
http://www.aimspress.com/journal/Math

AIMS Mathematics, 7(4): 5534–5562.
DOI:10.3934/math.2022307
Received: 22 September 2021
Revised: 16 December 2021
Accepted: 29 December 2021
Published: 10 January 2022

Research article

An interior-point trust-region algorithm to solve a nonlinear bilevel
programming problem

B. El-Sobky∗and G. Ashry

Department of Mathematics and Computer Science, Alexandria University, Faculty of Science, Egypt

* Correspondence: Email: bothinaelsobky@yahoo.com.

Abstract: In this paper, a nonlinear bilevel programming (NBLP) problem is transformed into an
equivalent smooth single objective nonlinear programming (SONP) problem utilized slack variable
with a Karush-Kuhn-Tucker (KKT) condition. To solve the equivalent smooth SONP problem
effectively, an interior-point Newton’s method with Das scaling matrix is used. This method is locally
method and to guarantee convergence from any starting point, a trust-region strategy is used. The
proposed algorithm is proved to be stable and capable of generating approximal optimal solution to the
nonlinear bilevel programming problem.
A global convergence theory of the proposed algorithm is introduced and applications to mathematical
programs with equilibrium constraints are given to clarify the effectiveness of the proposed approach.

Keywords: nonlinear bilevel programming problem; Newton’s method; Das scaling matrix;
trust-region technique; global convergence
Mathematics Subject Classification: 93D52, 49N35, 93D22, 49N10, 65K05

1. Introduction

Bilevel programming problem has increasingly been addressed in the literature, both from the
theoretical and computational points of view [14]. This model has been widely applied to decentralized
planning problems involving a decision progress with a hierarchical structure. It is characterized by
the existence of two optimization problems in which the constraint region of the first-level problem is
implicitly determined by another optimization problem. The NBLP problem is hard to solve. In fact,
the problem has been proved to be NP-hard [8]. However, the NBLP problem is used so extensively
in resource allocation, finance budget, price control, transaction network etc. [1, 7, 28, 29, 39] that
many researches have been devoted to this field, which leads to a rapid development in theories and
algorithms. For the detailed expositions, the reader may consult [21, 33].

http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.2022307

5535

In this paper we will consider the following NBLP problem

mint fu(t, y)
s.t. gu(t, y) ≤ 0,

miny fl(t, y),
s.t. gl(t, y) ≤ 0,

(1.1)

where t ∈ <n1 and y ∈ <n2 . The functions fu : <n1+n2 →<, fl : <n1+n2 →<, gu : <n1+n2 →<m1 , and
gl : <n1+n2 →<m2 are assumed to be at least twice continuously differentiable function.

There are several approaches have proposed to solve problem 1.1, see [2,3,25,35,40]. One of these
approaches and used in this paper, is converted the original two level problems to a single level one
by replacing the lower level optimization problem with its Karush-Kuhn-Tucker (KKT) conditions,
see [24,41]. By KKT optimality conditions for the lower-level problem, then we can reduce the NBLP
problem 1.1 to one-level programming problem. This problem is non-convex and non-differentiable,
moreover the regularity assumptions which are needed to successfully handle smooth optimization
problems are never satisfied and it is not good to use our approach. So, we add slack variables for
inequalities constraints in problem 1.1.

By adding slack variables su ∈ <
m1 and sl ∈ <

m2 to the upper inequality constraint gu(t, y) and the
lower inequality constraint gl(t, y) respectively, then NBLP problem 1.1 can be written as follows

mint fu(t, y)
s.t. gu(t, y) + su = 0,

miny fl(t, y),
s.t. gl(t, y) + sl = 0,

su ≥ 0, sl ≥ 0.

The above NBLP problem can be simplified as follows

mint fu(t, y)
s.t. g̃u(t, y, su) = 0,

miny fl(t, y),
s.t. g̃l(t, y, sl) = 0,

s ≥ 0,

(1.2)

where g̃u(t, y, su) = gu(t, y) + su ∈ <
m1 , g̃l(t, y, sl) = gl(t, y) + sl ∈ <

m2 , and s = (su, sl)T ∈ <m1+m2 .
Applying KKT conditions only on the lower-level problem without the constraint s ≥ 0, then we

can reduce the NBLP problem 1.2 to the following smooth SONP problem:

mint fu(t, y)
s.t. g̃u(t, y, su) = 0,

∇y fl(t, y) + ∇yg̃l(t, y, sl)µl = 0,
g̃l(t, y, sl) = 0,
s ≥ 0,

(1.3)

where µl ∈ <
m2 is a Lagrange multiplier vector associated with equality constraint g̃l(t, y, sl), see [5].

AIMS Mathematics Volume 7, Issue 4, 5534–5562.

5536

Using problem 1.3, to overcome the difficulty that problem 1.1 does not satisfy any regularity
assumptions, which are needed for successfully handling smooth optimization problems, and pave
the way for using the proposed approach to solve problem 1.1. To simply our discussion, we introduce
the following notations. x = (t, y, s)T ∈ <n, n = n1 + n2 + m1 + m2, h(x) ∈ <m represents the vector of
equality constraints such that m = m1 + m2 + n2. Then problem 1.3 can be written as follows

minimize fu(x)
sub ject to h(x) = 0,

v ≤ x ≤ w,
(1.4)

where v ∈ {<
⋃
{−∞}}n, w ∈ {<

⋃
{+∞}}n, and v < w.

Various approaches have been proposed to solve the SONP problem 1.4, see [5, 9–11, 15–19]. In
this paper, we use Newton’s interior point method with Das scaling matrix [12] to solve problem 1.4.
Newton’s method converges quadratically to a stationary point under reasonable assumptions if the
starting point sufficiently closed to the stationary point. It may not converge if the starting point is
far away from the stationary point. To guarantee convergence from any starting point, a trust-region
strategy is used. The trust-region strategy can induce strongly global convergence, which is very
important method for solving SONP problem and is more robust when it deals with rounding errors. It
does not require the objective function of the model be convex or the Hessian of the objective function
must be positive definite. Also, some criteria are used to test the trial step is acceptable or no. If it is
not acceptable, then the subproblem must be resolved with a reduced the trust-region radius. For the
detailed expositions, the reader may consult [4, 17, 20–23, 30, 32, 36, 42, 43, 45, 46].

A reduced hessian technique is used in this paper to overcome some difficulties in trust-region
subproblem. This technique was suggested by [6, 37] and used by [19, 20].

In this paper, we use the symbol, fuk ≡ fu(xk), hk ≡ h(xk), Pk ≡ P(xk) `k ≡ `(xk, λk), ∇x`k ≡

∇x`(xk, λk), and so on to denote the function value at a particular point. Finally, all norms are l2-norms.
The rest of the paper is organized as follows. In section 2, we introduce detailed description for the

proposed method to solve problem 1.4. Section 3 is devoted to analysis of the global convergence of
the proposed algorithm. Section 4 contains implementation of the proposed algorithm and the results
of test problems. Section 5 contains concluding remarks.

2. An interior-point method with trust-region algorithm

In this section, firstly, we will consider the detailed description for the Newton’s interior-point
method with Das scaling matrix to solve SONP problem 1.4. Secondly, to guarantee convergence
from any starting point, we will introduce the detailed description for trust-region strategy. Finally, we
clarify main steps for general algorithm to solve NBLP 1.1.

2.1. Newton’s method with scaling matrix

Motivated by the impressive computational performance of Newton’s interior-point method for
solving SONP problem 1.4, let

`(x, λ) = fu(x) + λT h(x), (2.1)

be a Lagrangian function associated with problem 1.4 without the constraints v ≤ x ≤ w, and let

L(x, λ, µv, µw) = `(x, λ) − µvT
(x − v) − µwT

(w − x), (2.2)

AIMS Mathematics Volume 7, Issue 4, 5534–5562.

5537

be a Lagrangian function associated with problem 1.4 with the constraints v ≤ x ≤ w. The vectors
λ ∈ <m, µv ∈ <n, and µw ∈ <n represent Lagrange multiplier vectors associated with the constraints
h(x) = 0 , 0 ≤ (x−v), and 0 ≤ (w−x) respectively. Let Ĝ = {x : v ≤ x ≤ w} and int(Ĝ) = {x : v < x < w}.

The first-order necessary conditions for the point x∗ to be a local minimizer of problem 1.4 are the
existence of multipliers λ∗ ∈ <m, µv

∗ ∈ <
n
+, and µw

∗ ∈ <
n
+, such that (x∗, λ∗, µv

∗, µ
w
∗) satisfies

∇x`(x∗, λ∗) − µv
∗ + µw

∗ = 0, (2.3)
h(x∗) = 0, (2.4)

v ≤ x∗ ≤ w, (2.5)

and for all i corresponding to x(i) with finite bound, we have

(µv
∗)

(i)(x(i)
∗ − v(i)) = 0, (2.6)

(µw
∗)(i)(w(i) − x(i)

∗) = 0, (2.7)

where ∇x`(x∗, λ∗) = ∇ fu(x∗) + ∇h(x∗)λ∗.
The proposed algorithm here, like its predecessors in [12, 18, 19], starts at a point strictly feasible

with respect to the bounds on the variables and produces iterates that are strictly feasible with respect
to the bounds (i.e. ‘in the interior’). Define a diagonal scaling matrix P(x) = diag(p(x) whose diagonal
elements p(x) are given by

p(i)(x) =

√

(x(i) − v(i)), if v(i) > −∞ and (∇x`(x, λ))(i) ≥ 0,√
(w(i) − x(i)), if w(i) < +∞ and (∇x`(x, λ))(i) < 0 ,

1, otherwise.
(2.8)

Using the matrix P(x), then (x∗, λ∗, µv
∗, µ

w
∗) satisfy the KKT conditions [2.3-2.7] if and only if

P2(x)∇x`(x, λ) = 0, (2.9)
h(x) = 0. (2.10)

For more details about the proof, see [12].
Applying Newton’s method on the nonlinear system [2.9-2.10], then we have

[P2(x)∇2
x`(x, λ) + diag(∇x`(x, λ))diag(θ(x))]∆x + P2(x)∇h(x)∆λ = −P2(x)∇x`(x, λ), (2.11)

∇h(x)T ∆x = −h(x). (2.12)

where θ(x) is a vector whose components are given by

θ(i)(x) =

1, if v(i) > −∞ and (∇x`(x, λ))(i) ≥ 0,
−1, if w(i) < +∞ and (∇x`(x, λ))(i) < 0,

0, otherwise.
(2.13)

For more details see [18].
In our method, the matrix P(x) must be nonsingular, so we restrict the point x ∈ int(Ĝ). Multiplying

both sides of equation 2.11 by P−1(x), then we have

[P(x)∇2
x`(x, λ) + P−1(x)diag(∇x`(x, λ))diag(θ(x))]∆x + P(x)∇h(x)∆λ = −P(x)∇x`(x, λ),

AIMS Mathematics Volume 7, Issue 4, 5534–5562.

