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1. Introduction

Fixed point theory has a vital role in mathematics and applied sciences. Also, this theory has lot of
applications in differential equations and integral equations to guarantee the existence and uniqueness
of the solutions [1,2]. The Banach contraction principle [3] has an imperative role in fixed point
theory. Since after the appearance of this principle, it has become very popular and there has been a lot
of activity in this area. On the other hand, to establish Banach contraction principle in a more general
structure, the notion of a metric space was generalized by Bakhtin [4] in 1989 by introducing the idea
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of a b-metric space. Afterwards, the same idea was further investigated by Czerwik [5] to establish
different results in b-metric spaces. The study of b-metric spaces holds a prominent place in fixed point
theory. Banach contraction principle is generalized in many ways by changing the main platform of
the metric space [6-9].

Zadeh [10] introduced the notion of a fuzzy set theory to deal with the uncertain states in daily
life. Motivated by the concept, Kramosil and Michélek [11] defined the idea of fuzzy metric spaces.
Grabiec [12] gave contractive mappings on a fuzzy metric space and extended fixed point theorems
of Banach and Edelstein in such spaces. Successively, George and Veeramani [13] slightly altered
the concept of a fuzzy metric space introduced by Kramosil and Michdlek [11] and then attained a
Hausdorff topology and a first countable topology on it. Numerous fixed point theorems have been
constructed in fuzzy metric spaces. For instance, see [14-20].

Nddaban [21] studied the notion of a fuzzy b-metric space and proved some results. Rakic et al. [22]
(see also [23]) proved some new fixed point results in b-fuzzy metric spaces. The notion of a Hausdorff
fuzzy metric on compact sets is introduced in [24] and recently studied by Shahzad et al. [25] to
establish fixed point theorems for multivalued mappings in complete fuzzy metric spaces. In this
paper, we use the idea of a fuzzy b-metric space and establish some fixed point results for multivalued
mappings in Hausdorff fuzzy b-metric spaces. Some fixed point theorems are also derived from these
results. Finally, we investigate the applicability of the obtained results to integral equations.

Throughout the article, fuzzy metric space and fuzzy b-metric space are denoted by FMS and
FBMS, respectively.

2. Preliminaries

Bakhtin [4] defined the notion of a b-metric space as follows:

Definition 2.1. [4] Let Q be a non-empty set. For any real number b > 1, a functiond,: QX Q — R
is called a b-metric if it satisfies the following properties for all {1, >, 3 € Q:

BM1 : dy({1,4) = 0;

BM?2 : dy({1,{) = 01if and only if £} = &;
BM3 : dy({1, ) = dp($, &) forall o, & € Q;
BM4 : dy(£1,45) < bdy(41, ) + dy(, £5))-

The pair (Q, d,) is called a b-metric space.

Definition 2.2. [26] A binary operation = : [0, 1] X [0, 1] — [0, 1] is called a continuous 7-norm if it
satisfies the following conditions:

(1) = is associative and commutative;
(2) *is continuous;
3) ¢+1=/_forall £ €][0,1];

(4) &1 % < G4y wherever ¢ <& and (b < 4y, forall 41,4, 8,4 € [0, 1]
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Example 2.1. Define a mapping = : [0, 1] X [0, 1] — [0, 1] by

Lxb =04 forly,4 €[0,1].

It is then obvious that * is a continuous #-norm, known as the product norm.
George and Veermani [13] defined a fuzzy metric space as follows:

Definition 2.3. [13] Consider a nonempty set €, then (Q, F, %) is a fuzzy metric space if * is a
continuous #-norm and F is a fuzzy set on Q X Q X [0, +o0) satisfying the following for all £}, (>, {5 € Q
and o, > 0:

[F1]: F({1,8,@) >0
[F2]: F({i,(,)=11fand only if {; = ;
[F3]: F(1, 8, @) = F(§,41,0) 5
[F4]: F({1, G5+ B) 2 F(4, 8, a) % F(8, 3.5
[F5]): F(&1,48,.): [0,+00) — [0, 1] is continuous.
In [27], the idea of a fuzzy b-metric space is given as:

Definition 2.4. [27] Let QQ # ¢ be a set, b > 1 be a real number and * be a continuous z-norm. A
fuzzy set F, on Q X Q X [0, +00) is called a fuzzy b-metric on Q if for all £}, >, {5 € Q, the following
conditions hold:

[Fbl] : Fp($1,5sa) >0
[Fb2] : Fp({1, 0, @) =1, foralla > 0ifandonly if £} = & ;
[FD3] : Fip(1, (o, @) = Fip(£, 1, @)
[Fb4] : Fp(l1, G, b(a+ B)) = Fip(l1, &y a) * Fir($,45,B8) foralla,>0;
[FbS] : Fip(h,4,.): (0,4+00) — [0, 1] is left continuous.
Example 2.2. Let (€, d,) be a b-metric space. Define a mapping Fj,: Q X Q X [0, +c0) — [0, 1] by

[0

Fy(1, ) = { @+ dp(81,0)
0

ifa>0
ifa=0.
Then (Q, F;, A) is a fuzzy b-metric space, where

G AL =min{y, o for all §i, 4 €10, 1]

A 1S a t-norm, known as the minimum #-norm.

Following Grabiec [12], we extend the idea of a G-Cauchy sequence and the notion of completeness
in the FBMS as follows:

Definition 2.5. Let (Q, F},, %) be a FBMS.
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1) A sequence {{,} in Q is said to be a G-Cauchy sequence if lim F({,, {y+q, @) = 1 for @ > 0 and
n—+o0o

q > 0.
2) A FBMS in which every G-Cauchy sequence is convergent is called a G-complete FBMS.

Similarly, for a FBMS (Q, F}, %), a sequence {{,} in € is said to be convergent if there exits { € Q
such that for all & > 0,

lim Fy(ld,a) = 1.
n—+oo

Definition 2.6. [25] Let U # ¢ be a subset of a FBMS (Q, F, %) and @ > 0, then the fuzzy distance ¥
of an element p; € Q and the subset U C Q is

¥ (01,0, a) = sup{F(01,02,@): 0> € U}.

Note that ¥ (01, U, @) = ¥ (0, 01, @).

Lemma 2.1. /28] IfA € CB(Q), then {, € A if and only if F (A, {1, @) = 1 for all a > 0, where CB())
is the collection of closed bounded subsets of Q.

Definition 2.7. [25] Let (Q, F, ) be a FMS. Define a function ®# on Co(Q) x Co(Q) X (0, +0) by

O7(A, U, @) = min{ inf (01, U, @), inf F(A, 0, )}
Q1€A 02€0

forall A, U € Co(Q) and a > 0, where CO(Q) is the collection of all nonemty compact subsets of €.

Lemma 2.2. [29] Let (Q, F, ) be a complete FMS and F((, (>, ka) > F ({1,0, @) for all {, €
Q, ke (0,1)and a > 0 then {; = {,.

Lemma 2.3. [25] Let (Q, F, *) be a complete FMS such that (éo, O, %) is a Hausdorff FMS on éo.
Then for all A,U € Cy, for each { € A and for a > 0, there exists o; € U so that ¥({,0,a) =
F(, 07, a) then

Or(A,U,a) < F({, 0, ).

The notion of a Hausdorff FMS in Definition 2.6 of [25] can be extended naturally for a Hausdorff
FBMS on C, as follows:

Definition 2.8. Let (Q, F,, ¥) be a FBMS. Define a function @, on Cy(Q) x Cy(Q) x (0, +c0) by
O, (A, U, @) = min{ i(n{ F5(¢, U, @), inf F4(A, 0, )}
ge o€
forall A, U € Co(Q) and @ > 0.
3. Main results

This section deals with the idea of Hausdorff FBMS and certain new fixed point results in a fuzzy
FBMS. Note that, one can easily extend Lemma 2.1 to 2.3 in the setting of fuzzy b-metric spaces.

