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1. Introduction

The fractional differential equations have drawn much attention due to their applications in a number
of fields such as physics, mechanics, chemistry, biology, economics, biophysics, etc, see [16, 32].
Some physical phenomena such as the fractional oscillator equations and fractional Euler-Lagrange
equations with mixed fractional derivatives can be found in [10, 12,31]. Once a model of fractional
differential equation for the real problem have been constructed, people faced the issue of how to solve
this model. In many circumstances, finding the exact solution to the fractional differential equation
is quite challenging. As a result, researchers must identify as many aspects of the problem’s solution
as possible. Is there a solution to the problem, for example? Is the solution unique if there is a
one? Hence the study of existence and uniqueness solutions for fractional differential equations with
initial and boundary conditions appealed many scientists and mathematicians [2-4, 19-21, 25,27, 30].
Some existence results for fractional differential equations with integral boundary conditions can be
found in [17,28,29]. Recently, the existence theorem for fractional differential equations involving
mixed fractional derivatives have been studied by many authors [35, 6, 8]. More specifically, Abbas [1]
proved the existence and uniqueness of solution for a boundary value problem of fractional differential
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equation of the form

D) = ft,y@t),C DPy(r)), B>0,
y©0) = y(@m), ¥ (©0)=0, y'(0)=0, .. y"20)=0, y(1)=21y@),

where @ € (m —1,m], m > 2, and *D?,C D? are the Caputo fractional derivatives. Alghamdi et al. [7]
studied new existence and uniqueness results for three-point boundary value problem of sequential
fractional differential equations given by

(D' + K DOy = ft,y(1), 1<B<2, k>0,
ye) =0, yip =0, () =0, -oco<e<n<{<oo,
where €DF is Caputo fractional derivative. Song et al. [34] used the coincidence degree theory while

proving the existence of solutions of the following nonlinear mixed fractional differential equation with
the integral boundary value problem:

DD y(t) = f(t,y(0), Dy, DL y(@), ae(1,2], Be(0,1], 0<r<1,

1
y(0) =y(0)=0, y(1) = fo Y($)dA(1),

where ©D?_ and Dg . are respectively the left Caputo fractional derivative and the right
Riemann—Liouville fractional derivative. Sousa et al. [35] investigated the existence and uniqueness
of mild and strong solutions of fractional semilinear evolution equations, by means of the Banach
fixed point theorem and the Gronwall inequality. The notion of Ulam stability has been studied and
expanded in many ways. There have been a number of articles published on this subject that have
yielded a number of conclusions [11,23,24]. Ibrahim [18] examined Ulam stability for the Cauchy
differential equation of fractional order in the unit disk. Chen et al. [13] studied the Ulam-Hyers
stability of solutions for linear and nonlinear nabla fractional Caputo difference equations when

0 < v < 1 on finite intervals. The linear case has the form
V(1) = Ax(0) + f (1),
x(a) = y(a),

and the non-linear case has the form

VVx(t) = Ax(1) + f(t,¥(1)),
x(a) = y(a).

Muniyappan and Rajan [26] discussed Hyers-Ulam and Hyers-Ulam-Rassias stability for the
following fractional differential equation with boundary condition

D%y(t) = f(t,y(1)), O0<a<l,
ay(0) + by(T) = c,

where D is Caputo fractional derivative of order @. Dai et al. [14] researched the Ulam—Hyers and
Ulam-Hyers—Rassias stability of nonlinear fractional differential equations with integral boundary
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condition which has the form
Y (@) +€ D3 y(@) = f(t,y(1), 0<a<1, € [0, 11,

y() =1 +y(")_r(,3)f("_s)ﬁ y(s)ds, B> 0,

where D” is Caputo derivative and I'g . (1) is the Riemann-Liouville fractional integral.
In this paper, we consider the nonlinear fractional differential equations wich has the form

RDP (CDY(t) + A°D'y(0)) = f(t,y(t)), J=1[0,1], A#0, (1.1)

with initial conditions
1 1 1
y0)=0, (0 = f y(s)ds, and y"(0)= —— f (1 — sy 'y(s)ds, (1.2)
0 L) Jo

where f : JXR - R, 1 <a <2, 0<p <1, °D?is the Caputo fractional derivative, and *D? is
the Riemann fractional derivative. New existence and uniqueness results are obtained by driving the
corresponding Green'’s function of problem (1.1) and (1.2) with the help of the Schauder theorem and
Banach contraction principle. Furthermore, the Ulam—Hyers and Ulam—Hyers—Rassias stability for
Eq (1.1) is briefly described. Finally, some examples are given to demonstrate the application of our
main results.

