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Abstract: Text-independent speaker verification aims to determine whether two given utterances in 

open-set task originate from the same speaker or not. In this paper, some ways are explored to enhance 

the discrimination of embeddings in speaker verification. Firstly, difference is used in the coding layer 

to process speaker features to form the DeltaVLAD layer. The frame-level speaker representation is 

extracted by the deep neural network with differential operations to calculate the dynamic changes 

between frames, which is more conducive to capturing insignificant changes in the voiceprint. 

Meanwhile, NeXtVLAD is adopted to split the frame-level features into multiple word spaces before 

aggregating, and subsequently perform VLAD operations in each subspace, which can significantly 

reduce the number of parameters and improve performance. Secondly, the margin-based softmax loss 

function and the few-shot learning-based loss function are proposed to be combined for more 

discriminative speaker embeddings. Finally, for a fair comparison, the experimental results are 

performed on Voxceleb-1 showing superior performance of speaker verification system and can obtain 

new state-of-the-art results. 
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1. Introduction 

Speaker recognition (SR) is a key technology for intelligent interaction. In view of free 

accessibility and improved arithmetic capability of large databases such as the VoxCeleb [1,2], SR has 

made good progress in recent years. Voiceprint is a behavioral feature with physiological 

characteristics, unlike speech recognition, speaker recognition takes no account of the meaning of 

words, and it just focuses more on the speaker's identity. 

Speaker recognition (SR) is mainly divided into speaker verification (SV) and speaker 

identification (SI) [3]. SV is a 1:1 task to confirm whether two voices originate from the same person, 

while SI is a 1:n task to confirm whether the target speaker's voice appears in the given samples. 

Meanwhile, SR can be divided into text-dependent and text-independent depending on the content [4], 

between which the former is more common and more challenging in the real world. We must specify 

that the scope of research is text-independent in this paper. 

The Gaussian mixture model-universal background model (GMM-UBM) made the significant 

contribution to the development of SR technology from the laboratory to the application [5], but 

GMM-UBM was limited in the ability to handle complex data of a real scene, therefore we will discuss 

the model based on deep learning in this paper. At present, SV based on deep learning are of three 

branches: DNN/i-vector-based model [6], embedding-based model [7] and end-to-end model [8]. 

Due to the further development of deep learning and the strong data-fitting ability of deep learning 

models, the voiceprint research has gradually shifted to deep learning for feature extraction. The input 

of end-to-end model is a waveform with the model requiring performing a large number of calculations, 

making the training harder, and the embedding-based speaker recognition is more common. This paper 

is dedicated to research on the embedding-based speaker recognition. 

In recent years, most researchers in the speaker recognition research community have focused 

on the feature encoding layer and have proposed many excellent feature encoding methods，such as 

ANF [9], ABP [10], VBA [11] and Segment Aggregation [12], which bring a great improvement in 

the speaker recognition models. As shown in these works, one of the contributions of this paper is to 

propose a new feature encoding method called Delta-VLAD. The dynamic relationship between 

preceding and following frames in frame-level features can also indicate the identity of the speaker, 

therefore, we capture such dynamic features that can indicate the identity of the speaker by calculating 

the delta coefficients of the context in frame-level features in Delta-VLAD. Experimental results show 

the EER of the method with Delta-VLAD outperforms the baseline model by 25%. 

In addition to the research on feature encoding methods, the research on loss functions has 

received more attention in the community. In particular, the aggregation of the prototypical loss 

function and the margin-based softmax loss function were proposed in our previous work [13], which 

made a large performance improvement. In this paper, we keep exploring the application of the 

combined loss function in a SV model, and make further performance improvements by adjusting the 

corresponding weight 𝛽. 

In summary, the main contributions of this paper are as follows: 

(1) The Delta-VLAD is proposed. It captures the dynamic relationship between the preceding and 

following frames in frame-level features, which models the nature of dynamic features in acoustic 

features. 

(2) A combined loss function is further explored. The combination of prototypical loss function 

based on the few-shot learning framework and margin-based softmax loss function is further explored 
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in SV domain, and the advantages of such combined loss functions are fully demonstrated. 

(3) The experimental results indicate that the proposed methods achieve SOTA performance on 

the voxceleb1 dataset. 

2. Related works 

How to make full use of the voiceprint feature information is the key for SR. Generally speaking, 

there are three modules for optimizing SR system: frame-level feature extractor, the coding layer and 

loss function. 