Lemma 3.1. If A € CO(Q), then { € A if and only if F,(A,{,a@) =1 forall a > 0.
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Proof. Since
ﬂ(A,g,CX) = SuP{Fb(gaQ’a): Q€ A} =1,

1

there exists a sequence {0,} C A such that F;,({, 0,, @) > 1 — —. Letting n — +o0, we get o, — (. From
n

A € CUO(Q), it follows that £ € A. Conversely, if € A, we have

%)(A,é/’a) = Sup{F@({’Q’Q)I o€ A} > Fb(§&{7a) =L

Again, due to [17], the following fact follows from [F'b5].

Lemma 3.2. Let (Q, Fy, *) be a G-complete FBMS. If for two elements {,p0 € Q and for a number
k<1

Fb({’g’ka/) > Fb ({,Q,a/),
then { = o.

Lemma 3.3. Let (Q, Fy,, ) be a G-complete FBMS, such that (Co, Og,, *) is a Hausdorff FBMS on Co.
Then for all A,U € Cy, for each ¢ € A and for a > 0 there exists o € U, satisfying F,({,0,a) =

Fy({, 00 @) also
@ffb(A, U, a’) < Fb(é’ Q[a a)

Proof. If
07, (A, U, a) = i(n/{ﬁ({, U, a),
Le

then
Os (A, U,a) < Fu({,0,a).

Since for each { € A, there exists o, € U satisfying
Fu({,0,a) = Fy(a,0;, ).

Hence,
@ﬂ(A, U, a’) < Fb(é’ Q{a a/)

Now, if
O, (A, U, @) = inf F(A, 0, @)
€0
< inf 73(£. U, )

< ﬂ({’ U’ Q’) = Fb(g’Q{’ a)’

this implies
®(Fb(A’ U, a’) < Fb(g, 9(9 Q’)

for some o, € U. Hence, in both cases, the result is proved. m]
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Theorem 3.1. Let (Q, Fy, ) be a G-complete FBMS with b > 1 and O, be a Hausdor{f FBMS. Let
S: Q — Cy(Q) be a multivalued mapping satisfying

O, (5L, S0, ka) > Fi({,0, @) (3.1)

forall £,p € Q, where bk < 1, then S has a fixed point.

Proof. For ay € Q, we choose a sequence {{,} in Q as follows: Let a; € Q such that a; € Say. By using
Lemma 3.3, we can choose a, € S a; such that

Fyay, az, @) > Of,(Sap, Sa;,a) forall a > 0.
By induction, we have a,,; € S a, satisfying
Fy(ay, aper,@) = O (Sa,—1,Sa,, @) foralln € N.

Now, by (3.1) together with Lemma 3.3, we have

Fo(n dns1,@) > O, (San1, San, @) = Fy (an_l,an, g)

k
> @7—'b (San_z, Sa,_1, %) > F, (an—Z, an-1, %)
> Oy, (Sao,Sal,i)ZFb(ao,al,g)- (3.2)
kn—l kn
For any g € N, writing a = % + “(Z—;l) and using [Fb4] to get
a (g—Da
Fb(ana Aptgs CZ) = Fb (Cln, Antl, %) * Fb (an+la Apvgs qT) .

Again, writing (”;% =5+ % together with [Fb4], we have

(q - 2)&)
qb* |

@ a
Fb(an’ Apigs a’) 2 Fb (Cln, ant1, %) * Fb (Cln+1, an42, ﬁ) * Fb (an+27 Anigs

Continuing in the same way and using [Fb4] repeatedly for (g — 2) more steps, we obtain

a @ a
Fy(ay, An+gs a) > F, (an’ An+1, q_b) * F, (an+1, An+2, %) k... F (an+q—1a Anvqs %) .

