030

FDBK IT 22 13 12 11 10
CPU 0.0012 0.0013 0.0016 0.0024 0.0028

GABK IT 9 7 6 6 5
CPU 5.98e-04 7.14e-04 7.91e-04 0.0013 0.0015

speed-up RABK a 7.36 8.26 8.47 7.62 6.93
speed-up RABK a paved 2.34 2.52 2.53 1.77 1.93
speed-up GBK 2.20 1.97 2.26 1.86 2.00
speed-up FDBK 2.07 1.87 2.01 1.94 1.87

n=500 RABK a IT 2644.8 1085.6 860.3 809.2 779.5
CPU 0.1335 0.0932 0.0875 0.0861 0.0919

RABK a paved IT 180.4 57.1 42.6 37.4 34.2
CPU 0.0512 0.0404 0.0412 0.0485 0.0501

GBK IT 270 80 51 40 35
CPU 0.0632 0.0519 0.0636 0.0732 0.0817

FDBK IT 273 76 49 40 33
CPU 0.0526 0.0497 0.0634 0.0813 0.0874

GABK IT 72 24 16 12 11
CPU 0.0201 0.0231 0.0228 0.0228 0.0266

speed-up RABK a 6.64 4.04 3.84 3.78 3.46
speed-up RABK a paved 2.55 1.75 1.81 2.13 1.88
speed-up GBK 3.14 2.25 2.78 3.21 3.07
speed-up FDBK 2.61 2.15 2.78 3.57 3.29

In this example, we consider the solution of the consistent overdetermined system of linear Eq (1.1)
with a dense overdetermined (m ≥ n) matrix A ∈ Rm×n, which has normal distribution. The coefficient
matrix A ∈ Rm×n with different size combined with m = i ∗ 103 (i = 1, 2, ..., 5) and n = j ∗ 102 (j = 1, 5)
is produced by the Matlab function randn(m,n). Table 2 shows IT and CPU together with the speed-
up for Algorithm 1 for solving (1.1), and those compared with the RABK method in [13], the GBK
method in [14] and the FDBK method in [16]. Figure 1 plots RSE versus IT (left) and CPU (right) of

AIMS Mathematics Volume 7, Issue 4, 6792–6806.

6799

different method for solving (1.1) with the matrix A = randn(4000, 500).

0 100 200 300 400 500 600 700 800 900
10-6

10-5

10-4

10-3

10-2

10-1

100

0 0.1 0.2 0.3 0.4 0.5 0.6
10-6

10-5

10-4

10-3

10-2

10-1

100

Figure 1. RSE versus IT (left) and CPU (right) of different method for solving (1.1) with the
matrix A = randn(4000, 500).

We can see from Table 2 that the GABK method needs the least number of iterations and least CPU
time among all methods. This result benefits from the greater block control set and an extrapolated
stepsize in each iteration in Algorithm 1. Figure 1 shows that GABK has the fastest convergence of
RSE both on IT and CPU among all methods.

3.2. Example 2. consistent underdetermined systems

0 100 200 300 400 500 600 700 800
10-6

10-5

10-4

10-3

10-2

10-1

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
10-6

10-5

10-4

10-3

10-2

10-1

100

Figure 2. RSE versus IT (left) and CPU (right) of different method for solving (1.1) with the
matrix A = randn(500, 4000).

We use Algorithm 1 for solving the consistent underdetermined system of linear Eq (1.1) with
different underdetermined (m < n) dense matrices A ∈ Rm×n, and compare it with RABK [13],
GBK [14] and FDBK [16]. Table 3 lists different size of A ∈ Rm×n combined with m = i ∗ 102

(i = 1, 5) and n = j ∗ 103 (j = 1, 2, ..., 5) and IT, CPU and speed-up of different methods. Figure 2
plots RSE versus IT (left) and CPU (right) of different method for solving (1.1) with the matrix
A = randn(500, 4000).

AIMS Mathematics Volume 7, Issue 4, 6792–6806.