5538

∇h(x)T ∆x = −h(x).

Substituting ∆x = P(x) d in the above two system, then we have

[P(x)H(x, λ)P(x) + diag(∇x`(x, λ))diag(θ(x))] d + P(x)∇h(x)∆λ = −P(x)∇x`(x, λ), (2.14)
(P(x)∇h(x))T d = −h(x), (2.15)

where H(x, λ) = ∇2
x`(x, λ) represents the Hessian of the Lagrange function 2.1 or an approximation

to it. It is easy to see that the step generated by the above system coincides with the solution of the
following quadratic programming subproblem

minimize `(x, λ) + (P(x)∇x`(x, λ))T d + 1
2dT Bd

sub ject to h(x) + (P(x)∇h(x))T d = 0,
(2.16)

where B = P(x)H(x, λ)P(x)+diag(∇x`(x, λ))diag(θ(x)). This means that, the point (x∗, λ∗) that satisfies
the KKT conditions for subproblem 2.16 will satisfy the KKT conditions for problem 1.4.

Although Newton’s method converges quadratically to a stationary point under reasonable
assumptions, it may not converge to a stationary point if the starting point is far away from the solution.
To overcome this disadvantage and to guarantee convergence from any starting point, we use the trust-
region technique.

2.2. Trust-region technique

Trust-region methods can induce strongly global convergence, which are very important methods
for solving a smooth nonlinear programming problem and are more robust when they deal with
rounding errors. It does not require the objective function of the model be convex. Also, it does
not demand the Hessian of the objective function must positive definite.

The trust-region subproblem associated with problem 2.16 is

minimize qk(Pkdk) = `k + (Pk∇x`k)T d + 1
2dT Bkd

sub ject to hk + (Pk∇hk)T d = 0,
‖d‖ ≤ δk,

(2.17)

where δk > 0 is the radius of the trust-region.
Subproblem 2.17 may be infeasible, because there may be no intersecting points between the

constraint ‖d‖ ≤ δk and hk + (Pk∇hk)T d = 0 constraints. Even if they intersect, there is no warranty
that this will continue true if δk is decreased. For more details see [13]. To overcome this difficulty, we
use a reduced hessian technique. This technique was suggested by [6, 37] and used by [19, 20]. In this
technique, the trial step d is decomposed into two orthogonal components: the normal component dn

to improve feasibility and the tangential component dt
k to improve optimality. Each of components is

computed by solving unconstrained trust-region subproblem.

• How to estimate the normal component dn
k

The normal component dn
k is computed by solving the following trust-region subproblem

minimize ‖hk + (Pk∇hk)T dn‖2

sub ject to ‖dn‖ ≤ ζδk,
(2.18)

AIMS Mathematics Volume 7, Issue 4, 5534–5562.

5539

for some 0 < ζ < 1. To solve the subproblem 2.18, we use a conjugate gradient method which is
introduced by [38] and used by [21], see algorithm 2.1 in [21]. It is very cheap if the problem is
large-scale and the Hessian is indefinite. By using the conjugate gradient method, the normal predicted
decrease obtained by dn

k is greater than or equal to a fraction of the normal predicted decrease obtained
by the Cauchy step dncp

k . This means that

‖hk‖
2 − ‖hk + (Pk∇hk)T dn

k‖
2 ≥ ϑ1{‖hk‖

2 − ‖hk + (Pk∇hk)T dncp
k ‖

2}, (2.19)

such that dncp
k is defined as follows

dncp = −ϕ
ncp
k Pk∇hkhk, (2.20)

where the parameter ϕncp
k is given by

ϕ
ncp
k =

‖Pk∇hkhk‖

2

‖(Pk∇hk)T Pk∇hkhk‖2
if ‖Pk∇hkhk‖

3

‖(Pk∇hk)T Pk∇hkhk‖2
≤ δk ,

and ‖(Pk∇hk)T Pk∇hkhk‖ > 0,
δk

‖Pk∇hkhk‖
otherwise.

(2.21)

Once dn
k is obtained, we will evaluate dt

k = Zkd̄t
k where Zk is the matrix whose columns form a basis for

the null space of (Pk∇hk)T .

• How to estimate the tangential component dt
k

To obtain the tangential component dt
k, we use the conjugate gradient method [21] to solve the

following trust-region subproblem

minimize [ZT
k ∇qk(Pkdn

k)]T d̄t + 1
2 d̄tT ZT

k BkZkd̄t

sub ject to ‖Zkd̄t‖ ≤ ∆k,
(2.22)

where ∇qk(Pkdn
k) = Pk∇x`k + Bkdn

k and ∆k =

√
δ2

k − ‖d
n
k‖

2.
By using the conjugate gradient method, the tangential predicted decrease which is obtained by

tangential step d̄t
k is greater than or equal to a fraction of the tangential predicted decrease obtained by

a tangential Cauchy step d̄tcp
k . This means that

qk(Pkdn
k) − qk(Pk(dn

k + Zkd̄t
k)) ≥ ϑ2[qk(Pkdn

k) − qk(Pk(dn
k + Zkd̄

tcp
k))], (2.23)

for some 0 < ϑ2 ≤ 1 and d̄tcp
k is defined as follows

d̄tcp = −ϕ
tcp
k ZT

k ∇qk(Pkdn
k), (2.24)

where the parameter ϕtcp
k is given by

ϕ
tcp
k =

‖ZT

k ∇qk(Pkdn
k)‖2

(ZT
k ∇qk(Pkdn

k))T B̄kZT
k ∇qk(Pkdn

k) if ‖ZT
k ∇qk(Pkdn

k)‖3

(ZT
k ∇qk(Pkdn

k))T B̄kZT
k ∇qk(Pkdn

k) ≤ ∆k ,

and (ZT
k ∇qk(Pkdn

k))T B̄kZT
k ∇qk(Pkdn

k) > 0,
∆k

‖ZT
k ∇qk(Pkdn

k)‖ otherwise,
(2.25)

where B̄k = ZT
k BkZk .

AIMS Mathematics Volume 7, Issue 4, 5534–5562.

5540

• How to estimate a parameter γk

Once obtaining dt
k, we set dk = dn

k + dt
k and xk+1 = xk + Pkdk. To ensure xk+1 ∈ int(Ĝ), we need to

evaluate the parameter γk. To do this, evaluate

a(i)
k =

v(i)−x(i)

k

P(i)
k d(i)

k
, if v(i) > −∞ and P(i)

k d(i)
k < 0

1, otherwise,

and

b(i)
k =

w(i)−x(i)

k

P(i)
k d(i)

k
, if w(i) < ∞ and P(i)

k d(i)
k > 0

1, otherwise.

Compute
γk = min{1,min

i
{a(i)

k , b
(i)
k }}. (2.26)

Once the trial step γkPkdk is evaluated, it needs to be tested to decide whether it will be accepted or
not. To do this, we need to a merit function which is ties the objective function and the constraints in
such a way that progress in the merit function means progress in solving problem. In our method, we
use the following merit function which is introduced by [26] and known as an augmented Lagrange
function

Φ(x, λ; ρ) = `(x, λ) + ρ‖h(x)‖2, (2.27)

where `(x, λ) is defined in 2.1 and ρ > 0 represents the penalty parameter.

• How to estimate λk+1

The Lagrange multiplier vector λk+1 will be estimated as follows

minimize ‖∇ fuk+1 + ∇hk+1λ‖
2. (2.28)

To test whether the point (xk+1, λk+1), will be accepted in the next iterate or no we need to define the
following actual reduction Aredk and the predicted reduction Predk.

The actual reduction Aredk in the merit function 2.27 in moving from (xk, λk) to (xk + γkPkdk, λk+1)
is defined as follows

Aredk = Φ(xk, λk; ρk) − Φ(xk + γkPkdk, λk+1; ρk).

Also we can write the actual reduction Aredk as follows,

Aredk = Φ(xk, λk; ρk) − Φ(xk + γkPkdk, λk+1; ρk),
= `(xk, λk) − `(xk+1, λk) − ∆λT

k hk+1 + ρk[‖hk‖
2 − ‖hk+1‖

2], (2.29)

where ∆λk = (λk+1 − λk).
The predicted reduction Predk is defined as follows

Predk = −(Pk∇x`(xk, λk))Tγkdk −
1
2
γ2

kdT
k Bkdk − ∆λT

k (hk + (Pk∇hk)Tγkdk)

+ρk[‖hk‖
2 − ‖hk + (Pk∇hk)Tγkdk‖

2]. (2.30)

Since qk(γkPkdk) = `k + (Pk∇x`k)Tγkdk + 1
2γ

2
kdT

k Bkdk, then Predk can be written as follows,

Predk = qk(0) − qk(γkPkdk) − ∆λT
k (hk + (Pk∇hk)Tγkdk) + ρk[‖hk‖

2 − ‖hk + (Pk∇hk)Tγkdk‖
2].
(2.31)

AIMS Mathematics Volume 7, Issue 4, 5534–5562.

5541

• How to update the penalty parameter ρk

To ensure Predk is strictly positive, we use the following scheme to update the positive penalty
parameter ρk

Algorithm 2.1. : (Updating the penalty parameter ρk)
Set ρk+1 = ρk.
If

Predk ≥
ρk

2
[‖hk‖

2 − ‖hk + (Pk∇hk)Tγkdk‖
2], (2.32)

then set

ρk =
2[qk(γkPkdk) − qk(0) + ∆λT

k (hk + (Pk∇hk)Tγkdk)]
‖hk‖

2 − ‖hk + (Pk∇hk)Tγkdk‖
2 + c0. (2.33)

End if.

• How to test the step γkPkdk and update δk

To decide the trial step γkPkdk will be accepted in the next iteration or no, we use the following
algorithm.

Algorithm 2.2. : (Testing the step γkPkdk and updating δk)
Step 0. Choose 0 < τ1 < τ2 < 1, 0 < β1 < 1 < β2, and δmin ≤ δ0 ≤ δmax.
Step 1. While Aredk

Predk
< τ1 or Predk ≤ 0.

Do not accept the step and set δk = β1‖dk‖.
Compute a new trial step.
End while.
Step 2. If τ1 ≤

Aredk
Predk

< τ2.
Accept the step: xk+1 = xk + γkPkdk.
Set δk+1 = max(δk, δmin).
End if.
Step 3. If Aredk

Predk
≥ τ2.

Accept the step: xk+1 = xk + γkPkdk.
Set δk+1 = min{δmax,max{δmin, β2δk}}.
End if.

Finally, the algorithm is stopped when either ‖ZT
k Pk∇x`k‖ + ‖hk‖ ≤ ε1, for some ε1 > 0 or ‖dk‖ ≤ ε2

for some ε2 > 0.
Main steps of the trust-region algorithm for solving subproblem 2.17 are summarized in the

following algorithm.