Using (3.2) and [Fb5], we get

@ @ @
Fy(ay, nig, @) 2 F) (ao,du W) * F) (00,611, W) * Fy (ao,al, W) ok

F a
b aoﬂnw .

AIMS Mathematics Volume 7, Issue 4, 5925-5942.



5931

Consequently,

@ @ @
Fy(ay, anig, @) 2 F (610,611, W) * Fy (a()aala W) * Fy (610,611, W) *

a
F ,a, ——————|.
b((lo ay q(bk)qk"_l)

Since for all n, g € N, we have bk < 1, taking limit as n — +oco, we get

lim Fy(a,, apig, @) =1x1x...%1=1.

n—+oo

Hence, {a,} 1s a G-Cauchy sequence. Then, the G-completeness of € implies that there exists z € Q
such that

(04 (04
Fy(z,Sz,a) > F) (z, R 2b) * (an+1,Sz, )

2b
2 Fy (Z’ 1 Zb) *Or, (S“”’SZ’ Zb)
2 Fy . )+ o a7
— 1 as n— +oo.
By Lemma 3.1, we have z € Sz. Hence, z is a fixed point for S. m]
a
Example 3.1. Let Q = [0, 1] and F,({,0,@) = m.

It is easy to verify that (Q, F, %) is a G-complete FBMS with b > 1.
For k € (0, 1), define a mapping S : Q — Co(Q) by

S() = {0} if =0
- {0, %{} otherwise.
In the case { = o, we have

®(F1;(S§’SQ’ kQ’) = 1 :Fb({9Q’ (I)

For ¢ # o, we have the following cases:

If {=0andp € (0, 1], we have

O, (S(0), S (0), ka)
=min{ inf F,(a,S (o), koz), inf F,(S(0), b, ka)}
€S (0) beS (o)

:min{ inf ﬁ[a{ Vko } ka/) inf ﬁ({O},b,ka)}
aeS(0) 2 beS (o)

:min{inf{ﬁ( {0, \/2_9 ka)},inf{% ({0}, 0, k), ﬂ({o \/2_9 e )}}
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= mm{mf {sup {ﬁ,(o 0, k), F3(0, ‘gg ka)}} inf {ﬂ(o 0, ka), F3(0, =2 ‘/_Q )}}

2
:mm{lnf sup L ,inf {1, Lz }
a % a+ %
2

+

= mm{mf }
o+ g

a

+

= min{1 2}:
D
a/+£ a

NI

It follows that O (S (0), S (0), ka) > F;(0,0, @) = n
9

If  and o € (0, 1], an easy calculation with either possibility of supremum and infimum, yield that

. (0 a (01 (0

4 4 4
a

_a,_l_((Q) a/_|_(é"_Q)2:Fb(§’Q,(I)

5

Thus, for all cases, we have
®7:b(S§? SQa kCY) > Fb((, o, CY)

Hence, all the conditions of Theorem 3.1 are satisfied and O is a fixed point of S'.

Theorem 3.2. Let (Q, Fy, ) be a G-complete FBMS with b > 1 and O, be a Hausdor{f FBMS. Let
S: Q — Cy(Q) be a multivalued mapping which satisfies

Fo(0, S0, ) [1 + Fp(£, S0, @)]
I+ Fy({,0,a)

forall £,p € Q, where bk < 1, then S has a fixed point.

Of (S, So, ka) > min{ ,Fp(Z,o, cy)} (3.3)

Proof. In the same way as in Theorem 3.1 for ay € Q, we choose a sequence {a,} in Q as follows: Let
a; € Qsuch that a; € Sayg. By Lemma 2.3, we can choose a, € Sa; such that

Fy(ay, az, @) > Of,(Sap, Sa;,a) forall @ > 0.
By induction, we have a,,, € S a, satisfying
Fy(ay, apsr,@) =2 O (Sa,—1,Sa,, ) foralln €N.
Now, by (3.3) together with Lemma 3.3, we have

