Research article

Well-posedness of initial value problem of Hirota-Satsuma system in low regularity Sobolev space

Xiangqing Zhao* and Zhiwei Lv

Department of Mathematics, Suqian University, Suqian 223800, China

* Correspondence: Email: zhao-xiangqing @ 163.com.

Abstract: In this paper, we study the initial value problem of Hirota-Satsuma system:

$$
\begin{cases}u_{t}-\alpha\left(u_{x x x}+6 u u_{x}\right)=2 \beta v v_{x}, & x \in \mathbb{R}, t \geq 0, \\ v_{t}+v_{x x x}+3 u v_{x}=0, & x \in \mathbb{R}, t \geq 0, \\ u(0, x)=\phi(x), \quad v(0, x)=\psi(x), & x \in \mathbb{R},\end{cases}
$$

where $\alpha \in \mathbb{R}, \beta \in \mathbb{R} ; u=u(x, t), v=v(x, t)$ are real functions. Aided by Fourier restrict norm method, we show that $\forall s>-\frac{1}{8}$ initial value problem (0.1) is locally well-posed in $H^{s}(\mathbb{R}) \times H^{s+1}(\mathbb{R})$ which improved the results of [7].

Keywords: Hirota-Satsuma system; initial value problem; Fourier restrict norm method; local well-posed
Mathematics Subject Classification: 35E15, 35Q53

1. Introduction

Hirota-Satsuma system coupled by two KdV equations:

$$
\begin{cases}u_{t}-\alpha\left(u_{x x x}+6 u u_{x}\right)=2 \beta v v_{x}, & x \in \mathbb{R}, t \geq 0, \\ v_{t}+v_{x x x}+3 u v_{x}=0, & x \in \mathbb{R}, t \geq 0,\end{cases}
$$

(where $\alpha \in \mathbb{R}, \beta \in \mathbb{R} ; u=u(x, t), v=v(x, t)$ are real functions) was introduced by Hirota, Satsuma in [1] to describe the interactions of two long waves with different dispersion relations, also was derived by Hirota R, Ohta Y in [2] as a reduction of a special hierarchy of coupled bilinear equations.

The main progress of soliton solutions of Hirota-Satsuma system is as follows: In 2000, Tam and Ma in [3] considered some particular special expansions in the direct method to derive the one- and three-cKdV soliton solutions with a profile different in form to the classical solitons. In 2003, Hu
and Liu in [4] derived generalized M-solitons solutions of the Grammian type by means of a Darboux transformation. In 2020, Prado and Cisneros-Ake in [5] carried out a systematic analysis of multisoliton solution based on the direct method to fully describe its $\mathrm{N}+\mathrm{M}$ interacting multisoliton solutions holding a typical hyperbolic profile (For more detail, see [6]).

The progress of well-posedness of Hirota-Satsuma system can be summarized as: In 1994, Feng proved in [7] that Hirota-Satsuma system posed on the whole line is locally well-posed $H^{s}(\mathbb{R}) \times H^{s}(\mathbb{R})$, if $s>2$. In 2005, Angulo showed in [8] that Hirota-Satsuma system posed on periodic domain is locally well-posed in $H_{\text {periodic }}^{s}(0, L) \times H_{\text {periodic }}^{s}(0, L)$, for $s \geq 0$, when $\alpha=-1$ and globally well-posed in $H_{\text {periodic }}^{s}(0, L) \times H_{\text {periodic }}^{s}(0, L)$ for $s \geq 1$, when $\alpha \neq-1,0$. In 2007, Panthee, Silva verified in [9] that Hirota-Satsuma system posed on periodic domain is locally well-posed in $H_{\text {periodic }}^{s}(0, L) \times H_{\text {periodic }}^{1+s}(0, L)$, for $s \geq-\frac{1}{2}$ and global well-posed in $H_{\text {periodic }}^{s}(0, L) \times H_{\text {periodic }}^{s+1}(0, L)$ for $s \geq-\frac{3}{14}$ when $\alpha=-1$.

In this paper, we will study the initial value problem of Hirota-Satsuma system:

$$
\begin{cases}u_{t}-\alpha\left(u_{x x x}+6 u u_{x}\right)=2 \beta v v_{x}, & x \in \mathbb{R}, t \geq 0, \tag{1.1}\\ v_{t}+v_{x x x}+3 u v_{x}=0, & x \in \mathbb{R}, t \geq 0, \\ u(0, x)=\phi(x), \quad v(0, x)=\psi(x), & x \in \mathbb{R} .\end{cases}
$$

As shown in [9] that asymmetrical product space $H^{s}(\mathbb{R}) \times H^{s+1}(\mathbb{R})$ is more suitable to Hirota-Satsuma system than the symmetrical product space $H^{s}(\mathbb{R}) \times H^{s}(\mathbb{R})$ since the asymmetry of nonlinear term $u v_{x}$.
Definition 1.1. Let $s \in \mathbb{R}, b \in \mathbb{R}$, Bourgain space $X_{s, b}$ associated with $\partial_{t} \pm \alpha \partial_{x}^{3}$ is defined to be the closure of the Schwartz space $S\left(R^{2}\right)$ under the norm:

$$
\|u\|_{X_{s, b}}=\left\|(1+|\xi|)^{s}\left(1+\left|\tau \mp \alpha \xi^{3}\right|\right)^{b} \mathcal{F} u(\xi, \tau)\right\|_{L_{\xi}^{2} L_{\tau}^{2}},
$$

where $\langle\cdot\rangle=(1+|\cdot|), \mathcal{F} u=\widehat{u}(\xi, \tau)$ denote as Fourier transformation of u with respect to t and x.
Obviously, when $s_{1} \leq s_{2}, b_{1} \leq b_{2},\|u\|_{X_{s_{1}, b_{1}}} \leq\|u\|_{S_{s_{2}, b_{2}}}$.
The main result is:
Theorem 1.2. Let $s>-\frac{1}{8}$. Then for any initial data $(\phi, \psi) \in H^{s}(\mathbb{R}) \times H^{1+s}(\mathbb{R})$, there exists $T=$ $T\left(\|(\phi, \psi)\|_{\left.H^{s} \times H^{1+s}\right)}\right.$, such that there is unique solution of initial value problem (1.1) on [0,T).