2. Preliminaries

Let us give some definitions and lemmas that are basic and needed at various places in this work.
Definition 2.1. [9] Let f be a function which is defined almost everywhere (a.e.) on [a, b], If @ > 0,

then: 1
b ya (b )a
If—fﬂ)n)d&

provided that this integral (Lebesgue) exists.

Definition 2.2. [22] The Riemann-Liouville fractional derivative oforder a > 0 for a function function
f :10,00) — R, is defined as

1 a ("
RLD(t £ = —_f t— n—a—1 d, -1< <n,
O = Formayar ), €9 s =1 <a<n
where n = [a] + 1, [a] denotes the integer part of the real number a.

Definition 2.3. [32] For a continuous function f : [0,00) — R, the Caputo derivative of fractional

order « is defined as

— )" f(ds, n-1<a<n,

°Df(r) =

provided that ™ exists, where n = [a] + 1, [a] denotes the integer part of the real number a.
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Lemma 2.4. [32] Let f(¢) € Li[a,b] and @, > 0. Then
I°PPf(t) = IP£(t) = PI° £(¢) (a.e) on [a, b].

Moreover, if f(t) € Cla, b], then the above identity is true for all ¢ € [a, b].

Lemma 2.5. [9] Let @ > 0, n be the smallest integer n > @ and let f(r) € L(a, b). If | D*7! f exists and
is absolutely continuous on [a, b], then fD“"' f = ki exists fori = 1,2, ...,n; !, D*f exists a.e. on [a, b],
is in L(a, b) and

YIDYf(s) = f(t) - Z Ifc(g —la-): 11) ae. on a<t<bh.

Furthermore, the inequality holds everywhere on (a, b], if in addition, f(¢) is continuous on (a, b].

Lemma 2.6. [22] Leta > 0. If we assume y € C(0, 1)NL,(0, 1), then the Caputo fractional differential
equation
D) =0

has the solution
V(1) =co+cit + et + oo+ Cp ™),

wherec; e R,i=0,1,2,..,n—1,and n = [a] + 1.

Lemma 2.7. [22] Lety € C(0,1) N L,(0, 1) with fractional derivative of order @ > 0 that belongs to
C(0,1)N Ly(0,1). Then

I° CDY(t) = y(t) + co + 1t + o> + ... + Cu "7,

forc;eR,i=0,1,2,...,n -1, where n is the smallest integer greater than or equal to a.
Lemma 2.8. [9,32] Leta,B€R,8>—1.1ft > a, then
(o (s—af ﬂ, @ + B # negative integer,
LTEr D I'g+1) { (l)",(a HhD @ + 8 = negative integer.
Definition 2.9. [32] The two-parametric Mittag-Leffler function is defined as
oo k

Eqp(t) = kZ:(; Thatg Pl C, Re(@)>0, Re(B)> 0.

Theorem 2.10. [15] (Arzela-Ascoli Theorem). If X is compact and f C C(X), then f totally is bounded
if and only if f is bounded and equicontinuous.

Theorem 2.11. [15](Schauder fixed point theorem ). Let X be a Banach space and let M C X be
nonempty, convex, and closed. If T : M — M is compact, then T has a fixed point

Theorem 2.12. [36] (Contraction mapping principle). Let M be a Banach space. If T : M — M is a
contraction, then T has a unique fixed point in M.
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For the definitions of Ulam-Hyers stable and Ulam-Hyers-Rassias stable see [33].

Definition 2.13. The Eq (1.1) is Ulam-Hyers stable if there exists a real number c¢; > 0 such that for
each & > 0 and for each solution z € C'(J,R) of the inequality

*DP (‘Dz(t) + A°D*'2() — f(t,2()) < &, 1€, (2.1)
there exists a solution y € C!(J,R) of Eq (1.1) with
l2(t) = y()| < cpe, 1€

Definition 2.14. The Eq (1.1) is Ulam-Hyers-Rassias stable with respect to ¢ € C(J, R,) if there exists
a real number ¢, > 0 such that for each & > 0 and for each solution z € C'(J,R) of the inequality

*DP (‘D2(t) + A°D*'2(1) — f(t,2(0))] < ep(t), 1€, (2.2)
there exists a solution y € C'(J,R) of Eq (1.1) with
2() = y(1)| < crep(t), teJ.