In the field of deep learning for SR, the main backbone networks are MP [9], DCNN [14], 

TDNN [7,15], and RNN [16]. They are used as feature extractors for extracting elements that 

characterize the speaker. To reduce model parameters and increase convergence speed, the fast 

ResNet34 network [17] is proposed and achieved excellent performance. Meanwhile, the attentive SE 

block is also used to pay more attention to the contributions of different local information. 

After going through the frame-level feature extractor, the output is still frame-level features with 

its length related to that of the input acoustic features. The role of the encoding layer is to map the 

variable-length frame-level features into fixed-dimensional utterance-level embeddings for the 

purposes of facilitating subsequent classification and discrimination. The current methods for 

encoding frame level features at the pooling layer are mainly classified into statistical-based 

encoding methods and dictionary-based encoding methods. The statistical-based methods include 

AP [1], SP [7], SAP [17], ASP [18], etc. The dictionary-based encoding methods include LDE [17], 

GhostVLAD [19], NetVLAD [20], etc. Notably, NeXtVLAD [21] has a powerful capability in 

encoding feature, it can split frame-level features into multiple word spaces before aggregating and 

then perform VLAD operation in each subspace, significantly reducing the number of parameters as 

well as enhancing performance. All of them can project variable-length utterances into fixed-length 

speaker characterizing embeddings, but they use only the static features of speech. [22] shows more 

efficient results obtained by simply computing the pixel differences between two adjacent frames in 

the feature space and the corresponding PA, and focusing on simulating small displacement at the 

motion boundary. 

The additional margin-based softmax function was introduced to the field of speaker recognition 

in [7,23], and [24,9,25] used a prototype loss function to train text-independent speaker recognition 

models, where the speaker optimized the metric space by finding the class prototype closest to the 

target recognition sample. [26,27] combined prototype loss function and softmax loss function to train 

a speaker recognition model, which could be used to produce more discriminative speaker feature 

vectors. Unlike the above cases, our loss function is a combination of metric loss function and 

classification loss function, in other words, a combination of a prototype loss function based on the 

cosine similarity and a softmax loss function based on additional margin, and both of which collaborate 

and complement each other and thus further augment the discrimination of speakers. 

3. Methods 

In this section, we first systematically introduce the structural framework used in the work, and 

then specify the differential coding strategy and the combined loss function. 
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3.1. System architecture 

The framework structure of the SV task is shown in Figure 1. 

 

Figure 1. Framework of speaker verification model. 

It consists of three modules: the frame-level feature extractor, the DeltaVLAD encoding layer, 

and the similarity comparison module. The two audio spectrograms are passed through the same 

feature extractor to form two of their own frame-level features, which are fed into the coding layer for 

conversion to their respective utterance-level features, and the two representations are compared for 

similarity to determine whether they belong to the same person’s voice. 

(1) Frame-level feature extractor. This network consists of a fast ResNet34 network integrated 

squeeze-and-excitation (SE) block [28]. The structure of the backbone network as a feature extractor 

is shown in Table 1. 

Table 1. Structure of Frame-level features extractor. 

Layer             Input Fbank(40×D)                Output size 

 Conv2d,7×7 ,16 16×20×D 

Block1 
3 3,conv,16

3
3 3,conv,16

 
 

 
, SE layer 16×20×D 

Block2 
3 3,conv,32

4
3 3,conv,32

 
 

 
, SE layer 32×10×D/2 

Block3 
3 3,conv,64

6
3 3,conv,64

 
 

 
, SE layer 64×5×D/4 

Block4 
3 3,conv,128

3
3 3,conv,128

 
 

 
, SE layer 128×5×D/4 

Conv2d,1×1, 5 128×1×D/4 

 

Arbitrary speech duration is accepted as the input, and arbitrary lengths at the frame level are 
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generated. The Fast-ResNet34 structure is the same as the structure of the original 34-layer ResNet. 

However, to reduce the computational cost, only a quarter of the channels of the original model is used 

in each residual block of Fast-ResNet34. 

(2) The coding layer. It is used to map variable-length frame-level features to fixed-length feature 

vectors. Inspired by the methods in literature [21,22], this paper proposes a new coding strategy: the 

DeltaVLAD technique. It extracts the first-order difference and second-order difference between 

features and neighboring features as the input to capture the dynamic relationship, which is one of the 

main contributions of this work. 

(3) Loss function. The function in this subsection use the combined function, as shown in Figure 2, 

where the classification function can enlarge the inter-class distance and the metric function is 

designed to optimize the measurement space [29]. The combined loss function can hit the mark of 

optimizing the metric space and increasing the discrimination of the feature space, which is another 

main contribution of this work. 

  

Figure 2. The combination of loss function. 