Conservative of mass

$$
\frac{1}{2} \int\left[u^{2}+\frac{2}{3} \beta v^{2}\right] d x
$$

conservative of energy

$$
\int\left[\frac{1+\alpha}{2} u_{x}^{2}+\beta v_{x}^{2}-(1+\alpha) u^{3}-\beta u v^{2}\right] d x
$$

and local well-posedness (Theorem 1.2) imply that: For $\alpha=-1$ and $\beta>0$, initial value problem (1.1) is globally well-posed in $H^{s}(\mathbb{R}) \times H^{1+s}(\mathbb{R})$ if $s \geq 0$.

The following sections are arranged as follows: Bilinear estimate will be established in Section 2 which is the core of the Fourier restriction norm method; Locally well-posedness will be proved in Section 3 by Banch's fixed point theorem; We give some remarks in Section 4 to point out some simple facts about the Hirota-Satsuma system.

In the following, without lose of generalization, we assume that $\alpha=-1, \beta=1$.

2. Bilinear estimates

2.1. Some lemmas

D^{s} denote the s-order derivative defined by:

$$
\mathcal{F}\left(D^{s} f\right)(\xi)=|\xi|^{s} \mathcal{F} f(\xi), \quad \forall f \in S(\mathbb{R}) .
$$

Lemma 2.1. Denote $\widehat{F}_{\rho}(\xi, \tau)=\frac{f(\xi, \tau)}{\left(1+\mid \tau-\xi^{\left.-\xi^{\prime} \mid\right)},\right.}$, then
(1) If $\rho>\frac{1}{2}$, then

$$
\begin{equation*}
\left\|\chi(\xi) F_{\rho}\right\|_{L_{L}^{2} L}^{\infty} \leq C\|f\|_{L_{\xi}^{2} L_{T}^{2}}, \tag{2.1}
\end{equation*}
$$

where $\chi \in C_{0}^{\infty}$ satisfying: When $|\xi| \leq 1, \chi(\xi)=1$; when $|\xi|>2$ then $\chi(\xi)=0$.
(2) If $\rho>\frac{3}{8}, 0 \leq \theta \leq \frac{1}{8}$, then

$$
\begin{equation*}
\left\|D_{x}^{\theta} F_{\rho}\right\|_{L_{x}^{4} L_{t}^{4}} \leq C\|f\|_{L_{\xi}^{2} L_{\tau}^{2}} . \tag{2.2}
\end{equation*}
$$

(3) If $\rho>\frac{5}{12}$, then

$$
\begin{equation*}
\left\|F_{\rho}\right\|_{L_{x}^{4} L_{t}^{6}} \leq C\|f\|_{L_{\xi}^{2}}^{2} t_{\tau}^{2} . \tag{2.3}
\end{equation*}
$$

(4) If $\rho>\frac{\theta}{2}$, where $\theta \in[0,1]$, then

$$
\begin{equation*}
\left\|D_{x}^{\theta} F_{\rho}\right\|_{L_{x}^{\frac{2}{1}-\theta} L_{t}^{2}} \leq C\|f\|_{L_{\xi}^{2} L_{t}^{2}} . \tag{2.4}
\end{equation*}
$$

(5) If $\rho>\frac{1}{3}$, then

$$
\begin{equation*}
\left\|D_{x}^{\frac{1}{4}} F_{\rho}\right\|_{L_{x}^{4} L_{t}^{3}} \leq C\|f\|_{L_{\xi}^{2} L_{\tau}^{2}} . \tag{2.5}
\end{equation*}
$$

Proof. (2.1)-(2.5) are Lemmas 2.3-2.7 in [10].
Lemma 2.2. Assume f, f_{1}, f_{2} are Schwartz functions, then

$$
\int_{*} \overline{\widehat{f}}(\xi, \tau) \widehat{f}_{1}\left(\xi_{1}, \tau_{1}\right) \widehat{f}_{2}\left(\xi_{2}, \tau_{2}\right) d \delta=\int_{R \times R} \bar{f} f_{1} f_{2}(x, t) d x d t
$$

where $\int_{*} d \delta=\int_{\xi=\xi_{1}+\xi_{2}, \tau=\tau_{1}+\tau_{2}} d \xi_{1} d \xi_{2} d \tau_{1} d \tau_{2}$.

Let Z be Abelian addition group with invariable measure $d \xi$. For integer $k \geq 2$, we denote $\Gamma_{k}(Z)$ as the hyperplane:

$$
\Gamma_{k}(Z)=\left\{\left(\xi_{1}, \xi_{2}, \cdots, \xi_{k}\right) \in Z^{k}, \xi_{1}+\xi_{2}+\cdots+\xi_{k}=0\right\}
$$

Define $[k, Z]$-multiplier as function $m: \Gamma_{k}(Z) \mapsto C$. If m is $[k, Z]$-multiplier, define $\|m\|_{[k, Z]}$ the norm of [$k, Z]$-multiplier as the infimum of C such that

$$
\left|\int_{\Gamma_{k}(Z)} m(\xi) \prod_{j=1}^{k} f_{j}\right| \leq C \prod_{j=1}^{k}\left\|f_{j}\right\|_{L^{2}(Z)} .
$$

Lemma 2.3. If $m(\xi)$ and $M(\xi)$ both are $[k, Z]$-multipliers, and $\forall \xi \in \Gamma_{k}(Z),|m(\xi)| \leq|M(\xi)|$, then

$$
\|m\|_{[k, Z]} \leq\|M\|_{[k, Z]} .
$$

Proof. See [11] for the detail.

2.2. Bilinear estimates

Proposition 2.4. If $s \geq-\frac{1}{8}, \frac{1}{2}<b<\frac{9}{16}$, then $\forall b^{\prime}>\frac{1}{2}$, we have

$$
\begin{equation*}
\left\|\left(\partial_{x} u_{1}\right) u_{2}\right\|_{X_{1+s, b-1}} \leq C\left\|u_{1}\right\|_{X_{1+s, b^{\prime}}}\left\|u_{2}\right\|_{X_{s, b^{\prime}}} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\partial_{x}\left(u_{1} u_{2}\right)\right\|_{X_{s, b-1}} \leq C\left\|u_{1}\right\|_{X_{s, b^{\prime}}}\left\|u_{2}\right\|_{X_{s, b^{\prime}}} \tag{2.7}
\end{equation*}
$$

Proof. It is enough to prove (2.6). Since the proof of (2.7) is just a minor modification of that of (2.6). Besides, it is enough to show the case of $s \leq 0$. Since when $s>0$, we have:

$$
\langle\xi\rangle^{s} \leq\left\langle\xi_{1}\right\rangle^{s}\left\langle\xi_{2}\right\rangle^{s} .
$$

