Mathematics

Research article

An interior-point trust-region algorithm to solve a nonlinear bilevel programming problem

B. El-Sobky ${ }^{*}$ and G. Ashry
Department of Mathematics and Computer Science, Alexandria University, Faculty of Science, Egypt
* Correspondence: Email: bothinaelsobky @ yahoo.com.

Abstract

In this paper, a nonlinear bilevel programming (NBLP) problem is transformed into an equivalent smooth single objective nonlinear programming (SONP) problem utilized slack variable with a Karush-Kuhn-Tucker (KKT) condition. To solve the equivalent smooth SONP problem effectively, an interior-point Newton's method with Das scaling matrix is used. This method is locally method and to guarantee convergence from any starting point, a trust-region strategy is used. The proposed algorithm is proved to be stable and capable of generating approximal optimal solution to the nonlinear bilevel programming problem. A global convergence theory of the proposed algorithm is introduced and applications to mathematical programs with equilibrium constraints are given to clarify the effectiveness of the proposed approach.

Keywords: nonlinear bilevel programming problem; Newton's method; Das scaling matrix; trust-region technique; global convergence
Mathematics Subject Classification: 93D52, 49N35, 93D22, 49N10, 65K05

1. Introduction

Bilevel programming problem has increasingly been addressed in the literature, both from the theoretical and computational points of view [14]. This model has been widely applied to decentralized planning problems involving a decision progress with a hierarchical structure. It is characterized by the existence of two optimization problems in which the constraint region of the first-level problem is implicitly determined by another optimization problem. The NBLP problem is hard to solve. In fact, the problem has been proved to be NP-hard [8]. However, the NBLP problem is used so extensively in resource allocation, finance budget, price control, transaction network etc. [1, 7, 28, 29, 39] that many researches have been devoted to this field, which leads to a rapid development in theories and algorithms. For the detailed expositions, the reader may consult [21,33].

In this paper we will consider the following NBLP problem

$$
\begin{array}{cl}
\min _{t} & f_{u}(t, y) \\
\text { s.t. } & g_{u}(t, y) \leq 0, \tag{1.1}\\
\min _{y} & f_{l}(t, y), \\
\text { s.t. } & g_{l}(t, y) \leq 0,
\end{array}
$$

where $t \in \mathfrak{R}^{n_{1}}$ and $y \in \mathfrak{R}^{n_{2}}$. The functions $f_{u}: \mathfrak{R}^{n_{1}+n_{2}} \rightarrow \mathfrak{R}, f_{l}: \mathfrak{R}^{n_{1}+n_{2}} \rightarrow \mathfrak{R}, g_{u}: \mathfrak{R}^{n_{1}+n_{2}} \rightarrow \mathfrak{R}^{m_{1}}$, and $g_{l}: \mathfrak{R}^{n_{1}+n_{2}} \rightarrow \mathfrak{R}^{m_{2}}$ are assumed to be at least twice continuously differentiable function.

There are several approaches have proposed to solve problem 1.1, see [2,3,25, 35,40]. One of these approaches and used in this paper, is converted the original two level problems to a single level one by replacing the lower level optimization problem with its Karush-Kuhn-Tucker (KKT) conditions, see [24,41]. By KKT optimality conditions for the lower-level problem, then we can reduce the NBLP problem 1.1 to one-level programming problem. This problem is non-convex and non-differentiable, moreover the regularity assumptions which are needed to successfully handle smooth optimization problems are never satisfied and it is not good to use our approach. So, we add slack variables for inequalities constraints in problem 1.1.

By adding slack variables $s_{u} \in \mathfrak{R}^{m_{1}}$ and $s_{l} \in \mathfrak{R}^{m_{2}}$ to the upper inequality constraint $g_{u}(t, y)$ and the lower inequality constraint $g_{l}(t, y)$ respectively, then NBLP problem 1.1 can be written as follows

$$
\begin{array}{cl}
\min _{t} & f_{u}(t, y) \\
\text { s.t. } & g_{u}(t, y)+s_{u}=0, \\
\min _{y} & f_{l}(t, y), \\
\text { s.t. } & g_{l}(t, y)+s_{l}=0, \\
& s_{u} \geq 0, \quad s_{l} \geq 0 .
\end{array}
$$

The above NBLP problem can be simplified as follows

$$
\begin{array}{ll}
\min _{t} & f_{u}(t, y) \\
\text { s.t. } & \tilde{g}_{u}\left(t, y, s_{u}\right)=0, \\
\min _{y} & f_{l}(t, y), \tag{1.2}\\
\text { s.t. } & \tilde{g}_{l}\left(t, y, s_{l}\right)=0, \\
& s \geq 0,
\end{array}
$$

