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1. Introduction

In this paper, we study the following strongly coupled reaction-diffusion model

ut = d1∆u − ρu∆v − β(x)h(u, v), x ∈ Ω, t > 0,

vt = (d2 + γu)∆v + β(x)h(u, v) − λ(x)v, x ∈ Ω, t > 0,

∂u
∂ν

=
∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

(1.1)
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where u(x, t) and v(x, t) represent susceptible and infected individuals’ density respectively at location x
and time t; the positive constants d1 and d2 denote the corresponding diffusion rates for the susceptible
and infected populations; and β(x) and λ(x) are positive Hölder continuous functions on Ω ⊂ Rn

which account for the rates of disease transmission and disease recovery at x, respectively; ρ and γ are
nonnegative constant, refers to the spatial influence of infectives, ρ is called cross diffusion coefficient.
The term positive cross diffusion coefficient denotes that the susceptible tends to diffuse in the direction
of higher concentration of the infected. The density-dependent diffusion terms, given by γu. This form
of the diffusion term was experimentally motivated [1] and can be interpreted as a collective behavior
for infected populations whose activity increases significantly if they are numerous at a spot. For more
details on the biological background, see [1, p.172]. The system is strongly-coupled because of the
coupling in the highest derivatives in the first equation. Strongly-coupled systems occur frequently in
biological and chemical models and they are notoriously difficult to analyze.

The homogeneous Neumann boundary conditions mean there is no population flux across the
boundary ∂Ω and both the infected and susceptible individuals live in the self-contained environment.
From the biological point of view, the incidence function h(u, v) is assumed to be continuously
differentiable in R2

+ and satisfies the following hypotheses (H):
(i) h(u, 0) = h(0, v) = 0, for all u, v ≥ 0;
(ii) h(u, v) > 0, for all u, v > 0;
(iii) ∂h(u,v)

∂u > 0, for all u ≥ 0, v > 0;
(iv) ∂h(u,v)

∂v ≥ 0, for all u, v ≥ 0.
It is easy to check that class of functions h(u, v) satisfying (H) include incidence functions such as

h(u, v) = h(u, v) = upv, p ≥ 1, h(u, v) = uv
a+vq , 0 < q ≤ 1 [Holling types (1959) [2]];

h(u, v) = uv
av+u [Ratio-dependent type (1989) [3]];

h(u, v) = uv
1+au+bv [Beddington-DeAngelis type (1975) [4, 5]];

h(u, v) = uv
(1+au)(1+bv) [Crowley-Martin type (1989) [6]];

To the best of our knowledge, there are very few publications (see, for example, [1] and [7]) that
consider a SI model with cross-diffusion and density-dependent diffusion. Their model is written by

ut = d1∆u − αβu∆v − βuv, x ∈ Ω, t > 0,

vt = (d2 + αβu)∆v + βuv − λv, x ∈ Ω, t > 0,

∂u
∂ν

=
∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ Ω.

(1.2)

In [7], Kirane and Kouachi showed the existence of global solutions of (1.2) when d1 ≥ d2.
However, the structure of the nonlinear diffusion terms (ρ ≡ γ = α) and the reaction terms in the
system (1.2) in those works is different than in (1.1).

The coefficient in the model (1.2) are all spatially-independent. However, it has been shown
that environmental heterogeneity can make a great difference to infections disease. There has been
considerable an SIS epidemic model with heterogeneous environment [21, 22]. On the hand, pattern
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formation, anomalous diffusion, nonlocal dispersal and chemotaxis effect of the epidemic models are
paid more and more attention [23–27]. In recent years, the fractional order epidemic models has
attracted great interests(see, for example, [36–43]).

Here we mention that global existence and boundedness of classical solutions to SKT competition
systems with cross-diffusion

ut = ∆ [(d1 + a11u + a12v) u] + µ1u (1 − u − a1v) , x ∈ Ω, t > 0
vt = ∆ [(d2 + a22v) v] + µ2v (1 − v − a2u) , x ∈ Ω, t > 0
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω, t > 0
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω

(1.3)

For the system (1.3), it is straightforward to find out that maximum principles can be applied to
the second equation of (1.3) to obtain the boundedness of v . Then the key issue is to establish the
boundedness for u. However, for the first equation of (1.3), the boundedness of u cannot be obtained
directly by using the maximum principle. This is the biggest obstacle in studying the global existence
of system (1.3).