6800

Similar results on IT, CPU and the speed-up to Table 2 in Example 1 are derived for Algorithm 1
from Table 3. It is observed from Figure 2 that the GABK method has the fastest convergence among
all methods.

Table 3. IT, CPU and the speed-up of Algorithm 1 compared with RABK [13], GBK [14] and
FDBK [16] for solving the consistent system of linear Eq (1.1) with a dense underdetermined
matrix A.

n 1 ∗ 103 2 ∗ 103 3 ∗ 103 4 ∗ 103 5 ∗ 103

m=100 RABK a IT 129.7 109 106.5 97.3 95.5
CPU 0.0106 0.0145 0.0207 0.0253 0.0310

RABK a paved IT 17.4 11.9 10.6 9.2 8.6
CPU 0.0029 0.0081 0.0115 0.0142 0.0156

GBK IT 37 30 27 25 26
CPU 0.0049 0.0062 0.0081 0.0093 0.0120

FDBK IT 38 31 28 25 25
CPU 0.0031 0.0038 0.0049 0.0054 0.0067

GABK IT 14 11 10 10 11
CPU 0.0016 0.0019 0.0026 0.0032 0.0055

speed-up RABK a 6.63 7.63 7.96 7.91 5.64
speed-up RABK a paved 1.81 4.26 4.42 4.44 2.84
speed-up GBK 3.04 3.25 3.12 2.91 2.18
speed-up FDBK 1.93 1.98 1.89 1.69 1.22

m=500 RABK a IT 2145 976.8 819.5 748.7 703.5
CPU 0.2560 0.3704 0.6150 0.8577 1.0738

RABK a paved IT 109.8 39.6 26.9 21.6 19.1
CPU 0.1018 0.0998 0.1152 0.1279 0.1468

GBK IT 307 98 69 51 50
CPU 0.0984 0.0994 0.1574 0.1525 0.2041

FDBK IT 305 95 68 55 49
CPU 0.0681 0.0716 0.1165 0.1249 0.1596

GABK IT 76 27 20 17 16
CPU 0.0305 0.0399 0.0468 0.0523 0.0659

speed-up RABK a 8.39 9.28 13.14 16.40 16.29
speed-up RABK a paved 3.34 2.94 2.46 2.45 2.23
speed-up GBK 3.23 2.49 3.37 2.91 3.10
speed-up FDBK 2.23 1.80 2.49 2.39 2.42

3.3. Example 3. linear systems with sparse full rank matrices

This example shows the application of Algorithm 1 to solve the consistent linear systems (1.1) with
full rank sparse overdetermined or underdetermined matrices A ∈ Rm×n from the Suite Sparse Matrix
Collection in [19].

Tables 4 and 5 display the size, the sparsity (density) and the Euclidean condition number (cond(A))
of A ∈ Rm×n, where density of A is defined by the ratio of the number of nozeros of A to the total
number of A.

AIMS Mathematics Volume 7, Issue 4, 6792–6806.

6801

Table 4. IT, CPU and the speed-up of Algorithm 1 (GABK) compared with RABK [13],
GBK [14] and FDBK [16] for solving the consistent system of linear Eq (1.1) with a sparse
overdetermined matrix A with full rank.

different A ash219 ash608 ash958 Trefethen 700 ch7-8-b1
m × n 219 × 85 608 × 188 958 × 292 700 × 700 1176 × 56
Density 2.35% 1.06% 0.86% 2.58% 3.57%
cond(A) 3.02 3.37 3.20 4710.39 4.79e+14
RABK a IT 185.2 374.2 563.7 3444 77.2