3.2. DeltaVLAD encoding algorithm 

The coding layer in SV is designed to encode some variable-length frame-level features and 

obtain a fixed-dimension utterance-level feature vector. The DeltaVLAD is a new coding method that 

takes full advantage of difference and NeXtVLAD. 

3.2.1. Difference 

Difference is a classical mathematical tool due to simple and easy to use for many applications. 

Difference algorithm is also an efficient global optimization algorithm, and the formula is expressed 

as follows: 
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where, 𝐴 represents the order, 𝑊𝐿represents the window length of the voiceprint. The differential 

representation between frame levels in speaker recognition is shown as Figure 3. 

 

Figure 3. Schematic diagram of SV frame. 

When 1A = , the formula can be expressed as: 

1 1

2

t t tf f+ −−
 = .          (3) 

When 2A = , the formula can be expressed as: 

1 1 2 22( )

10

t t t t tf f f f+ − + −− + −
 =  

1 1 2 21 4

5 2 5 4

t t t tf f f f+ − + −− −
=  +  .      (4) 

When 3A= , the formula can be expressed as: 

1 1 2 2 3 32( ) 3( )

28

t t t t t t tf f f f f f+ − + − + −− + − + −
 =  

1 1 2 2 3 31 4 9

14 2 14 4 14 6

t t t t t tf f f f f f+ − + − + −− − −
=  +  +  .     (5) 

From the above equation, we can see that the differential formula is a form of weighted average 

difference. The first-order difference is the corresponding subtraction of the subsequent frame and the 

previous frame of the current frame, reflecting the dynamic relationship between two adjacent frames. 

The second-order difference is an expression between the previous frame and the next frame based on 

the first order difference. Similarly, the third-order difference is an expression between the previous 

frame and the next frame based on the second-order difference, which is a weighted average difference 

formula reflecting the relationship between the six frames adjacent to the current frame, and the current 

order accounts for the major proportion. The others are similar, using the differential calculation as the 
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representation of the feature, it can well reflect the changing characteristics of speaker behavioral 

feature. 

3.2.2. DeltaVLAD coding layer 

NeXtVLAD is an upgraded version of NetVLAD [20], which has significantly reduced the model 

parameters and improved the training efficiency with the similar performance. NeXtVLAD is 

originally an encoding method used for the video compression, and now introduced to the SV task. 

We further use a differential strategy at the encoding layer to capture the dynamic properties of 

the features and encode them into low-dimensional embeddings. As shown in Figure 4, the output by 

the feature extractor is assumed to be lf , then the feature input of encoding layer is spliced by first-

order difference and second-order difference, thus the input of encoding layer can be expressed as 

follows: 

1 2

f l l lh f f f
 

=   .          (6) 

Where 1  represents first-order difference， 2  represents second-order difference. In addition, { }c

represents the set of clustering centers. Then, the feature vector, the output of encoding layer, can be 

expressed as follows: 

eX ( )f f

N tVLADy f h= .          (7) 

 

Figure 4. Structure diagram of DeltaVLAD layer. 

Finally, following a fully-connected layer, the representation of the speaker feature embedding 

can be obtained as follows: 

x ( )fFC y= .          (8) 
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3.3. The proposed loss function 

3.3.1. The margin-based softmax loss function 

Since the softmax loss function fails to make speaker embedding intra-class compactly and inter-

class separatly, the margin-based softmax loss function has been proposed in the academic community. 

Compared with the softmax loss function, the AM-Softmax loss function [30] and AAM-Softmax loss 

function [31] are learned to expand the classification boundary and increase the feature margin between 

different classes by introducing a cosine margin penalty to the target logit. 

The AM-Softmax loss function can be expressed as follows: 

(cos )
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The AAM-Softmax loss function can be expressed as follows: 
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However, using the loss functions alone can only forces the deep features to stay apart but fails 

to explicitly optimize embedding space [29]. On the other hand, training with AM-Softmax and AAM-

Softmax has been proven to be challenging for they are sensitive to the value of scale and the margin 

in the loss function. So we need to consider other loss functions. 

3.3.2. The prototypical loss function 

The prototype loss function is derived from the prototype network [32]. The prototype loss 

function takes the similarity between instances as the input in the metric space, and its application in 

SV has been proven to be effective [9]. 

Suppose there are A speakers in the training set, and a mini-batch is randomly selected from the 

training set, including N different speakers, each with M utterances. The M-1 samples of each person 

form a set of support sets ,{ }i jS s= , (where 1 i N  ，1 1j M  − ), and the remaining 1 sample 

form a query set { }nQ q=  (where1 n N   ). ,

s

i jx  represents the feature vector of the jth sample of 

the ith speaker in the support set, and 
q

nx represents the feature vector of the nth speaker in the query 

set. The prototype of each category can be expressed as follows: 

1

,

1

1

1

M
s

i i j

m

c x
M

−

=

=
−
 .          (11) 

Where ic  denotes the center of the category in the feature space of the ith speaker. 