This inequality and the results of $s=0$ implies the result of $s>0$.
By Plancherel Theorem, in order to prove (2.6), it is enough to prove

$$
\begin{aligned}
I & =\int_{\Gamma_{3}(\mathbb{R} \times \mathbb{R})} \frac{\langle\xi\rangle^{1+s} \bar{f}(\xi, \tau)}{\langle\sigma\rangle^{1-b}} \frac{\left|\xi_{1}\right| f_{1}\left(\xi_{1}, \tau_{1}\right)}{\left\langle\xi_{1}\right\rangle^{1+s}\left\langle\sigma_{1}\right\rangle^{b^{\prime}}} \frac{f_{2}\left(\xi_{2}, \tau_{2}\right)}{\left\langle\xi_{2}\right\rangle^{s}\left\langle\sigma_{2}\right\rangle^{b^{\prime}}} d \delta \\
& =\int_{\Gamma_{3}(\mathbb{R} \times \mathbb{R})} \frac{\langle\xi\rangle^{1+s}\left|\xi_{1}\right|}{\langle\sigma\rangle^{1-b}\left\langle\xi_{1}\right\rangle^{1+s}\left\langle\sigma_{1}\right\rangle^{b^{\prime}}\left\langle\xi_{2}\right\rangle^{s}\left\langle\sigma_{2}\right\rangle^{b^{\prime}}} \bar{f}(\xi, \tau) f_{1}\left(\xi_{1}, \tau_{1}\right) f_{2}\left(\xi_{2}, \tau_{2}\right) d \delta \\
& \leq C\left\|_{\langle\sigma\rangle^{1-b}\left\langle\xi_{1}\right\rangle^{1+s}\left\langle\sigma_{1}\right\rangle^{b^{\prime}}\left\langle\xi_{2}\right\rangle^{s}\left\langle\sigma_{2}\right\rangle^{b^{\prime}}}\right\|_{[3, \mathbb{R} \times \mathbb{R}]}\|f\|_{L_{\xi}^{2} L_{\tau}^{2}} \Pi_{j=1}^{2}\left\|f_{j}\right\|_{L_{\xi}^{2} L_{\tau}^{2}},
\end{aligned}
$$

where $\bar{f} \in L^{2}\left(\mathbb{R}^{2}\right)$ and $\bar{f} \geq 0$;

$$
\begin{array}{ll}
f_{1}=\left\langle\xi_{1}\right\rangle^{1+s}\left\langle\sigma_{1}\right\rangle^{b^{\prime}} \widehat{u_{1}}\left(\xi_{1}, \tau_{1}\right) ; & f_{2}=\left\langle\xi_{2}\right\rangle^{\prime}\left\langle\sigma_{2}\right\rangle^{b^{\prime}} \widehat{u_{2}}\left(\xi_{2}, \tau_{2}\right) ; \\
\xi=\xi_{1}+\xi_{2}, \tau=\tau_{1}+\tau_{2} ; & \sigma=\tau-\xi^{3}, \sigma_{1}=\tau_{1}-\xi_{1}^{3} ; \\
\sigma_{2}=\tau_{2}-\xi_{2}^{3} . &
\end{array}
$$

By the definition of $[k, Z]$-multiplier, if

$$
\left\|\frac{\langle\xi\rangle^{1+s}\left|\xi_{1}\right|}{\langle\sigma\rangle^{1-b}\left\langle\xi_{1}\right\rangle^{1+s}\left\langle\sigma_{1}\right\rangle^{b^{\prime}}\left\langle\xi_{2}\right\rangle^{s}\left\langle\sigma_{2}\right\rangle^{b^{\prime}}}\right\|_{[3, \mathbb{R} \times \mathbb{R}]} \leq C,
$$

then (2.6) holds.
By symmetry, it is enough to consider $\left|\xi_{1}\right| \leq\left|\xi_{2}\right|$. Let $r=-s$, then $\frac{1}{8}>r \geq 0$.
Denote $\widehat{F}_{\rho}(\xi, \tau)=\frac{\bar{f}(\xi, \tau)}{\left(1+\tau-\xi^{3}\right)^{\rho}}, \widehat{F}_{\rho}^{j}(\xi, \tau)=\frac{f_{j}(\xi, \tau)}{\left(1+\tau-\xi^{3} \mid\right)^{\rho}}, j=1,2$.
Case 1. $|\xi| \leq 2$.
Subcase 1.1. $\left|\xi_{1}\right| \leq 1$. We have $\left|\xi_{2}\right|=\left|\xi-\xi_{1}\right| \leq|\xi|+\left|\xi_{1}\right| \leq 3$, thus,

$$
\begin{aligned}
I & =\int_{\Gamma_{3}(\mathbb{R} \times \mathbb{R})} \frac{\chi_{|\xi| \leq 2} \bar{f}(\xi, \tau)}{\langle\xi\rangle^{r-1}\langle\sigma\rangle^{1-b}} \frac{\chi_{\left|\xi_{1}\right| \leq 1}\left|\xi_{1}\right|\left\langle\xi_{1}\right\rangle^{r-1} f_{1}\left(\xi_{1}, \tau_{1}\right)}{\left\langle\sigma_{1}\right\rangle^{b^{\prime}}} \frac{\chi_{\left|\xi_{2}\right| \leq 3}\left\langle\xi_{2}\right\rangle^{r} f_{2}\left(\xi_{2}, \tau_{2}\right)}{\left\langle\sigma_{2}\right\rangle^{b^{\prime}}} d \delta \\
& \leq C \int_{\Gamma_{3}(\mathbb{R} \times \mathbb{R})} \frac{\bar{f}(\xi, \tau)}{\langle\sigma\rangle^{1-b}} \frac{f_{1}\left(\xi_{1}, \tau_{1}\right)}{\left\langle\sigma_{1}\right\rangle^{b^{\prime}}} \frac{f_{2}\left(\xi_{2}, \tau_{2}\right)}{\left\langle\sigma_{2}\right\rangle^{b^{\prime}}} d \delta
\end{aligned}
$$

$$
\begin{aligned}
& \leq C \int \bar{F}_{1-b} \cdot F_{b^{\prime}}^{1} \cdot F_{b^{\prime}}^{2}(x, t) d x d t \\
& \leq C\left\|F_{1-b}\right\|_{L_{L}^{2} L_{L}^{2}}\left\|F_{b^{\prime}}^{1}\right\|_{L_{2}^{4} L^{4} \|}\left\|F_{b^{\prime}}^{2}\right\|_{L_{x}^{4} L_{t}^{4}} \\
& \leq C\|f\|_{L_{\xi}^{2} L_{\tau}^{2}}\left\|f_{1}\right\|_{L_{\xi}^{2} L_{\tau}^{2}}^{2}\left\|f_{2}\right\|_{L_{\xi}^{2} L_{\tau}^{2}} .
\end{aligned}
$$