Algorithm 2.3. (Trust-region algorithm)
Step 0. Starting with x0 ∈ int(Ĝ). Evaluate λ0, P0, and β0. Set ρ0 = 1 and c0 = 0.1.
Choose ε1 > 0, ε2 > 0, and set k = 0.
Step 1. If ‖ZT

k Pk∇x`k‖ + ‖hk‖ ≤ ε1, then stop.
Step 2. (To compute dk)

a) Compute dn
k by solving trust-region subproblem 2.18.

b) Compute d̄t
k by solving trust-region subproblem 2.22.

c) Set dk = dn
k + Zkd̄t

k.

AIMS Mathematics Volume 7, Issue 4, 5534–5562.

5542

Step 3. If ‖dk‖ ≤ ε2, then stop.
Step 4. Compute γk using equation 2.26.
Step 5. Update λk+1 using subproblem 2.28.
Step 6. Update the penalty parameter using scheme 2.1.
Step 7. Test the step γkPkdk and update δk by using algorithm 2.2.
Step 8. Compute Pk+1 and αk+1 using definitions 2.8 and 2.13 respectively.
Step 9. Set k = k + 1 and go to Step 1.

Main steps for solving NBLP problem1.1 are summarized in the following algorithm.

Algorithm 2.4. (Interior-point trust-region (IPTR) algorithm)
Step 1. Adding slack variables to inequalities in NBLP problem1.1 and convert it to problem 1.2.
Step 2. By KKT optimality conditions for the lower-level problem, NBLP problem 1.2 is equivalent to
the one level problem 1.3 which can be written in the form 1.4.
Step 3. Using Newton’s method and Das strategy to transform problem 1.4 to subproblem 2.16.
Step 4. Using trust-region algorithm 2.3 to solve subproblem 2.16.

The following section is devoted to global convergence analysis for IPTR algorithm 2.4.

3. Global convergence theory

We state the general assumption under which the global convergence theory for IPTR algorithm 2.4
is proved.

3.1. A general assumptions

Let Ω be a convex subset of<n that contains all points xk ∈ int(Ĝ) and (xk + γkPkdk) ∈ int(Ĝ). On
the set Ω we state the following general assumptions under which the global convergence theory of
IPTR algorithm is proved
[GS 1.] The functions fu(x), h(x) ∈ C2 for all x ∈ Ω.
[GS 2.] The matrix Pk∇hk has full column rank.
[GS 3.] All of fu(x), ∇ fu(x), ∇2 fu(x), h(x), ∇h(x), ∇2hi(x) for i = 1, ...,m and
(Pk∇Hk)((Pk∇hk)T (Pk∇hk))−1 are uniformly bounded in Ω.
[GS 4.] The sequence of Lagrange multiplier vectors {λk} is bounded.
[GS 5.] The sequence of approximate Hessian matrices {Hk} is bounded.

An immediate consequence of the above general assumptions is that the existence of positive
constant b1, such that

‖ZT
k Bk‖ ≤ b1, ‖ZT

k BkZk‖ ≤ b1. (3.1)

3.2. Technical lemmas

In this section, we introduce some important results which are needed in the subsequent proof.
The following lemma shows how accurate the definition of Predk is as an approximation to Aredk.

Lemma 3.1. Under assumptions GS 1-GS 5, there exists a positive constant K1, such that

|Aredk − Predk| ≤ K1ρkγk‖dk‖
2. (3.2)

AIMS Mathematics Volume 7, Issue 4, 5534–5562.

5543

Proof. From Equations 2.29, 2.30, and using the inequality of Cauchy-Schwarz, we have

|Aredk − Predk| ≤
1
2
|γ2

k PkdT
k [Hk − ∇

2`(xk + ξ1γkPkdk)]Pkdk|

+
1
2
|∆λkγ

2
k PkdT

k ∇
2h(xk + ξ2γkPkdk)Pkdk|

+
1
2
|γ2

kdT
k diag(∇x`k)diag(θk)dk|

+|∆λkPk[∇hk − ∇h(xk + ξ2γkPkdk)]Tγkdk|

+2ρk|Pk[(∇hk − ∇h(xk + ξ2γkPkdk))hk]Tγkdk|

+ρk|γ
2
k PkdT

k [∇hk∇hT
k − ∇h(xk + ξ2γkPkdk)∇h(xk + ξ2γkPkdk)T]Pkdk|,

for some ξ1 and ξ2 ∈ (0, 1). Using the general assumptions GS 1 −GS 5 and 0 < γk ≤ 1, we have

|Aredk − Predk| ≤ γk[κ1‖dk‖
2 + κ2ρk‖dk‖

3 + κ3ρk‖dk‖
2‖hk‖], (3.3)

where κ1, κ2, and κ3 are positive constants. Since ρk ≥ 0, ‖dk‖ ≤ δmax, and ‖hk‖ is uniformly bounded,
then inequality 3.2 hold. �

The following lemma obviously that the normal predicted reduction at any iteration k, is at least
equal to the decrease in the 2-norm of the linearized constrained by the Cauchy step

Lemma 3.2. Under assumptions GS 1-GS 5, there exists a constant K2 > 0, such that

Predk ≥
K2γkρk

2
‖hk‖min{‖hk‖, δk}. (3.4)

Proof. Since dn
k is obtained by approximating the solution of subproblem 2.18 using the conjugate

gradient method [21], then the fraction of Cauchy decrease condition 2.19 is hold. We will consider
two cases:
Firstly, if dncp = − δk

‖Pk∇hkhk‖
(Pk∇hkhk) and ‖δk‖(Pk∇hk)T Pk∇hkhk‖

2 ≤ ‖Pk∇hkhk‖
3 then

‖hk‖
2 − ‖hk + (Pk∇hk)T dncp

k ‖
2 = −2(Pk∇hkhk)T dncp

k − dncpT

k (Pk∇hk)(Pk∇hk)T dncp
k

= 2δk‖Pk∇hkhk‖ −
δ2

k‖(Pk∇hk)T Pk∇hkhk‖
2

‖Pk∇hkhk‖
2

≥ 2δk‖Pk∇hkhk‖ − δk‖Pk∇hkhk‖

≥ δk‖Pk∇hkhk‖. (3.5)

Secondly, if dncp = − ‖Pk∇hkhk‖
2

‖(Pk∇hk)T Pk∇hkhk‖2
(Pk∇hkhk) and δk‖(Pk∇hk)T Pk∇hkhk‖

2 ≥ ‖Pk∇hkhk‖
3, then

‖hk‖
2 − ‖hk + (Pk∇hk)T dncp

k ‖
2 = −2(Pk∇hkhk)T dncp

k − dncpT

k (Pk∇hk)(Pk∇hk)T dncp
k

=
2‖Pk∇hkhk‖

4

‖(Pk∇hk)T Pk∇hkhk‖
2

−
‖Pk∇hkhk‖

4

‖(Pk∇hk)T Pk∇hkhk‖
2

=
‖Pk∇hkhk‖

4

‖(Pk∇hk)T Pk∇hkhk‖
2

AIMS Mathematics Volume 7, Issue 4, 5534–5562.

5544

≥
‖Pk∇hkhk‖

2

‖Pk∇hk(Pk∇hk)T ‖
. (3.6)

Using assumption GS 2, we have

‖Pk∇hkhk‖ ≥
‖hk‖

‖((Pk∇hk)T Pk∇hk)−1(Pk∇hk)T ‖
.

Then, from the above inequality, inequalities 3.5, 3.6, and using assumption GS 3, we have

‖hk‖
2 − ‖hk + (Pk∇hk)T dncp

k ‖
2 ≥ K2‖hk‖min{‖hk‖, δk}.

From the above inequality and 2.19, we have

‖hk‖
2 − ‖hk + (Pk∇hk)T dn

k‖
2 ≥ K2‖hk‖min{‖hk‖, δk}. (3.7)

Since 0 < γk ≤ 1, then we have

‖hk‖
2 − ‖hk + (Pk∇hk)Tγkdn

k‖
2 ≥ γk[‖hk‖

2 − ‖hk + (Pk∇hk)T dn
k‖

2].

From inequality 3.7 and the above inequality, we have

‖hk‖
2 − ‖hk + (Pk∇hk)Tγkdn

k‖
2 ≥ K2γk‖hk‖min{‖hk‖, δk}. (3.8)

From inequalities 2.32 and 3.8 we have

Predk ≥
K2γkρk

2
‖hk‖min{‖hk‖, δk}.

Lemma 3.3. Under assumptions GS 1-GS 5, there exists a positive constant K3, such that

[qk(γkPkdn
k) − qk(γkPkdk)] ≥ K3γk‖ZT

k ∇qk(Pkdn
k)‖min{

‖ZT
k ∇qk(Pkdn

k)‖

‖B̄‖
,∆k}. (3.9)

Proof. Since the conjugate gradient method is used to solve subproblem 2.22 to obtain an
approximate solution for d̄t

k, then the fraction of Cauchy decrease condition 2.23 is hold and we will
consider two cases:

Firstly, if d̄tcp
k = − ∆k

‖ZT
k ∇qk(Pkdn

k)‖ (Z
T
k ∇qk(Pkdn

k)) and ∆k(ZT
k ∇qk(Pkdn

k))T B̄kZT
k ∇qk(Pkdn

k) ≤

‖ZT
k ∇qk(Pkdn

k)‖3, then

qk(Pkdn
k) − qk(Pk(dn

k + Zkd̄
tcp
k)) = qk(Pkdn

k) − qk(Pk(dn
k + Zkd̄

tcp
k))

= −(ZT
k ∇qk(Pkdn

k))T d̄tcp
k −

1
2

d̄tcpT

k B̄kd̄
tcp
k

= ∆k‖ZT
k ∇qk(Pkdn

k)‖

−
∆2

k

2‖ZT
k ∇qk(Pkdn

k)‖2
[(ZT

k ∇qk(Pkdn
k))T B̄kZT

k ∇qk(Pkdn
k)]

AIMS Mathematics Volume 7, Issue 4, 5534–5562.

5545

≥ ∆k‖ZT
k ∇qk(Pkdn

k)‖ −
1
2

∆k‖ZT
k ∇qk(Pkdn

k)‖

≥
1
2

∆k‖ZT
k ∇qk(Pkdn

k)‖. (3.10)

Secondly, if d̄tcp
k = −

‖ZT
k ∇qk(Pkdn

k)‖2

ZT
k ∇qk(Pkdn

k))T B̄kZT
k ∇qk(Pkdn

k)Z
T
k ∇qk(Pkdn

k) and ∆k(ZT
k ∇qk(Pkdn

k))T B̄kZT
k ∇qk(Pkdn

k) ≥

‖ZT
k ∇qk(Pkdn

k)‖3, then

qk(Pkdn
k) − qk(Pk(dn

k + Zkd̄
tcp
k)) = qk(Pkdn

k) − qk(Pk(dn
k + Zkd̄

tcp
k))

= −(ZT
k ∇qk(Pkdn

k))T d̄tcp
k −

1
2

d̄tcpT

k B̄kd̄
tcp
k

=
‖ZT

k ∇qk(Pkdn
k)‖4

(ZT
k ∇qk(Pkdn

k))T B̄kZT
k ∇qk(Pkdn

k)

−
‖ZT

k ∇qk(Pkdn
k)‖4

2(ZT
k ∇qk(Pkdn

k))T B̄kZT
k ∇qk(Pkdn

k)

=
‖ZT

k ∇qk(Pkdn
k)‖4

2(ZT
k ∇qk(Pkdn

k))T B̄kZT
k ∇qk(Pkdn

k)

≥
‖ZT

k ∇qk(Pkdn
k)‖2

2‖B̄k‖
. (3.11)

From inequalities 3.10, 3.11, and using necessary assumptions, we have

qk(Pkdn
k) − qk(Pk(dn

k + Zkd̄
tcp
k)) ≥ K3‖ZT

k ∇qk(Pkdn
k)‖min{

‖ZT
k ∇qk(Pkdn

k)‖

‖B̄‖
,∆k}.

