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1. Introduction and preliminaries

Quantum calculus which is often known as g-calculus is the branch of mathematics in which we
obtain g-analogues of the mathematical objects which can be recaptured by taking ¢ — 17. It is also
known as calculus without limits and depends upon finite difference. In recent years it has emerged as
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a bridge between mathematics and physics. Due to its great many applications in different fields of
applied sciences, it has attracted many researchers. Consequently a rapid developments in quantum
calculus have been achieved. For example, Tariboon and Ntouyas [1] introduced the notions of
g-derivatives and g-integrals on finite intervals. This idea attracted many researchers and resultantly
many new g-analogues of classical mathematical objects have been obtained using their approach.
They themselves have obtained the quantum analogues of Hermite—Hadamard’s inequality, Holders’s
inequality, trapezoidal inequality and Ostrowski type of inequalities etc. Alp et al. [2] obtained a new
corrected version of g-Hermite-Hadamard’s inequality. Noor et al. [3] and Sudsutad et al. [4]
obtained independently some new quantum analogues of trapezoidal like inequalities. Liu and
Zhuang [5] obtained quantum estimates of Hermite-Hadamard type of inequalities via twice
g-differentiable convex functions. Noor et al. [6] obtained a new g-integral identity and obtained
associated upper bounds by using the preinvexity property of the functions. Noor et al. [7] obtained
new g-Ostrowski type of inequalities via first order g-differentiable convex functions. Deng et al. [8]
obtained g-analogues of Simpson type of inequalities. Zhang et al. [9] obtained a very nice
generalized g-integral identity and obtained associated bounds.

In recent years the classical concepts of quantum calculus have been modified in different directions,
see [10—15]. One of the significant generalizations of g-calculus is the post quantum often known as
(p, q)-calculus. The main idea is that in quantum calculus, we deal with a g-number with one base
g, however, in (p, q)-calculus, we deal with two independent variables p and q. This idea was first
considered in [16]. Tun¢ and Gov [17] recently introduced the concepts of (p, q)-derivatives and (p, q)-
integrals on the finite intervals.

Definition 1.1 ( [17]). Let ¥ : K — R be a continuous mapping and let x € K and 0 < q <p < 1.
Then the (p, q)-derivative on K of mapping ¥ at x is defined as

Y(px+ (1 -pm;) — ¥(gx + (1 — Q@)

Dy P(x) = , X # 0.
e (p—(x— @) ‘
Definition 1.2 ( [17]). Let ¥ : K ¢ R — R be a continuous mapping. Then (p, q)-integral on K is
defined as
N q"
f‘l’(k)mldp,qk =(p -k -m) Z - ‘I’(pn+1 X+ (1 - pn+1)ﬁ51),
@ n=0
for x € K.

For more details, see [18-20].
Let us recall some basic definitions that will be used in the sequel.
Definition 1.3 ( [21]). A mapping ¥ : I — R is said to be convex, if
Y (Ao, + (1 -2 @) <A (@) + (1 - L)Y (,) (1.1)
holds for all ®,,®, € I and \ € [0, 1].

For more details, see [22-25].

AIMS Mathematics Volume 7, Issue 4, 5728-5751.



5730

Definition 1.4 ( [26]). A set 27, C R is said to be invex with respecttom : R xR — R, if
O + (@, @) € K, YO, m, € ), e [0,1].
Definition 1.5 ( [9,27]). A mapping ¥ : JZ;, — R on the invex set is said to be preinvex, if
Y(@; + \n(@,, @) < (1 =N ¥ (D)) + A (0,) (1.2)

holds for all @, ®, € J£, and ) € [0, 1].
We now introduce the class of strongly ¢-preinvex mappings.

Definition 1.6. Let ¢ : (0,1) — R be a real mapping. A mapping ¥ : 2, — R on the invex set is said
to be strongly @-preinvex, if

P(®@, + (@2, ®))) < (1 =Vl = VP (@) + Mg\ P (@) — oM — W (0, D),

holds for all ™, ®, € &, A € (0, 1) with (@, ®;) > 0 and o > 0.

Note that, if we take n(@,, @) = @, —®, in Definition 1.6, then we have the class of strongly ¢-convex
functions which was introduced and studied in [28].

Remark 1.1. Note that, if we take, respectively @(u) = 1, u~', u*' and @(u) = 1 — y in Definition
1.6, then we recapture the classes of strongly preinvex [27], strongly P-preinvex [29], strongly s-
preinvex [29] and strongly tgs-preinvex mappings, respectively. Moreover, if we choose o — 07,
then all of these classes reduce to preinvex [26], P-preinvex [30], s-preinvex [30] and tgs-preinvex
mappings [31], respectively. This shows that the class of strongly q-preinvex mappings is quite unifying
one as it relates several other unrelated classes.

For the sake of completeness, let us now recall the Dragomir—-Agarwal and Iyengar type of
inequalities. Dragomir and Agarwal [41] obtained the following new integral identity and obtained
associated inequalities essentially using the class of first order differentiable convex functions.

Lemma 1.1. Let ¥ : I° C R — R be a differentiable function, If ¥’ € L[®m,, ®;], then

0]

1
Y(m,) + Y(m,) _ 1 f\};(x)dx - O~ O f(l - 21)¥ (uo; + (1 — wmy)dpu.
0

2 W, — @ 2

()]

The right side of Hermite—-Hadamard inequality can be estimated by the inequality of Iyengar [42],
which reads as

[0

2
Y(®) + ¥(m) 1 f M(@, — @) 2
- Y(x)dx| < - Y(m,) — Y(m,)),
5 P—— (0)dx| < 1 4M(m2—m1)( () — ¥(®y))
(O]
where by M we denote the Lipschitz constant, that is, M = sup { %;%) ;X # y)
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Integral inequalities are important to predict upper and lower bounds in various applied sciences,
e.g. in probability theory, functional inequalities, interpolation spaces, Sobolev spaces and information
theory. For some recent studies and applications of integral inequalities in these directions, see [32—40].