Based on the open-set metric of speaker recognition, the similarity is defined as the distance under 

the cosine similarity as in literature [25]: 
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The similarity matrix ,n iq cS   represents the similarity between the query sample nq   and the 

prototype center of mass ic . Here we refer to the prototype loss function based on the cosine similarity 

as the cosine-prototype loss function, or CP loss function, and denote it as follows: 
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The model parameters can be optimized by back-propagating the gradient change of the query 

sample. The prototypical loss function is of strengths like simulating the few-shot learning scenario, 

more suitable for open-set SV tasks. 

3.3.3. The combined loss function 

Being an open-set task in real scenarios, SR is featured by joint functions of classification and 

few-shot learning. We combine the classification loss function and the prototypical loss function to 

learn a metric which can make similar samples close and dissimilar ones distant in the embedding 

space, and consequently satisfy all the requirements of open-set SV tasks. 

We combine the AM-Softmax loss function (AM-S) or the AAM-Softmax loss function (AAM-

S) and the cosine-based prototype loss function (CP) [13]. The AM-S and AAM-S are explicitly 

encouraged to make the distance between classes larger, while the CP can make it possible to find the 

prototype close to the target sample in the speaker feature so as to optimize the metric space. 

Meanwhile, the CP can also handle the situation that some samples do not appear in the training set, 

and greatly improve the robustness of the model. The combination of two such loss functions can train 

a SV network model with the best results. The optimal loss function can be trained by adjusting the 

hyperparameters   of the final combined loss function (take AAM-S as an example): 

*CP AAMSL L L= + .         (14) 

4. Experiments 

We perform experiments on VoxCeleb [1], which contains 1,251 speakers including 1,211 

speakers in the training set and 40 speakers in the test set, a total of over 140,000 audios for 352 hours. 

4.1. Implementation configuration 

This experiment is conducted under Linux system with PyTorch framework. The experimental 

environment is as shown in Table 2. 

The speaker features used in this experiment are 40-dimensional log Mel-Filterbank features

（Fbank）with a frame length of 25 ms and a step size of 10 ms. Since the speech in the VoxCeleb-1 

dataset is continuous, neither voice activity detection (VAD) is used in the experiment, and nor data 

augmentation operation is performed except for random sampling. 
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The baseline model uses fast-ResNet as the feature extractor, NetVLAD (K=10) as the feature 

encoding layer, and the loss function is AAM-Softmax (m=0.1), which is chosen to evaluate the 

performance of the present modules. The model in the experiment adopts Adam optimizer, whose 

weight decay rate is 5 5e− , with batchsize is set to 256 and the initial learning rate 0.005, and when 

the loss decrease is less than 0.01 within 5 epochs, the current learning rate is halved. 

Table 2. Configuration of this experiment. 

Experimental configuration                            Configuration parameters 

Operation system 

CPU 

GPU 

Memory 

Deep Learning Framework 

Ubuntu 18.04.3 LTS,64 bit 

Intel Xeon E5-2678 v3 2.5GHz, 48 core 

Nvidia GTX 2080Ti, 11G 

64G,2666MHz 

PyTorch v1.8.0 

4.2. Evaluation of combined loss functions 

In this experiment, we explore the best weight 𝛽 in Eq (14) under the framework with DeltaVLAD 

layer, and set K = 10 and G = 8. The training loss function is AAMS-CP with 𝑚 =  0.35. 

As seen in the experimental results in Figure 5, the best EER is 2.64% in 𝛽 =  1.4, which means 

a 1:1.4 combination of prototypical loss function and margin-based classification loss function is the 

best setting, namely 𝐿 = 𝐿𝐶𝑃 + 1.4 ∙ 𝐿𝐴𝐴𝑀𝑆. The simple and beautiful form conforms to the Occam's 

razor principle. The following experiment is conducted with 𝛽 as 1.4. 

 

Figure 5. EER in different weight  . 

As seen in Table 3, The combination of the proposed two loss functions outperforms any other 

loss or combination. For example, when the coding layer is NetVLAD, AAM-S+CP outperforms all 
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other loss functions, with an EER of 2.99%, relatively reduced by 48.8%, 19.4%, 6.3%, 19.41% and  

13.58% compared with Softmax, CP, Softmax+CP, AM-S and AAM-S, respectively. 