Lemma 2.15. Let f € C[0,1], ye C 1[0, 1], then the initial value problem (1.1) and (1.2) has a solution

1
1) = f G(1,5)f (s, y(5))ds, (2.3)
0
where G(t, s) is the Green’s function described by
e~ A=) my(1 — sy~ myms
S [T Lty
F'a+B-1) fo(s 7) T La+p(=AL) I @) 2 p)

e—/l(s—‘r) - (T _ r)a+,8 2

a-en@l=0 o))
YT 1o @Qumy - Qumy) P T@+p-1)

drdr, if 0<s<t,

G, s) =
wtpo1 B my(1 — s)P! B mm (1 - syt B
2 ”‘”(M rp) (’”2); o (1= e @) o)
AT r (T — )P .
b @ —amy b T@epp@n U r=ssl
where

S o A(s—T) pa+B-2
1 F(:B) f( _S)ﬁ f F(a+,3—1)deS’
—/l(s T) T
- _oaat+p-2
w r(p) f A= f Ta+8-1) fo (T =" f(r, y(r)drdrds,
—/l(s T)
o f f Ta+p-1) fo (r = NP2 f(r, y(r)drdrds,
S o= Als=T) pa+B-2

Q4—f f F(a+,8—1)des’
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1 ! 1
D = — 1= -1 —/lsd _ _/12’
: F(ﬁ)fo( et - p

A2 A

D :(,12—/1— ‘”+1), =—, =—,
2 € n D, n

Proof. By applying the Lemma 2.5 and 2.7, we may reduce Eq (1.1) to an equivalent equation

a+f-1

I'(a+pB)

+ ko + kyt.

y(1) +/1f y($)ds = (I P [, y(0) + ¢
0

Operate both sides of Eq (2.4) by operator D, we get
a+p-2

Dy + y(@) = I yW) + e +

ki.

Then the solution of Eq (2.5) is

t —A(t-s) s(x+ﬁ—2 kl

y(t) — e—/lty(O) +£ e—/l(t—s) Zla+ﬁ—1f(s’ y(s))ds + C L F(a’+—ﬂ—1)ds 1

Using the initial conditions (1.2), we find that

_ (Qamy = Q3 my)

Q,Q, — Q3Q
o = and k= m (€282 — £30Q2))

m .
(Qymy — Qymy) P (Qqmy — Qymy)

Substituting the values of ¢, and k; in Eq (2.6), we have

‘ _ t—A(t—5) qa+B-2
) - (szl .Q.3 mz) e S

a):‘f‘eﬂ“3>;1*% (s, y(s))ds + —————ds

o= Jsy Qumy —Qumy) Jy T@+B—1D)

Q04 — Q:Q)) i
+ I- ,
M y — ¢

1
= j(: G(t, 8)f(s,y(s))ds.

The converse of the lemma follows from a direct computation. Hence, the proof is completed.

3. Main results

+—(1—e).

(2.4)

(2.5)

(2.6)

O

In this section, we prove the existence and uniqueness of solution for the problem (1.1) and (1.2) in

the Banach space C by applying Banach contraction principle and Schauder fixed point theorem.

Let C([0, 1], R) denote the Banach space of all continuous functions from [0, 1] into R with the norm

defined by
Ivll = sup{ |[y(®I, € [0, 1]}.