The main motivation of this article is to derive a new post-quantum integral identity using (p, q)-
differentiable mappings. Using the identity as an auxiliary result, we will obtain some new variants
of Dragomir—Agarwal and Iyengar type integral inequalities essentially via the class of strongly -
preinvex mappings. We also discuss several new special cases which show that the results obtained
are quite unifying. Finally, to support our results, we present some applications to (p, q)-differentiable
mappings that are in absolute value bounded. We hope that the ideas and techniques of this paper will
inspire interested readers working in this field.

2. Auxiliary results

In this section, we discuss auxiliary results. These results will be helpful in obtaining the main
results of this paper.

Lemma 2.1. Let w € [0, 1] and A € [0, ), then

w

00 A+1 (A+Dn A+1
1 _ w q _wT(p—q)
fv dpav == Z::: (5) (5) Copt—gt

0

and

~ s n n 1
w
f(l - V)Adp,qv =(p-qQuw E gﬂ (1 - qn+1) .
0 n=0 p p

Now we derive a new (p, q)-integral identity which will be used as an auxiliary result for obtaining
next results of the paper.

Lemma 2.2. Suppose that ¥ : [@;,®; + N(®,, ®;)] € R — R be a (p, q)-differentiable mapping on
(@, ®; + N(®2, ®1)) wWith (@, ®1) > 0and 0 < q <p < 1. If DY is a (p, q)-integrable mapping
on [@y, @y + N(D2, ®y)], then

@1 +pN(®@2,01)

1 q¥ (@) + p¥ (@, + (@, @1))
_ P(x) g, dpgx —
pn(®@2, @) (2]

[

1o
(2, @)
_ I 22 ! ff(ﬂ - [mle,q‘P(ah + AN(@2, ®))) — ,DpP(@; + un(m,, ml))] dpgtt dp g,
0 0
@.1)
where [n],q is the well-known (p, q)-integer expressed as:

pn_qn

[nlpq =
pPq p_q
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Proof. Using Definitions 1.1 and 1.2, we have

S

1
fw—@hpm%®+MWMmm—WDMH®+MMM®M%w%M
0

1
I
Y@, + pun(@,, @) — Y@ + gun(@,, @)

(p — An(@2, @ )u

1o
ffﬂ [Y(@ + pAn(®,, @) — (@ + gAN(®@,, T1))]
J (p — gM(@2, @)

(@ + pAn(®,, @) — V(@ + qAn(D,, B}))
(p — Pn(@2, @ )4

o%_

w2

dp gt dp g

dp gt dpgd

dp gt dp g4

1 1
_ f f [ (@1 + pun(@, @1)) = V(@) + qun(@2, ®)))]
(p — (@2, @)
0 0
1 1

dp gt dp g

_ f f [¥ (@1 + pAn(®@2, ©1)) = V(@1 + gAn(@2, B))]
J (p — Pn(@2, @)

+ffww@pr@mm—Wm+MWM®m%w%M (2.2)
0 0

(p — gM(®@,, @y ))u

We can see that

1 1
u [P (@, + pAn(®,, ®1)) — V(@ + gAn(®@,, ®)))]
dp gt dp gl
0 0

(p — Pn(m,, ;)4

1 1
_ f d f [Y(@) + pAn(@2, @) — V(@) + gAn(@2, T))]
HoH J (p — QN(@,, @)

dpqd

[ ps qﬂ(mz, wl)

Z ‘I’(ml + —n(ﬁjg,w])) Z‘I’( (Dl))
1

= W [T(ml + 7]((32, (D])) - ‘“P((D])] . (23)

and

[Y(®) + pAn(@2, ©1)) — V(@) + qAN(@,, @y))]
(p — Pn(®,, @)

dp gt dp gl

o%}_
S

1
B [Y(@ + pAn(@2, ®))) — V(@) + gAN(®@2, B)))]
= | dpgu dp g

) (p — gM(®@2, @)
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n

_ 1 —iq‘”” N w+£1(wm)
= n(ﬁ)z,ﬁjl) £ pn+1 1 p +1n 2, W1 Z pn 1 pn+17] 2, W
1 [ & ql’l p q ql’l+1
— (@2, @) Z prtl Y| + P HTI((Dz,(Ih) a p" Yo +pp +2n(m2,ml)
’ L n=0 -

1 [1 © q

_g pizl+l\y((Ij

n=1
n

1 1 SN a
= r— »I—)‘P(ml + 1(®, @))) +( )Z Ty (ﬁ)l + pn+1n((ﬁz’ﬁjl))

171(652, 0'01))}

n=1

I S
—‘P(®1+ﬂ(ﬁ?2,®1))( )Z

- @2, ®) |q =

o)

(651 + 7](652,@1))

n+1 n+1

=

r @ +pN(@2,31)
1 1 1
=¥ (®@, + (@, ®)) - W (X) @, dpgx|-

= S (2.4)
(@, @) | q pan(m,, @)

(@)}

Similarly,

dp gt dp g4

1 1
f f A[¥(@; + pun(@,, ™)) — Y(@; + qun(®2, T))]
J (p — (@2, @ )u

W [Y(@, + (@, ) — ¥(@))], (2.5)

and

1

1
ff [P(®@ + pAn(@,, @) — V(@ + gAn(®,, ©))]
) (p — PN(®2, @)

dp gt dp g4

0

1
pgn(@,, @)