where $\tilde{g}_{u}\left(t, y, s_{u}\right)=g_{u}(t, y)+s_{u} \in \mathfrak{R}^{m_{1}}, \tilde{g}_{l}\left(t, y, s_{l}\right)=g_{l}(t, y)+s_{l} \in \mathfrak{R}^{m_{2}}$, and $s=\left(s_{u}, s_{l}\right)^{T} \in \mathfrak{R}^{m_{1}+m_{2}}$.
Applying KKT conditions only on the lower-level problem without the constraint $s \geq 0$, then we can reduce the NBLP problem 1.2 to the following smooth SONP problem:

$$
\begin{array}{ll}
\min _{t} & f_{u}(t, y) \\
\text { s.t. } & \tilde{g}_{u}\left(t, y, s_{u}\right)=0, \\
& \nabla_{y} f_{l}(t, y)+\nabla_{y} \tilde{g}_{l}\left(t, y, s_{l}\right) \mu_{l}=0, \tag{1.3}\\
& \tilde{g}_{l}\left(t, y, s_{l}\right)=0, \\
& s \geq 0,
\end{array}
$$

where $\mu_{l} \in \mathfrak{R}^{m_{2}}$ is a Lagrange multiplier vector associated with equality constraint $\tilde{g}_{l}\left(t, y, s_{l}\right)$, see [5].

Using problem 1.3, to overcome the difficulty that problem 1.1 does not satisfy any regularity assumptions, which are needed for successfully handling smooth optimization problems, and pave the way for using the proposed approach to solve problem 1.1. To simply our discussion, we introduce the following notations. $x=(t, y, s)^{T} \in \mathfrak{R}^{n}, n=n_{1}+n_{2}+m_{1}+m_{2}, h(x) \in \mathfrak{R}^{m}$ represents the vector of equality constraints such that $m=m_{1}+m_{2}+n_{2}$. Then problem 1.3 can be written as follows

$$
\begin{array}{cl}
\text { minimize } & f_{u}(x) \\
\text { subject to } & h(x)=0 \tag{1.4}\\
& v \leq x \leq w,
\end{array}
$$

where $v \in\{\mathfrak{R} \bigcup\{-\infty\}\}^{n}, w \in\{\mathfrak{R} \bigcup\{+\infty\}\}^{n}$, and $v<w$.
Various approaches have been proposed to solve the SONP problem 1.4, see [5, 9-11, 15-19]. In this paper, we use Newton's interior point method with Das scaling matrix [12] to solve problem 1.4. Newton's method converges quadratically to a stationary point under reasonable assumptions if the starting point sufficiently closed to the stationary point. It may not converge if the starting point is far away from the stationary point. To guarantee convergence from any starting point, a trust-region strategy is used. The trust-region strategy can induce strongly global convergence, which is very important method for solving SONP problem and is more robust when it deals with rounding errors. It does not require the objective function of the model be convex or the Hessian of the objective function must be positive definite. Also, some criteria are used to test the trial step is acceptable or no. If it is not acceptable, then the subproblem must be resolved with a reduced the trust-region radius. For the detailed expositions, the reader may consult $[4,17,20-23,30,32,36,42,43,45,46]$.

A reduced hessian technique is used in this paper to overcome some difficulties in trust-region subproblem. This technique was suggested by $[6,37]$ and used by $[19,20]$.

In this paper, we use the symbol, $f_{u_{k}} \equiv f_{u}\left(x_{k}\right), h_{k} \equiv h\left(x_{k}\right), P_{k} \equiv P\left(x_{k}\right) \ell_{k} \equiv \ell\left(x_{k}, \lambda_{k}\right), \nabla_{x} \ell_{k} \equiv$ $\nabla_{x} \ell\left(x_{k}, \lambda_{k}\right)$, and so on to denote the function value at a particular point. Finally, all norms are l_{2}-norms.

The rest of the paper is organized as follows. In section 2, we introduce detailed description for the proposed method to solve problem 1.4. Section 3 is devoted to analysis of the global convergence of the proposed algorithm. Section 4 contains implementation of the proposed algorithm and the results of test problems. Section 5 contains concluding remarks.

2. An interior-point method with trust-region algorithm

In this section, firstly, we will consider the detailed description for the Newton's interior-point method with Das scaling matrix to solve SONP problem 1.4. Secondly, to guarantee convergence from any starting point, we will introduce the detailed description for trust-region strategy. Finally, we clarify main steps for general algorithm to solve NBLP 1.1.

2.1. Newton's method with scaling matrix

Motivated by the impressive computational performance of Newton's interior-point method for solving SONP problem 1.4, let

$$
\begin{equation*}
\ell(x, \lambda)=f_{u}(x)+\lambda^{T} h(x), \tag{2.1}
\end{equation*}
$$

be a Lagrangian function associated with problem 1.4 without the constraints $v \leq x \leq w$, and let

$$
\begin{equation*}
L\left(x, \lambda, \mu^{v}, \mu^{w}\right)=\ell(x, \lambda)-\mu^{v^{T}}(x-v)-\mu^{w^{T}}(w-x), \tag{2.2}
\end{equation*}
$$

be a Lagrangian function associated with problem 1.4 with the constraints $v \leq x \leq w$. The vectors $\lambda \in \mathfrak{R}^{m}, \mu^{v} \in \mathfrak{R}^{n}$, and $\mu^{w} \in \mathfrak{R}^{n}$ represent Lagrange multiplier vectors associated with the constraints $h(x)=0,0 \leq(x-v)$, and $0 \leq(w-x)$ respectively. Let $\hat{\boldsymbol{G}}=\{x: v \leq x \leq w\}$ and $\operatorname{int}(\hat{\boldsymbol{G}})=\{x: v<x<w\}$.