To prove the main results, we need the following assumptions:

(H1) There exists a positive constants 7y, y, such that | f(t, y(t))| < y1 + y2ly(¢)|, for each ¢ € J and all

yeR.
(H2) There exists a positive constant k such that | f(t, x(1) — f(t, y(t))| < kl|x(t) — y(2)l,
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foreachr € Jandall x,y € R.
(H3) There exists an increasing function ¢ € C(J,R,) and there exists v, > 0 such that for any 7 € J,
we have

¢ S(z+,6’—2
[) o~ A=) F(a’+—,3—1)()0(S)dS < V(1)

For convenience, we define the following notations:

_ k(1 — 6_/1) (1 4 my (1 - 6_1)(/1 + 2m, Az) + my Ay )’

K= AT+ PTha+B-DIB+1)  AT@+B-1)

_ ‘mlEl,a/+2ﬁ+l(_/l) - m2E1,<z+ﬁ+2(_/D
&= szl,(y+ﬁ+1(—/1) - mlEl,a+2ﬁ(—/1) ’

_ mymy |Ergipii(FOE g00p11(=A) = Ey g405(=DE) g1p42(=2)
2= A M E| oip11(—=) — mE} 428(=A1) '
L3 =1""F |El,a+ﬁ+l(_/lt)| + 4y ! |E1,a+,3(—/1f)| + §2|1 - €_/U|,

A1 = |Eraspt O]+ 4 |Erass(=D)] + L1 = e7™).
The existence result can be obtained by the Schauder fixed point theorem.

Theorem 3.1. Assume f : JXR — R is continuous and satisfies (HI). Then the problem (1.1) and (1.2)
has a solution.

Proof. Consider an operator T defined on C(J) by

1
(Ty)(t) = sup fo G(t, 5)f (s, y(s))ds.

teJ

By the continuity of the functions G(, s) and f(¢,y(t)), we have Ty € C(J) for any y € C(J). We

A
define the set B, = {y(r) € C(J,R) : ||y|| < r} and choose r > 71

———— . First, we have to show that
(1 =y2A)

T Br C Br, for y € B,. Now, consider

1
Tyl =SUPfO G (2, 9 f(s, y(s)lds.

teJ

Then |
I(TY)DI < (y1 + y2r) sup f IG(t, s)lds,
0

teJ

and so

TN < 01+ 720 |Erapor (=20)

mE1 gi0p01(—A) — maEy g4540(—2)
MoE1 q4p41(—=A) — miEy 4105(—2)

E1oipr1(mDE 1 4128:1(—A) = E10428(—DE| 41p12(— 1)

m2E1,a+ﬁ+1(—/l) - mlEl,w+2ﬂ(_/1)

+ 1P E g (=0)

ny mp
A

‘ (1- e—ﬂ’)).
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Therefore, we have

miE; a+2ﬁ+1(—/1) -mkE, a+ﬁ+2(—/1)
ITY)DIl < (1 + r)( E\ gipr1 (=) + |E1arp(=2) ’ :
nEr | hatp | | bath | m2E1,0+ﬂ+l(_/1)_mlEl,a+2,B(_/l)

E],a+ﬁ+l(_/I)El,a/+2,8+l(_/l) - El,a+2,8(_/l)El,a+ﬁ+2(_/l) (1 _ e_’l))
MoE gipi1 (=) — i E} 408(=) ’

mp myp
A

which implies that
TN < (1 +y2n)AL <7

Hence, TBr C Br.
Next, we need to prove that T is a completely continuous operator. For this purpose we fix,
Q = sup,., |f(s,y(s))|, where y € B,, and t,7 € J with < 7. Then

1
IT)(@) =TI < qupf 1G(z, 5) — G(, 5)| ds.
0

teJ

Therefore,

ITG)(®) - TO)@II < Q( | E) quprr (= A0) = TP E) g1 (=A7)|
mlEl,a+2ﬁ+1(—/1) - szl,a+ﬁ+2(—/1)
szl,a+,5'+1(—/U - mlEl,a+2ﬁ(—/1)
El,a+ﬁ+l(_/l)E1,a/+2ﬁ+1(_/l) - El,a+2ﬁ(_/l)El,a+ﬂ+2(_/l)| |e_/1t _ e_/lT

mZEl,a+,B+l(_/l) - mlEl,a+2ﬁ(—/1)

+

PP E s (=) — TP E 4p(— 7))

mp ny
A

)

and so

IT)(0) — T < Q( [ PE 1 gagi1(=A1) = TP E} g1 (=27)|

+ 4 |ta+ﬂ_lEl,a+ﬁ(_/U) - Ta+ﬁ_]El,a+ﬁ(_/lT)| +4 |€_M —e

Let t — 7, the right-hand side of the above inequality tends to zero. Thus, 7" is uniformly bounded

and equicontinuous. Therefore by th Arzela-Ascoli implies that 7" is completely continuous. Hence,
by Schauder’s fixed point theorem, the problem (1.1) and (1.2) has a solution on C(J, R). O

Now, we use the contraction principle mapping to investigate uniqueness results for (1.1) and (1.2).