We applied (2.2) of Lemma 2.1 and Lemma 2.2 here.
Subcase 1.2. $\left|\xi_{1}\right| \geq 1$. By symmetrical assumption, $\left|\xi_{2}\right| \geq 1$. For $r \leq \frac{1}{8}$, we have

$$
\begin{aligned}
& I=\int_{\Gamma_{3}(\mathbb{R} \times \mathbb{R})} \frac{\chi_{|\xi| \leq 2} \bar{f}(\xi, \tau)}{\langle\xi\rangle^{r-1}\langle\sigma\rangle^{1-b}} \frac{\chi_{\left|\xi_{1}\right| \geq 1}\left|\xi_{1}\right|\left\langle\xi_{1}\right\rangle^{r-1} f_{1}\left(\xi_{1}, \tau_{1}\right)}{\left\langle\sigma_{1}\right\rangle^{b^{\prime}}} \frac{\chi_{\left|\xi_{2}\right| \geq 1}}{}\left\langle\xi_{2}\right\rangle^{r} f_{2}\left(\xi_{2}, \tau_{2}\right),\left\langle\sigma_{2}\right\rangle^{b^{\prime}} d \delta \\
& \leq C \int_{\Gamma_{3}(\mathbb{R} \times \mathbb{R})} \frac{\bar{f}(\xi, \tau)}{\langle\sigma\rangle^{1-b}} \frac{\chi_{\left|\xi_{1}\right| \geq 1}\left|\xi_{1}\right|^{r} f_{1}\left(\xi_{1}, \tau_{1}\right)}{\left\langle\sigma_{1}\right\rangle^{b^{\prime}}} \frac{\chi_{\left|\xi_{2}\right| \geq 1}\left|\xi_{2}\right|^{r} f_{2}\left(\xi_{2}, \tau_{2}\right)}{\left\langle\sigma_{2}\right\rangle^{b^{\prime}}} d \delta \\
& \leq C \int_{\Gamma_{3}(\mathbb{R} \times \mathbb{R})} \frac{\bar{f}(\xi, \tau)}{\langle\sigma\rangle^{1-b}} \frac{\left|\xi_{1}\right|^{\frac{1}{8}} f_{1}\left(\xi_{1}, \tau_{1}\right)}{\left\langle\sigma_{1}\right\rangle^{b^{\prime}}} \frac{\left|\xi_{2}\right|^{\frac{1}{8}} f_{2}\left(\xi_{2}, \tau_{2}\right)}{\left\langle\sigma_{2}\right\rangle^{b^{\prime}}} d \delta \\
& =C \int \bar{F}_{1-b} \cdot D_{x}^{\frac{1}{8}} F_{b^{\prime}}^{1} \cdot D_{x}^{\frac{1}{8}} F_{b^{\prime}}^{2}(x, t) d x d t \\
& \leq C\left\|F_{1-b}\right\|_{L_{x}^{2} L_{t}^{2}}\left\|D_{x}^{\frac{1}{8}} F_{b^{\prime}}^{1}\right\|_{L_{x}^{4} L_{t}^{4}}\left\|D_{x}^{\frac{1}{8}} F_{b^{\prime}}^{2}\right\|_{L_{x}^{4} L_{t}^{4}} \\
& \leq C\|f\|_{L_{\xi}^{2} L_{\tau}^{2}}\left\|f_{1}\right\|_{L_{\xi}^{2} L_{\tau}^{2}}\left\|f_{2}\right\|_{L_{\xi}^{2} L_{\tau}^{2}} .
\end{aligned}
$$

We applied (2.2) of 2.1 and Lemma 2.2 here.
Case 2. $|\xi| \geq 2$.
Case 2.1. $\left|\xi_{1}\right| \leq 1$. We have $\left|\xi_{2}\right|=\left|\xi-\xi_{1}\right| \geq|\xi|-\left|\xi_{1}\right| \geq 1$, thus

$$
\begin{aligned}
& I=\int_{\Gamma_{3}(\mathbb{R} \times \mathbb{R})} \frac{\chi_{|\xi| \geq 2} \bar{f}(\xi, \tau)}{\langle\xi\rangle^{r-1}\langle\sigma\rangle^{1-b}} \frac{\chi_{\left|\xi_{1}\right| \leq 1}\left|\xi_{1}\right|\left\langle\xi_{1}\right\rangle^{r-1} f_{1}\left(\xi_{1}, \tau_{1}\right)}{\left\langle\sigma_{1}\right\rangle^{b^{\prime}}} \frac{\chi_{\left|\xi_{2}\right| \geq 1}\left\langle\xi_{2}\right\rangle^{r} f_{2}\left(\xi_{2}, \tau_{2}\right)}{\left\langle\sigma_{2}\right\rangle^{b^{\prime}}} d \delta \\
& \leq C \int_{\Gamma_{3}(\mathbb{R} \times \mathbb{R})} \frac{\chi_{|\xi| \geq 2}|\xi|^{1-r} \bar{f}(\xi, \tau)}{\langle\sigma\rangle^{1-b}} \frac{\chi_{\left|\xi_{1}\right| \leq 1} f_{1}\left(\xi_{1}, \tau_{1}\right)}{\left\langle\sigma_{1}\right\rangle^{b^{\prime}}} \frac{\chi_{\left|\xi_{2}\right| \geq 1}\left|\xi_{2}\right|^{\mid} f_{2}\left(\xi_{2}, \tau_{2}\right)}{\left\langle\sigma_{2}\right\rangle^{b^{\prime}}} d \delta \\
& \leq C \int_{\Gamma_{3}(\mathbb{R} \times \mathbb{R})} \frac{\chi_{|\xi| \geq 2}|\xi|^{1-r} \bar{f}(\xi, \tau)}{\langle\sigma\rangle^{1-b}} \frac{\chi_{\left|\xi_{1}\right| \leq 1} f_{1}\left(\xi_{1}, \tau_{1}\right)}{\left\langle\sigma_{1}\right\rangle^{b^{\prime}}} \frac{\chi_{\left|\xi_{2}\right| \geq 1}\left|\xi_{2}\right|^{r} f_{2}\left(\xi_{2}, \tau_{2}\right)}{\left\langle\sigma_{2}\right\rangle^{b^{\prime}}} d \delta \\
& \leq C \int D_{x}^{1-r} \bar{F}_{1-b} \cdot \chi_{\left|\xi_{1}\right| \leq 1} F_{b^{\prime}}^{1} \cdot D_{x}^{r} F_{b^{\prime}}^{2}(x, t) d x d t \\
& \leq C\left\|D_{x}^{1-r} F_{1-b}\right\|_{L_{x}^{2} L_{t}^{2}}\left\|\chi_{\left|\xi_{1}\right| \leq 1} F_{b^{\prime}}^{1}\right\|_{L_{x}^{2} L_{t}^{\infty}}\left\|D_{x}^{r} F_{b^{\prime}}^{2}\right\|_{L_{x}^{\frac{1}{1}-r} L_{t}^{2}} \\
& \leq C\|f\|_{L_{\xi}^{2}}\left\|_{\underset{\tau}{2}}\right\| f_{1}\left\|_{L_{\xi}^{2} L_{\tau}^{2}}^{2}\right\| f_{2} \|_{L_{\xi}^{2} L_{\tau}^{2}} .
\end{aligned}
$$