The first-order necessary conditions for the point x_{*} to be a local minimizer of problem 1.4 are the existence of multipliers $\lambda_{*} \in \mathfrak{R}^{m}, \mu_{*}^{v} \in \mathfrak{R}_{+}^{n}$, and $\mu_{*}^{w} \in \mathfrak{R}_{+}^{n}$, such that ($x_{*}, \lambda_{*}, \mu_{*}^{v}, \mu_{*}^{w}$) satisfies

$$
\begin{align*}
\nabla_{x} \ell\left(x_{*}, \lambda_{*}\right)-\mu_{*}^{v}+\mu_{*}^{w} & =0 \tag{2.3}\\
h\left(x_{*}\right) & =0, \tag{2.4}\\
v \leq x_{*} \leq w & \tag{2.5}
\end{align*}
$$

and for all i corresponding to $x^{(i)}$ with finite bound, we have

$$
\begin{align*}
\left(\mu_{*}^{v}\right)^{(i)}\left(x_{*}^{(i)}-v^{(i)}\right) & =0, \tag{2.6}\\
\left(\mu_{*}^{v}\right)^{(i)}\left(w^{(i)}-x_{*}^{(i)}\right) & =0, \tag{2.7}
\end{align*}
$$

where $\nabla_{x} \ell\left(x_{*}, \lambda_{*}\right)=\nabla f_{u}\left(x_{*}\right)+\nabla h\left(x_{*}\right) \lambda_{*}$.
The proposed algorithm here, like its predecessors in [12,18, 19], starts at a point strictly feasible with respect to the bounds on the variables and produces iterates that are strictly feasible with respect to the bounds (i.e. 'in the interior'). Define a diagonal scaling matrix $P(x)=\operatorname{diag}(p(x)$ whose diagonal elements $p(x)$ are given by

$$
p^{(i)}(x)=\left\{\begin{array}{cc}
\sqrt{\left(x^{(i)}-v^{(i)}\right)}, & \text { if } v^{(i)}>-\infty \text { and }\left(\nabla_{x} \ell(x, \lambda)\right)^{(i)} \geq 0, \tag{2.8}\\
\sqrt{\left(w^{(i)}-x^{(i)}\right)}, & \text { if } w^{(i)}<+\infty \text { and }\left(\nabla_{x} \ell(x, \lambda)\right)^{(i)}<0, \\
1, & \text { otherwise. }
\end{array}\right.
$$

Using the matrix $\mathrm{P}(\mathrm{x})$, then $\left(x_{*}, \lambda_{*}, \mu_{*}^{v}, \mu_{*}^{w}\right)$ satisfy the KKT conditions [2.3-2.7] if and only if

$$
\begin{align*}
P^{2}(x) \nabla_{x} \ell(x, \lambda) & =0, \tag{2.9}\\
h(x) & =0 . \tag{2.10}
\end{align*}
$$

For more details about the proof, see [12].
Applying Newton's method on the nonlinear system [2.9-2.10], then we have

$$
\begin{align*}
{\left[P^{2}(x) \nabla_{x}^{2} \ell(x, \lambda)+\operatorname{diag}\left(\nabla_{x} \ell(x, \lambda)\right) \operatorname{diag}(\theta(x))\right] \Delta x } & +P^{2}(x) \nabla h(x) \Delta \lambda=-P^{2}(x) \nabla_{x} \ell(x, \lambda), \tag{2.11}\\
\nabla h(x)^{T} \Delta x & =-h(x) . \tag{2.12}
\end{align*}
$$

where $\theta(x)$ is a vector whose components are given by

$$
\theta^{(i)}(x)=\left\{\begin{align*}
1, & \text { if } v^{(i)}>-\infty \text { and }\left(\nabla_{x} \ell(x, \lambda)\right)^{(i)} \geq 0 \tag{2.13}\\
-1, & \text { if } w^{(i)}<+\infty \text { and }\left(\nabla_{x} \ell(x, \lambda)\right)^{(i)}<0 \\
0, & \text { otherwise }
\end{align*}\right.
$$