Global existence (in time) of (1.3) has recently received great attention [8, 9, 28–35], The global
existence is proved for n = 2 by Lou-Ni-Wu [32], thereafter for n ≤ 5 by Le-Nguyen-Nguyen [28] and
Choi-Liu-Yamada [8], for n ≤ 9 by phan [9], and the uniform boundedness was asserted when n ≤ 9
and Ω is convex by Tao-Winkler [34]. In these papers, to get the boundedness of the solution of (1.3),
authors first obtained Lp -estimates of the solution and then used the Sobolev embeddings. Therefore,
they have a restriction on the dimension n of Ω. Recently, the global existence is proved for arbitrary
n ≥ 1 by Hoang-Nguyen-Pan [29]. Their first obtained Lp -estimates for ∇v for large p, and then
obtained Lp -estimates of u for large p. In a different approach, Phan [30] who proved the existence
of global solutions of (1.3) without any restrictions on space dimension, but with some restrictions
on the amplitude of cross-diffusion coefficient. the authors introduce a new function w of the form
w = G(u, v) and then use maximum principles to obtain the boundedness of the solution u (1.3). Using
test function techniques, Le-Nguyen [31] obtained some global existence results for n ≥ 1.

Here we should stress that the assumption a11 > 0 plays a crucial role in the analysis in the
aforementioned works. When a11 = 0, whether the solution of the system (1.3) exists globally in time
for n ≥ 1 is still a well-known open problem made by Y. Yamada in [33]. Liu and Tao [35] recently
established the existence of global classical solutions for a simplified parabolic-elliptic system (1.3)
when a11 = 0. However, parabolic-parabolic system (1.3) is still a open problem a11 > 0.

We also remark that while there have been many results on global solutions to cross-diffusion
systems, such as [8–12]. However, in [8–12], the authors utilize the fact that one component is
‘trivially’ uniformly bounded and use it to bound the other component(s).

To understand the global dynamics of the system (1.1), an crucial step is to establish the existence
of classical solutions of (1.1). Since the dispersal includes cross-diffusion and density-dependent
diffusion, the global well-posedness of system (1.1) is nontrivial.

We would like to mention that (1.1) is very similar to SKT system with cross-diffusion (1.3) when
a11 = 0. Nevertheless, maximum principles can be not applied to the second equation of (1.1) to obtain
the boundedness of v We would like to stress that their approachs for SKT systems (1.3) cannot be
applied to system (1.1). Our approach first obtain L2 -estimates for u, v, ∇u and ∇v, then introduce a
new function L(u, v), and this function allows us to use maximum principles to get the boundedness of
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the solution u and v.
Main results. The purpose of this paper is to establish the global existence of classical solutions
to (1.1) under heterogeneous environment and the large time behaviour of solution to (1.1) under
homogeneous environment. Precisely, we prove the following results:

Theorem 1.1. Assume that u0, v0 > 0 satisfy the zero Neumann boundary condition and belong to
C2+δ(Ω), and suppose β(x), λ(x) ∈ C2+δ(Ω) for some 0 < δ < 1. Then (1.1) possesses a unique non-
negative solution u, v ∈ C2+δ,1+ δ

2 (Ω × [0,∞)) if d1 ≥ d2 and ρ ≤ γ.

Theorem 1.2. Assume that d1 ≥ d2, ρ ≤ γ and β, λ are positive constants. Then, the problem (1.1)
possesses a unique non-negative global classical solutions (u, v) which satisfies

‖u(·, t) − u‖L2(Ω) + ‖v(·, t)‖L2(Ω) → 0 as t → ∞. (1.4)

Remark 1.3. Theorem 1.1 also valid for (1.1) but with homogeneous Dirichlet boundary condition.