Theorem 3.2. Suppose that (H2) holds. If

_ _ -
k(1—eﬂ)(1+m1(1 eNA+2my Ag) - ma A )< , (3.1)

AT(a + ) XT(@+f-DIB+1)  AT(@+B-1)

A+et=-1) . .
where A, = — 1 then the problem (1.1) and (1.2) has a unique solution.
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Proof. Let x,y € C(J,R). Then

1
IT(x)(®) =TIl < su})f IG(, )| 1f(s,x(5)) = f(s,y(s))lds,

0

and so

1
IT(x)(2) = Tl <ksupf0 G2, 5)| [x(s) = y(s)lds.

teJ

Therefore,

! s _ \at+B-2
T - 7o)l < ki -yl (| [ e [ =D aras|+
0

o Ma+p-1)

1 —1 s T a+p-2
(I_S)ﬂ f —A(s—7) (T—T") A
m e a— e 5T —drdes
' lf o Dl@+p-1)

)a/+,8—2
mzf f —A(s=7) —drd‘rds )
F(a +B8-1)

(1 - S)ﬂ —/l(s—‘r) ’ (T - r)‘”ﬁ_z
e Jo o Nl@+p-1)

'Qlff —Als=m) w:—l);iﬁlz)drdfds ] )

t e—/l(t—s)sa+,6—2
[,
o Mle+p-1)

- —4’) drdrds

94

Then
k(l - €_/1) my (1 - e"l)(/l + 2my Az)
ITC@ =TMOI < 7rg +,8)(1 T @+ f- DI@B+1)
my A2
TR g ) 00l
Hence

IT(x)(®) = T < kullx(@) = y(@Il.

Using the condition (3.1), we conclude that 7" is a contraction mapping. Hence Banach contraction
principle guarantees that 7" has a fixed point which is the unique solution of the problem (1.1) and (1.2).
The proof is complete. O

4. Stability theorems

In this section, we study Ulam-Hyers and Ulam-Hyers-Rassias stability of our problem (1.1)
and (1.2).

Theorem 4.1. Assume that f : J X R — R is a continuous function and (H2) holds with ku < 1. Then
the problem (1.1) and (1.2) is Ulam-Hyers stable.

Proof. Let z(t) € C(J,R) be a solution of the inequality (2.1), and there exists a solution y € C(J,R) of
Eq (1.1). Then, we have

1
3(0) = fo Gt, ) (s y(5))ds.

AIMS Mathematics Volume 7, Issue 4, 6404-6419.
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From inequality (2.1), for each 7 € J, we get

1
‘z(t)— f G(t,9)f(5,2(5))ds| < € 1P E 4i5(=A 1) < EE) qup(=2), (4.1)
0

by (H2), for each t € J, we obtain

zZ(t) = y(@)| < 2(s) — y(s)|ds.

1
+ kf G(t,s)
0

1
Z(l‘)—f G(t,5)f(s,z(s))ds
0

Then from Eq (4.1) we conclude that

8E1,a+ﬁ(_/l)
1—ku °

2(t) - y(t)' < 1 —ku #0.

, then inequality

lz(t) = y(®)l < cre, t€J
holds. Thus the problem (1.1) and (1.2) is Ulam-Hyers stable. O

Theorem 4.2. Assume that f : J X R — R is a continuous function and (H2), (H3) holds with ku < 1.
Then the problem (1.1) and (1.2) is Ulam-Hyers-Rassias stable.

Proof. Let z(t) € C(J,R) be a solution of the inequality (2.2), and there exists a solution y € C(J,R) of
Eq (1.1). From inequality (2.2), for each ¢ € J, we have

t A—s) Sa/+ﬁ—2
<e| e ——————p(s)ds < ev,p(1), 4.2)
0

1
O —fo G(t, 5)f(s,z(s))ds Ta+B-1)

by using the hypothesis (H2), for each ¢ € J, we get

zZ(0) = y(@)| < 2(s) — y(s)|ds.