Here (2.1) and (2.4) of Lemma 2.1 and Lemma 2.2 are used. Besides, $b<\frac{9}{16}$ is also required.
Case 2.2. $\left|\xi_{1}\right| \geq 1$. By symmetrical assumption, $1 \leq\left|\xi_{1}\right| \leq\left|\xi_{2}\right|$.
Since $\left(\tau_{1}-\xi_{1}^{3}\right)+\left(\tau_{2}-\xi_{2}^{3}\right)-\left(\tau-\xi^{3}\right)=3 \xi \xi_{1} \xi_{2}$, at lease one of the following 3 cases will occur:
(a) $\left|\tau-\xi^{3}\right| \geq|\xi|\left|\xi_{1} \| \xi_{2}\right|$,
(b) $\left|\tau_{1}-\xi_{1}^{3}\right| \geq|\xi|\left|\xi_{1}\right|\left|\xi_{2}\right|$,
(c) $\left|\tau_{2}-\xi_{2}^{3}\right| \geq|\xi|\left|\xi_{1}\right|\left|\xi_{2}\right|$.

By this fact, we divide Case 2.2 into 3 different subcases as follows:
Case 2.2.1. When (a) occurs. If $r+b-1 \leq \frac{1}{8}$ and $r \geq b>\frac{1}{2}$, then

$$
\begin{aligned}
& I=\int_{\Gamma_{3}(\mathbb{R} \times \mathbb{R})} \frac{\chi_{|\xi| \geq 2} \bar{f}(\xi, \tau)}{\langle\xi\rangle^{r-1}\langle\sigma\rangle^{1-b}} \frac{\chi}{\chi_{\left|\xi_{1}\right| \geq 1}\left|\xi_{1}\right|\left\langle\xi_{1}\right\rangle^{r-1} f_{1}\left(\xi_{1}, \tau_{1}\right)} \frac{\chi_{\left|\xi_{2}\right| \geq 1}\left\langle\xi_{2}\right\rangle^{r} f_{2}\left(\xi_{2}, \tau_{2}\right)}{\left\langle\sigma_{1}\right\rangle^{b^{\prime}}} d \delta \\
& \leq C \int_{\Gamma_{3}(\mathbb{R} \times \mathbb{R})} \frac{\chi_{|\xi| \geq 2}|\xi|^{1-r} \bar{f}(\xi, \tau)}{\left(|\xi|\left|\xi_{1}\right|\left|\xi_{2}\right|\right)^{1-b}} \frac{\chi_{\left|\xi_{1}\right| \geq 1}\left|\xi_{1}\right|^{r} f_{1}\left(\xi_{1}, \tau_{1}\right)}{\left\langle\sigma_{1}\right\rangle^{b^{\prime}}} \frac{\chi_{\left|\xi_{2}\right| \geq 1}\left|\xi_{2}\right|^{r} f_{2}\left(\xi_{2}, \tau_{2}\right)}{\left\langle\sigma_{2}\right\rangle^{b^{\prime}}} d \delta \\
& \leq C \int_{\Gamma_{3}(\mathbb{R} \times \mathbb{R})} \chi_{|\xi| \geq 2}|\xi|^{b-r} \bar{f}(\xi, \tau) \frac{\chi_{\left|\xi_{1}\right| \geq 1}\left|\xi_{1}\right|^{r+b-1} f_{1}\left(\xi_{1}, \tau_{1}\right)}{\left\langle\sigma_{1}\right\rangle^{b^{\prime}}} \frac{\chi_{\left|\xi_{2}\right| \geq 1}\left|\xi_{2}\right|^{\mid r+b-1} f_{2}\left(\xi_{2}, \tau_{2}\right)}{\left\langle\sigma_{2}\right\rangle^{b^{\prime}}} d \delta \\
& \leq C \int_{\Gamma_{3}(\mathbb{R} \times \mathbb{R})} \bar{f}(\xi, \tau) \frac{\left|\xi_{1}\right|^{\frac{1}{8}} f_{1}\left(\xi_{1}, \tau_{1}\right)}{\left\langle\sigma_{1}\right\rangle^{b^{\prime}}} \frac{\left|\xi_{2}\right|^{\frac{1}{8}} f_{2}\left(\xi_{2}, \tau_{2}\right)}{\left\langle\sigma_{2}\right\rangle^{b^{\prime}}} d \delta \\
& =C \int \bar{F}_{0} \cdot D_{x}^{\frac{1}{8}} F_{b^{\prime}}^{1} \cdot D_{x}^{\frac{1}{8}} F_{b^{\prime}}^{2}(x, t) d x d t \\
& \leq C\left\|F_{0}\right\|_{L_{x}^{2} L_{t}^{2}}\left\|D_{x}^{\frac{1}{8}} F_{b^{\prime}}^{1}\right\|_{L_{x}^{4} L_{t}^{4}}\left\|D_{x}^{\frac{1}{8}} F_{b^{\prime}}^{2}\right\|_{L_{x}^{4} L_{t}^{4}} \\
& \leq C\|f\|_{L_{\xi}^{2} L_{T}^{2}}\left\|f_{1}\right\|_{L_{\xi}^{2} L_{F}^{2}}\left\|f_{2}\right\|_{L_{\xi}^{2} L_{T}^{2}} .
\end{aligned}
$$