For more details see [18].
In our method, the matrix $P(x)$ must be nonsingular, so we restrict the point $x \in \operatorname{int}(\hat{\boldsymbol{G}})$. Multiplying both sides of equation 2.11 by $P^{-1}(x)$, then we have

$$
\left[P(x) \nabla_{x}^{2} \ell(x, \lambda)+P^{-1}(x) \operatorname{diag}\left(\nabla_{x} \ell(x, \lambda)\right) \operatorname{diag}(\theta(x))\right] \Delta x+P(x) \nabla h(x) \Delta \lambda=-P(x) \nabla_{x} \ell(x, \lambda),
$$

$$
\nabla h(x)^{T} \Delta x=-h(x) .
$$

Substituting $\Delta x=P(x) d$ in the above two system, then we have

$$
\begin{align*}
{\left[P(x) H(x, \lambda) P(x)+\operatorname{diag}\left(\nabla_{x} \ell(x, \lambda)\right) \operatorname{diag}(\theta(x))\right] d } & +P(x) \nabla h(x) \Delta \lambda=-P(x) \nabla_{x} \ell(x, \lambda), \tag{2.14}\\
(P(x) \nabla h(x))^{T} d & =-h(x), \tag{2.15}
\end{align*}
$$

where $H(x, \lambda)=\nabla_{x}^{2} \ell(x, \lambda)$ represents the Hessian of the Lagrange function 2.1 or an approximation to it. It is easy to see that the step generated by the above system coincides with the solution of the following quadratic programming subproblem

$$
\begin{align*}
& \text { minimize } \\
& \text { subject to } \tag{2.16}
\end{align*} \quad h(x, \lambda)+\left(P(x) \nabla_{x} \ell(x, \lambda)\right)^{T} d+(P(x) \nabla h(x))^{T} d=0, ~ d^{T} B d, ~ 子
$$

where $B=P(x) H(x, \lambda) P(x)+\operatorname{diag}\left(\nabla_{x} \ell(x, \lambda)\right) \operatorname{diag}(\theta(x))$. This means that, the point $\left(x_{*}, \lambda_{*}\right)$ that satisfies the KKT conditions for subproblem 2.16 will satisfy the KKT conditions for problem 1.4.

Although Newton's method converges quadratically to a stationary point under reasonable assumptions, it may not converge to a stationary point if the starting point is far away from the solution. To overcome this disadvantage and to guarantee convergence from any starting point, we use the trustregion technique.

2.2. Trust-region technique

Trust-region methods can induce strongly global convergence, which are very important methods for solving a smooth nonlinear programming problem and are more robust when they deal with rounding errors. It does not require the objective function of the model be convex. Also, it does not demand the Hessian of the objective function must positive definite.

The trust-region subproblem associated with problem 2.16 is

$$
\begin{array}{lc}
\text { minimize } & q_{k}\left(P_{k} d_{k}\right)=\ell_{k}+\left(P_{k} \nabla_{x} \ell_{k}\right)^{T} d+\frac{1}{2} d^{T} B_{k} d \\
\text { subject to } & h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} d=0, \tag{2.17}\\
\|d\| \leq \delta_{k},
\end{array}
$$

where $\delta_{k}>0$ is the radius of the trust-region.
Subproblem 2.17 may be infeasible, because there may be no intersecting points between the constraint $\|d\| \leq \delta_{k}$ and $h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} d=0$ constraints. Even if they intersect, there is no warranty that this will continue true if δ_{k} is decreased. For more details see [13]. To overcome this difficulty, we use a reduced hessian technique. This technique was suggested by [6,37] and used by [19,20]. In this technique, the trial step d is decomposed into two orthogonal components: the normal component d^{n} to improve feasibility and the tangential component d_{k}^{t} to improve optimality. Each of components is computed by solving unconstrained trust-region subproblem.

- How to estimate the normal component d_{k}^{n}

The normal component d_{k}^{n} is computed by solving the following trust-region subproblem

$$
\begin{array}{ll}
\text { minimize } & \left\|h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} d^{n}\right\|^{2} \\
\text { subject to } & \left\|d^{n}\right\| \leq \zeta \delta_{k}, \tag{2.18}
\end{array}
$$

for some $0<\zeta<1$. To solve the subproblem 2.18, we use a conjugate gradient method which is introduced by [38] and used by [21], see algorithm 2.1 in [21]. It is very cheap if the problem is large-scale and the Hessian is indefinite. By using the conjugate gradient method, the normal predicted decrease obtained by d_{k}^{n} is greater than or equal to a fraction of the normal predicted decrease obtained by the Cauchy step $d_{k}^{n c p}$. This means that

$$
\begin{equation*}
\left\|h_{k}\right\|^{2}-\left\|h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} d_{k}^{n}\right\|^{2} \geq \vartheta_{1}\left\{\left\|h_{k}\right\|^{2}-\left\|h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} d_{k}^{n c p}\right\|^{2}\right\} \tag{2.19}
\end{equation*}
$$

such that $d_{k}^{n c p}$ is defined as follows

$$
\begin{equation*}
d^{n c p}=-\varphi_{k}^{n c p} P_{k} \nabla h_{k} h_{k}, \tag{2.20}
\end{equation*}
$$

where the parameter $\varphi_{k}^{n c p}$ is given by

$$
\varphi_{k}^{n c p}=\left\{\begin{array}{cc}
\frac{\left\|P_{k} \nabla h_{k} h_{k}\right\|^{2}}{\|\left(P_{k} \nabla h_{k} T^{T} P_{k} \nabla h_{k} h_{k} \|^{2}\right.} & \text { if } \frac{\left\|P_{k} \nabla h_{k} h_{k}\right\|^{3}}{\|\left(1 \left(P_{P} \nabla k_{k} T^{T} P_{V} \nabla h_{k} k_{1}^{2}\right.\right.} \leq \delta_{k}, \tag{2.21}\\
\frac{\delta_{k}}{\left\|P_{k} \nabla h_{k} h_{k}\right\|} & \text { and }\left\|\left(P_{k} \nabla h_{k}\right)^{T} P_{k} \nabla h_{k} h_{k}\right\|>0, \\
\text { otherwise. }
\end{array}\right.
$$