1
7]((32,@1)

‘P(ml + (0, @) — (2.6)

@1 +pn(®2,1)
Y(X) o, dp,qx} )

(o)1

Substituting equalities (2.3)—(2.6) in (2.2), we get

1 1
ff(/l - /l) [mle,qlP(ml + /17](652, ml)) - (D]Dp,qlp(ml + /JT](IDZ» wl))] dp,q:u dp,q/l
0 o0

@ +pN(@2,1)
1

= — Y(®@; + n(®,, ™))
PN (@, ) L+ T2 %

Y(x) g dpogX — ——
Doidna qn(m,, @)
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2
+ [2] nZ(m @) [\P(ml + T](IDZ’ ™)) — lP(wl)] . 2.7)
P.q 2, W1
Multiplying both sides of (2.7) by LX%22U we obtain the required result. O

Remark 2.1. If we take p = 1 in Lemma 2.2, then we have the following new equality:

@1 +1(W2,1)

1 q¥ (@) + ¥(@, + n(@,, ©))
- P(x) g, dgx —
(@, @) (0o dyx 21,

@

11
_ qn(wzbml) ff(,u - [mqu\P(ajl + AN(@2, ®1)) — 5, Dq'¥(m, +,un((152,®1))] dgu dgA.
0 0

3. Main results
In this section, we discuss our main results.

3.1. (p,q)-Dragomir-Agarwal type integral inequalities

We now derive (p,q)-analogues of Dragomir—Agarwal type integral inequalities via strongly ¢-
preinvex functions.

Theorem 3.1. For n(m,,®;) > 0, let ¥ : [0, D + N(®,, ;)] — R be (p, q)-differentiable mapping on
(@1, @ + (D, ®y)) and &, Dy oY be integrable on [@, ®; + (2, @) with0 < q <p < 1. If | 5,Dp 4P|
is strongly @-preinvex mapping on [, ®; + N(0,, ®;)] with modulus o > 0, then
@1 +pn(@2,m1)
1 q¥ (@) + p¥ (@ + n(@, ®1))
_ Y(X) g, dpgx —
pn((DZ, (151) [z]p,q

[

< qn(@,, @)

1 1
|mDmemt[fh—JWO—DW—M%MMMA
0 0

1 1
HmeﬂﬁmNf:[MMDw—AMMﬂ%yFW%GWMMGO,
0 0

where

. 2[2]123,q([3]p,q - [Z]p,q) + [4]p,q([2]12>,q - [S]p,q)
1= P

[212,,[3]p4[415q
 2[2]p,4([31pq — [4]p.q) + [S1p.a([2]pg[3]p.q — [4]pq)
T [21p.al3Tpa[41pal5Tng ’
My := M, — M,
| 20213,4(1Blpg — [2lpg) + (4154012154 = [B1p0)
- [212,[31p.q[4]5q
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2[2]pq([Blpgq = [4]p.q) + [5]pq([2]5,4[3]pq — [4]p.q) G.1)
21pal31pal4lpal5Tpa ' '

Proof. Using Lemma 2.2, property of modulus and the strongly ¢-preinvexity of | 5, D, 'P|, we have

@1 +pN(@2,01)

1 q¥(@)) + p¥ (@, + n(@, ®)))
_ Y(x) 5 dpox —
pn(®@,, @) (Do dpg [2]pq

1 1
(m @)
< AT B0 11 = Al gy Dy B(@1 + AN(@3, 1)l gft dy A
0 0

( ) 1 1

Q) ,as
SR UEAY f f 11t = All g, Dy P(@1 + 1 (@2, @1))ldy gt dp A

0 0

< M@ D) f f = A1 [(1 = V(1 = Dl 0, Dy ¥(@)] + A9, Dy B(@)]
—o? (@2, )AL = )] dpqpt dp g

1
+ PC2E) [ = A= W01 =10 Dy @) + 0, Dy ¥()

—o? (@2, @)1 = )| dpqpr dp g2

qn(m,, @)
2

o, Dy B(@)] f f (1= V(1 = Dl = Aldy e dy A
0

1 1 1 1
+| @, Dpg ¥(@2)] ff/lcp(/l)llu - /lldp,qﬂ dp,q/l - O'T]Z(mZ’ ™) f f/l(l = Dlu - /lldp,q:u dp,q/l
0 0 0 0

qn(m@,, @)
+ - @
2

oDy @) [ [(1= 1001 = 0l = gy d
0 0

+| 5, Dpg ¥(@2)| f f up()lp — Aldp g dy g A
0 0

—on (@, By) f f (1 = | — Aldp gt dp g4
0 0

1 1

= (@ 1) || o, Dy B (@) f f (1 = V(1 = Dlpt = Ady e A
0
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1 1
+| o, Dpg P (@2)] ff/lcp(/l)llu = Aldyqudpgd — M30-n2(m2, o).
0 0

This completes the proof. O

We now discuss some special cases of Theorem 3.1.

L If o(w) = @(1) = 1, then Theorem 3.1 reduces to the following result for the class of strongly
preinvex mapping.

Corollary 3.1. Under the assumptions of Theorem 3.1, if | 5, D, o\Y| is strongly preinvex on [@;,®; +
(@, ®y)], then

@ +pN(®@2,1)

1 q¥ (@) + p¥(@; + N(@,, @)
_ Y(X) o, dp,qx -
pN(®@2, @) [2]pq

()]

< qn(®,, @) [M4| o1 Dpg P(@)] + Ma| g, Dy g ¥(@2)] — Mo (@, (31)] ,

where

[212 ((41pq + 2) = 2[215q([3]p.q + [415) + [31p.q[4]5g

M,y =
! [2154[31p.4[41p

IL If (A1) = A7, @(u) = !, then Theorem 3.1 reduces to the following result for the class of strongly
P-preinvex mapping.