Fb(an’ Apyl, a) = Gﬂ(‘s anp-1, Sana a)

o[l
1+ F, (an_l,an, Z) k
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> min {Fb (@, )1+ Fo o, ) . Fy (an_l, s %)}

1+ F, (a,,_l,a,,, ‘—,:)

> min{Fb (an7an+l,g)7Fb (an—l’am g)} (34)
k k
If (04 (07 04
min {Fb (an’ an+1’ z) 2 Fb (al’l—19al’l’ E)} = Fb (al’u an+17 E) s
then (3.4) implies

a
Fb(an7 Al CL’) = Fb(an’ Al _)

k
Then nothing to prove by Lemma 3.2. If

(04 (07 04
i F ns Un a_7F n—1» n’_}:F n—1>%n> 77 )
mm{ b(ny An+1 k) b(An-1,a k) b(An-1, 0 k)

then from (3.4) we have

a a
Fylan, ane1, @) 2 Fil@n-1,an, ) > ... 2 Fiao, a1, 7).
By adopting the same procedure as in Theorem 3.1 after inequality (3.2), we can complete the proof.

]
Remark 3.1. By taking » = 1 in Theorem 3.2, Theorem 2.1 of [25] can be obtained.

Theorem 3.3. Let (QQ, F},, x) be a G-complete FBMS (with b > 1) and O, be a Hausdorf{f FBMS. Let
S Q — Co(Q) be a multivalued map which satisfies

Fr(0.S0,a)[1 + Fp({,S{, @) + Fi0,5{, a)]
2+ Fb({’Q,a)

forall £,p € Q, where bk < 1, then S has a fixed point.

Of (S, So, ka) > min{ ,Fp(Z, 0, a)} 3.5
Proof. Starting same way as in Theorem 3.1, we have
Fylai,ap, @) 2 Of(Sap,Sa;, @) foralla > 0.
By induction, we have a,,; € S a, satisfying
Fy(ay, apsr,@) 2 O (Sa,-1,Sa,, @) foralln €N.
Now, by (3.5) together with Lemma 3.3, we have

Fyan, aps1, @) 2 Of(Sa,-1,Sa,, @)

[T San D|1 + Filan1.S a1, D) + Fulan San1, 9|
> min
2 + Fb(an—han’ %)

(07
5 Fb(an—19 ay, %)}

> min

s Fb(an—l, ay, %

Fy(n, ait, 9|1+ Fol@n1, a0, ) + Filan, a,, 9| @,
2+ Fb(an—l’ ay, C_]:)
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[ Folan anr, |1+ Fyanr,an ) +1]
> min
2+ Fb(an—l’ ay, %)

s Fb(an—la ay, %)}

X Fb(an’ An+l, %) [2 + Fb(an—la ay, %)]
> min
2+ Fb(al’l—la ay, %)

s Fb(an—l » Apsy %)}

> min {Fb(an, et 0 Folay 1., %)} . (3.6)

If

. a 04 04
min {Fb(ana An+ls z)’ Fb(al’l—l’ ay, E)} = Fb(an’ Al z)’

then (3.6) implies

a
Fy(an, aps1, @) 2 Fy(ay, ape, %)-

Then nothing to prove by Lemma 3.2.
If

min {Fb(an, anits ) i1 %)} = Fyan 1@ 3).

then from (3.6), we have

a a
Fy(ay, aner, @) = Fya,-1, ay, z) 2 ... 2 Fyap,ay, ﬁ)'

By adopting the same procedure as in Theorem 3.1 after inequality (3.2), we can complete the proof.
O

Next, a corollary of Theorem 3.3 is given.