Once d_{k}^{n} is obtained, we will evaluate $d_{k}^{t}=Z_{k} \bar{d}_{k}^{t}$ where Z_{k} is the matrix whose columns form a basis for the null space of $\left(P_{k} \nabla h_{k}\right)^{T}$.

- How to estimate the tangential component d_{k}^{t}

To obtain the tangential component d_{k}^{t}, we use the conjugate gradient method [21] to solve the following trust-region subproblem

$$
\begin{array}{lc}
\text { minimize } & {\left[Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right]^{T} \bar{d}^{t}+\frac{1}{2} \bar{d}^{T} Z_{k}^{T} B_{k} Z_{k} \bar{d}^{t}\right.} \\
\text { subject to } & \left\|Z_{k} \bar{d}^{t}\right\| \leq \Delta_{k}, \tag{2.22}
\end{array}
$$

where $\nabla q_{k}\left(P_{k} d_{k}^{n}\right)=P_{k} \nabla_{x} \ell_{k}+B_{k} d_{k}^{n}$ and $\Delta_{k}=\sqrt{\delta_{k}^{2}-\left\|d_{k}^{n}\right\|^{2}}$.
By using the conjugate gradient method, the tangential predicted decrease which is obtained by tangential step \bar{d}_{k}^{t} is greater than or equal to a fraction of the tangential predicted decrease obtained by a tangential Cauchy step $\bar{d}_{k}^{t c p}$. This means that

$$
\begin{equation*}
q_{k}\left(P_{k} d_{k}^{n}\right)-q_{k}\left(P_{k}\left(d_{k}^{n}+Z_{k} \bar{d}_{k}^{t}\right)\right) \geq \vartheta_{2}\left[q_{k}\left(P_{k} d_{k}^{n}\right)-q_{k}\left(P_{k}\left(d_{k}^{n}+Z_{k} \bar{d}_{k}^{t c p}\right)\right)\right], \tag{2.23}
\end{equation*}
$$

for some $0<\vartheta_{2} \leq 1$ and $\bar{d}_{k}^{t c p}$ is defined as follows

$$
\begin{equation*}
\bar{d}^{t c p}=-\varphi_{k}^{t c p} Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right), \tag{2.24}
\end{equation*}
$$

where the parameter $\varphi_{k}^{t c p}$ is given by
where $\bar{B}_{k}=Z_{k}^{T} B_{k} Z_{k}$.

- How to estimate a parameter γ_{k}

Once obtaining d_{k}^{t}, we set $d_{k}=d_{k}^{n}+d_{k}^{t}$ and $x_{k+1}=x_{k}+P_{k} d_{k}$. To ensure $x_{k+1} \in \operatorname{int}(\hat{\boldsymbol{G}})$, we need to evaluate the parameter γ_{k}. To do this, evaluate

$$
a_{k}^{(i)}= \begin{cases}\frac{v^{(i)}-x_{k}^{(i)}}{P_{k}^{(i)} d_{k}^{(i)}} & \text { if } v^{(i)}>-\infty \text { and } P_{k}^{(i)} d_{k}^{(i)}<0 \\ 1, & \text { otherwise },\end{cases}
$$

and

$$
b_{k}^{(i)}= \begin{cases}\frac{w^{(i)}-x_{k}^{(i)}}{P_{k}^{(i)} d_{k}^{(i)}}, & \text { if } w^{(i)}<\infty \text { and } P_{k}^{(i)} d_{k}^{(i)}>0 \\ 1, & \text { otherwise } .\end{cases}
$$

Compute

$$
\begin{equation*}
\gamma_{k}=\min \left\{1, \min _{i}\left\{a_{k}^{(i)}, b_{k}^{(i)}\right\}\right\} \tag{2.26}
\end{equation*}
$$

Once the trial step $\gamma_{k} P_{k} d_{k}$ is evaluated, it needs to be tested to decide whether it will be accepted or not. To do this, we need to a merit function which is ties the objective function and the constraints in such a way that progress in the merit function means progress in solving problem. In our method, we use the following merit function which is introduced by [26] and known as an augmented Lagrange function

$$
\begin{equation*}
\Phi(x, \lambda ; \rho)=\ell(x, \lambda)+\rho\|h(x)\|^{2} \tag{2.27}
\end{equation*}
$$

where $\ell(x, \lambda)$ is defined in 2.1 and $\rho>0$ represents the penalty parameter.