Here (2.2) of Lemma 2.1 and Lemma 2.2 are used.
The above results implies that if $r+b-1 \leq \frac{1}{8}$ and $r \geq b>\frac{1}{2}$, then

$$
\begin{equation*}
\left\|\frac{\left\langle\xi_{1}\right\rangle^{r-1}\left|\xi_{1}\right|\left\langle\xi_{2}\right\rangle^{r}}{\langle\sigma\rangle^{1-b}\langle\xi\rangle^{r-1}\left\langle\sigma_{1}\right\rangle^{b^{\prime}}\left\langle\sigma_{2}\right\rangle^{b^{\prime}}}\right\|_{[3, \mathbb{R} \times \mathbb{R}]} \leq C . \tag{2.8}
\end{equation*}
$$

By Lemma 2.3, when $r \leq \frac{1}{8}$, (2.8) still holds. Indeed, since $\xi=\xi_{1}+\xi_{2}$, we have $\langle\xi\rangle \leq\left\langle\xi_{1}\right\rangle\left\langle\xi_{2}\right\rangle$. If $r_{1} \leq r_{2}$, then

$$
\begin{aligned}
& m=\frac{\left\langle\xi_{1}\right\rangle^{r_{1}-1}\left|\xi_{1}\right|\left\langle\xi_{2}\right\rangle^{r_{1}}}{\langle\sigma\rangle^{-b}\langle\xi\rangle^{r_{1}-1}\left\langle\sigma_{1}\right\rangle^{b^{\prime}}\left\langle\sigma_{2}\right\rangle^{b^{\prime}}}=\frac{\left\langle\xi_{1}\right\rangle^{r_{1}}\left\langle\xi_{2}\right\rangle^{r_{1}}}{\langle\xi\rangle^{1}} \frac{\left\langle\xi_{1}\right\rangle^{-1}\left|\xi_{1}\right|}{\langle\sigma\rangle^{1-b}\langle\xi\rangle^{-1}\left\langle\sigma_{1}\right\rangle^{b^{\prime}}\left\langle\sigma_{2}\right\rangle^{b^{\prime}}} \\
& \leq \frac{\left\langle\xi_{2}\right\rangle^{r_{2}}\left\langle\xi_{2}\right\rangle^{r_{2}}}{\langle\xi\rangle^{r_{2}}} \frac{\left\langle\xi_{1}\right\rangle^{-1}\left|\xi_{1}\right|}{\langle\sigma\rangle^{1-b}\langle\xi\rangle^{-1}\left\langle\sigma_{1}\right\rangle^{b^{\prime}}\left\langle\sigma_{2}\right\rangle^{b^{\prime}}}=\frac{\left\langle\xi_{1} r^{r_{2}-1}\right| \xi_{1} \mid\left\langle\xi_{2}\right\rangle^{r_{2}}}{\langle\sigma\rangle^{1-b}\langle\xi\rangle^{r_{2}-1}\left\langle\sigma_{1}\right\rangle^{b^{\prime}}\left\langle\sigma_{2}\right\rangle^{b^{\prime}}}=M .
\end{aligned}
$$

Case 2.2.2. When (b) occurs. If $r+b^{\prime} \geq 1,0<r-b^{\prime} \leq \frac{1}{16}$, we have

$$
\begin{aligned}
I & =\int_{\Gamma_{3}(\mathbb{R} \times \mathbb{R})} \frac{\chi_{|\xi| \geq 2} \overline{\langle }(\xi, \tau)}{\langle\xi\rangle^{r-1}\langle\sigma\rangle^{1-b}} \frac{\chi_{\left|\xi_{1}\right| \geq 1}\left|\xi_{1}\right|\left\langle\xi_{1}\right\rangle^{r-1} f_{1}\left(\xi_{1}, \tau_{1}\right)}{\left\langle\sigma_{1}\right\rangle^{b^{\prime}}} \frac{\chi_{\left|\xi_{2}\right| \geq 1}\left\langle\xi_{2}\right\rangle^{r} f_{2}\left(\xi_{2}, \tau_{2}\right)}{\left\langle\sigma_{2}\right\rangle^{b^{\prime}}} d \delta \\
& \leq C \int_{\Gamma_{3}(\mathbb{R} \times \mathbb{R})} \frac{\chi_{|\xi| \geq 2}|\xi|^{1-r} \bar{f}(\xi, \tau)}{\langle\sigma\rangle^{1-b}} \frac{\chi_{\left|\xi_{1}\right| \geq 1}\left|\xi_{1}\right|^{r} f_{1}\left(\xi_{1}, \tau_{1}\right)}{\left(|\xi| \xi_{1}| | \xi_{2} \mid\right)^{b^{\prime}}} \frac{\chi_{\left|\xi_{2}\right| \geq 1}\left|\xi_{2}\right|^{r} f_{2}\left(\xi_{2}, \tau_{2}\right)}{\left\langle\sigma_{2}\right\rangle^{b^{\prime}}} d \delta \\
& \leq C \int_{\Gamma_{3}(\mathbb{R} \times \mathbb{R})} \frac{\chi_{|\xi| \geq 2}|\xi|^{1-b^{\prime}-r} \bar{f}(\xi, \tau)}{\langle\sigma\rangle^{1-b}} \cdot \chi_{\left|\xi_{1}\right| \geq 1}\left|\xi_{1}\right|^{r-b^{\prime}} f_{1}\left(\xi_{1}, \tau_{1}\right) \cdot \frac{\chi_{\left|\xi_{2}\right| \geq 1}\left|\xi_{2}\right|^{r-b^{\prime}} f_{2}\left(\xi_{2}, \tau_{2}\right)}{\left\langle\sigma_{2}\right\rangle^{b^{\prime}}} d \delta \\
& \leq C \int_{\Gamma_{3}(\mathbb{R} \times \mathbb{R})} \frac{\bar{f}(\xi, \tau)}{\langle\sigma\rangle^{1-b} \cdot f_{1}\left(\xi_{1}, \tau_{1}\right) \cdot \frac{\left|\xi_{2}\right|^{2\left(r-b^{\prime}\right)} f_{2}\left(\xi_{2}, \tau_{2}\right)}{\left\langle\sigma_{2}\right\rangle^{b^{\prime}}} d \delta} \\
& =C \int \bar{F}_{1-b} \cdot F_{0}^{1} \cdot D_{x}^{\frac{1}{8}} F_{b^{\prime}}^{2}(x, t) d x d t
\end{aligned}
$$

$$
\begin{aligned}
& \leq C\left\|F_{1-b}\right\|_{L_{L}^{4} L_{f}^{4}}\left\|F_{0}^{1}\right\|_{L_{2}^{2} L_{t}^{2}}^{2}\left\|D_{x}^{\frac{1}{8}} F_{b^{\prime}}^{2}\right\|_{L_{x}^{4} L_{t}^{4}} \\
& \leq C\|f\|_{L_{\xi}^{2} L_{\tau}^{2}}\left\|f_{1}\right\|_{L_{\xi}^{2} L_{\tau}^{2}}^{2}\left\|f_{2}\right\|_{L_{\xi}^{2} L_{\tau}^{2}},
\end{aligned}
$$

where (2.2) of Lemma 2.1 and Lemma 2.2 is used here. Besides, it is required that $b<\frac{5}{8}$.
When $r \leq \frac{1}{8}$, the results is implied by Lemma 2.3.
Case 2.2.3. When (c) occurs. The proof is similar to Case 2.2.2, we omit the detail.