Table 3. The comparison of results using different loss function and parameters. For the 

loss function, CP, AM-S and AAM-S denote Cosine-Prototypical, Additive Margin 

Softmax and Additive Angular Margin Softmax, respectively. For the neural network, Res 

refers to fast-ResNet34 network model. 

Loss Res+SP Res+ASP Res+NetVLAD Res+NeXtVLAD Res+DeltaVLAD 

Softmax 5.59 5.65 5.84 5.04 3.99 

CP 4.16 4.19 3.71 3.52 2.84 

Softmax+CP 3.81 4.16 3.19 3.52 2.78 

AM-S 4.05 4.12 3.71 3.34 3.38 

AAM-S 4.05 4.08 3.46 3.28 3.37 

AM-S+CP 

(Ours) 
3.52 3.47 3.22 2.73 2.73 

AAM-S+CP 

(Ours) 
3.69 3.92 2.99 2.83 2.64 

When the coding layer is NeXtVLAD, AM-S+CP outperforms all the other loss functions, with 

an EER of 2.73%, relatively reduced by 45.8%, 28.9%, 28.9%, 18.3% and 16.8% compared with 

Softmax, CP, Softmax+CP, AM-S and AAM-S, respectively. Because the AM-S and AAM-S can 

make the distance between classes larger, and the CP can learn a metric which can make similar 

samples close and dissimilar ones distant in the embedding space, In addition, when the encoding layer 

is DeltaVLAD, the EER of AAM-S+CP is 2.64% with a performance improvement of 3.3% compared 

with AM-S+CP due to its more powerful feature discrimination by maximising classification 

boundaries in angular space. The effectiveness and superiority of the combination of the AAM-S loss 

function and the CP loss function have been fully demonstrated in our system with Res+DeltaVLAD. 

4.3. Evaluation of DeltaNeXtVLAD 

The model with fast-ResNet34, NeXtVLAD and AAM-Softmax is used as baseline, meanwhile, 

we have also compared several of the better models available today. The Table 4 below gives the 

results of the comparison. 

As seen in Table 4, the result of the proposed encoding layer is 2.64%, clearly superior to the 

baseline of 3.52%. Besides, we compare several models that work well today in Table 4, the effect of 

our proposed encoding layers outperforms the effects of all the others. Especially, the model with the 

DeltaVLAD encoding layer and AAM-S+CP loss function has best performance with an EER of 2.64%, 

reduced by 10.2%, 18.01%, 15.65% and 24.36% compared with NeXtVLAD, FPM, ANF and SP, 

respectively. That is because differencing can calculate the dynamic changes between frames, which 

is more conducive to capturing insignificant changes and NeXtVLAD improves processing accuracy 

and speed. Meanwhile, the number of parameters of the model with DeltaVLAD is about 1.58M, 

similar to the others, and no additional parameters are added due to the simplicity of differencing. 

From the above results, it can be concluded that our proposed encoding strategy and combined 
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loss function is effective. The result of 2.64% achieves the state-of-the-art in the open-set task. 

DeltaVLAD's ease of use and simple mathematical theory underline its strengths. 

Table 4. Speaker verification results in the standard VoxCeleb1 benchmark. Results of the 

compared methods are quoted from their original papers. 

System Encoding layer Loss Parameters dataset EER (%) 

fast-ResNet34 

(baseline) 
NeXtVLAD AAM-Softmax 1.58M Vox1 2.94 

ResNet34[33] FPM A-Softmax 5.85M Vox1 3.22 

fast-ResNet34[34] ANF Proto+Softmax NR Vox1 3.13 

Modify-ResNet[35] SP ParAda-S 1.5M Vox1 3.49 

Ours NeXtVLAD AAM-S+CP 1.58M Vox1 2.83 

Ours DeltaVLAD AAM-S+CP 1.58M Vox1 2.64 

4.4. Ablation studies 

Ablative experiments are conducted to verify the proposed DeltaVLAD encoding layer and the 

combined loss function, and the results are presented in the following Table 5. 

Table 5. Ablation studies of loss function and DeltaVLAD strategies. 