Corollary 3.1. Let (Q, F, ) be a G-complete FMS and @« be a Hausdorff FMS. Let S : Q — Co(Q)
be a multivalued mapping satisfying

F,S0,)[1 +F (S, a)+F(0,S¢,a)]
2+ F(,0,a)

G);:(S{,Sg,ka/)Zmin{ ,F(g,g,a)}

for all £,0 € Q, where 0 < k < 1, then S has a fixed point.
Proof. Taking b = 1 in Theorem 3.3, one can complete the proof. O

Theorem 3.4. Let (Q, F}, *) be a G-complete FBMS with b > 1 and O, be a Hausdor{f FBMS. Let
S: Q — Cy(Q) be a multivalued map which satisfies

Fn(d, S8, ) [1 + Fplo, S0, @) Fid, S0, ) [1 + Fp(£, S, )]
1+ F4(S¢.S0,) ’ 1+ Fy(£,0,0) ’

FoL.SC.a) [2 + oL, So.)]
[+ Fod.50.a) + 0. S,y 6@ “)} G-

OF (S, So, ka) > min{

forall ,p0 € Q, where bk < 1, then S has a fixed point.
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Proof. For ay € Q, we choose a sequence {x,} in  as follows: Let a; € Q such thata; € Say. By using
Lemma 2.3, we can choose a, € S a; such that

Fylai,ar, @) 2 Of(Sap,Sa;, ) foralla > 0.
By induction, we have a,,, € S a, satisfying
Fy(ay, aper,@) = O (Sa,—1,Sa,, @) foralln €N.
Now, by (3.7) together with 3.3, we have

Fy(ay, ans1, @) 2 OF,(Say-1,S ay, @)
- {ﬁ(an_l,San_l, D1+ Fo@n S D] Folan S |1+ Fol@n1, S a1, )|
2 min

1+ ﬂ(San—l’San’ %) > 1+ Fb(an_l’an’ %) s
Foldnr,San, § [2"'7"1;(61,1_1,561,,,% ] Fi( 0‘)
1+ Foldn 1, San D) + Folan Sapp, ) 14 %

)

- {Fbwn_l,an, D) [1+ Fylan @1 )| Fol@n aners |1+ Fylan-i,a,. 2))|
2 min ’ a
I+ Fb(an’ A+l %) 1+ Fb(an—la ay, Z)

Fb(an—la ap, %) [2 + Fb(an—l, Api1, %):I F (a a g)
b\Up—1,Up, k

I+ Fb(an—laan+l’ %) + Fb(ana a,, %) ’
. a o
Fy(ay, ansy, @) > min {Fb(an, Apils %), Fy(ay-1,ay, E)} : (3.8)
If

. a 04 04
min {Fb(am An+ls z), Fb(an—l’ ay, E)} = Fb(am Antl, z)’

so (3.8) implies

(04
Fy(ay, aner1, @) = Fy(ay, ap, %)-

Then nothing to prove by Lemma 3.2. While, if

. (04 o o
min {Fb(an, et 0 Folay 1., E)} = Fy(an 1. ).
then from (3.6) we have

a 04
=)= ...> Fy(ap,ai, —).

Filan, anir, @) 2 Fylap-r, an, 7 o

By adopting the same procedure as in Theorem 3.1 after inequality (3.2) we can complete the proof. O

The same result in fuzzy metric spaces is stated as follows.
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Corollary 3.2. Let (Q, F, %) be a G-complete FMS and ®# be a Hausdorff FMS. Let S : Q — Co(Q)
be a multivalued mapping satisfying

F, S, )|l +F(o,S0,a)] 7"(Q,SQ,CY)[1 +T(§,S{,CY)]
1+7(SLSoa) 1+ F(, 00 ’

Or(S¢, S, ka) > min{

F.SLa)[2+F (¢ S0, )]
F(,0,)
1+F,So,a)+F (0,5, )
for all £, 0 € Q, then S has a fixed point.
Proof. Taking b = 1 in Theorem 3.4, one can complete the proof. O

4. Consequences

This section is about the construction of some fixed point results involving integral inequalities as
consequences of our results. Define a function 7: [0, +o0) — [0, +c0) by

(@) = fa Y(a)da forall a >0, “4.1)
0

where 7(«) is a non-decreasing and continuous function. Moreover, ¥(a) > 0 for @ > 0 and ¥(a) = 0
if and only if @ = 0.