Remark 1.4. From Theorem 1.1, it is not difficult to see that the conditions d1 ≥ d2 and ρ ≤ γ play
crucial roles in the study of global boundedness of solutions to problem (1.1). It is an open question
whether solutions of system (1.1) with bounded non-negative initial data exist globally for d1 < d2 or
ρ > γ [7]. We believe that the conditions d1 ≥ d2 and ρ ≤ γ of Theorem 1.1 are just the technical
conditions. To drop these conditions, more new ideas and techniques must be developed, and we expect
to completely solve it in the future.

Remark 1.5. The model presented by Kirane and Kouachi in [7] is a particular case of our model (1.1)
if we choose ρ = γ = αβ, h(u, v) = βuv.

The paper is organized as follows. In Section 2, we introduce some known results as priminaries.
In Section 3, we prove Theorem 1.1. In Section 4, the large time behaviour of solution to (1.1) are
studied. In Section 5, we give an example to illustrate our theoretical results. Conclusions are drawn
in Section 6.

2. Local existence and a priori estimate

2.1. Local existence

For the time-dependent solutions of (1.1), the local existence of non-negative solutions is
established by Amann in the seminal papers [15, 16]. The results can be summarized as follows:

Theorem 2.1. Suppose that u0, v0 are in W1
p(Ω) for some p > n. Then (1.1) has a unique non-negative

smooth solution u, v in
C([0,T ),W1

p(Ω))
⋂

C∞((0,T ),C∞(Ω))

with maximal existence time T . Moreover, if the solution (u, v) satisfies the estimate

sup{‖u(·, t)‖W1
p(Ω), ‖v(·, t)‖W1

p(Ω) : t ∈ (0,T )} < ∞,

then T = ∞.
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We denote

QT = Ω × [0,T ),

‖u‖Lp,q(QT ) =
( ∫ T

0
(
∫

Ω

|u(x, t)|pdx)
q
p dt

)1/q
, Lp(QT ) := Lp,p(QT ),

‖u‖W2,1
p (QT ) := ‖u‖Lp(QT ) + ‖ut‖Lp(QT ) + ‖∇u‖Lp(QT ) + ‖∇2u‖Lp(QT ),

T be the maximal existence time for the solution (u, v) of (1.1).
Let Z be a Banach space and a ∈ R+, CB([a,+∞),Z) denote the space of continuous functions such

that remains bounded in Z for t > a. In order to prove Theorem 1.1, we need the following some
preliminary Lemmas.

2.2. Apriori estimates

Lemma 2.2. Let 3 < p < ∞. Suppose w is a solution to the following equation:

∂w
∂t

= ai j(x, t)Di jw + h(x, t) in Ω × [0,T ),

∂w
∂ν

= 0 on ∂Ω × [0,T ),

w(x, 0) = w0(x) in Ω,

(2.1)

where T < ∞ and {ai j(x, t)}i, j=1,...,N are bounded continuous functions on QT satisfying

λ|ξ|2 ≤ ai j(x, t)ξiξ j ≤ Λ|ξ|2,∀ξ ∈ RN ,

where λ,Λ are positive constants. Suppose h ∈ Lp(QT ). Then there exists a constant Cp depending on
the bounds of {ai j(x, t)}i, j=1,...,N , λ,Λ,Ω,T and p such that

‖w‖W2,1
p (QT ) ≤ Cp

(
‖h‖Lp(QT ) + ‖w0‖

W
2− 2

p
p (Ω)

)
, (2.2)

where the constant Cp remains bounded for finite values of T and w0(x) satisfies the compatibility
condition ∂w0

∂ν
= 0 on ∂Ω.

This lemma can be found in [17, Theorem 9.1 p.341 and Remark on p.351].