Module Component 

CP √  √ √ 

AAM-S  √ √ √ 

NeXtVLAD √ √ √  

DeltaVLAD    √ 

EER(%) 3.52 3.28 2.83 2.64 

As seen in Table 5, several ablation experiments are conducted to verify the random combination 

of different loss functions and the encoding methods on performance. Separate use of combination 

CP+NeXtVLAD and combination AAM-S+NeXtVLAD get an EER of 3.52% and 3.28% respectively, 

and both are higher than that of combination AAM-S+CP+NeXtVLAD, which is 3.18%, but the EER 

of the combination proposed in this paper is 2.64%, which shows superior performance to the others, 

which shows the effectiveness and superiority of our proposed approach. That is because the combined 

loss function has the advantages of both the metric loss function and the classification loss function, 

which can maximize the inter-class distance and reduce the intra-class distance, and the few-shot 

feature of CP loss function comes with a class-balanced sampling strategy, which is more suitable for 

open-set tasks just like speaker recognition. Besides, differential processing of the acoustic spectrum 

can capture unique changes in sound characteristics between the preceding and following frames, 

helping to extract more discriminative features. 

5. Conclusions 
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In this paper, we propose an embedding-based speaker recognition model for extracting more 

discriminative speaker feature vectors in open-set task. The model uses a classical mathematical tool 

to optimise coding, called DeltaVLAD and a combined loss function, called AAM-S+CP loss function, 

and experiments conducted verify its effectiveness. DeltaVLAD fusing difference and NeXtVLAD, 

where difference assists us capture the changes between the preceding and following frames of the 

current frame and NeXtVLAD encoding method split the frame-level features into multiple word 

spaces before aggregation, and then perform VLAD operations in each subspace, significantly 

reducing the number of parameters and improving performance. In addition, we further explored a 

combined AAM-S+CP loss function, whose clear boundary capabilities reduces the intra-class distance 

and increases the inter-class distance at the same time, making the features more discriminative. The 

whole system architecture is simple and generous, in line with Occam's Razor's Law. Experiments 

conducted on the Voxceleb1 benchmark yield excellent results and demonstrate the effectiveness of 

the proposed model for the SV task. 

Acknowledgments 

This work was supported by the National Natural Science Foundation of China under Grant 

61573151 and Grant 6197609, the Science and Technology Planning Project of Guangdong Province 

under Grant 2018B030323026 and the Young Innovative Talents Project of Guangdong Province 

under Grant 2018GkQNCX005. 

Conflict of interest 

The authors declare no conflicts of interest in this paper. 

References 

1. A. Nagrani, J. S. Chung, A. Zisserman, Voxceleb: A large-scale speaker identification dataset, 

Proc. Interspeech, 2017, 2616–2620. https://doi.org/10.21437/Interspeech.2017-950 

2. J. S. Chung, A. Nagrani, A. Zisserman, Voxceleb2: Deep speaker recognition, Proc. Interspeech, 

2018, 1086–1090. https://doi.org/10.21437/Interspeech.2018-1929 

3. D. A. Reynolds, R. Rose, Robust text-independent speaker identification using gaussian mixture 

speaker models, IEEE T. Speech Audio Processing, 3 (1995), 72–83. 

https://doi.org/10.1109/89.365379 

4. T. F. Zheng, L. T. Li, Robustness-related issues in speaker recognition, Singapore: Springer, 

2017. https://doi.org/10.1007/978-981-10-3238-7 

5. D. A. Reynolds, T. F. Quatieri, R. B. Dunn, Speaker verification using adapted gaussian mixture 

models, Digit. Signal Process., 10 (2000), 19–41. https://doi.org/10.1006/dspr.1999.0361 

6. F. Richardson, D. Reynolds, N. Dehak, Deep neural network approaches to speaker and language 

recognition, IEEE Signal Proc. Let., 22 (2015), 1671–1675. 

https://doi.org/10.1109/LSP.2015.2420092 

 

7. D. Snyder, D. Garcia-Romero, D. Povey, S. Khudanpur, Deep neural network embeddings for 

text-independent speaker verification, Proc. Interspeech, 2017, 999–1003. 

https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.21437%2FInterspeech.2017-950&v=4db903aa
https://doi.org/10.21437/Interspeech.2018-1929
https://doi.org/10.1109/89.365379
https://doi.org/10.1007/978-981-10-3238-7
https://doi.org/10.1006/dspr.1999.0361
https://s.wanfangdata.com.cn/paper?q=%E4%BD%9C%E8%80%85:%22Dehak%20%20N.%22
https://doi.org/10.1109/LSP.2015.2420092


6394 

AIMS Mathematics  Volume 7, Issue 4, 6381–6395. 

https://doi.org/10.21437/Interspeech.2017-620 

8. J. Jung, H. S. Heo, J. Kim, H. Shim, H. J. Yu, RawNet: Advanced end-to-end deep neural network 

using raw waveforms for text-independent speaker verification, arXiv, 2019. Available from: 

https://arxiv.org/abs/1904.08104. 