Theorem 4.1. Let (Q, F,, *) be a complete fuzzy b-metric space and O, be a Hausdorff fuzzy b-metric
space. Let S : Q — Cy(Q) be a multivalued mapping satisfying

O, (S¢S 0.ka) Fp(L,0,)
f Y(@)da > f Y(a)da “4.2)
0 0

forall £, 0 € Q, where bk < 1, then S has a fixed point.
Proof. Taking (4.1) in account, (4.2) implies that

7(07,(S¢, S0, ka)) > T(Fp({, 0, @)).

Since 7 is continuous and non-decreasing, we have

05, (8L, S0, ka) =2 Fi({, 0, @).
The rest of the proof follows immediately from Theorem 3.1. O

A more general form of Theorem 4.1 can be stated as an immediate consequence of Theorem 3.2.

Theorem 4.2. Let (Q, Fp, *) be a complete FBMS and ®g, be a Hausdorff FBMS. Let S : Q — Co(Q)
be a multivalued mapping satisfying

O, (S¢S 0.ka) B({,0,@)
f Y(a)da > f Y(@)da, (4.3)
0 0

AIMS Mathematics Volume 7, Issue 4, 5925-5942.



5937

where
B.0.0) = min {ﬁ’(g Sen A0 Fce, a)}
forall £, 0 € Q, where bk < 1, then S has a fixed point.
Proof. Taking (4.1) in account, (4.3) implies that
(05,54, S0, ka)) > T(B(L, 0, @).
Since 7 is continuous and non-decreasing, we have
OF,(SL, S0, ka) > B(L, 0, @).
The rest of the proof follows immediately from Theorem 3.2. O

Remark 4.1. By taking » = 1 in Theorem 4.2, Theorem 3.1 of [25] can be obtained.

Theorem 4.3. Let (Q, F,, ) be a complete FBMS and O, be a Hausdorff FBMS. Let S : Q — Co(Q)
be a multivalued mapping satisfying

Oy, (S¢.Soka) BL.0)
f Y(a)da 2 f Y(a)da,
0 0

where

F6(©0,50, ) [1 + F4(, 5, @) + Fi(0, S, a)]
2+ Fy((, 0, @)

forall £, 0 € Q, where bk < 1, then S has a fixed point.

ﬁ(é/’ o, a’) = mln{ ,Fb(éaga a’)}

Note that if 8(, 0, @) = F,({, 0, @), then the above result follows from Theorem 4.1. Similar results
on integral inequalities can be obtained as a consequence of Theorem 3.4.

Theorem 4.4. Let (Q, F, *) be a complete FBMS and ®g, be a Hausdorff FBMS. Let S : Q — Co(Q)
be a multivalued mapping satisfying

O, (5. 0.ka) v({.0.@)
f Y(a)da > f Y(a)da,
0 0

where

Fo((, S ) [1+ Fplo, S0, )] Filo,S0,a)[1 + Fi((, L, )]
1+ %S¢, S0, ) ’ 1+ %40, @) ’

e, SE D2+ TESom] a)}
1+ F0l.S0.0) + Fo(0.SCa) &€

v({,0,@) = min{

forall £,0 € Q, where bk < 1, then S has a fixed point.
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5. An application

Nonlinear integral equations arise in a variety of fields of physical science, engineering, biology,
and applied mathematics [31,32]. This theory in abstract spaces is a rapidly growing field with lot of
applications in analysis as well as other branches of mathematics [33].

Fixed point theory is a valuable tool for the existence of a solution of different kinds of integral as
well as differential inclusions, such as [33—-35]. Many authors provided a solution of different integral
inclusions in this context, for instance see [30,36—40]. In this section, a Volterra-type integral inclusion
as an application of Theorem 3.1 is studied.