From condition 2.23 and the above inequality, we have

qk(Pkdn
k) − qk(Pk(dn

k + Zkd̄t
k)) ≥ K3‖ZT

k ∇qk(Pkdn
k)‖min{

‖ZT
k ∇qk(Pkdn

k)‖

‖B̄‖
,∆k}. (3.12)

Since 0 < γk ≤ 1, then we have

qk(γkPkdn
k) − qk(γkPk(dn

k + Zkd̄t
k)) ≥ γk[qk(Pkdn

k) − qk(Pk(dn
k + Zkd̄t

k))].

From the above inequality and inequality 3.12, we have

qk(γkPkdn
k) − qk(γkPkdk) ≥ K3γk‖ZT

k ∇qk(Pkdn
k)‖min{

‖ZT
k ∇qk(Pkdn

k)‖

‖B̄‖
,∆k}.

This completes the proof.
The following lemma is needed in many forthcoming lemmas. In what follows, we use implicitly

that ∇hkdn
k = ∇hkdk.

Lemma 3.4. Under assumptions GS 1-GS 5, there exists a positive constant K4, such that

qk(0) − qk(γkPkdn
k) − ∆λT

k (hk + (Pk∇hk)Tγkdk) ≥ −K4γk‖hk‖. (3.13)

AIMS Mathematics Volume 7, Issue 4, 5534–5562.

5546

Proof. Since dn
k is normal to the tangent space, then we have

‖dn
k‖ = ‖(Pk∇hk)[(Pk∇hk)T (Pk∇hk)]−1(Pk∇hk)T dk‖

= ‖(Pk∇hk)[(Pk∇hk)T (Pk∇hk)]−1[hk + (Pk∇hk)T dk − hk]‖
≤ ‖(Pk∇hk)[(Pk∇hk)T (Pk∇hk)]−1‖[‖hk + (Pk∇hk)T dk‖ + ‖hk‖].

Using the fact that ‖hk + (Pk∇hk)T dk‖ ≤ ‖hk‖, we have

‖dn
k‖ ≤ 2‖(Pk∇hk)[(Pk∇hk)T (Pk∇hk)]−1‖‖hk‖.

From above inequality and necessary assumptions, we have

‖dn
k‖ ≤ κ4‖hk‖. (3.14)

Since

qk(0) − qk(γkPkdn
k) − ∆λT

k (hk + (Pk∇hk)Tγkdk) = −(Pk∇x`k)Tγkdn
k −

1
2
γ2

kdn
k

T Bkdn
k

−∆λT
k (hk + (Pk∇hk)Tγkdk)

≥ −γk‖Pk∇x`k‖‖dn
k‖ −

1
2
γ2

k‖Bk‖‖dn
k‖

2

−‖∆λk‖‖(hk + (Pk∇hk)Tγkdn
k)‖

≥ −γk[‖Pk∇x`k‖ +
1
2
γk‖Bk‖‖dn

k‖]‖d
n
k‖ − ‖∆λ

T
k ‖‖hk‖.

From the above inequality and inequality 3.14 and using the fact that ‖dn
k‖ ≤ δmax, we have

qk(0) − qk(γkPkdn
k) − ∆λT

k (hk + (Pk∇hk)Tγkdk) ≥ −K4γk‖hk‖.

This completes the proof.

Lemma 3.5. Under assumptions GS 1-GS 5,

Predk ≥ K3γk‖ZT
k ∇qk(Pkdn

k)‖ min{
‖ZT

k ∇qk(Pkdn
k)‖

‖B̄‖
, ∆k}

−K4γk‖hk‖ + ρk[‖hk‖
2 − ‖hk + (Pk∇hk)Tγkdk‖

2]. (3.15)

Proof. From Equation 2.31, we have

Predk = qk(0) − qk(γkPkdk) − ∆λT
k (hk + (Pk∇hk)Tγkdk) + ρk[‖hk‖

2 − ‖hk + (Pk∇hk)Tγkdk‖
2]

= [qk(γkPkdn
k) − qk(γkPkdk)] + [qk(0) − qk(γkPkdn

k) − ∆λT
k (hk + (Pk∇hk)Tγkdk)]

+ρk[‖hk‖
2 − ‖hk + (Pk∇hk)Tγkdk‖

2].

Using inequalities 3.9 and 3.13, we obtain the desired result.
The following lemma shows that, if ‖ZT

k Pk∇x`k‖ ≥ ε1 and ‖hk‖ ≤ ηδki at any trial iteration ki, then
the penalty parameter ρk is not increased.

AIMS Mathematics Volume 7, Issue 4, 5534–5562.

5547

Lemma 3.6. Under assumptions GS 1 −GS 5, if ‖ZT
k Pk∇x`k‖ ≥ ε1 and ‖hk‖ ≤ ηδki at any trial iteration

ki, then there exists a positive constant K5, such that

Predki ≥ K5γkiδki + ρki{‖hk‖
2 − ‖hk + (Pk∇hk)Tγkidki‖2}, (3.16)

where η is given by

0 < η ≤ min

√

3
2κ4

,
ε1

2b1κ4δmax
,

K3ε1

8K4
min{

ε1

b1δmax
, 1}

 .
Proof. Since ‖ZT

k Pk∇x`k‖ ≥ ε1 and ‖hk‖ ≤ ηδki , and using inequalities 3.1 and 3.14, we have

‖ZT
k ∇qk(Pkdn

ki)‖ = ‖ZT
k (Pk∇x`k + Bkdn

ki)‖
≥ ‖ZT

k Pk∇x`k‖ − ‖ZT
k Bkdn

ki‖

≥ ε1 − b1κ4‖hki‖ ≥ ε1 − b1κ4ηδki .

But η ≤ ε1
2b1κ4δmax

, hence

‖ZT
k ∇qk(Pkdn

ki)‖ ≥
1
2
ε1. (3.17)

From inequality 3.14, assumption ‖hk‖ ≤ ηδki , and η ≤
√

3
2κ4

, then we have ‖dn
ki‖ ≤ κ4ηδki ≤ κ4

√
3

2κ4
δki =

√
3

2 δki . Since ∆ki =
√
δ2

ki − ‖dn
ki‖

2, then ∆ki ≥ 1
2δki . Hence, from inequalities 3.15 and 3.17, we have

Predki ≥
K3γkiε1

4
min{

ε1

b1δmax
, 1}δki − K4γkiηδki + ρki[‖hk‖

2 − ‖hk + (Pk∇hk)Tγkidki‖2].

But η ≤ K3ε1
8K4

min{ ε1
b1δmax

, 1}, hence

Predki ≥
K3γkiε1

8
min{

ε1

b1δmax
, 1}δki + ρki[‖hk‖

2 − ‖hk + (Pk∇hk)Tγkidki‖2].

The result follows if we take K5 = K3ε1
8 min{ ε1

b1δmax
, 1}.

The following lemma shows that, at any iteration k, we can find an acceptable step after finite
number of trials, or equivalently, the condition Aredk j/Predk j ≥ τ1 will be satisfied for some finite j.

Lemma 3.7. Under assumptions GS 1 −GS 5, if ‖hk‖ > ε1, where ε1 > 0, then Aredk j/Predk j ≥ τ1 will
be satisfied for some finite j.

Proof. From inequalities 3.2, 3.4, and assumption ‖hk‖ > ε1, we have∣∣∣∣∣Aredk

Predk
− 1

∣∣∣∣∣ =
|Aredk − Predk|

Predk
≤

2K1γkδ
2
k

K2γkε1 min{ε1, δk}
.

If the trial step dk j gets rejected, then δk j becomes small and hence we have∣∣∣∣∣Aredk j

Predk j
− 1

∣∣∣∣∣ ≤ 2K1δk j

K2ε1
.

That is the acceptance rule will be met after finite number of trials (i.e.,for finite j) and this completes
the proof.

AIMS Mathematics Volume 7, Issue 4, 5534–5562.

5548

Lemma 3.8. Under assumptions GS 1 −GS 5 and at any iteration k, if

‖dk j‖ ≤ min{
(1 − τ1)K2

4K1
, 1}‖hk‖, (3.18)

at the jth trial step, then the step must be accepted.

Proof. Assume that inequality 3.18 holds and the step dk j is rejected. From the way of updating
trust-region radius which is clarified in Algorithm 2.2 we have

(1 − τ1) <
|Aredk j − Predk j |

Predk j
.

From the above inequality and using inequalities 3.2, 3.4, and 3.18 we have

(1 − τ1) <
|Aredk j − Predk j |

Predk j
<

2K1‖dk j‖2

K2‖hk‖‖dk j‖
≤

1
2

(1 − τ1).

This is a contradiction with the assumption dk j was rejected. Hence the step must be accepted.

Lemma 3.9. Under assumptions GS 1 −GS 5 and for all trail iterates j of any iteration k we have

δk j ≥ min{
δmin

b2
, β1

(1 − τ1)K2

4K1
, β1}‖hk‖, (3.19)

where b2 = supx∈Ω ‖hk‖.

Proof. Consider any trial iterate k j, if j = 1, then the step is accepted and hence

δk j = δk1 ≥ δmin ≥
δmin

b2
‖Hk‖, (3.20)

such that b2 = supx∈Ω ‖hk‖.
Now, if j > 1, then there exists at least one rejected trial step. For all rejected trial steps, we have

from Lemma 3.8,

‖dki‖ > min{
(1 − τ1)K2

4K1
, 1}‖hk‖,

for all i = 1, 2, ... j − 1. Since di
k is rejected trial step, then from the way of updating the radius of

trust-region, we have

δk j = β1‖dk j−1‖ > β1 min{
(1 − τ1)K2

4K1
, 1}‖hk‖.

From the above inequality and inequality 3.20, we obtain the desired results.
The following lemma show that the sequence of trust-region radii {δk j} is bounded away from zero

if {‖hk‖} is bounded away from zero.

Lemma 3.10. Under assumptions GS 1 −GS 5, if ‖hk‖ ≥ ε1 where ε1 > 0, then there exists a constant
K6 > 0 such that

δk j > K6, (3.21)

for all trial iterates j of any iteration k.