9. T. Ko, Y. Chen, Q. Li, Prototypical networks for small footprint text-independent speaker 

verification, In: 2020 IEEE International Conference on Acoustics, Speech and Signal Processing 

(ICASSP), 2020, 6804–6808. https://doi.org/10.1109/ICASSP40776.2020.9054471 

10. Y. Liu, L. He, J. Liu, Large margin softmax loss for speaker verification, Proc. Interspeech, 2019. 

2873–2877. https://doi.org/10.21437/Interspeech.2019-2357 

11. Y. F. Wu, C. Guo, H. Gao, X. Hou, J. Xu, Vector-based attentive pooling for text-independent 

speaker verification, Proc. Interspeech, 2020, 936–940. 

https://doi.org/10.21437/Interspeech.2020-1422 

12. S. B. Kim, J. W. Jung, H. J. Shim, J. H. Kim, H. J. Yu, Segment aggregation for short utterances 

speaker verification using raw waveforms, Proc. Interspeech, 2020, 1521–1525. 

https://doi.org/10.21437/Interspeech.2020-1564 

13. C. F. Luo, X. Guo, A. W. Deng, W. Xu, J. H. Zhao, W. X. Kang, Learning discriminative speaker 

embedding by improving aggregation strategy and loss function for speaker verification, In: 2021 

IEEE International Joint Conference on Biometrics (IJCB), 2021, 1–8. 

https://doi.org/10.1109/IJCB52358.2021.9484331 

14. E. Variani, X. Lei, E. McDermott, I. L. Moreno, J. Gonzalez-Dominguez, Deep neural networks 

for small footprint text-dependent speaker verification, In: 2014 IEEE International Conference 

on Acoustics, Speech and Signal Processing (ICASSP), 2014, 4052–4056. 

https://doi.org/10.1109/ICASSP.2014.6854363 

15. B. Desplanques, J. Thienpondt, K. Demuynck, ECAPA-TDNN: Emphasized channel attention, 

propagation and aggregation in TDNN based speaker verification, Proc. Interspeech, 2020, 3830–

3834. https://doi.org/10.21437/Interspeech.2020-2650 

16. A. Senior, H. Sak, I. Shafran, Context dependent phone models for LSTM RNN acoustic 

modelling, In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing 

(ICASSP), 2015, 4585–4589. https://doi.org/10.1109/ICASSP.2015.7178839 

17. W. C. Cai, J. K. Chen, M. Li, Exploring the encoding layer and loss function in end-to-end speaker 

and language recognition system, arXiv, 2018. Available from: https://arxiv.org/abs/1804.05160. 

18. K. Okabe, T. Koshinaka, K. Shinoda, Attentive statistics pooling for deep speaker embedding, 

arXiv, 2018. Available from: https://arxiv.org/abs/1803.10963. 

19. Y. Zhong, R. Arandjelović, A. Zisserman, GhostVLAD for set-based face recognition, In: Asian 

conference on computer vision, Springer, Cham, 2018, 35–50. https://doi.org/10.1007/978-3-030-

20890-5_3 

20. W. Xie, A. Nagrani, J. S. Chung, A. Zisserman, Utterance-level aggregation for speaker 

recognition in the wild, In: IEEE International Conference on Acoustics, Speech and Signal 

Processing (ICASSP), 2019, 5791–5795. https://doi.org/10.1109/ICASSP.2019.8683120 

21. R. Lin, J. Xiao, J. Fan, NEXTVLAD: An efficient neural network to aggregate frame-level 

features for large-scale video classification, In: Proceedings of the European Conference on 

Computer Vision (ECCV) Workshops, 2018. 

22. C. Zhang, Y. X. Zou, G. Chen, L. Gan, PAN: Towards fast action recognition via learning 

persistence of appearance. arXiv, 2020. Available from: https://arxiv.org/abs/2008.03462. 