Lemma 2.3. Let β, λ ∈ C2+δ(Ω), γ ≥ ρ. Then there exists a positive constant C such that

‖∇u‖L2(QT ) ≤ C, ‖∇v‖L2(QT ) ≤ C,

‖u‖L2(Ω) ≤ C, ‖v‖L2(Ω) ≤ C
(2.3)

for any T > 0.
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Proof. By the first two equations in (1.1) we derive

d
dt

∫
Ω

{
1
2
δ1u2 + uv +

1
2
δ2v2 +

d1 + d2

ρ
u
}

dx

=

∫
Ω

{
δ1uut + vut + uvt + δ2vvt +

d1 + d2

ρ
ut

}
dx

= −

∫
Ω

[
d1δ1|∇u|2 + d2δ2|∇v|2 + (d1 + d2)∇u∇v

]
dx +

∫
Ω

(d1 + d2)∇u∇vdx

+

∫
Ω

(γ − δ1ρ)u2∆vdx +

∫
Ω

(δ2γ − ρ)uv∆vdx

+

∫
Ω

β(x)h(u, v)
{

(1 − δ1)u + (δ2 − 1)v −
d1 + d2

ρ

}
dx −

∫
Ω

λ(x)v(u + δ2v)dx.

(2.4)

Choosing δ1 =
γ

ρ
, δ2 =

ρ

γ
, we see from condition γ ≥ ρ that

1 − δ1 ≤ 0, δ2 − 1 ≤ 0.

Here from (2.4) and β(x), λ(x) > 0 to gain the estimate

d
dt

∫
Ω

{
1
2
δ1u2 + uv +

1
2
δ2v2 +

d1 + d2

ρ
u
}

dx ≤ −
∫

Ω

[
d1δ1|∇u|2 + d2δ2|∇v|2

]
dx. (2.5)

Integrating the above inequality from 0 to t (t < T ), we have∫
Ω

{
1
2
δ1u2 + uv +

1
2
δ2v2 +

d1 + d2

ρ
u
}

dx +

∫
Qt

[
d1δ1|∇u|2 + d2δ2|∇v|2

]
dxdt ≤ C, (2.6)

where the constant C depends only on d1, d2, γ, ρ, ‖u0‖L2(Ω), ‖u0‖L1(Ω) and ‖v0‖L2(Ω). �

Lemma 2.4. Let β, λ ∈ C2+δ(Ω). For any 0 < t < T, we have

u, v ∈ CB(R+; C(Ω)) (2.7)

and
‖u‖Lp(QT ) ≤ C, ‖v‖Lp(QT ) ≤ C (2.8)

whenever d1 > d2 and ρ ≤ γ.

Proof. Define the function
L(u, v) = u +

ρ

γ
v + d + d log (−u/d) ,

where d = d2−d1
γ

< 0.
Notice that L(u, v) > 0 for u, v ∈ R+, u , −d, v , 0 and L(−d, 0) = 0. Now define E(x, t) :=

L(u(x, t), v(x, t)), we have

dE
dt

=

(
u +

ρ

λ
v
)

t
+ dut/u
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= d1(1 + d/u)∆u +
d1ρ

λ
∆v +

(
ρ

γ
− 1 −

d
u

)
βh(u, v) −

ρλ

γ
v,

and
∆E = (1 + d/u)∆u +

ρ

γ
∆v − d|∇ log u|2.

Therefore

Et − d1∆Σ = d1d|∇ log u|2 + +
(
ρ

γ
− 1 − d

u

)
βh(u, v) − ρλ

γ
v, x ∈ Ω, t > 0,

∂E
∂ν

= 0, x ∈ ∂Ω, t > 0,

Eδ(x) = uδ(x) +
ρ

γ
vδ(x) + d + d log (−uδ(x)/d) > 0, x ∈ Ω,

(2.9)

Eδ(x) is bounded, where 0 < δ < T . Since v ≤ E and v ∈ L∞((0,+∞); L2(Ω)). By the maximum
principle [19] and the proposition 3.3 of [18], we have

E ∈ CB(R+; C(Ω)).

As u + H + H log (−u/H) > 0, we have

0 < v(x, t) < M,

and
0 < C0(M) ≤ u(x, t) ≤ C1(M) < +∞,

where M depends only on ‖uδ‖L∞ and ‖vδ‖L∞ , and C0(M) and C1(M) are the solutions of

M = ν + d + d log (−ν/d) .