Corollary 3.2. Under the assumptions of Theorem 3.1, if | 5, D, o\P| is strongly P-preinvex on [@;, ®; +
N(®,, @)], then
1 @1 +pN(@2,01) ¥ P
W) + W + N(O, ®
W(x) gy Ayt — q¥(®@,) + p¥(@; + n(@, ®)))
pn(@2, @) [2]pq

[

< qN(@2, @) |[Ms(| 5, Dpg B(@1)] + |, Dy ¥(@2)]) = Mson(@a, @)

where

2([2]p,q - 1)
Ms i= ——M,
> [21q[3lhg

IIL If @(u) = !, @(1) = A°7!, then Theorem 3.1 reduces to the following result for the class of
strongly s-preinvex mapping.

Corollary 3.3. Under the assumptions of Theorem 3.1, if | 5, D, o\P| is strongly s-preinvex on [@;, ®; +
(@2, @)], then
: ©1+pN(@2,01) ¥ ¥
W) + W; + N(0,, ®
W) oy — q¥(®@) + p¥ (@, + n(@,, @))
Pn(mz, ﬁj1) [2]p,q
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< qN(@2. @) [(2*Ms — Me)| 0, Dy B(@1)] + Ml g, Dy ¥(@)] — Macrn?* (@2, m1)]

where

2[2]pq([s + 2]pq = [s + Lpg) + [s + 3]pq([2lpq[s + 1lpq = [5 + 2]pq)

M =
6 [21pals + Upgls + 2]pgls + 3lpq

IV.If () = 1 — w1, (1) = 1 — A4, then Theorem 3.1 reduces to the following result for the class of
strongly zgs-preinvex mapping.

Corollary 3.4. Under the assumptions of Theorem 3.1, if | 5, D, o\P| is strongly tgs-preinvex on [@;, @ +
N(@2, @1)], then

@ +pN(@2,01)

_ Py o ¢ — @D PO+ (@, 51)
pn(®2, @1) 2

()]

< qN(@2, B)OM; [ 0, Dpg ¥(@1)] + | 0, Dy P(@2)] = o (@, @)

Theorem 3.2. For n(®,,®;) > 0, let ¥ : [0, ®; + (@, ®1)] — R be (p, q)-differentiable mapping

on (M, ®; + N(W, ™)) and Dy ¥ be integrable on [@;,®; + (@, )] with 0 < q < p < 1. If
| 5, Dpg'PI”? is strongly -preinvex mapping on [, @ + n(®y, ®;)] with modulus o > 0 for ry > 1 with
S

ri +ry =1, then

@ +pN(@2,1)

1 q¥ (@) + p¥(m; + n(®2, @)
Pﬂ(mz, (Dl) [z]p,q

(]

< qn(@,, m)M)!

X

1 1 1 1
| o Dy (@) f f (1= D)p(1 = Dy gft dpg A + |, Dy ¥(@2)” f f AP(A)dpqtt dy g d
0 0 0 0

(@2, B)([Blpg - [2]p,q))‘z

[2]p.4[31pq
where
M, = P79 i i(—l)"—l G+q" " — g = 2¢"" — Py (r = 1) —n+ 1)
: (qr1+1 _ pr1+l) oy I’l![2];l’;n+l(qu+] _ pr1+1) .

Proof. Using Lemma 2.2, Holder’s inequality, property of modulus and the strongly ¢-preinvexity of
| 5, Dpq'FI?, we have

@ +pN(@2,1)

1 q¥(m) + p¥ (@, + (@2, ®))
_ Y(x) g dpgx —
pNn(m,, @) D oidna [2lpq
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1 1
(m , W)
< 20 = Al Dy B@1 + (@2, Bl gt dpd
0 0

(m , M)
¢ 200 w — U Dy g F(@1 + 11(@. D)l dp gt dp g

11
(2, @) .
< qn% lu = A" dpgpr dpgd
0 0

1

qn(mz,ml) f
2
0

,, M L
_qn( 2 1)M71

1 1
ff | [0]] Dp,q\}’(wl + /lT](mz, ml))rzdp’qﬂ dp’q/l
0 0

lu — A" dp,qﬂ dp,q/l | @, D, ¥(@; + un(my, ml))lrzdp,qﬂ d—p,q/l

o%_
o%_
o%_

1

1 1 >
X [ f f [(1 = DP(1 = D)l 5, Dp g ¥(@1)I* + AP(D)] 1, Dp V(@) = o (@, DA — /1)] dpqut dp,q/l]
0 0

L
1

f [(1 — (1 = )] g, Dy V(@I + up(u)| o, Dp. P(@2)* — 0-7]2(@2’ ol - ,u)] dp qu dp,q/l]
0

+
o%_‘ '

qn(@,, @) 5
B
1

oDy @) [ [[(1= 0601 = Dy + 10 Dy @ [ [ A6
0 0 0

0

1 1 r
—onA (@, B)) f f A(l—ﬁ)dp,qup,qa]
0 0

1 1 1 1
+[|m.Dp,q\P<w1)’2 [ [a-we -ty s 10Dyt @ [ [ ptidypedyan
0 0o 0

0
1

1 1 r
—on (@2, By) f f u(l —ﬂ)dp,qﬂdp,q/l]
0 0

1
= qn(@,, ©;)M
x[m.Dp,qLP(w])’z [ - 2u0 - ddndyut+ 10Dyt @ [ [ gy nda
0 0 0 0
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(@2, 0)([Blpg ~ 21g) |
EE |

This completes the proof. O

We now discuss some special cases of Theorem 3.2.