- How to estimate λ_{k+1}

The Lagrange multiplier vector λ_{k+1} will be estimated as follows

$$
\begin{equation*}
\text { minimize }\left\|\nabla f_{u_{k+1}}+\nabla h_{k+1} \lambda\right\|^{2} \tag{2.28}
\end{equation*}
$$

To test whether the point $\left(x_{k+1}, \lambda_{k+1}\right)$, will be accepted in the next iterate or no we need to define the following actual reduction Ared $_{k}$ and the predicted reduction Pred $_{k}$.

The actual reduction Ared $_{k}$ in the merit function 2.27 in moving from $\left(x_{k}, \lambda_{k}\right)$ to $\left(x_{k}+\gamma_{k} P_{k} d_{k}, \lambda_{k+1}\right)$ is defined as follows

$$
\operatorname{Ared}_{k}=\Phi\left(x_{k}, \lambda_{k} ; \rho_{k}\right)-\Phi\left(x_{k}+\gamma_{k} P_{k} d_{k}, \lambda_{k+1} ; \rho_{k}\right)
$$

Also we can write the actual reduction Ared $_{k}$ as follows,

$$
\begin{align*}
\text { Ared }_{k} & =\Phi\left(x_{k}, \lambda_{k} ; \rho_{k}\right)-\Phi\left(x_{k}+\gamma_{k} P_{k} d_{k}, \lambda_{k+1} ; \rho_{k}\right), \\
& =\ell\left(x_{k}, \lambda_{k}\right)-\ell\left(x_{k+1}, \lambda_{k}\right)-\Delta \lambda_{k}^{T} h_{k+1}+\rho_{k}\left[\left\|h_{k}\right\|^{2}-\left\|h_{k+1}\right\|^{2}\right], \tag{2.29}
\end{align*}
$$

where $\Delta \lambda_{k}=\left(\lambda_{k+1}-\lambda_{k}\right)$.
The predicted reduction Pred $_{k}$ is defined as follows

$$
\begin{align*}
\text { Pred }_{k}= & -\left(P_{k} \nabla_{x} \ell\left(x_{k}, \lambda_{k}\right)\right)^{T} \gamma_{k} d_{k}-\frac{1}{2} \gamma_{k}^{2} d_{k}^{T} B_{k} d_{k}-\Delta \lambda_{k}^{T}\left(h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} \gamma_{k} d_{k}\right) \\
& +\rho_{k}\left[\left\|h_{k}\right\|^{2}-\left\|h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} \gamma_{k} d_{k}\right\|^{2}\right] . \tag{2.30}
\end{align*}
$$

Since $q_{k}\left(\gamma_{k} P_{k} d_{k}\right)=\ell_{k}+\left(P_{k} \nabla_{x} \ell_{k}\right)^{T} \gamma_{k} d_{k}+\frac{1}{2} \gamma_{k}^{2} d_{k}^{T} B_{k} d_{k}$, then Pred_{k} can be written as follows,

$$
\begin{equation*}
\operatorname{Pred}_{k}=q_{k}(0)-q_{k}\left(\gamma_{k} P_{k} d_{k}\right)-\Delta \lambda_{k}^{T}\left(h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} \gamma_{k} d_{k}\right)+\rho_{k}\left[\left\|h_{k}\right\|^{2}-\left\|h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} \gamma_{k} d_{k}\right\|^{2}\right] . \tag{2.31}
\end{equation*}
$$

- How to update the penalty parameter ρ_{k}

To ensure Pred $_{k}$ is strictly positive, we use the following scheme to update the positive penalty parameter ρ_{k}

Algorithm 2.1. : (Updating the penalty parameter ρ_{k})
Set $\rho_{k+1}=\rho_{k}$. If

$$
\begin{equation*}
\operatorname{Pred}_{k} \geq \frac{\rho_{k}}{2}\left[\left\|h_{k}\right\|^{2}-\left\|h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} \gamma_{k} d_{k}\right\|^{2}\right], \tag{2.32}
\end{equation*}
$$

then set

$$
\begin{equation*}
\rho_{k}=\frac{2\left[q_{k}\left(\gamma_{k} P_{k} d_{k}\right)-q_{k}(0)+\Delta \lambda_{k}^{T}\left(h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} \gamma_{k} d_{k}\right)\right]}{\left\|h_{k}\right\|^{2}-\left\|h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} \gamma_{k} d_{k}\right\|^{2}}+c_{0} . \tag{2.33}
\end{equation*}
$$

End if.