By (1.1), we have
(u + v)t = ∆(d1u + d2v) + (ρ − λ)u∆v − λ(x)v. (2.10)

Multiplying the Eq (2.10) by 1
p (u + v)p−1 and integrating by parts, using the Young’s inequality, λ(x) ∈

C2+δ(Ω) and (2.7), we have

‖u + v‖p
Lp(Ω) ≤ C

(
‖∇u‖2L2(QT ) + ‖∇v‖2L2(QT )

)
+ ‖u0 + v0‖

p
Lp(Ω), (2.11)

which implies that (2.8) holds by the Lemma 2.3. �

3. Global existence

Proof of Theorem 1.1. Now, We will divide the proof of Theorem 1.1 into two cases according to
d1 > d2 and d1 = d2.
Case (a). d1 > d2.

The second equation of (1.1) can be written as the following form

vt = (d2 + γu)∆v + β(x)h(u, v) − λ(x)v, (3.1)
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where d2 + γu and β(x)h(u, v) − λ(x)v are bounded in QT by Lemma 2.4, β, λ ∈ C2+δ(Ω) and the
assumption (H). Applying the Lemma 2.2 to the Eq (3.1) ensures that ‖v‖W2,1

p (QT ) is bounded, which
implies

‖vt‖Lp(QT ) ≤ C3,1, ‖∆v‖Lp(QT ) ≤ C3,1, (3.2)

where C3,1 is a positive constant independent t. It follows from the first equation of (1.1), Lemma 2.4,
β, λ ∈ C2+δ(Ω), the assumption (H) and (3.2) that

‖ut‖Lp(QT ) ≤ C3,2, ‖∆u‖Lp(QT ) ≤ C3,2, (3.3)

where C3,2 is a positive constant independent t. Therefore, u, v ∈ W2,1(QT ) ↪→ C
σ
2 ,σ(QT ). By the

Schauder theory for parabolic equations and the bootstrap argument, we have

u, v ∈ C2+δ,1+ δ
2 (Ω × [0,∞)).

Case (b). d1 = d2.
We next consider the case d1 = d2. By (1.1), we have(

γ

ρ
u + v

)
t
= d1∆

(
γ

ρ
u + v

)
+

(
1 −

γ

ρ

)
βh(u, v) − λ(x)v.

Since γ ≥ ρ, β, λ > 0 and β, λ ∈ C2+δ(Ω), using the maximum principle [19] yields∥∥∥∥∥γρu + v
∥∥∥∥∥

L∞(Ω)
≤ C3,3,

where C3,3 > 0 only dependent ‖u0‖L∞(Ω), ‖v0‖L∞(Ω), d1, γ and ρ. The rest of the proof is same as in the
case d1 > d2. Finally, by Theorem 2.1 we have (u, v) exists globally in time. The proof of Theorem 1.1
is now complete. �

4. Large time behaviour

Proof of Theorem 1.2. Define the Lyapunov functional

V(t) =

∫
Ω

1
2

(√
γ

ρ
u +

√
ρ

γ
v
)2

+
d1 + d2

ρ
u

 dx

Then

dV
dt

=

∫
Ω

{(√
γ

ρ
u +

√
ρ

γ
v
) (√

γ

ρ
u +

√
ρ

γ
v
)

t

+
d1 + d2

ρ
ut

}
dx

= −

∫
Ω

[
d1
γ

ρ
|∇u|2 + d2

ρ

γ
|∇v|2

]
dx

+

∫
Ω

βh(u, v)
{(

1 −
γ

ρ

)
u +

(
ρ

γ
− 1

)
v −

d1 + d2

ρ

}
dx −

∫
Ω

λv
(
u +

ρ

γ
v
)

dx
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≤ −

∫
Ω

[
d1
γ

ρ
|∇u|2 + d2

ρ

γ
|∇v|2

]
dx

:= −ψ(t). (4.1)

Here we use the condition γ ≥ ρ and the assumption (H). ψ(t) is bounded by Theorem 1.1. Applying
[20, Lemma 1] to (4.1), we have

lim
t→∞

∫
Ω

(
|∇u|2 + |∇v|2

)
dx = 0. (4.2)

From (4.2) and the Poincaré inequality, we deduce that

lim
t→∞

∫
Ω

{
(u − u)2 + (v − v)2

}
dx = 0, (4.3)

where g = 1
|Ω|

∫
Ω

gdx for a function g ∈ L1(Ω).
On the other hand, we claim that

‖v(·, t)‖L2(Ω) = 0, as t → ∞. (4.4)

To achieve this, suppose that ‖v(t)‖L2(Ω) does not converge to 0. Then, there would exist a number
K > 0 and a time sequence {tm}m=1,2,3,··· tending to∞ such that ‖v(tm)‖L2(Ω) ≥ K.