CPU 0.0018 0.0046 0.0092 0.1585 0.0012
RABK a paved IT 55.9 52.9 63.1 47 20.4

CPU 7.26e-04 0.0012 0.0019 0.0079 3.73e-04
GBK IT 41 50 59 107 15

CPU 5.18e-04 9.15e-04 0.0014 0.0089 3.90e-04
FDBK IT 48 48 57 104 17

CPU 4.26e-04 5.76e-04 8.61e-04 0.0065 3.44e-04
GABK IT 23 23 25 50 5

CPU 2.76e-04 3.91e-04 5.68e-04 0.0028 1.57e-04
speed-up RABK a 6.53 11.76 16.19 56.61 7.63
speed-up RABK a paved 2.63 3.07 3.34 2.82 2.37
speed-up GBK 1.88 2.34 2.51 3.21 2.48
speed-up FDBK 1.54 1.47 1.52 2.33 2.19
Name ch7-9-b2 Franz10 cariT crew1T df2177T

m × n 17640 × 1512 19588 × 4164 1200 × 400 6469 × 135 10358 × 630
Density 3.45e-05 6.23e-06 31.83% 0.11% 0.34%
cond(A) 1.61e+15 1.27e+16 3.13 18.20 2.01
RABK a IT 2029.9 6726.3 609.3 970.5 891.6

CPU 0.6775 4.1036 0.0917 0.0930 0.1398
RABK a paved IT 24.4 219.3 692.1 861.5 36.9

CPU 0.0132 0.1496 0.0940 0.0894 0.0079
GBK IT 31 175 36 346 31

CPU 0.0230 0.1981 0.0211 0.1433 0.0125
FDBK IT 40 198 44 265 42

CPU 0.0217 0.1650 0.0244 0.0943 0.0128
GABK IT 14 65 22 167 14

CPU 0.0101 0.0664 0.0103 0.0434 0.0047
speed-up RABK a 67.08 61.80 8.90 2.14 29.75
speed-up RABK a paved 1.31 2.25 9.13 2.06 1.68
speed-up GBK 2.27 2.98 2.04 3.30 2.65
speed-up FDBK 2.14 2.49 2.36 2.17 2.71

The IT and CPU together with the speed-up of Algorithm 1 for solving (1.1) with different sparse
overdetermined full rank matrix A ∈ Rm×n and with different sparse underdetermined full rank matrix
A ∈ Rm×n are listed in Tables 4 and 5, respectively.

Tables 4 and 5 show very similar results to Table 2 in Example 1 for the GABK method. It can
be seen from Figures 3 and 4 that the GABK method converges fastest among all methods for both
overdetermined and underdetermined cases.

GABK is compared with the RABK [13], GBK [14] and FDBK [16] methods. Figures 3 and 4 show
RSE versus IT (left) and CPU (right) of different method for solving (1.1) with df2177 and df2177T ,
respectively.

AIMS Mathematics Volume 7, Issue 4, 6792–6806.

6802

Table 5. IT, CPU and the speed-up of Algorithm 1 (GABK) compared with RABK [13],
GBK [14] and FDBK [16] for solving the consistent system of linear Eq (1.1) with a sparse
underdetermined matrix A with full rank.

different A df2177 cari ch7-6-b1T model1 nemsafm
m × n 630 × 10358 400 × 1200 42 × 630 362 × 798 334 × 2348
Density 0.34% 31.83% 0.98% 1.05% 0.36%
cond(A) 2.01 3.13 1.16e+15 17.57 4.77
RABK a IT 783.4 468.3 33.5 1594.7 541.8

CPU 0.2359 0.0836 7.35e-04 0.0390 0.0205
RABK a paved IT 29.5 105.5 6.4 112.7 35.6

CPU 0.0199 0.0583 3.17e-04 0.0074 0.0023
GBK IT 42 86 23 297 65

CPU 0.0256 0.0448 5.35e-04 0.0106 0.0034
FDBK IT 42 74 23 294 64

CPU 0.0130 0.0411 3.09e-04 0.0058 0.0018
GABK IT 14 33 9 85 22

CPU 0.0058 0.0155 1.62e-04 0.0026 8.12e-04
speed-up RABK a 40.67 5.39 4.54 15.00 25.26
speed-up RABK a paved 3.43 3.76 1.96 2.85 2.83
speed-up GBK 4.44 2.89 3.31 4.02 4.19
speed-up FDBK 2.25 2.64 1.91 2.120 2.20
Name crew1 GL7d25 abtaha1T ash958T Franz10T

m × n 135 × 6469 2798 × 21074 209 × 14596 292 × 958 4164 × 19588
Density 5.38% 1.14e-05 1.01e-04 0.68% 6.23e-06
cond(A) 18.20 1.42e+19 12.23 3.20 1.27e+16
RABK a IT 1171.8 3575.2 1940.5 396.7 4949.1