- How to test the step $\gamma_{k} P_{k} d_{k}$ and update δ_{k}

To decide the trial step $\gamma_{k} P_{k} d_{k}$ will be accepted in the next iteration or no, we use the following algorithm.
Algorithm 2.2. : (Testing the step $\gamma_{k} P_{k} d_{k}$ and updating δ_{k})
Step 0. Choose $0<\tau_{1}<\tau_{2}<1,0<\beta_{1}<1<\beta_{2}$, and $\delta_{\min } \leq \delta_{0} \leq \delta_{\max }$.
Step 1. While $\frac{\text { Ared }_{k}}{\text { Pred }_{k}}<\tau_{1}$ or Pred $_{k} \leq 0$.
Do not accept the step and set $\delta_{k}=\beta_{1}\left\|d_{k}\right\|$.
Compute a new trial step.
End while.
Step 2. If $\tau_{1} \leq \frac{\text { Ared }_{k}}{\text { Pred }_{k}}<\tau_{2}$.
Accept the step: $x_{k+1}=x_{k}+\gamma_{k} P_{k} d_{k}$.
Set $\delta_{k+1}=\max \left(\delta_{k}, \delta_{\text {min }}\right)$.
End if.
Step 3. If $\frac{\text { Ared }_{k}}{\text { Pred }_{k}} \geq \tau_{2}$.
Accept the step: $x_{k+1}=x_{k}+\gamma_{k} P_{k} d_{k}$.
Set $\delta_{k+1}=\min \left\{\delta_{\max }, \max \left\{\delta_{\min }, \beta_{2} \delta_{k}\right\}\right\}$.
End if.
Finally, the algorithm is stopped when either $\left\|Z_{k}^{T} P_{k} \nabla_{x} \ell_{k}\right\|+\left\|h_{k}\right\| \leq \varepsilon_{1}$, for some $\varepsilon_{1}>0$ or $\left\|d_{k}\right\| \leq \varepsilon_{2}$ for some $\varepsilon_{2}>0$.

Main steps of the trust-region algorithm for solving subproblem 2.17 are summarized in the following algorithm.
Algorithm 2.3. (Trust-region algorithm)
Step 0. Starting with $x_{0} \in \operatorname{int}(\hat{\boldsymbol{G}})$. Evaluate λ_{0}, P_{0}, and β_{0}. Set $\rho_{0}=1$ and $c_{0}=0.1$.
Choose $\varepsilon_{1}>0, \varepsilon_{2}>0$, and set $k=0$.
Step 1. If $\left\|Z_{k}^{T} P_{k} \nabla_{x} \ell_{k}\right\|+\left\|h_{k}\right\| \leq \varepsilon_{1}$, then stop.
Step 2. (To compute d_{k})
a) Compute d_{k}^{n} by solving trust-region subproblem 2.18.
b) Compute \bar{d}_{k}^{t} by solving trust-region subproblem 2.22.
c) $\operatorname{Set} d_{k}=d_{k}^{n}+Z_{k} \bar{d}_{k}^{t}$.

Step 3. If $\left\|d_{k}\right\| \leq \varepsilon_{2}$, then stop.
Step 4. Compute γ_{k} using equation 2.26.
Step 5. Update λ_{k+1} using subproblem 2.28 .
Step 6. Update the penalty parameter using scheme 2.1.
Step 7. Test the step $\gamma_{k} P_{k} d_{k}$ and update δ_{k} by using algorithm 2.2.
Step 8. Compute P_{k+1} and α_{k+1} using definitions 2.8 and 2.13 respectively.
Step 9. Set $k=k+1$ and go to Step 1 .
Main steps for solving NBLP problem1.1 are summarized in the following algorithm.

Algorithm 2.4. (Interior-point trust-region (IPTR) algorithm)

Step 1. Adding slack variables to inequalities in NBLP problem1.1 and convert it to problem 1.2.
Step 2. By KKT optimality conditions for the lower-level problem, NBLP problem 1.2 is equivalent to the one level problem 1.3 which can be written in the form 1.4.
Step 3. Using Newton's method and Das strategy to transform problem 1.4 to subproblem 2.16.
Step 4. Using trust-region algorithm 2.3 to solve subproblem 2.16.
The following section is devoted to global convergence analysis for IPTR algorithm 2.4.

3. Global convergence theory

We state the general assumption under which the global convergence theory for IPTR algorithm 2.4 is proved.

3.1. A general assumptions

Let Ω be a convex subset of \mathfrak{R}^{n} that contains all points $x_{k} \in \operatorname{int}(\hat{\boldsymbol{G}})$ and $\left(x_{k}+\gamma_{k} P_{k} d_{k}\right) \in \operatorname{int}(\hat{\boldsymbol{G}})$. On the set Ω we state the following general assumptions under which the global convergence theory of IPTR algorithm is proved
[GS .] The functions $f_{u}(x), h(x) \in C^{2}$ for all $x \in \Omega$.
[GS 2.] The matrix $P_{k} \nabla h_{k}$ has full column rank.
[$G S_{3}$.] All of $f_{u}(x), \nabla f_{u}(x), \nabla^{2} f_{u}(x), h(x), \nabla h(x), \nabla^{2} h_{i}(x)$ for $i=1, \ldots, m$ and $\left(P_{k} \nabla H_{k}\right)\left(\left(P_{k} \nabla h_{k}\right)^{T}\left(P_{k} \nabla h_{k}\right)\right)^{-1}$ are uniformly bounded in Ω.
[GS 4.] The sequence of Lagrange multiplier vectors $\left\{\lambda_{k}\right\}$ is bounded.
[GS 5.] The sequence of approximate Hessian matrices $\left\{H_{k}\right\}$ is bounded.
An immediate consequence of the above general assumptions is that the existence of positive constant b_{1}, such that

$$
\begin{equation*}
\left\|Z_{k}^{T} B_{k}\right\| \leq b_{1}, \quad\left\|Z_{k}^{T} B_{k} Z_{k}\right\| \leq b_{1} \tag{3.1}
\end{equation*}
$$