Consider Q = C([0, 1],R) as the space of all continuous functions defined on [0, 1] and define the
G-complete fuzzy b-metric on Q by

sup |£(e) — o(e)

£€l0,1]
Fb(f’ o, a’) =e a
for all @ > 0 and &, 0 € Q.
Consider the integral inclusion:
é(e) € f G(e,0,&(0))do + h(e) forall g0 €[0,1]and h, & € C([0, 1], (5.1
0

where G: [0,1] X [0,1] X R — P.,(R) is a multivalued continuous function.
For the above integral inclusion, we define a multivalued operator S : Q — Cy(Q) by

S(&e)) = {w eQ:we fu G(e,0,é(0))do + h(e), €¢€]|0, 1]}.
0

The next result proves the existence of a solution of the integral inclusion (5.1).

Theorem 5.1. Let S : Q — Cy(Q) be the multivalued integral operator given by

Se) = {w eQ:we fs G(e,0,8(0))do + h(e), €¢€]0, 1]}.
0

Suppose the following conditions are satisfied:

1) G: [0,1]%x][0, 1]xXR — P.,(R) is such that G(g, o, £(0)) is lower semi-continuous in [0, 1]x[0, 1];
2) Forall e,0 € [0,1], f(e,0) € Q and for all ¢,0 € Q, we have

G (e, 0, £(0) = Gle, 0, 0 < f2(e, )E(0) = ()P,

where f: [0, 1] — [0, +00) is continuous;
3) There exists 0 < k < 1 such that

sup f (e, 0)do < k.
0

e€[0,1]

Then the integral inclusion (5.1) has the solution in Q.
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Proof. ForG: [0,1]x[0,1]xXR — P, (R), it follows from Michael’s selection theorem that there exists
a continuous operator
G;:[0,1]x[0,1] xR —>R

such that G;(g, 0, &(0)) € G(g, 0,&(0)) for all ,0 € [0, 1]. It follows that

£ € fo Gile. o (e + h(e)) € S(E(e))

hence S (£(¢)) # 0 and closed. Moreover, since /(g) is continuous on [0, 1], and G is continuous, their
ranges are bounded. This means that S (£(€)) is bounded and S (£(g)) € Co(Q). For q,r € Q, there exist
q(e) € S(&(e)) and r(e) € S (o(¢€)) such that

qé(e)) = {w eEQ:we fg Gi(e,0,&(0))do + h(o), € €0, 1]}
0

and
r(o(u)) = {w eQ:we f Gi(e,o,0(0))do + h(e), ¢€¢€]l0, 1]}.
0
It follows from item 5.1 that
Gi(e, 0, £(0) — Gile, 0, () < (e, 0)lé(0) — o(0)].

Now,

sup |g(e) — r(e)l’ sup j(; |Gi(e, 0, £(0) = Gi(e, 0, 0(0) P dor

1€[0,1] £€[0,1]

e ka >e ka

sup j; e, ) — o) do

€€[0,1]

> e k

(04
() — o(o)* sup fo (e, 0)do

£€[0,1]

> e ka

klé(o) — o(o)?
> e_ ka

@) — o)

=e a

sup |£(0r) = (o)l
o€l

>e a
= F)(¢, 0, ).

So, we have
Fy(q,r ka) > Fu(&, 0, ).
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By interchanging the roll of ¢ and o, we reach to

®ﬂ(S§’SQ’ kCU) = Fb(‘f’ga a’)'

Hence, S has a fixed point in , which is a solution of the integral inclusion (5.1). m]
6. Conclusions

In this article we proved certain fixed point results for Hausdorff fuzzy b-metric spaces. The main
results are validated by an example. Theorem 3.2 generalizes the result of [25]. These results extend
the theory of fixed points for multivalued mappings in a more general class of fuzzy b-metric spaces.
For instance, some fixed point results can be obtained by taking 5 = 1 (corresponding to G-complete
FMSs). An application for the existence of a solution for a Volterra type integral inclusion is also
provided.
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