CPU 0.3156 3.6454 1.1722 0.0089 4.2183
RABK a paved IT 667.1 23.5 195.6 23.1 39.9

CPU 0.2039 0.0509 0.2216 0.0011 0.0676
GBK IT 896 59 355 54 70

CPU 0.4992 0.1169 0.3853 0.0021 0.1014
FDBK IT 759 61 353 53 69

CPU 0.2602 0.0678 0.1862 9.38e-04 0.0487
GABK IT 272 32 105 16 24

CPU 0.1021 0.0386 0.0799 4.62e-04 0.0233
speed-up RABK a 3.09 94.44 14.67 19.26 184.04
speed-up RABK a paved 2.00 1.32 2.77 2.38 2.90
speed-up GBK 4.89 3.03 4.82 4.56 4.35
speed-up FDBK 2.55 1.76 2.33 2.03 2.09

AIMS Mathematics Volume 7, Issue 4, 6792–6806.

6803

0 100 200 300 400 500 600 700 800 900
10-6

10-5

10-4

10-3

10-2

10-1

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
10-6

10-5

10-4

10-3

10-2

10-1

100

Figure 3. RSE versus IT (left) and CPU (right) of different method for solving (1.1) with the
matrix df2177.

0 200 400 600 800 1000
10-6

10-5

10-4

10-3

10-2

10-1

100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
10-6

10-5

10-4

10-3

10-2

10-1

100

Figure 4. RSE versus IT (left) and CPU (right) of different method for solving (1.1) with the
matrix df2177T .

3.4. Example 4. linear systems with sparse rank-deficient matrices

We test the consistent system of linear Eq (1.1) with the sparse rank-deficient matrices from [19],
which originate from different field of application such as directed graph and combinatorial problem.
We remove zero rows of the matrices relat6, GD00 a and GL7d26 before running all methods. Table 6
shows IT, CPU and speed-up of Algorithm 1 for solving (1.1) compared with those of the RABK [13],
GBK [14] and FDBK [16] methods. Figure 5 plots RSE versus IT (left) and CPU (right) of different
methods for solving (1.1) with a sparse rank-deficient matrix relat6.

AIMS Mathematics Volume 7, Issue 4, 6792–6806.

6804

Table 6. IT, CPU and the speed-up of Algorithm 1 compared with RABK [13], GBK [14]
and FDBK [16] for solving the consistent system of linear Eq (1.1) with a sparse matrix A
with deficient rank.

Name relat6 GD00 a Sandi authors us04 GL7D26 flower 5 1

m × n 2340 × 157 352 × 352 86 × 86 163 × 28016 305 × 2798 211 × 201
Density 0.34% 31.83% 1.05% 1.18e-04 4.83e-04 1.42%
cond(A) 2.01 3.13 1.79e+18 inf 6.02e+18 inf
RABK a IT 860.1 1423.6 3393.4 1980.4 365.1 2225.5

CPU 0.0245 0.0162 0.0298 4.7449 0.0286 0.0248
RABK a paved IT 248.6 1437.8 2745.5 1480.2 20.1 238

CPU 0.0085 0.0170 0.0237 3.7823 0.0036 0.0045
GBK IT 184 387 1702 626 37 545

CPU 0.0103 0.0070 0.0201 1.9183 0.0051 0.0088
FDBK IT 173 310 1582 556 37 488

CPU 0.0079 0.0035 0.0124 1.1454 0.0026 0.0052
GABK IT 91 133 906 278 17 132

CPU 0.0049 0.0018 0.0074 0.7613 0.0018 0.0021
speed-up RABK a 5.00 9.00 4.03 6.23 15.89 11.81
speed-up RABK a paved 1.74 9.44 3.20 4.97 2.00 2.14
speed-up GBK 2.09 3.88 2.73 2.52 2.88 4.14
speed-up FDBK 1.60 1.95 1.69 1.51 1.44 2.44

Table 6 illustrates that Algorithm 1 needs the least CPU time and the least number of iterations
among all methods. Figure 5 shows that the GABK method converges fastest among all methods for
solving (1.1) with the sparse rank-deficient matrix relat6.