L If ¢(u) = @) = 1, then Theorem 3.2 reduces to the following result for the class of strongly
preinvex mapping.

Corollary 3.5. Under the assumptions of Theorem 3.2, if | 5 D, | is strongly preinvex on [@;, ®; +
N(®@,, ®y)], then

@ +pN(@2,1)

1 W) g dyox — q¥(@,) + p¥ (@ + n(@2, @)
pN(®@2, By) e 2lpq

()]

L ((12]pq = Dle Dpg¥(@DI"? + | 5, Dyp g ¥ (@2)]" o (@2, 1)([3pq = [2]p.q) g
< qn(ﬁh, (D])M7 ( [2]p,q B [Z]p,q[3]p,q .

IL If @(u) = u~', @(1) = 27!, then Theorem 3.2 reduces to the following result for the class of strongly
P-preinvex mapping.

Corollary 3.6. Under the assumptions of Theorem 3.2, if | 5, Dy \P|”? is strongly P-preinvex on [@;, @ +
N(@2, @1)], then

@ +pN(@2,31)

1 q¥ (@) + p¥(@; + (@2, ®1))
_ Y(x)qd, x —
pN(@;, @) (D1 2]pq

()]

(@2, ©)([Blog — [2]p,q))’z

< gn(@., ml)Mf‘ (I o Dpq P (@) + | 5, Dp g P (@2)]? —
[2]p.4[3]pq

IIL If @(u) = p* !, (1) = A°7!, then Theorem 3.2 reduces to the following result for the class of
strongly s-preinvex mapping.

Corollary 3.7. Under the assumptions of Theorem 3.2, if | 5, Dy \P|”* is strongly s-preinvex on [@;, ®; +
(@2, ®1)], then

@ +pN(D2,01)

1 W) doox — q¥ (@) + p¥(@; + n(@2, @)
@ K
pn(@;, @) e [2]pq

(]
1
< gn(@,, @ )M% Q" [s+ 1pq = DlgDpg¥( @) + | 5, Dpg ¥ (@2)]? B Unz(m%ml)([:ﬂp,q — [2]p9) )"
< q(@2, m)M; [s + 1pq [215.4[31pq '

IV.If () = 1 — pu, (1) = 1 — A, then Theorem 3.2 reduces to the following result for the class of
strongly rgs-preinvex mapping.
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Corollary 3.8. Under the assumptions of Theorem 3.2, if |5 DyqP|? is strongly tgs-preinvex on
[0, ® + N(,, ®)], then

! @ +pN(@D2,1) P .
W) + W1 + N(@,, ®

‘I’(x)mldp,qx—q (@) + p¥(@; + (0, @)))

pNn(@,, @) [z]p,q

[

Blog - [2pq\? , , g
W) (l Dy V(@D + | 5, Dp g ¥(@2)? — o ((Dz,(ﬁl))

Theorem 3.3. For n(m,,®;) > 0, let ¥ : [®;, D + (0, ®;)] — R be (p, q)-differentiable mapping on
(@1, ®; +N(@2, ®1)) and D, q¥ be integrable on [, ®; +1(®,, ;)] with0 < q < p < 1. If | ,Dp g'P|”
is strongly @-preinvex on [@, ®; + N(Oy, ®;)] with modulus o > 0 for r, > 1, then

< qn(@,, ®1)M (

! @1 +pn(@2,1) @ -
) + W1 + N(0,, ®

\P(x)mldp,qx_q (@) + p¥(@; + n(®,, @)))

PT](UJZ, wl) [2]p,q

[

1-L
< qn(®,, @M, *
1o

1 1
x [| oD ¥O) [ (1= 00 = Dl = Uyt + 1D ¥O” [ [ A0l = Ay
0 0

0
1

~M;on’ (@, 651))"2 ;
where M is given as in Theorem 3.1 and M is defined as in Corollary 3.2.

Proof. Using Lemma 2.2, the well-known power mean inequality, property of modulus and the strongly
¢-preinvexity of | 5, D, ‘P2, we have

! @ +pN(D2,1) @ ¥
) + W + N(W,, ®

‘P(X)mldp,qx—q (@) + p¥(@; + n(®,, ®)))

pn(®@,, @) [2]p,q

1 1
(Gj @
< IN®2, By fflﬂ_ﬂ”mle’q\P(ml + AN(@2, ®1))|dp it dpgd
00

(@)
, @, @) f f = A, Dy B(@1 + (T, B )iyt g

1 1
(1, @)
< q“# f f I = Aldy gt dp g2
0 0

1
qn(m@,, @) f
+ - @
2
0
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" 1
f'ﬂ — Al &, Dp ¥(@1 + AN(@, @) dp gt dp g4
0

1 ry

J — Ady gt dpg [ = A Dy ¥, + @2 D
0

o%_
o%_ o%_
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< qn(wz,ml)Mé—é

1

2
1 1 )
x [ f f ((1 = Dp(1 = Dl DpB@I? + AP Dy B@I* = (@2, BAL — D) gt dp,qz]
0 0

1 1 r
+ f f ((1 = 101 = 2], Dy ¥ (@I + (1) 0, Dy P@I” = (@2, T)p(1 = 1)) iy dp,qﬂ]
0 0

qn(@,, @;)_ 1-+
=T
1 1 1 1
|| 10, Dy B (@I f f (1= (1 = Dl = Ayt dy g d + | 0, Dy B(@)[ f f AVl = Ayt dy g d
0 0 0 O

1 ;
—on} (@, @) f f AL = lp = Aldp gpt dp,q/l]
0 0

1 1 1 1
+ [| oD PO [ (101 = 0t = Uyt + 1o DY@ [ [ g0l = g dyd
0 0 0 0

1 1 r
_O'T]Z(mz» 1) f f,u(l — Wl — Ald, qp dp,q/l]
0 0
i

Ly
= qn(®,, @M, *
1 1 1 1

x [| oD PO [ (1= 001 = Dt = Ayt + 1o D 2@ [ [ 2500~ gyl
0 0 0 0

M0 (@, 0'01))E :

This completes the proof. O

We now discuss some special cases of Theorem 3.3.