3. Proof of the main theorem

Take $\theta \in C_{0}^{\infty}(\mathbb{R})$ such that: When $t \in\left[-\frac{1}{2}, \frac{1}{2}\right], \theta \equiv 1$ and $\operatorname{supp} \theta \subseteq(-1,1)$. Denote $\theta_{\delta}(t)=\theta\left(\frac{t}{\delta}\right)$. Let $U(t)(t \in \mathbb{R})$ denote fundamental solution operator of the Airy equation: $v_{t} \pm v_{x x x}=0$:

$$
U(t) \varphi=\int_{-\infty}^{\infty} e^{i\left(x \xi \mp \neq \xi^{3}\right)} \widehat{\varphi}(\xi) d \xi, \forall \varphi \in H^{s}(\mathbb{R}), s \in \mathbb{R} .
$$

Lemma 3.1. Let $s \in R, \frac{1}{2}<b<b^{\prime} \leq 1,0<\delta \leq 1$, then

$$
\begin{gather*}
\left\|\theta_{\delta}(t) U(t) u_{0}\right\|_{X_{s, b}} \leq C \delta^{\frac{(1-2 b)}{2}}\left\|u_{0}\right\|_{H^{s}}, \tag{3.1}\\
\left\|\theta_{\delta}(t) \int_{0}^{t} U(t-s) F(s) d s\right\|_{X_{s, b}} \leq C \delta^{\frac{(1-2 b)}{2}}\|F\|_{X_{s, b-1}}, \tag{3.2}\\
\left\|\theta_{\delta}(t) F\right\|_{X_{s, b-1}} \leq C \delta^{b^{\prime}-b}\|F\|_{X_{s, b b^{\prime}-1}} . \tag{3.3}
\end{gather*}
$$

Proof. See [10].
In the following, we will give the

Proof of Theorem 1.1:

Proof. For $s \geq-\frac{1}{8}$, let $(\phi, \psi) \in H^{s} \times H^{1+s}$ and $\|(\phi, \psi)\|_{H^{s} \times H^{1+s}} \equiv\|\phi\|_{H^{s}}+\|\psi\|_{H^{1+s}}=r$. Define

$$
B_{r}=\left\{(u, v) \in X_{s, b} \times X_{1+s, b}:\|(u, v)\|_{X_{s, b} \times X_{1+s, b}} \leq 2 C r\right\},
$$

then B_{r} is Banach space, whose norm is

$$
\|(u, v)\|_{X_{s, b} \times X_{1+s, b}} \equiv\|u\|_{X_{s, b}}+\|v\|_{X_{1+s, b}} .
$$

For $(u, v) \in B_{r}$, define the mapping

$$
\left\{\begin{array}{l}
\Phi_{\phi}[u, v]=\theta_{1}(t) U(t) \phi-\theta_{1}(t) \int_{0}^{t} U(t-s) \theta_{\delta}(t)\left[6 u u_{x}-2 \beta v v_{x}\right](s) d s, \\
\Psi_{\psi}[u, v]=\theta_{1}(t) U(t) \psi-\theta_{1}(t) \int_{0}^{t} U(t-s) \theta_{\delta}(t)\left[3 u v_{x}\right](s) d s .
\end{array}\right.
$$

We will prove that $\Phi \times \Psi_{(\phi, \psi)}[u, v]$ map B_{r} into B_{r}.
By (3.1)-(3.3) in Lemma 3.1 and bi-linear estimate (2.7), there exists b, b^{\prime} satisfying $\frac{1}{2}<b<b^{\prime} \leq \frac{9}{16}$ such that

$$
\begin{aligned}
\left\|\Phi_{\phi}[u, v]\right\|_{X_{s, b}} & \leq\left\|\theta_{1}(t) U(t) \phi\right\|_{X_{s, b}}+\left\|\theta_{1}(t) \int_{0}^{t} U(t-s) \theta_{\delta}(t)\left[6 u u_{x}-2 \beta v v_{x}\right](s) d s\right\|_{X_{s, b}} \\
& \leq C\|\phi\|_{H^{s}}+C\left\|\theta_{\delta}(t) u u_{x}\right\|_{X_{s, b-1}}+C\left\|\theta_{\delta}(t) v v_{x}\right\|_{X_{s, b-1}}
\end{aligned}
$$

$$
\begin{align*}
& \leq C\|\phi\|_{H^{s}}+C \delta^{b^{\prime}-b}\left\|u u_{x}\right\|_{X_{s, b^{\prime}-1}}+C \delta^{b^{\prime}-b}\left\|v v_{x}\right\|_{X_{s, b^{\prime}-1}} \\
& \leq C\|\phi\|_{H^{s}}+C \delta^{b^{\prime}-b}\|u\|_{X_{s, b}}^{2}+C \delta^{b^{\prime}-b}\|v\|_{X_{s, b}}^{2} \\
& \leq C\|\phi\|_{H^{s}}+C \delta^{b^{\prime}-b}\|u\|_{X_{s, b}}^{2}+C \delta^{b^{\prime}-b}\|v\|_{X_{1+s, b}}^{2} \tag{3.4}
\end{align*}
$$