0 100 200 300 400 500 600 700 800
10-6

10-5

10-4

10-3

10-2

10-1

100

0 0.005 0.01 0.015 0.02 0.025
10-6

10-5

10-4

10-3

10-2

10-1

100

Figure 5. RSE versus IT (left) and CPU (right) of different method for solving (1.1) with the
sparse rank-deficient matrix relat6.

4. Conclusions

We propose a greedy average block Kaczmarz (GABK) approach to solve the large scaled consistent
system of linear equations. We consider both dense and sparse systems. The tested systems are over-
determined and under-determined with full rank or rank-deficient matrix. The GABK method is proved
to converge linearly to the least-norm solution of the underlying linear system. Numerical examples
show that the GABK method has the best efficiency and effectiveness among all the methods compared.

AIMS Mathematics Volume 7, Issue 4, 6792–6806.

6805

Acknowledgments

The authors are thankful to the referees for helpful comments. Research by F. Yin was partially
supported by NNSF (grant 11501392), research by G.X. Huang was supported in part by Application
Fundamentals Foundation of STD of Sichuan (grant 2020YJ0366) and Key Laboratory of bridge
nondestructive testing and engineering calculation Open fund projects (grant 2020QZJ03), and
research by Y.M. Liao was partially supported by the Innovation Fund of Postgraduate of SUSE (grant
y2021101).

Conflict of interest

The authors declare no conflicts of interest in this paper.

References

1. S. Kaczmarz, Angenäherte auflösung von systemen linearer gleichungen, International Bulletin of
the Polish Academy of Sciences, Letters A, 35 (1937), 355–357.

2. R. Gordon, R. Bender, G. Herman, Algebraic reconstruction techniques (ART) for three-
dimensional electron microscopy and X-ray photography, J. Theor. Biol., 29 (1970), 471–481.
http://dx.doi.org/10.1016/0022-5193(70)90109-8

3. C. Byrne, A unified treatment of some iterative algorithms in signal processing and image
reconstruction, Inverse Probl., 20 (2004), 103. http://dx.doi.org/10.1088/0266-5611/20/1/006

4. Y. Censor, Parallel application of block-iterative methods in medical imaging and radiation therapy,
Math. Program., 42 (1988), 307–325. http://dx.doi.org/10.1007/BF01589408

5. G. Herman, Image reconstruction from projections: the fundamentals of computerized tomography,
New York: Academic Press, 1980.

6. J. Elble, N. Sahinidis, P. Vouzis, Gpu computing with Kaczmarz‘s and
otheriterative algorithms for linear systems, Parallel Comput., 36 (2010), 215–231.
http://dx.doi.org/10.1016/j.parco.2009.12.003

7. T. Elfving, Block-iterative methods for consistent and inconsistent linear equations, Numer. Math.,
35 (1980), 1–12. http://dx.doi.org/10.1007/BF01396365

8. P. Eggermont, G. Herman, A. Lent, Iterative algorithms for large partitioned linear
systems, with applications to image reconstruction, Linear Algebra Appl., 40 (1981), 37–67.
http://dx.doi.org/10.1016/0024-3795(81)90139-7

9. D. Needell, J. Tropp, Paved with good intentions: analysis of a randomized block Kaczmarz
method, Linear Algebra Appl., 441 (2014), 199–221. http://dx.doi.org/10.1016/j.laa.2012.12.022

10. D. Needell, R. Zhao, A. Zouzias, Randomized block Kaczmarz method with
projection for solving least squares, Linear Algebra Appl., 484 (2015), 322–343.
http://dx.doi.org/10.1016/j.laa.2015.06.027