AIMS Mathematics Volume 7, Issue 4, 5534–5562.

5549

Proof. From Lemma 3.9 and the condition ‖hk‖ ≥ ε1, the proof follows directly by taking K6 =

min{ δmin
b2
, β1

(1−τ1)K2
4K1

, β1}ε1.

Lemma 3.11. Under assumptions GS 1−GS 5, there exists a subsequence {ki} of the iteration sequence
at which ρk is increased such that at any trial steps j of any iteration k ∈ {ki}, we have

ρk j‖hk‖ ≤ K7. (3.22)

where K7 is a positive constant.

Proof. At any trial steps j of any iteration k, if ρk j is increased, then from equation 2.33, we have

ρk j

2
[‖hk‖

2 − ‖hk + (Pk∇hk)Tγk jdk j‖2] = [qk(Pkγk jdk j) − qk(Pkγk jdn
k j)]

+[qk(Pkγk jdn
k j) − qk(0) + ∆λT

k j(hk + (Pk∇hk)Tγk jdn
k j)]

+
c0

2
[‖hk‖

2 − ‖hk + (Pk∇hk)Tγk jdk j‖2].

Applying inequality 3.8 on the left hand side and inequalities 3.9, 3.13, and 3.14 on the right hand side,
we have

K2ρk jγk j

2
‖hk‖min{‖hk‖, δk j} ≤ −K3γk j‖Zk

T∇qk(Pkdn
k j)‖min{

‖Zk
T∇qk(Pksn

k j)‖

‖B̄‖
,∆k j}

+K4γk j‖hk‖ + c0γk j‖Pk∇hkhk‖‖dn
k j‖

+
c0γ

2
k j

2
‖(Pk∇hk)T ‖2‖dn

k j‖
2,

≤ [K4 + c0κ4‖Pk∇hkhk‖ +
c0κ4γk j

2
‖(Pk∇hk)T ‖2‖dn

k j‖]γk j‖hk‖.

From assumptions GS 2, GS 3, and using the fact that ‖dn
k j‖ ≤ δk j ≤ δmax, we have

ρk j‖hk‖min{‖hk‖, δk j} ≤ K̃7‖hk‖. (3.23)

From inequalities 3.19 and 3.23, there exists a constant K7 > 0 such that

ρk j‖hk‖ ≤ K7,

at any trial steps j for any iteration k ∈ {ki}.
In the following lemma we will prove that the sequence {‖hk‖} is not bounded away from zero when

{ρk} unbounded sequence.

Lemma 3.12. Under assumptions GS 1 − AS 6, there exists a subsequence {ki} of the iteration sequence
at which ρk is increased such that

lim
ki→∞
‖hki‖ = 0. (3.24)

Proof: From Lemma 3.11 and the assumption ρk is increased, we obtain the desired result.
In the following section, we prove the main global convergence results for IPTR algorithm 2.4.

AIMS Mathematics Volume 7, Issue 4, 5534–5562.

5550

3.3. Fundamental convergence theorem

In the following theorem we prove that the sequence of the iterates generated by algorithm 2.4
converges to the feasible set.

Theorem 3.1. Under assumptions GS 1 −GS 5, the sequence of iterates generated by IPTR algorithm
satisfies

lim
k→∞
‖hk‖ = 0.

Proof. The proof of this theorem is by contradiction, so we assume that lim supk→∞ ‖hk‖ ≥ ε1 where
ε1 > 0. This implies the existence an infinite subsequence of indices {k j} indexing iterates that satisfy
‖hk‖ ≥

ε1
2 , for all k ∈ {k j}. From Lemma 3.7, there exists a finite sequence of acceptable steps. Without

lose of generality, we assume all members of the sequence {k j} are acceptable iterates. Now we will
consider two cases:

Firstly, if the sequence of the penalty parameter {ρk} is unbounded, then there exists a subsequence
{ki} of the iteration sequence at which ρk is increased. Using Lemma 3.12, we have limki→∞ ‖hki‖ = 0.
Therefore, there are no common elements between {ki} and {k j} at iteration k which is sufficiently large.
From inequality 3.4 and Lemma 3.10, we have

Aredk

ρk
≥ τ1

Predk

ρk
≥ τ1

ε1K2γk

4
min[

ε1

2
, δk] ≥ τ1

ε1K2γk

4
min[

ε1

2
, K̄6], (3.25)

for all k ∈ {k j}, such that K̄6 = ε1
2 min{ δmin

b2
, β1

(1−τ1)K2
2K1

, β1}. Since

Aredk = Φ(xk, λk; ρk) − Φ(xk + γkPkdk, λk+1; ρk),
= `(xk, λk) − `(xk+1, λk+1) + ρk[‖hk‖

2 − ‖hk+1‖
2],

then from 3.25 we have

Aredk

ρk
=
`k − `k+1

ρk
+ ‖hk‖

2 − ‖hk+1‖
2 ≥ τ1

ε1K2γk

4
min[

ε1

2
, K̄6] > 0. (3.26)

Hence
`k − `k+1

ρk
+ ‖hk‖

2 − ‖hk+1‖
2 ≥ 0, (3.27)

for all acceptable steps which are generated by IPTR algorithm 2.4. Let k ∈ {k j} be an element between
the two elements kî and kî+1 which are consecutive elements of the sequence {ki}. From inequality 3.26,
we have

kî+1−1∑
k=kî

{`k − `k+1}

ρk
+ ‖hkî

‖2 − ‖hkî+1
‖2 ≥ τ1

ε1K2γk

4
min[

ε1

2
, K̄6] > 0.

Since the value of ρk is the same for all iterates kî, . . . , kî+1 − 1, we have

`kî
− `kî+1

ρkî

+ ‖hkî
‖2 − ‖hkî+1

‖2 ≥ τ1
ε1K2γk

4
min[

ε1

2
, K̄6].

Since ρk → ∞ as k → ∞, and |`k| is bounded, we can write

‖hkî
‖2 − ‖hkî+1

‖2 ≥ τ1
ε1K2γk

8
min[

ε1

2
, K̄6] > 0,

AIMS Mathematics Volume 7, Issue 4, 5534–5562.

5551

for kî sufficiently large. But this leads to a contradiction with Lemma 3.12.
Secondly, if the sequence of the penalty parameters {ρk} is bounded, then there exists an integer k̄

such that for all k ≥ k̄, we have ρk = ρ̄. Since all the iterates of {k j} are acceptable, then for any k̄ ∈ {k j}

we have
Φk̃ − Φk̃+1 = Aredk̃ ≥ τ1Predk̃. (3.28)

From Lemma 3.10, inequality 3.4, we have for any k̃ ∈ {k j} and k̃ ≥ k̄

Predk̃ ≥
K2τk̃ρ̄

2
‖hk̃‖min{‖hk̃‖, δk̃}

≥
K2τk̃ρ̄ε1

4
min{‖

ε1

2δmax
, 1}δk̃

≥ K8δk̃ ≥ K6K8, (3.29)

such that K8 =
K2τk̃ρ̄ε1

4 min{‖ ε1
2δmax

, 1}. From inequalities 3.28 and 3.29, we have

Φk̃ − Φk̃+1 ≥ τ1K6K8 > 0.

This gives a contradiction with the fact that {Φk} is bounded below when {ρk} is bounded. Hence in
both cases, we have a contradiction. Thus, the supposition is not correct and the theorem is proved.

Theorem 3.2. Under assumptions GS 1 −GS 5, the algorithm is terminated because

lim
k→∞

[‖ZT
k Pk∇`k‖ + ‖hk‖] = 0

Proof. Assume that IPTR algorithm 2.4 does not terminate and that some subsequences of
{‖ZT

k Pk∇`k‖} convergence to zero, then the nontermination is immediately contradicted by Theorem
3.1.

Now assume that for k̄ sufficiently large, there exists an index k̃ > k̄ such that ‖ZT
k Pk∇`k‖ ≥ ε1. Let

{k j} be a subsequence of iterates that satisfy ‖hk j‖ > ηδk j , then limk j→∞ δk j = 0 such that limk j→∞ ‖hk j‖ =

0. This implies the existence of an infinite sequence {k j} of rejected trial steps. But this leads to
contradiction. To show this, we consider two cases:

Firstly, if the sequence of the penalty parameter {ρk} is unbounded, then from inequalities 3.3 and
3.4, we have

|Aredk j − Predk j |

Predk j

≤
[κ1‖dk j‖

2 + κ2ρk j‖dk j‖
3 + κ3ρk j‖dk j‖

2‖hk j‖]
K2
2 ρk j‖hk j‖min{‖hk j‖, δk j}

≤
[κ1‖dk j‖

2 + κ2ρk j‖dk j‖
3 + κ3ρk j‖dk j‖

2‖hk j‖]
K2
2 ρk j‖hk j‖‖dk j‖min{η, 1}

≤
2κ1

K2ρk jηmin{η, 1}
+ [

2κ2

K2
+

2κ3

K2η
]

δk j

min{η, 1}
.

As ρk j → ∞ and δk j → 0, then
∣∣∣∣Aredk j−Predk j

∣∣∣∣
Predk j

→ 0. This means that for k j large enough, all trial steps
‖dk j‖ must be accepted. This leads to a contradiction, so δk j must be bounded away from zero in this
case.

AIMS Mathematics Volume 7, Issue 4, 5534–5562.

5552

Secondly, if the sequence of the penalty parameter {ρk} is bounded, then there exists an integer k̄
such that for all k ≥ k̄, ρk = ρ̄. Now, we discuss three cases:

1] If the previous step is accepted (j = 1), then from the way of updating the trust-region radius in
algorithm 2.2, we have δk j ≥ δmin. That is δk j is bounded away from zero in this case.

2] If j > 1 and ‖hkr‖ > ηδkr for all r = 1, · · · , j − 1. Then

(1 − τ1) <
|Aredkr − Predkr |

Predkr

such that all the trial steps on {k j} are rejected. From above inequality and inequalities 3.2 and 3.4 we
have

(1 − τ1) <
|Aredkr − Predkr |

Predkr

≤
2K1‖dkr‖

K2‖hkr‖min{1, η}
.

Hence
‖dkr‖ >

K2(1 − τ1) min{1, η}
2K1

‖hkk‖.

But from the way of updating the radius of trust-region in algorithm 2.2, all the rejected trial steps
satisfy δkr = β1‖dkr‖, hence

δkr = β1‖dkr−1‖ ≥
K2β1η(1 − τ1) min{1, η}

2K1
δkr

≥
K2β1η(1 − τ1) min{1, η}

2K1
δmin.

This means that δkr is bounded away from zero in this case.
3] If j > 1 and ‖hkr‖ > ηδkr does not hold for all r. Hence, there exists an integer i such that

‖hkr‖ ≤ ηδkr for all r = 1, · · · , i, and ‖hkr‖ > ηδkr for all r = i + 1, · · · , j − 1. Since ‖hkr‖ > ηδkr for all
r = i + 1, · · · , j − 1, then as the above case we can prove δkr is bounded away from zero.