L If () = @(1) = 1, then Theorem 3.3 reduces to the following result for the class of strongly
preinvex mapping.
Corollary 3.9. Under the assumptions of Theorem 3.3, if | 5, Dy '¥|” is strongly preinvex on [@;, @; +
(@2, ®y)], then
@ +pn(@2,@1)
1 q¥(®@) + p¥ (@, + n(@, @)

_— \P X d X —
pN(@2, B ) D m g [2]pq
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1 1

1- 1
< qn(@2, B)OM; * (M| g, Dy B(@)I” + Mol o, Dp g P@)I” = Mo (w2, @) .

IL If @(u) = u~', @(1) = 27!, then Theorem 3.3 reduces to the following result for the class of strongly
P-preinvex mapping.

Corollary 3.10. Under the assumptions of Theorem 3.3, if |5 Dy q¥|? is strongly P-preinvex on
[, D + N (D, ©)], then

@ +pN(@2,1)

1 q¥(m) + p¥(@; + n(@,, ®))
_— Y(X) g, dpqx —
pn((DZ’ ﬁjl) [2]p,q

@
1

1 &
< qn(®,, )M, (M5(| 3 Dpq P (@) + | 5, Dy P(@2)2) — Mzon?*(ms, 0'01)) 2.

IIL If @(u) = p*', @(1) = A°7!, then Theorem 3.3 reduces to the following result for the class of
strongly s-preinvex mapping.

Corollary 3.11. Under the assumptions of Theorem 3.3, if |5 Dp¥|? is strongly s-preinvex on
(@, ©; + (D, ®)], then

@1 +pN(W2,1)

1 q¥(m,) + p¥(m; + n(m,, ®;))
_ Y(x) 5 dpox —
pn(®@,, @) Do 2lpq

[9)]
l_rL -5 r 7 rL
< qn(@2, )M ((2'7"Ms — Mg)| 5, Dpg P(@1)I"” + Mg, Dy (@)|” = Myon (@2, @) .
IV.If () = 1 — w1, (1) = 1 — A4, then Theorem 3.3 reduces to the following result for the class of
strongly zgs-preinvex mapping.

Corollary 3.12. Under the assumptions of Theorem 3.3, if |, Dpq¥Y|? is strongly tgs-preinvex on
(@1, @) + N(@, T1)], then

@1 +pN(®@2,01)

1 o q¥(@,) + p¥ (@ + n(@2, @)
pN(®@,, By) o [2lpq

)]
1

-5 % r r; 2
< q(@, @My > M (|5, DpgP@)I” + |, Dp g B@)I” = onX(@a, @) .

3.2. (p,q)-Iyengar type integral inequalities

In this section, we derive new (p, q)-Iyengar type integral inequalities essentially by using the
strongly quasi-preinvexity property of the mappings. For this, let us recall the following definition.

Definition 3.1. A mapping ¥ : £, — R on the invex set is said to be strongly quasi-preinvex, if
Y@ + (@, ®))) < max{¥P(@), ¥(@,)} — o M1 — W’ (@2, D)),

holds for all ®,,®, € &, A € (0, 1) with (@, ®;) > 0 and o > 0.
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Theorem 3.4. For n(m,,®;) > 0, let 'Y : [0, D + N(®,, ;)] — R be (p, q)-differentiable mapping on
(@, ®; + (D, @) and o, D, ¥ be integrable on [@;, @, + (0, @) with0 < q <p < 1. If | 5,Dp 4l
is strongly quasi-preinvex mapping on [®y, ®; + (0, ®;)] with modulus o > 0, then
! @1 +pn(@2,m1) ” v
;) + W; + N(,, ®
W(x) o — q¥ (@) + p¥ (@, + n(@, @1))
Pﬂ(mz, GJ1) [z]p,q

[

< qn(@,, @) [Ms max{| o, Dp ¥ (@1)], | o, Dp g ¥ (@2)]} — M30'112(ﬁj2, (701)] )
where M is given as in Theorem 3.1 and M is defined as in Corollary 3.2.

Proof. Using Lemma 2.2, property of modulus and the strongly quasi-preinvexity of |5 Dy o'P|, we
have

@1 +pN(@2,1)

1 W(x) o dy o — q¥(m,) + p¥(@; + n(®,, ®;))
pn(®@,, @) o 2lpq

1

1
(m @)
< P2 ) 11 = All g, Dy o ¥(@y + AN(@, @)l ot dy 2
0

0
1

(ﬁ) ,®
4 INt®2, ) f f — Al o, Dp ¢ V(@1 + (@2, @1))ldp gt dp g4
( 1 1
Q] ,ﬁs )
< T f f lu— Al maxlmleq‘P(wl)l | 5 Dpg ¥ (@2)I} — Unz(%@l)ﬂ(l"D]dp’qﬂdp’qﬁ
0 0

1 1
(m,m)
+ 1f f i = Al [max{] o, Dy B(@1)], | o, Dy B@)]} = 0(@s, D)1 = g2)| dp gp1 dp g A
0 0