11. J. Chen, Z. Huang, On the error estimate of the randomized double block Kaczmarz method, Appl.
Math. Comput., 370 (2019), 124907. http://dx.doi.org/10.1016/j.amc.2019.124907

AIMS Mathematics Volume 7, Issue 4, 6792–6806.

http://dx.doi.org/http://dx.doi.org/10.1016/0022-5193(70)90109-8
http://dx.doi.org/http://dx.doi.org/10.1088/0266-5611/20/1/006
http://dx.doi.org/http://dx.doi.org/10.1007/BF01589408
http://dx.doi.org/http://dx.doi.org/10.1016/j.parco.2009.12.003
http://dx.doi.org/http://dx.doi.org/10.1007/BF01396365
http://dx.doi.org/http://dx.doi.org/10.1016/0024-3795(81)90139-7
http://dx.doi.org/http://dx.doi.org/10.1016/j.laa.2012.12.022
http://dx.doi.org/http://dx.doi.org/10.1016/j.laa.2015.06.027
http://dx.doi.org/http://dx.doi.org/10.1016/j.amc.2019.124907

6806

12. R. Gower, P. Richtárik, Rndomized iterative methods for linear systems, SIAM J. Matrix Anal.
Appl., 36 (2015), 1660–1690. http://dx.doi.org/10.1137/15M1025487

13. I. Necoara, Faster randomized block Kaczmarz algorithms, SIAM J. Matrix Anal. Appl., 40 (2019),
1425–1452. http://dx.doi.org/10.1137/19M1251643

14. Y. Niu, B. Zheng, A greedy block Kaczmarz algorithm for solving large-scale linear systems, Appl.
Math. Lett., 104 (2020), 106294. http://dx.doi.org/10.1016/j.aml.2020.106294

15. Z. Bai, W. Wu, On greedy randomized Kaczmarz method for solving large sparse linear systems,
SIAM J. Sci. Comput., 40 (2018), A592–A606. http://dx.doi.org/10.1137/17M1137747

16. J. Chen, Z. Huang, On a fast deterministic block Kaczmarz method for solving large-scale linear
systems, Numer. Algor., in press. http://dx.doi.org/10.1007/s11075-021-01143-4

17. K. Du, W. Si, X. Sun, Randomized extended average block Kaczmarz for solving least squares,
SIAM J. Sci. Comput., 42 (2020), A3541–A3559. http://dx.doi.org/10.1137/20M1312629

18. Y. Liu, C. Gu, On greedy randomized block Kaczmarz method for consistent linear systems, Linear
Algebra Appl., 616 (2021), 178–200. http://dx.doi.org/10.1016/j.laa.2021.01.024

19. T. Davis, Y. Hu, The university of Florida sparse matrix collection, ACM T. Math. Software, 38
(2011), 1–25. http://dx.doi.org/10.1145/2049662.2049663

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 4, 6792–6806.

http://dx.doi.org/http://dx.doi.org/10.1137/15M1025487
http://dx.doi.org/http://dx.doi.org/10.1137/19M1251643
http://dx.doi.org/http://dx.doi.org/10.1016/j.aml.2020.106294
http://dx.doi.org/http://dx.doi.org/10.1137/17M1137747
http://dx.doi.org/http://dx.doi.org/10.1007/s11075-021-01143-4
http://dx.doi.org/http://dx.doi.org/10.1137/20M1312629
http://dx.doi.org/http://dx.doi.org/10.1016/j.laa.2021.01.024
http://dx.doi.org/http://dx.doi.org/10.1145/2049662.2049663
http://creativecommons.org/licenses/by/4.0

	Introduction
	A greedy average block Kaczmarz algorithm
	Numerical experiments
	Example 1. consistent overdetermined systems
	Example 2. consistent underdetermined systems
	Example 3. linear systems with sparse full rank matrices
	Example 4. linear systems with sparse rank-deficient matrices

	Conclusions