1
+ kf G(t, s)
0

1
2(1) - f G(t, 5) (5, 2(5))ds
0

Then the use of Eq (4.2) implies that

evyp(t)
1—ku’

|2(t) = y(0)| < 1k #0.

1%
Setcy = ﬁ. The inequality
— kp

|2(2) =yl < crep(n), ted,

holds. The problem (1.1) and (1.2) is Ulam-Hyers-Rassias stable. O
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S. Examples

In this section, we give two examples to illustrate the usefulness of our main results.

Example 5.1. Consider the following fractional initial value problem:

t
D2(D"2y(t) + D**y(1)) = 7 Sim(@®), ted, yelo1],

1 |
¥0)=0, y(©0)= [ ysds, and VﬂD=ﬁEjﬂl—ﬁ“ﬂ®w.
Here, « = 1.2, B = 0.2, and 4 = 1. By Lipschitz condition, we obtain k = 0.25. To estimate the
contraction mapping, apply Theorem 3.2 to get ku = 0.1499975 < 1. This proves the problem (5.1)
has a unique solution.
By Theorem 4.1, we have

(5.1)

Epya(- Er14(-
eELIACAD e &kﬂ) = 0.6795687 > 0,

|wywmk s 2 =t

which shows the problem (5.1) is Ulam-Hyers stable.

Now, to analyze the behavior of the operator 7', one can see that | f(z, y(¢))| < 0.2103677 and
|Ty()] < 0.2103677 {5, (see Figure 1).

t=y

0 0.1 02 03 04 05 06 07 08 09 1
t

Figure 1. The behavior of the operator T for f € J.

Example 5.2. Consider the following fractional initial value problem:

1
G+2) A+poD

1
O =0, (O = [[(s)ds. and (0= g (1= 5P (50

Here, a =1.5, =05, A=1,and k = % By a direct calculation, one can obtain that
ku = 0.298856 < 1. Then by Theorem 3.2, the problem (5.2) has a unique solution.

D3 (D3y(t) + D7y(1) =

€ J,
(5.2)
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Furthermore, by Theorem 4.1, the problem (5.2) is Ulam-Hyers stable with

Now, to illustrate the obtained results for Ulam-Hyers and Ulam-Hyers-Rassias stability, we consider
the following cases:

Case I: We start by computing the value of p(¢) = |z(f) — y(f)] for y = 1. From the Eq (2.1), we have

E 21 Ei>(-4
ili_l where ¢; = 2200 _6.0015562621 > 0.
— ku 1 — ku

RD3 (D3y(r) + A°D2y(t)) —

- 08333 <e.
6+21+y() =€

Therefor, by Theorem 4.1, the problem (5.2) has a solution z satisfying

& "PIE, 4 5(— 1) _ 0833331 Eia(=1)
1 — ku B 1 — ku

'Z(f) - )’(t)‘ < , ( see Figure 2).
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Figure 2. The value of p(r) for t € J.

Case II: We estimate the value p(¢) for y = 1 and ¢(¢) = t, from the Eq (2.2), we obtain £ = 0.83333.
By Theorem 4.2, the problem (5.2) is Ulam-Hyers-Rassias stable with

w‘p( ) tz El,3(_ t)

< =
0.83333 0.7011437°

'Z(l) y(t)‘ ( see Figure 3).

Now, we estimate the value p(f) for y = 1 when the function ¢(f) = ¢'. The problem (5.2) is
Ulam-Hyers-Rassias stable with

a+ﬁ (e/l t_ —/l t)

_ZU—MﬁﬂHa+ﬁ 1)

'Z(f) y(t)' , ( see Figure 4).
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Figure 3. The value of p(¢) for ¢t € J.

1

*

S S S

0 0.1 02 03 04 05 06 07 08 09
t

Figure 4. The value of p(z) for t € J.

1

In this research, we examined the solution of nonlinear fractional differential equations with integral
initial conditions. By means of the Shauder fixed point theorem and contraction mapping principle, we
proved the existence and uniqueness of solutions for a nonlinear problem. In addition, the Hyers-Ulam
and Hyers-Ulam-Rassias stability of the problem (1.1) and (1.2) are studied. Lastly, we presented
several examples to demonstrate the use of our main theorems.
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