Similarly, by (3.1)-(3.3) of Lemma 3.1 and bilinear estimate (2.6), we have

$$
\begin{align*}
\left\|\Psi_{\psi}[u, v]\right\|_{X_{1+s, b}} & \leq\left\|\theta_{1}(t) U(t) \psi\right\|_{X_{1+s, b}}+\left\|\theta_{1}(t) \int_{0}^{t} U(t-s) \theta_{\delta}(t)\left[3 u v_{x}\right](s) d s\right\|_{X_{1+s, b}} \\
& \leq C\|\psi\|_{H^{1+s}}+C\left\|\theta_{\delta}(t) u v_{x}\right\|_{X_{1+s, b-1}} \\
& \leq C\|\psi\|_{H^{1+s}}+C \delta^{b^{\prime}-b}\left\|u v_{x}\right\| X_{X_{1+s, b^{\prime}-1}} \\
& \leq C\|\psi\|_{H^{1+s}}+C \delta^{b^{\prime}-b}\|u\|_{X_{s, b}, b} \|_{X_{1+s, b}} \\
& \leq C\|\psi\|_{H^{1+s}}+C \delta^{b^{b^{-b}}\|u\|_{X_{s, b}}+\delta^{b^{\prime}-b}\|v\|_{X_{1+s, b}}^{2} .} \tag{3.5}
\end{align*}
$$

Thus, by the estimates (3.4) and (3.5), we have

$$
\begin{aligned}
\left\|\Phi \times \Psi_{(\phi, \psi)}[u, v]\right\|_{X_{s, b} \times X_{1+s, b}} & \leq C\|\phi\|_{H^{s}}+C\|\psi\|_{H^{1+s}}+C \delta^{b^{\prime}-b}\|u\|_{X_{s, b}}^{2}+C \delta^{b^{\prime}-b}\|v\|_{X_{1+s, b}}^{2} \\
& \leq C\|(\phi, \psi)\|_{H^{s} \times H^{1+s}}+C \delta^{b^{\prime}-b}\left[\|u\|_{X_{s, b}}^{2}+\|v\|_{X_{1+s, b}}^{2}\right] \\
& \leq C\|(\phi, \psi)\|_{H^{s} \times H^{1+s}}+C \delta^{b^{\prime}-b}\|(u, v)\|_{X_{s, b} \times X_{1+s, b}}^{2} .
\end{aligned}
$$

Thus, when taking $\delta<\left[(2 C)^{2} r\right]^{\frac{1}{b-b^{\prime}}}, \Phi \times \Psi_{(\phi, \psi)}[u, v]$ mapping B_{r} into B_{r}.
Similar to (3.4) and (3.5), for δ determined above, we have

$$
\left\|\Phi \times \Psi_{(\phi, \psi)}\left[u_{1}, v_{1}\right]-\Phi \times \Psi_{(\phi, \psi)}\left[u_{2}, v_{2}\right]\right\|_{X_{s, b} \times X_{1+s, b}}<\frac{1}{2}\|(u, v)\|_{X_{s, b} \times X_{1+s, b}} .
$$

Thus, $\Phi \times \Psi_{(\phi, \psi)}[u, v]$ is contract mapping.
Finally, by Banach theorem, $\forall t(0<t \leq 1)$, in the ball B_{r}, the mapping $\Phi \times \Psi_{(\phi, \psi)}[u, v]$ have unique fixed point (u, v) satisfying

$$
\left\{\begin{array}{l}
u=U(t) \phi-\int_{0}^{t} U(t-s)\left[6 u u_{x}-2 \beta v v_{x}\right](s) d s, \\
v=U(t) \psi-\int_{0}^{t} U(t-s)\left[3 u v_{x}\right](s) d s .
\end{array}\right.
$$

4. Conclusions

Remark 4.1. Although, the main result in this paper covered the results of [7], it must be not the sharp results when compare it with [9].

Remark 4.2. When compare it with [9], we conjecture that the initial value problem of Hirota-Satsuma system maybe locally well-posed in $H^{s}(\mathbb{R}) \times H^{s+1}(\mathbb{R})$, for any $s>-\frac{3}{4}$. We'll investigate this question in the future.

Remark 4.3. We are interested in well-posedness of initial boundary value problem of the Hirota-Satsum system, especially well-posedness with low regularity datum. We'll show the results in elsewhere.

Acknowledgments

This work is financially supported by the Natural Science Foundation of Zhejiang Province (No. LY18A010024, No. Y19A050005) and National Natural Science Foundation of China (No. 12075208).

Conflict of interest

The authors declare that they have no conflicts of interest.

References

1. R. Hirota, J. Satsuma, Soliton solutions of a coupled Korteweg-de Vries equation, Phys. Lett. A, $\mathbf{8 5}$ (1981), 407-408. https://doi.org/10.1016/0375-9601(81)90423-0
2. R. Hirota, Y. Ohta, Hierarchies of coupled soliton equations. I, J. Phys. Soc. Japan, 60 (1991), 798-809. https://doi.org/10.1143/JPSJ.60.798
3. H. W. Tam, W. X. Ma, The Hirota-Satsuma coupled KdV equation and a coupled Ito system revisited, J. Phys. Soc. Japan, 69 (2000), 45-52. https://doi.org/10.1143/JPSJ. 69.45
4. H. C. Hu, Q. P. Liu, New Darboux transformation for Hirota-Satsuma coupled KdV system, Chaos Solitons Fract., 17 (2003), 921-928. https://doi.org/10.1016/S0960-0779(02)00309-0
5. H. Prado, A. Cisneros-Ake, The direct method for multisolitons and two-hump solitons in the Hirota-Satsuma system, Phys. Lett. A, 384 (2020), 126471. https://doi.org/10.1016/j.physleta.2020.126471
6. H. Prado, A. Cisneros-Ake, Alternative solitons in the Hirota-Satsuma system via the direct method, Partial Differ. Equ. Appl. Math., 3 (2021), 100020. https://doi.org/10.1016/j.padiff.2020.100020
7. X. S. Feng, Global well-posedness of the initial value problem for the Hirota-Satsum system, Manuscripta Math., 84 (1994), 361-378. https://doi.org/10.1007/BF02567462
8. J. Angulo, Stability of dnoidal waves to Hirota-Satsuma system, Differ. Integr. Equ., 18 (2005), 611-645.
9. M. Panthee, J. D. Silva, Well-posedness for the Cauchy problem associated to the Hirota-Satsuma equation: Periodic case, J. Math. Anal. Appl., 326 (2007), 800-821. https://doi.org/10.1016/j.jmaa.2006.03.010
10. C. E. Kenig, G. Ponce, L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71 (1993), 1-21. https://doi.org/10.1215/S0012-7094-93-07101-3
11. T. Tao, Multilinear weighted convolution of L^{2} functions and applications to nonlinear dispersive equations, Am. J. Math., 123 (2001), 839-908. https://doi.org/10.1353/ajm.2001.0035
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