The case when ‖hkr‖ ≤ ηδkr for all r = 1, · · · , i, then for all rejected trial steps, we have

(1 − τ1) <
|Aredkr − Predkr |

Predkr

.

From inequality 3.2, Lemma 3.6, and the above inequality, we have

(1 − τ1) <
|Aredkr − Predkr |

Predkr

≤
K1ρ̄‖dkr‖

K5
.

Hence
‖dkr‖ >

K5(1 − τ1)
K1ρ̄

.

From the way of updating the radius of trust-region, we have for all rejected trial step

δkr = β1‖dkr−1‖ >
β1K5(1 − τ1)

K1ρ̄
.

Hence, δkr is bounded away from zeros. This leads to a contradiction and then for k j sufficiently large,
all the iterates satisfy ‖hk‖ ≤ ηδk j .

AIMS Mathematics Volume 7, Issue 4, 5534–5562.

5553

For all successful steps and from the way of updating the radius of trust-region and Lemma 3.6, we
have for all k ∈ {k j} and k ≥ k̄

Φk − Φk+1 = Aredk ≥ τ1Predk ≥ τ1K5γkδk, f or all k ≥ k̄.

We proved in the above cases, that δk j is bounded away from zeros. Then Φk − Φk+1 > 0 . This leads
to a contradiction with the fact that {Φk} is bounded below when {ρk} is bounded. Hence in both cases,
we have a contradiction. Thus, the supposition is not correct and the theorem is proved.

4. Application

In this section, firstly the proposed algorithm IPTR is applied to the engineering application which
is called two-echelon supply chain system with one manufacturer and one retailer.

The manufacturer purchases raw materials from the supplier first, then after the manufacturer’s
production and processing, the end products are sold to the retailer, this problem is formulated as
bilevel models for joint pricing and lot-sizing decisions, see [34].

maxt1,t2 fu = (t2 − P̃s − T̃c − M̃c)t1t3y1 − 0.5c̃mT̃ P̃st3(y1 − 1) − Õmt1

s.t. P̃s + T̃c + M̃c ≤ t2 ≤ 10,
t1 ≥ 0,

maxy1,y2 fl = t1t2t3y1(y2 − 1) − 0.5c̃rT̃ t2t3 − Õrt1y1

s.t. 1 ≤ y2 ≤ 5,
y1 ≥ 0.

where T̃ = 52; P̃s = 4; T̃c = 0.5; M̃c = 1; c̃m = c̃r = 0.001; Õm = 400; Õr = 200. For more details
about the above application and its notations, see [34].

We solve this model in case of the manufacturer is the leader, who makes the first decision, and
the retailer is the follower. Our results, when applying Algorithm (2.4) is t1 = 5.8778, t2 = 6.002,
t3 = 19710.195, y1 = 7.691, y2 = 2.6007, fu = 431230, and fl = 8548300, which is closed to whose
reported in [34].

Secondly, we introduce an extensive variety of possible numeric bilevel nonlinear programming
problems to clarify the effectiveness of our IPTR algorithm, since, Problems 1,2,6,7,13, and 14 have
quadratic functions in both levels. Problems 3,4,5,8,9 all the inner level functions are convex and
Problem 10 [27], at fixed x, the inner problem is convex. These problems are solved numerically with
the help of algorithm (2.4) to clarify the effectiveness of that approach. For each test example, 10
independent runs with different initial starting point are performed to observe the consistency of the
outcome. Statistical results of all examples are summarized in Table 1 which shows that the results
found by the IPTR algorithm (2.4) are approximate or equal to those by the compared algorithms in
the literature.

Table 1 also including the mean number of iterations (iter),the mean number of function evaluations
(nfunc), the mean value of CPU time (CPUs) in seconds.

For comparison, we have included the corresponding results of the mean value of CPU time (CPUs)
obtained by Method in [31](Table 2), [27](Table 3), and [44](Table 4) respectively. It is clear from
the results that our approach is capable for treating nonlinear bilevel programming problems even the

AIMS Mathematics Volume 7, Issue 4, 5534–5562.

5554

Problem 1 [31]:

mint fu = y2
1 + y2

2 + t2 − 4t
s.t. 0 ≤ t ≤ 2,
miny fl = y2

1 + 0.5y2
2 + y1y2+

(1 − 3t)y1 + (1 + t)y2,

s.t. 2y1 + y2 − 2t ≤ 1,
y1 ≥ 0, y2 ≥ 0.

Problem 2 [31]:

mint fu = y2
1 + y2

3 − y1y3 − 4y2 − 7t1 + 4t2

s.t. t1 + t2 ≤ 1,
t1 ≥ 0, t2 ≥ 0

miny fl = y2
1 + 0.5y2

2 + 0.5y2
3 + y1y2+

(1 − 3t1)y1 + (1 + t2)y2,

s.t. 2y1 + y2 − y3 + t1 − 2t2 + 2 ≤ 0,
y1 ≥ 0; y2 ≥ 0 y3 ≥ 0.

Problem 3 [31]:

mint fu = 0.1(t2
1 + t2

2) − 3y1 − 4y2 + 0.5(y2
1 + y2

2)
s.t.

miny fl = 0.5(y2
1 + 5y2

2) − 2y1y2 − t1y1 − t2y2,

s.t. −0.333y1 + y2 − 2 ≤ 0,
y1 − 0.333y2 − 2 ≤ 0,

, y1 ≥ 0, y2 ≥ 0,

Problem 4 [31]:

mint fu = t2
1 − 2t1 + t2

2 − 2t2 + y2
1 + y2

2
s.t. t1 ≥ 0, t2 ≥ 0

miny fl = (y1 − t1)2 + (y2 − t2)2,

s.t. 0.5 ≤ y1 ≤ 1.5,
0.5 ≤ y2 ≤ 1.5,

upper and the lower levels are convex or not and the computed results converge to the optimal solution
which is similarly or approximate to the optimal that reported in literature. Finally, it is clear from the
comparison between the solutions obtained using IPTR algorithm with literature, that IPTR is able to
find the optimal solution of all problems by a small number of iterations, small number of function
evaluations, and less time.

We offered the numerical results of our algorithm using MATLAB (R2013a)(8.2.0.701)64-
bit(win64) and a starting point x0 ∈ int(Ĝ). The following parameter setting is used: δmin = 10−3,
δ0 = max(‖scp

0 ‖, δmin), δmax = 103δ0, τ1 = 10−4, τ2 = 0.75, β1 = 0.5, β2 = 2, ε̂ = 0.01, ε1 = 10−8, and
ε2 = 10−10.

Problem 5 [31]:

mint fu = t2 + (y − 10)2

s.t. −t + y ≤ 0,
0 ≤ t ≤ 15,

miny fl = (t + 2y − 30)2,

s.t. t + y ≤ 20,
0 ≤ y ≤ 20,

Problem 6 [31]:

mint fu = (t − 1)2 + 2y2
1 − 2t

s.t. t ≥ 0,
miny fl = (2y1 − 4)2 + (2y2 − 1)2 + ty1,

s.t. 4t + 5y1 + 4y2 ≤ 12,
−4t − 5y1 + 4y2 ≤ −4,
4t − 4y1 + 5y2 ≤ 4,
−4t + 4y1 + 5y2 ≤ 4,
y1 ≥ 0, y2 ≥ 0,

AIMS Mathematics Volume 7, Issue 4, 5534–5562.

5555

Problem 7 [31]:

mint fu = (t − 5)2 + (2y + 1)2

s.t. t ≥ 0,
miny fl = (2y − 1)2 − 1.5ty,
s.t. −3t + y ≤ −3,

t − 0.5y ≤ 4,
t + y ≤ 7,
y ≥ 0.

Problem 8 [31]:

mint fu = t2
1 − 3t1 + t2

2 − 3t2 + y2
1 + y2

2
s.t. t1 ≥ 0, t2 ≥ 0,

miny fl = (y1 − t1)2 + (y2 − t2)2,

s.t. 0.5 ≤ y1 ≤ 1.5,
0.5 ≤ y2 ≤ 1.5,

Problem 9 [27]:

mint fu = 16t2 + 9y2

s.t. −4t + y ≤ 0,
t ≥ 0,

miny fl = (t + y − 20)4,

s.t. 4t + y − 50 ≤ 0,
y ≥ 0.

Problem 10 [27]:

mint fu = t3y1 + y2

s.t. 0 ≤ t ≤ 1,
miny fl = −y2

s.t. ty1 ≤ 10,
y2

1 + ty2 ≤ 1,
y2 ≥ 0.

Problem 11 [44]:

mint fu = 2t1 + 2t2 − 3y1 − 3y2 − 60
s.t. t1 + t2 + y1 − 2y2 ≤ 40,

0 ≤ t1 ≤ 50,
0 ≤ t2 ≤ 50,

miny fl = (y1 − t1 + 20)2 + (y2 − t2 + 20)2,

s.t. t1 − 2y1 ≥ 10,
t2 − 2y2 ≥ 10,
−10 ≤ y1 ≤ 20,
−10 ≤ y2 ≤ 20.

Problem 12 [27]:

mint fu = (t − 3)2 + (y − 2)2

s.t. −2t + y − 1 ≤ 0,
t − 2y + 2 ≤ 0,
t + 2y − 14 ≤ 0,
0 ≤ t ≤ 8,

miny fl = (y − 5)2

s.t. y ≥ 0.

Problem 13 [44]:

mint fu = −t2
1 − 3t2

2 − 4y1 + y2
2

s.t. t2
1 + 2t2 ≤ 4,

t1 ≥ 0, t2 ≥ 0,
miny fl = 2t2

1 + y2
1 − 5y2,

s.t. t2
1 − 2t1 + 2t2

2 − 2y1 + y2 ≥ −3,
t2 + 3y1 − 4y2 ≥ 4,
y1 ≥ 0, y2 ≥ 0.

Problem 14 [44]:

mint fu = (t − 1)2 + (y − 1)2

s.t. t ≥ 0,
miny fl = 0.5y2 + 500y − 50ty

s.t. y ≥ 0.

AIMS Mathematics Volume 7, Issue 4, 5534–5562.

5556

Problem 15 [44]:

mint fu = −8t1 − 4t2 + 4y1 − 40y2 − 4y3

s.t. t1 ≥ 0, t2 ≥ 0
miny fl = t1 + 2t2 + y1 + y2 + 2y3,

s.t. y2 + y3 − y1 ≤ 1,
2t1 − y1 + 2y2 − 0.5y3 ≤ 1,
2t2 + 2y1 − y2 − 0.5y3 ≤ 1,
yi ≥ 0, i = 1, 2, 3.