https://doi.org/10.21437/Interspeech.2017-620
https://arxiv.org/search/eess?searchtype=author&query=Shim%2C+H
https://arxiv.org/search/eess?searchtype=author&query=Yu%2C+H
https://arxiv.org/abs/1904.08104
https://doi.org/10.1109/ICASSP40776.2020.9054471
https://doi.org/10.21437/Interspeech.2019-2357
https://xueshu.baidu.com/s?wd=author%3A%28Y%20Wu%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
https://xueshu.baidu.com/s?wd=author%3A%28C%20Guo%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
https://xueshu.baidu.com/s?wd=author%3A%28H%20Gao%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
https://doi.org/10.21437/Interspeech.2020-1422
https://arxiv.org/search/eess?searchtype=author&query=Jung%2C+J
http://dx.doi.org/10.21437/Interspeech.2020-1564
https://doi.org/10.1109/IJCB52358.2021.9484331
https://doi.org/10.1109/ICASSP.2014.6854363
https://doi.org/10.21437/Interspeech.2020-2650
https://doi.org/10.1109/ICASSP.2015.7178839
https://arxiv.org/abs/1804.05160
https://arxiv.org/abs/1803.10963
https://doi.org/10.1007/978-3-030-20890-5_3
https://doi.org/10.1007/978-3-030-20890-5_3
https://doi.org/10.1109/ICASSP.2019.8683120
https://dblp2.uni-trier.de/pid/35/1714.html
https://dblp2.uni-trier.de/pid/51/6518.html
https://dblp2.uni-trier.de/pid/09/4891.html
https://dblp2.uni-trier.de/pid/209/2004.html
https://arxiv.org/abs/2008.03462


6395 

AIMS Mathematics  Volume 7, Issue 4, 6381–6395. 

23. Y. Liu, L. He, J. Liu, Large margin softmax loss for speaker verification, arXiv, 2019. Available 

from: https://arxiv.org/abs/1904.03479. 

24. P. Anand, A. K. Singh, S. Srivastava, B. Lall, Few shot speaker recognition using deep neural 

networks, arXiv, 2019. Available from: https://arxiv.org/abs/1904.08775. 

25. L. Wan, Q. Wang, A. Papir, I. L. Moreno, Generalized end-to-end loss for speaker verification, In: 

2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, 

4879–4883. https://doi.org/10.1109/ICASSP.2018.8462665 

26. S. M. Kye, Y. Jung, H. B. Lee, S. J. Hwang, H. Kim, Meta-learning for short utterance speaker 

recognition with imbalance length pairs, arXiv, 2020. Available from: 

https://arxiv.org/abs/2004.02863. 

27. S. M. Kye, Y. Kwon, J. S. Chung, Cross attentive pooling for speaker verification, In: 2021 IEEE 

Spoken Language Technology Workshop (SLT), 2021, 294–300. 

https://doi.org/10.1109/SLT48900.2021.9383565 

28. J. Hu, L. Shen, G. Sun, Squeeze-and-excitation networks, In: Proceedings of the IEEE Conference 

on Computer Vision and Pattern Recognition (CVPR), 2018, 7132–7141. 

29. J. S. Chung, J. Huh, S. Mun, M. Lee, H. S. Heo, S. Choe, et al., In defence of metric learning for 

speaker recognition, arXiv, 2020. Available from: https://arxiv.org/abs/2003.11982. 

30. F. Wang, J. Cheng, W. Liu, H. Liu, Additive margin softmax for face verification, IEEE Signal 

Proc. Let., 25 (2018), 926–930. https://doi.org/10.1109/LSP.2018.2822810 

31. J. Deng, J. Guo, N. Xue, S. Zafeiriou, Arcface: Additive angular margin loss for deep face 

recognition, In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 

Recognition (CVPR), 2019, 4690–4699. 

32. J. Snell, K. Swersky, R. S. Zemel, Prototypical networks for few-shot learning, arXiv, 2017. 

Available from: https://arxiv.org/abs/1703.05175. 

33. Y. Jung, S. M. Kye, Y. Choi, M. Jung, H. Kim, Improving multi-scale aggregation using feature 

pyramid module for robust speaker verification of variable-duration utterances, arXiv, 2004. 

Available from: https://arxiv.org/abs/2004.03194. 

34. S. M. Kye, J. S. Chung, H. Kim, Supervised attention for speaker recognition, In: 2021 IEEE 

Spoken Language Technology Workshop (SLT), 2021, 286–293. 

https://doi.org/10.1109/SLT48900.2021.9383579 

35. M. Rybicka, K. Kowalczyk, On parameter adaptation in softmax-based cross-entropy loss for 

improved convergence speed and accuracy in DNN-based speaker eecognition, Proc. Interspeech, 

2020, 3805–3809. https://doi.org/10.21437/Interspeech.2020-2264 

© 2022 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 

https://arxiv.org/abs/1904.03479
https://arxiv.org/abs/1904.08775
https://doi.org/10.1109/ICASSP.2018.8462665
https://arxiv.org/abs/2004.02863
https://doi.org/10.1109/SLT48900.2021.9383565
https://arxiv.org/abs/2003.11982
https://doi.org/10.1109/LSP.2018.2822810
https://arxiv.org/abs/1703.05175
https://arxiv.org/abs/2004.03194
https://doi.org/10.1109/SLT48900.2021.9383579
https://doi.org/10.21437/Interspeech.2020-2264