In the meantime, from (1.1) and Theorem 1.1, we have∣∣∣∣∣ d
dt
‖v(t)‖2L2(Ω)

∣∣∣∣∣ ≤ C
∫

Ω

(|∇u|2 + |∇v|2)dx + C ≤ M0, 0 < t < ∞. (4.5)

So, consider for each m, a continuous function ϕm(t) for 0 < t < ∞ such that ϕ(t) ≡ 0 for |t − tm| ≥
K

M0
,

ϕm(tm) = K for t = tm, and ϕm(t) is linear for tm −
K

M0
≤ t ≤ tm and for tm ≤ t ≤ tm + K

M0
. Then

by the mean value theorem, it must hold that ‖v(t)‖2L2(Ω) ≥ ϕm(t) for all −∞ < t < ∞. Furthermore,

|v(t)‖2L2(Ω) ≥ supm ϕm(t). But this contradicts
∫ ∞

0
|v(t)‖2L2(Ω)dt < ∞ by (4.5) .

It follows from (4.3) and (4.4) that

‖u(·, t) − u‖L2(Ω) → 0, ‖v(·, t)‖L2(Ω) → 0, as t → ∞. (4.6)

Thus the proof of Theorem 1.2 is completed. �

5. Examples

5.1. Example 1 (SI model with Beddington-DeAngelis type incidence rate)

Choose h(u, v) = uv
1+au+bv , then hypotheses (H) hold. System (1.1) reduces to

ut = d1∆u − ρu∆v −
β(x)uv

1 + au + bv
, x ∈ Ω, t > 0,

vt = (d2 + γu)∆v +
β(x)uv

1 + au + bv
− λ(x)v, x ∈ Ω, t > 0,

∂u
∂ν

=
∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ Ω,

(5.1)

According to Theorem 1.1 and Theorem 1.2, one can obtain the following.
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Theorem 5.1. Assume that u0, v0 > 0 satisfy the zero Neumann boundary condition and belong to
C2+δ(Ω), and suppose β(x), λ(x) ∈ C2+δ(Ω) for some 0 < δ < 1. Then (5.1) possesses a unique non-
negative solution u, v ∈ C2+δ,1+ δ

2 (Ω × [0,∞)) if d1 ≥ d2 and ρ ≤ γ.

Theorem 5.2. Assume that d1 ≥ d2, ρ ≤ γ and β, λ are positive constants. Then, the problem (5.1)
possesses a unique non-negative global classical solutions (u, v) which satisfies

‖u(·, t) − u‖L2(Ω) + ‖v(·, t)‖L2(Ω) → 0 as t → ∞. (5.2)

6. Conclusions

This paper presents a mathematical study on the dynamical behavior of a nonlinear diffusion SI
epidemic model with general nonlinear incidence rate of the form h(u, v). The functions h(u, v) includes
a number of especial incidence rates. For instance, h(u, v) = upv, p ≥ 1, h(u, v) = uv

a+vq , 0 < q ≤ 1,
h(u, v) = uv

av+u ,h(u, v) = uv
1+au+bv and h(u, v) = uv

(1+au)(1+bv) . The well-posedness of the model, including
local existence, nonnegativity, global existence of solutions under heterogeneous environment and the
large time behaviour of solution to (1.1) under homogeneous environment have been established if
d1 ≥ d2 and ρ ≤ γ. Our results cover and improve some known results. However, it is an open question
whether solutions of system (1.1) with bounded non-negative initial data exist globally for d1 < d2

or ρ > γ. We believe that the conditions d1 ≥ d2 and ρ ≤ γ of Theorem 1.1 are just the technical
conditions.
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