Problem 16 [44]:

mint fu = −8t1 − 4t2 + 4y1 − 40y2 − 4y3

s.t. t1 ≥ 0, t2 ≥ 0
miny fl =

1+t1+t2+2y1−y2+y3
6+2t1+y1+y2−3y3

,

s.t. −y1 + y2 + y3 + y4 = 1,
2t1 − y1 + 2y2 − 0.5y3 + y5 = 1,
2t2 + 2y1 − y2 − 0.5y3 + y6 = 1,
yi ≥ 0, i = 1, ..., 6.

Table 1. Comparisons of the results by IPTR algorithm 2.4 and methods in reference.
Problem (t∗, y∗) f ∗u iter CPUs (t∗, y∗) f ∗u

f ∗l nfunc time f ∗l
name IPTR IPTR IPTR IPTR Ref. Ref.
prob(1) (0.8503, 0.0227, -2.6764 11 1.43 (0.8438, 0.7657, 0) -2.0769

0.03589) 0.0332 12 -0.5863
prob(2) (0.609, 0.391, 0, 0.6086 10 1.987 (0.609, 0.391, 0, 0.6426

0,1.828) 1.6713 14 0, 1.828) 1.6708
prob(3) (0.97, 3.14, -8.92 6 2.9 (0.97, 3.14, -8.92

2.6, 1.8) -6.05 8 2.6, 1.8) -6.05
prob(4) (.5,.5,.5,.5) -1 10 1.68 (0.5, 0.5, 0.5, 0.5) -1

0 14 0
prob(5) (9.839,10.059) 96.809 6 1.635 (10.03, 9.969) 100.58

0.0019 9 0.001
prob(6) (1.6879, 0.8805,0) -1.3519 6 4.1 NA 3.57

7.4991 11 2.4
prob(7) (1, 0) 17 12 1.9 (1, 0) 17

1 13 1
prob(8) (0.75,0.75, -2.25 10 1.002 (

√
3/2,
√

3/2,
√

3/2, -2.1962
0.75, 0.75) 0 11

√
3/2) 0

prob(9) (11.138,5) 2209.8 10 1.95 (11.25,5) 2250
222.52 13 197.753

prob(10) (1,0,6.6387e-06) 6.6387e-06 5 2.987 (1,0,1) 1
-6.6387e-06 7 -1

prob(11) (24.972, 29.653, 4.9101 9 3.742 (25,30,5,10) 5
5.0238,9.7565) 0.01332 12 0

prob(12) (3,5) 9 8 1.23 (3,5) 9
0 9 0

prob(13) (0,1.7405, -15.548 5 2.1 (0,2,1.875,0.9063) -12.68
1.8497,0.9692) -1.4247 7 -1.016

prob(14) (10.016,0.81967) 81.328 6 2.12 (10.04,0.1429) 82.44
-0.3359 8 0.271

prob(15) (0,0.9,0,0.6,0.4) -29.2 5 20.512 (0,0.9,0,0.6,0.4) -29.2
3.2 6 3.2

prob(16) (0,0.9,0,0.6,0.4,0,0,0) -29.2 5 40.319 (0,0.9,0,0.6,0.4,0,0,0) -29.2
0.3148 7 0.3148

AIMS Mathematics Volume 7, Issue 4, 5534–5562.

5557

Table 2. Comparisons of the results by IPTR (2.4) and method [31].

Problem (t∗, y∗) f ∗u CPUs (t∗, y∗) f ∗u CPUs
f ∗l f ∗l

name IPTR IPTR IPTR method [31] method [31] method [31].
prob(1) (0.8503, 0.0227, -2.6764 1.43 (0.8462,0.769 2,0) -2.0769 1.734

0.03589) 0.0332 -0.5917
prob(2) (0.609, 0.391,0, 0.6086 1.987 (0.6111, 0.3889,0, 0.6389 2.375

0,1.828) 1.6713 0, 1.8333) 1.6806
prob(3) (0.97, 3.14, -8.92 2.9 (1.031 6, 3.097 8, -8.917 2 3.315

2.6, 1.8) -6.05 2.597 0, 1.792 9) -6.137 0
prob(4) (0.5,0.5,0.5,0.5) -1 1.68 (0.5,0.5,0.5,0.5) -1 1.576

0 0
prob(5) (9.839,10.059) 96.809 1.635 (10, 10) 100 1.825

0.0019 0
prob(6) (1.6879, 0.8805,0) -1.3519 4.1 (1.8889, 0.8889,0) -1.2099 4.689

7.4991 7.6173
prob(7) (1, 0) 17 1.9 (1,0) 17 1.769

1 1
prob(8) (0.75,0.75, -2.25 1.002 (0.75,0.75, -2.25 1.124

0.75, 0.75) 0 0.75, 0.75) 0

Table 3. Comparisons of the results by IPTR (2.4) and method [27].

Problem (t∗, y∗) f ∗u CPUs (t∗, y∗) f ∗u CPUs
f ∗l f ∗l

name IPTR IPTR IPTR method [27] method [27] method [27].
prob(9) (11.138,5) 2209.8 1.95 (11.25, 5) 2250 2.21

222.52 197.753
prob(10) (1,0,6.6387e-06) 6.6387e-06 1.9 (1,0,-1) -1 3.38

-6.6387e-06 1
prob(12) (3,5) 9 1.23 (3,5) 9 -

0 0

AIMS Mathematics Volume 7, Issue 4, 5534–5562.

5558

Table 4. Comparisons of the results by IPTR (2.4) and method [44].
Problem (t∗, y∗) f ∗u CPUs (t∗, y∗) f ∗u CPUs

f ∗l f ∗l
name IPTR IPTR IPTR method [44] method [44] method [44].
prob(3) (0.97, 3.14, -8.92 2.9 (1.03, 3.097, -8.92 11.854

2.6, 1.8) -6.05 2.59,1.79 -6.14
prob(5) (9.839,10.059) 96.809 1.635 (10,10) 100.014 5.888

0.0019 4.93e-7
prob(6) (1.6879, 0.8805,0) -1.3519 4.1 (1.8888,0.888) -1.2091 25.332

7.4991 7.6145
prob(11) (24.972, 29.653 4.9101 3.742 (0,30,-10,10) 0 37.308

5.0238,9.7565) 0.01332 100
prob(13) (0,1.7405, -15.548 2.1 (4.4e-7,2, -12.65 14.42

1.8497,0.9692) -1.4247 1.875,0.9063) -1.021
prob(14) (10.016,0.81967) 81.328 2.12 (10.0164,0.8197) 18.3279 4.218

-0.3359 -0.3359
prob(15) (0,0.9,0,0.6,0.4) -29.2 20.512 (0,0.9,0,0.6,0.4) -29.2 45.39

3.2 3.2
prob(16) (0,0.9,0,0.6,0.4,0,0,0) -29.2 40.319 (0,0.9,0,0.6,0.4,0,0,0) -29.2 107.55

0.3148 0.3148

5. Concluding remarks

This paper presented a new technique for solving a nonlinear bilevel optimization problem based
on using the slack variable with KKT condition to transform NBLP problem into an equivalent
smooth SONP problem. A Newton’s interior-point method with Das scaling matrix is utilized to
solve the equivalent smooth SONP problem effectively. Newton’s method is locally method, so a
trust region technique is utilized to ensure global convergence from any starting point. On applying
this methodology we overcome some known difficulties on treating such problems, as

• A trust-region technique can induce strongly global convergence, which is very important
technique for solving a smooth optimization problems and is more robust when they deal with
rounding errors
• Our approach used to transform Problem 1.3 which is not smooth to smooth problem
• Using the interior-point method guarantees the converges quadratically to a stationary point.

On the other hand, the global convergence theorems for the IPTR algorithm is presented and numerical
results reflect the good behavior of our algorithm and computed results converge to the optimal
solutions. Finally, it is clear from the comparison between the solutions obtained using IPTR algorithm
with literature, that IPTR is able to find the optimal solution of all problems by a small number of
iterations.

Acknowledgments

The authors would like to thank the anonymous referees for their valuable comments and
suggestions which have helped to greatly improve this paper.

AIMS Mathematics Volume 7, Issue 4, 5534–5562.

5559

Conflict of interest

The authors declare that there is no conflict of interest in this paper.

References

1. D. Aksen, S. Akca, N. Aras, A bilevel partial interdiction problem with capacitated
facilities and demand outsourcing, Comput. Oper. Res., 41 (2014), 346–358.
https://doi.org/10.1016/j.cor.2012.08.013

2. Y. Abo-Elnaga, M. El-Shorbagy, Multi-Sine Cosine Algorithm for Solving Nonlinear
Bilevel Programming Problems, Int. J. Comput. Int. Sys., 13 (2020), 421–432.
https://doi.org/10.2991/ijcis.d.200411.001

3. Y. Abo-Elnaga, S. Nasr, Modified Evolutionary Algorithm and Chaotic Search for Bilevel
Programming Problems, Symmetry, 12 (2020), 1–29. https://doi.org/10.3390/sym12050767

4. Y. Abo-Elnag, S. Nasr, K-means cluster interactive algorithm-basedevolutionary approach for
solving bilevel multi-objective programming problems, Alexandria Engineering Journal, 61
(2022), 811–827. https://doi.org/10.1016/j.aej.2021.04.098

5. M. Bazaraa, H. Sherali, C. Shetty, Nonlinear programming theory and algorithms, John Wiley and
Sons, 2006. https://doi.org/10.1002/0471787779

6. R. Byrd, Omojokun, Robust trust-region methods for nonlinearly constrained optimization, A talk
presented at the Second SIAM Conference on Optimization, Houston, TX, 1987.

7. A. Burgard, P. Pharkya, C. Maranas, Optknock: a bilevel programming framework for identifying
gene knockout strategies formicrobial strain optimization, Biotechnol. Bioeng., 84 (2003), 647–
657. https://doi.org/10.1002/bit.10803

8. O. Ben-Ayed, O. Blair, Computational difficulty of bilevel linear programming, Oper. Res., 38
(1990), 556–560. https://doi.org/10.1287/opre.38.3.556

9. R. Byrd, M. Hribar, J. Nocedal, An interior point algorithm for largescale nonlinear programming,
SIAM J. Optim., 9 (1999), 877–900. https://doi.org/10.1137/S1052623497325107

10. R. Byrd, J. Gilbert, J. Nocedal, A trust region method based on interior point
techniques for nonlinear programming, Math. Program., 89 (2000), 149–185.
https://doi.org/10.1007/PL00011391

11. F. E. Curtis, O. Schenk, A. Wachter, An interior-point algorithm for large-scale nonlinear
optimization with inexact step computations, SIAM J. Sci. Comput., 32 (2010), 3447–3475.
https://doi.org/10.1137/090747634

12. I. Das, An interior point algorithm for the general nonlinear programming problem with trust
region globlization, Technical Report 96-61, Institute for Computer Applications in Science and
Engineering, NASA Langley Research Center Hampton, VA, USA, 1996.