_ qn(®,, @)
2

11
aX{l ﬁth,qlP(ml)la | mle,qlP(GjZ)l} ffllu - /lldp,q:u dp,q/l
0 0

(@, @) f f A1 = Dlpt = Ady e do A
0 0

4 qn(ﬁjzz,ﬁh)

1 1
ax{| ﬁile,qlP(ml)L | mle,qlP(mz)” f f lu — /lldp,q,u dp,q/l
0 0

—oN (@2, @) ff,u(l — Wy = Aldp g dp g4
0 0

= qN(@, @) | Ms max{| o, Dy g B(@))]: | 0, Dpg P(@)I} = Mo (@2, ®y)| -

This completes the proof. O
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Theorem 3.5. For n(®,,®;) > 0, let Y : [0, ®; + (@, ®1)] — R be (p, q)-differentiable mapping
on (B, ®; + N0, ®)) and D, ¥ be integrable on [@;,®; + (@, )] with 0 < q < p < 1. If
| 3, Dp.q¥|"? is strongly quasi-preinvex mapping on [@, ®; + (W2, ®;)] with modulus o > 0 for ry > 1
with rl‘1 + r;l =1, then
@1 +pn(@2,m1)
1 q¥(@)) + p¥(@; + n(@,, @1))
_ W(x) g, dpqx —
pn((DZ, (,_01) [2]p,q

(@2, B)[Blog — [21pe) )\
21pal3lo

2

1
< qn(@, oM/ (maX{l o Dpg V(@)1 | 5, Dp g ¥(@2)]?} -

where M7 is given as in Theorem 3.2.
Proof. Using Lemma 2.2, Holder’s inequality, property of modulus and the strongly quasi-preinvexity
of | 3, Dpq'¥|?, we have

@ +pN(@2,1)

1 q¥(m) + p¥ (@ + (@2, ®))
_ Y(x) g dpgx —
pNn(m,, @) oidraq [2]pq

[

1 1
(2, @)
< qn% f f It = Al g, Dy g V(@1 + AN(@2, ©1))Id} gt dp g4

|
(00, @)
+ qn% | — Al o, Dp ¢ ¥(@1 + (@2, ®))Idp gt dp g4

1
< qn(m,, @;) f
2
0

qn(m,, @) f
)
0

n(IDZ’ ml)

= A" gt dy g A | Dpg (@1 + (@, )2y gt dp g 2

|,u - /llrl dp,qlu dp,q/l | @ Dp,q\P(ml + ,un(tm, ﬁh))|r2 dp,q.u dp,q/l

O% og}
Lo o
&

o%_ o%_

1

1 1 r
ff max {l o Dp, qlP(ﬁjl)lr2 | o Dp, qlP((DZ)lrz} 0'7]2((32, oA - /1)] dp,qlu dp,q/l]
0 0

1

1 1 r2
+[ f f [max{| o, Dy ¥(@)I". | 5, Dy ¥(@)I*) — 1@z, @ a(1 — o) dp,qydp,qAJ

qn(m,, @;)
== M.

1

1 1 r2
X [max{lmle,q‘I’((m)I”,Imle,q‘P(tﬁz)W} — o (@2, By) f f A(L = Ddy gut dp,q/l}
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+ [max{ mle,q\P(ml)er’ | mle,q\P((DZ)lrz} - 0'7]2((32, ml) f fﬂ(l - /J)dp,q:u dp,q/l]
0 0

(@, ©)([Blog — [2]p,q>)r3
21ral3la ‘

This completes the proof. O

= qn(@,, )M, (max{l o Dp.g V(@I | 0, Dp g ¥ (@2)[*} -

Theorem 3.6. For n(m,,®;) > 0, let ¥ : [®;, D + (@2, ®;)] — R be (p, q)-differentiable mapping on
(@, ®; +M(@2, ®1)) and Dy q¥ be integrable on [, ®; +1(®2, ;)] with0 < q < p < 1. If | 5,Dp 4P|
is strongly quasi-preinvex mapping on [®;, ®; + 1(W,, ®1)] for r, > 1, then
| @ +pN(@2,01) P ¥
;) + W; + N0, ®
‘I’(x)mldp,qx—q (@) + p¥ (@ + (@2, 1))
pn(wb (31) [2]p,q

ﬁil
1

< (@, @M, (M5 max{] o, Dy @I, | Dy H(@)I"} — Mo, 1))

where M is given as in Theorem 3.1 and M is defined as in Corollary 3.2.

Proof. Using Lemma 2.2, the well-known power mean inequality, property of modulus and the strongly
quasi-preinvexity of | 5, D, ¥|?, we have

@1 +pN(@2,1)

1 q¥(m) + p¥ (@, + (@2, ®1))
_ Y(x) 5 dpox —
pN(®@,, @) (Vordpg [2]pq

1 1
(m , @)
< 20 [ 1 = Al o, Dp ¥(@1 + (@2, Bl gt dpgd
0 0

((Ij , @
R f f It = All 5, Dy ¥(@) + (@, ©1))|dp gt dp g A

1 1
(02, @)
< f f i = Ay g dy o d
0 0

1
1 -7

1
(1, @)
+ IO, W) 22 ! I = Aldy o dy oA
0 0

qn(@,, @) 1-
<t %

1
fl/J =4l Gile,q\P(wl + AN(@y, ml))lrzdp,q,u dp,q/l
0

lu = Al o, Dp g ¥(@1 + (@2, @) dp gt dp g4

O%H O%H
o%_

1 1 n
x [ f f = A1 (max{| o, Dy ¥(@)I", | 0, Dpg (@I} = 1@, @A = D)) dpgpt g
0

AIMS Mathematics Volume 7, Issue 4, 5728-5751.