13. J. Dennis, M. Heinkenschloss, L. Vicente, Trust-region interior-point SQP algorithms for a
class of nonlinear programming problems, SIAM J. Control Optim., 36 (1998), 1750–1794.
https://doi.org/10.1137/S036012995279031

AIMS Mathematics Volume 7, Issue 4, 5534–5562.

http://dx.doi.org/https://doi.org/10.1016/j.cor.2012.08.013
http://dx.doi.org/https://doi.org/10.2991/ijcis.d.200411.001
http://dx.doi.org/https://doi.org/10.3390/sym12050767
http://dx.doi.org/https://doi.org/10.1016/j.aej.2021.04.098
http://dx.doi.org/https://doi.org/10.1002/0471787779
http://dx.doi.org/https://doi.org/10.1002/bit.10803
http://dx.doi.org/https://doi.org/10.1287/opre.38.3.556
http://dx.doi.org/https://doi.org/10.1137/S1052623497325107
http://dx.doi.org/https://doi.org/10.1007/PL00011391
http://dx.doi.org/https://doi.org/10.1137/090747634
http://dx.doi.org/https://doi.org/10.1137/S036012995279031

5560

14. S. Dempe, Foundations of Bilevel Programming, Kluwer Academic Publishers, London, 2002.

15. H. Esmaeili, M. Kimiaei, An efficient implementation of a trust-region method for box constrained
optimization, J. Appl. Math. Comput., 48 (2015), 495–517. https://doi.org/10.1007/s12190-014-
0815-0

16. B. El-Sobky, A global convergence theory for an active trust region algorithm for solving
the general nonlinear programming problem, Appl. Math. Comput., 144 (2003), 127–157.
https://doi.org/10.1016/S0096-3003(02)00397-1

17. B. El-Sobky, A Multiplier active-set trust-region algorithm for solving constrained optimization
problem, Appl. Math. Comput., 219 (2012), 928–946. https://doi.org/10.1016/j.amc.2012.06.072

18. B. El-Sobky, An interior-point penalty active-set trust-region algorithm, Journal of the Egyptian
Mathematical Society, 24 (2016), 672–680. https://doi.org/10.1016/j.joems.2016.04.003

19. B. El-Sobky, An active-set interior-point trust-region algorithm, Pac. J. Optim., 14 (2018), 125–
159.

20. B. El-Sobky, Y. Abouel-Naga, Multi-objective optimal load flow problem with
interior-point trust-region strategy, Electr. Pow. Syst. Res., 148 (2017), 127–135.
https://doi.org/10.1016/j.epsr.2017.03.014

21. B. El-Sobky, Y. Abouel-Naga, A penalty method with trust-region mechanism for
nonlinear bilevel optimization problem, J. Comput. Appl. Math., 340 (2018), 360–374.
https://doi.org/10.1016/j.cam.2018.03.004

22. B. El-Sobky, A. Abotahoun, An active-set algorithm and a trust-region approach in constrained
minimax problem, Comput. Appl. Math., 37 (2018), 2605–2631. https://doi.org/10.1007/s40314-
017-0468-3

23. B. El-Sobky, A. Abotahoun, A Trust-Region Algorithm for Solving Mini-Max Problem, J. Comput.
Math., 36 (2018), 881–902. https://doi.org/10.4208/jcm.1705-m2016-0735

24. T. Edmunds, J. Bard, Algorithms for nonlinear bilevel mathematical programs, IEEE transactions
on Systems, Man, and Cybernetics, 21 (1991), 83–89. https://doi.org/10.1109/21.101139

25. J. Falk, J. Liu, On bilevel programming, Part I: general nonlinear cases, Math. Program., 70
(1995), 47–72. https://doi.org/10.1007/BF01585928

26. M. Hestenes, Muliplier and gradient methods, J. Optimiz. Theory App., 4 (1969), 303–320.
https://doi.org/10.1007/BF00927673

27. Z. H. Gumus, C. A. Flouda, Global Optimization of Nonlinear Bilevel Programming Problems, J.
Global Optim., 20 (2001), 1–31.

28. V. Gonzlez, J. Vallejo, G. Serrano, A scatter search algorithm for solving a bilevel
optimization model for determining highway tolls, Comput. Syst., 19 (2015), 3529–3549.
https://doi.org/10.13053/cys-19-1-1916

29. G. Hibino, M. Kainuma, Y. Matsuoka, Two-level mathematical programming for analyzing subsidy
options to reduce greenhouse-gas emissions, Tech. Report WP-96-129, IIASA, Laxenburg, Austria,
1996.

AIMS Mathematics Volume 7, Issue 4, 5534–5562.

http://dx.doi.org/https://doi.org/10.1007/s12190-014-0815-0
http://dx.doi.org/https://doi.org/10.1007/s12190-014-0815-0
http://dx.doi.org/https://doi.org/10.1016/S0096-3003(02)00397-1
http://dx.doi.org/https://doi.org/10.1016/j.amc.2012.06.072
http://dx.doi.org/https://doi.org/10.1016/j.joems.2016.04.003
http://dx.doi.org/https://doi.org/10.1016/j.epsr.2017.03.014
http://dx.doi.org/https://doi.org/10.1016/j.cam.2018.03.004
http://dx.doi.org/https://doi.org/10.1007/s40314-017-0468-3
http://dx.doi.org/https://doi.org/10.1007/s40314-017-0468-3
http://dx.doi.org/https://doi.org/10.1109/21.101139
http://dx.doi.org/https://doi.org/10.1007/BF01585928
http://dx.doi.org/https://doi.org/10.1007/BF00927673
http://dx.doi.org/https://doi.org/10.13053/cys-19-1-1916

5561

30. D. Kouri, M. Heinkenschloss, D. Ridzal, B. van Bloemen Waanders, A Trust-Region Algorithm
with Adaptive Stochastic Collocation for PDE Optimization under Uncertainty, SIAM J. Sci.
Comput., 35 (2020), 1847–1879. https://doi.org/10.1137/120892362

31. H. Li, Y. Jiao, L. Zhang, Orthogonal genetic algorithm for solving quadratic bilevel programming
problems, J. Syst. Eng. Electron., 21 (2010), 763–770. https://doi.org/10.3969/j.issn.1004-
4132.2010.05.008

32. N. Li, D. Xue, W. Sun, J. Wang, A stochastic trust-region method for unconstrained optimization
problems, Math. Probl. Eng., (2019). https://doi.org/10.1155/2019/8095054

33. Y. Lva, T. Hua, G. Wanga, Z. Wanb, A neural network approach for solving
nonlinear bilevel programming problem, Comput. Math. Appl., 55 (2008), 2823–2829.
https://doi.org/10.1016/j.camwa.2007.09.010

34. W. Ma, M. Wang, X. Zhu, Improved particle swarm optimization based approach for bilevel
programming problem-an application on supply chain model, Int. J. Mach. Learn. Cyber, 5 (2014),
281–290. https://doi.org/10.1007/s13042-013-0167-3

35. L. Ma, G. Wang, A Solving Algorithm for Nonlinear Bilevel Programing Problems Based on
Human Evolutionary Model, Algorithms, 13 (2020), 1–12. https://doi.org/10.3390/a13100260

36. L. F. Niu, Y. Yuan, A new trust region algorithm for nonlinear constrained optimization, J. Comput.
Math., 28 (2010), 72–86. https://doi.org/10.4208/jcm.2009.09-m2924

37. E. Omojokun, Trust-region strategies for optimization with nonlinear equality and inequality
constraints, PhD thesis, Department of Computer Science, University of Colorado, Boulder,
Colorado, 1989.

38. T. Steihaug, The conjugate gradient method and trust-region in large scale optimization, Siam J.
Numer. Anal., 20 (1983), 626–637. https://doi.org/10.1137/0720042

39. S. Sadatrasou, M. Gholamian, K. Shahanaghi, An application of data mining classification
and bi-level programming for optimal credit allocation, Decis. Sci. Lett., 4 (2015), 35–50.
https://doi.org/10.5267/j.dsl.2014.9.005

40. G. Savard, J. Gauvin, The steepest descent direction for the nonlinear bilevel programming
problem, Oper. Res. Lett., 15 (1994), 265–272. https://doi.org/10.1016/0167-6377(94)90086-8

41. N. Thoai, Y. Yamamoto, A. Yoshise, Global optimization method for solving mathematical
programs with linear complementarity constraints, Discussion Paper No. 987, Institute of Policy
and Planning Sciences, University of Tsukuba, Japan, 2002.

42. X. Wang, Y. Yuan, A trust region method based on a new affine scaling technique for
simple bounded optimization, Optimization Methods and Software, 28 (2013), 871–888.
https://doi.org/10.1080/10556788.2011.622378

43. X. Wang, Y. Yuan, An augmented Lagrangian trust region method for equality
constrained optimization, Optimization Methods and Software, 30 (2015), 559–582.
https://doi.org/10.1080/10556788.2014.940947

44. Y. Wang, Y. Jiao, H. Li, An evolutionary algorithm for solving nonlinear bilevel programming
based on a new constraint-Handling scheme, IEEE T. Syst. Man Cy. C, 35 (2005), 221–232.
https://doi.org/10.1109/TSMCC.2004.841908

AIMS Mathematics Volume 7, Issue 4, 5534–5562.

http://dx.doi.org/https://doi.org/10.1137/120892362
http://dx.doi.org/https://doi.org/10.3969/j.issn.1004-4132.2010.05.008
http://dx.doi.org/https://doi.org/10.3969/j.issn.1004-4132.2010.05.008
http://dx.doi.org/https://doi.org/10.1155/2019/8095054
http://dx.doi.org/https://doi.org/10.1016/j.camwa.2007.09.010
http://dx.doi.org/https://doi.org/10.1007/s13042-013-0167-3
http://dx.doi.org/https://doi.org/10.3390/a13100260
http://dx.doi.org/https://doi.org/10.4208/jcm.2009.09-m2924
http://dx.doi.org/https://doi.org/10.1137/0720042
http://dx.doi.org/https://doi.org/10.5267/j.dsl.2014.9.005
http://dx.doi.org/https://doi.org/10.1016/0167-6377(94)90086-8
http://dx.doi.org/https://doi.org/10.1080/10556788.2011.622378
http://dx.doi.org/https://doi.org/10.1080/10556788.2014.940947
http://dx.doi.org/https://doi.org/10.1109/TSMCC.2004.841908

5562

45. Y. Yuan, Recent advances in trust region algorithms, Math. Program. Ser. B, 151 (2015), 249–281.
https://doi.org/10.1007/s10107-015-0893-2

46. M. Zeng, Q. Ni, A new trust region method for nonlinear equations involving fractional mode,
Pac. J. Optim., 15 (2019), 317–329.

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 4, 5534–5562.

http://dx.doi.org/https://doi.org/10.1007/s10107-015-0893-2
http://creativecommons.org/licenses/by/4.0

	Introduction
	An interior-point method with trust-region algorithm
	Newton's method with scaling matrix
	Trust-region technique

	Global convergence theory
	A general assumptions
	Technical lemmas
	Fundamental convergence theorem

	Application
	Concluding remarks