5746

1

1 B

1
+ f ¢ = Al (max{| o, Dy ¥ (@I, |, Dy B(@I?} — 0P(@2, @)1 — 1)) dpgpt dp g d
0 0

qn(@,, @) 1-%
- TMS

1 1
|| maxll Do ¥@ o D ¥ @) [ [ = Ay
0 0

1 1 é
@) [ [ a0 - ddyn dp,qﬂ]
0 0

1 1
+ maX{l [ Dp,q\P(ml )lrz, | mle,q\P(GZ)lm} ffllu - /lldp,q/l dp,q/l
0 0

1

n

1 1
@) [ [ =l = Ay
0 0

1-L i
= qn(@, @My > (Ms max{| o, Dpq P@)I™, | o, Dpg P@)I”} = Maon?* (@2, @) .
This completes the proof. O

Remark 3.1. If we choose p = 1 in our main results, we can get new special cases regarding quantum
analogues of Dragomir-Agarwal and lyengar type of integral inequalities essentially by using the
strongly -preinvexity property of the mappings. We omit here their proofs and the details are left to
the interested reader.

4. Application to bounded functions
We suppose that the following condition is satisfied:

|5, DpqPl < Q, 4.1)
which means that the (p, q)-differentiable mapping ¥ is in absolute value bounded from the positive
real number Q. Applying the above condition, we are in a position to derive some new interesting
inequalities using our main results.

Proposition 4.1. Under the conditions of Theorem 3.1, the following inequality holds:

@ +pN(@2,1)

1 vy Ny
W) oy — q¥(@,) + p¥(@; + (@, @)
pn(ﬁjz, ml) [z]p,q
W
11 11
< g, ) Q{ f f (1= (1 = Dt = Udpgpa dpod + f f (Dl — Aldp gt dp,qﬂ}
0 0 0 0
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~M;on*(@s, ﬁil)] .
Proof. Applying inequality (4.1) in Theorem 3.1, we have the desired result. O

Proposition 4.2. Under the conditions of Theorem 3.2, the following inequality holds:

@ +pN(®2,01)

1 q¥ (@) + p¥ (@, + (@2, ®))
_ Y(x) 5 dpox —
pn(®@,, @) Do dpg [2]pq

()]

1
< qn(@,, @ )M

1

1 1 1 1

2(@. (3] — [2 "

Q%ff““m“@%ww”ffmw%mmyﬁMzdﬁﬁqHw .
P4 P9

00 0 0

X

Proof. Using inequality (4.1) in Theorem 3.2, we get the desired result. m|

Proposition 4.3. Under the conditions of Theorem 3.3, the following inequality holds:

@1 +pn(@2,1)

1 W(x) o doox — q¥ (@) + p¥ (@ + n(@,, ®)))
@1 ~p,
(@2, @) . [2]pq

[
-2
< qn(GJQ’ ml )M5 2
1

1 1 1
X [Q{ f f (1= Dp(l = Dlu — Aldpqp dpgd + f f AQ(D)|u — Aldp qu dp,qﬂ}
0 0

0 0
1

~Mzon?*(@,, 651))6 :
Proof. Applying inequality (4.1) in Theorem 3.3, we obtain the desired result. m|

Proposition 4.4. Under the conditions of Theorem 3.4, the following inequality holds:

@1 +pN(®2,01)

1 W) g dyox — q¥ (@) + p¥(@; + n(@, ®1))
() A
pn(®@2, @) P [2]pq

()]

< qn(@2, 1) [MsQ - Mzon®* (@, @)
Proof. Using inequality (4.1) in Theorem 3.4, we have the desired result. O

Proposition 4.5. Under the conditions of Theorem 3.5, the following inequality holds:

@ +pN(@2,1)

1 q¥(m,) + p¥ (@, + (@2, ®1))
_ Y(x) g dpgx —
pn(®@,, @) Do dpg [2lpq

[Q)]

mﬁmmmmm—mMWZ

< qn(®,, ©;)M.' (Q’Z -
qTI 2 1 7 [2]p’q[3]p’q
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Proof. Applying inequality (4.1) in Theorem 3.5, we get the desired result. O
Proposition 4.6. Under the conditions of Theorem 3.6, the following inequality holds:

@ +pN(@2,1)

1 W(x) g d ox — q¥(m) + p¥ (@, + (@2, ®))
pn(@2, @) o [2]pq

[
1 1

- L
< qn(m2, @M, (MsQr2 - M3o-n2(m2,ml))'2 :

Proof. Using inequality (4.1) in Theorem 3.6, we obtain the desired result. O
5. Conclusions

In this paper, we have established a new post-quantum integral identity using (p, q)-differentiable
mappings. From the applied identity as an auxiliary result, we have obtained some new variants of
Dragomir—Agarwal and Iyengar type integral inequalities essentially pertaining to the class of
strongly ¢-preinvex and strongly quasi ¢-preinvex mappings, respectively. We also discuss several
new special cases which show that the results obtained are quite unifying. In order to illustrate the
efficiency of our main results, some applications regarding (p, q)-differentiable mappings that are in
absolute value bounded are provided as well. To the best of our knowledge, these results are new in
the literature. Since the class of strongly ¢-preinvex mappings have large applications in many
mathematical areas, they can be applied to obtain several results in convex analysis, special mappings,
quantum mechanics, related optimization theory, and mathematical inequalities and may stimulate
further research in different areas of pure and applied sciences. Studies relating convexity, partial
convexity, and preinvex mappings (as contractive operators) may have useful applications in complex
interdisciplinary studies, such as maximizing the likelihood from multiple linear regressions involving
Gauss—Laplace distribution. For more details, please see [43,44].
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