3.2. Technical lemmas

In this section, we introduce some important results which are needed in the subsequent proof.
The following lemma shows how accurate the definition of Pred $_{k}$ is as an approximation to Ared $_{k}$.
Lemma 3.1. Under assumptions $G S_{1}-G S_{5}$, there exists a positive constant K_{1}, such that

$$
\begin{equation*}
\mid \text { Ared }_{k}-\operatorname{Pred}_{k} \mid \leq K_{1} \rho_{k} \gamma_{k}\left\|d_{k}\right\|^{2} \tag{3.2}
\end{equation*}
$$

Proof. From Equations 2.29, 2.30, and using the inequality of Cauchy-Schwarz, we have

$$
\begin{aligned}
\mid \text { Ared }_{k}-\text { Pred }_{k} \mid \leq & \frac{1}{2}\left|\gamma_{k}^{2} P_{k} d_{k}^{T}\left[H_{k}-\nabla^{2} \ell\left(x_{k}+\xi_{1} \gamma_{k} P_{k} d_{k}\right)\right] P_{k} d_{k}\right| \\
& +\frac{1}{2}\left|\Delta \lambda_{k} \gamma_{k}^{2} P_{k} d_{k}^{T} \nabla^{2} h\left(x_{k}+\xi_{2} \gamma_{k} P_{k} d_{k}\right) P_{k} d_{k}\right| \\
& +\frac{1}{2}\left|\gamma_{k}^{2} d_{k}^{T} \operatorname{diag}\left(\nabla_{x} \ell_{k}\right) \operatorname{diag}\left(\theta_{k}\right) d_{k}\right| \\
& +\left|\Delta \lambda_{k} P_{k}\left[\nabla h_{k}-\nabla h\left(x_{k}+\xi_{2} \gamma_{k} P_{k} d_{k}\right)\right]^{T} \gamma_{k} d_{k}\right| \\
& +2 \rho_{k}\left|P_{k}\left[\left(\nabla h_{k}-\nabla h\left(x_{k}+\xi_{2} \gamma_{k} P_{k} d_{k}\right)\right) h_{k}\right]^{T} \gamma_{k} d_{k}\right| \\
& +\rho_{k}\left|\gamma_{k}^{2} P_{k} d_{k}^{T}\left[\nabla h_{k} \nabla h_{k}^{T}-\nabla h\left(x_{k}+\xi_{2} \gamma_{k} P_{k} d_{k}\right) \nabla h\left(x_{k}+\xi_{2} \gamma_{k} P_{k} d_{k}\right)^{T}\right] P_{k} d_{k}\right|,
\end{aligned}
$$

for some ξ_{1} and $\xi_{2} \in(0,1)$. Using the general assumptions $G S_{1}-G S_{5}$ and $0<\gamma_{k} \leq 1$, we have

$$
\begin{equation*}
\mid \text { Ared }_{k}-\operatorname{Pred}_{k} \mid \leq \gamma_{k}\left[\kappa_{1}\left\|d_{k}\right\|^{2}+\kappa_{2} \rho_{k}\left\|d_{k}\right\|^{3}+\kappa_{3} \rho_{k}\left\|d_{k}\right\|^{2}\left\|h_{k}\right\|\right], \tag{3.3}
\end{equation*}
$$

where κ_{1}, κ_{2}, and κ_{3} are positive constants. Since $\rho_{k} \geq 0,\left\|d_{k}\right\| \leq \delta_{\max }$, and $\left\|h_{k}\right\|$ is uniformly bounded, then inequality 3.2 hold.

The following lemma obviously that the normal predicted reduction at any iteration k, is at least equal to the decrease in the 2-norm of the linearized constrained by the Cauchy step

Lemma 3.2. Under assumptions $G S_{1}-G S_{5}$, there exists a constant $K_{2}>0$, such that

$$
\begin{equation*}
\operatorname{Pred}_{k} \geq \frac{K_{2} \gamma_{k} \rho_{k}}{2}\left\|h_{k}\right\| \min \left\{\left\|h_{k}\right\|, \delta_{k}\right\} . \tag{3.4}
\end{equation*}
$$

Proof. Since d_{k}^{n} is obtained by approximating the solution of subproblem 2.18 using the conjugate gradient method [21], then the fraction of Cauchy decrease condition 2.19 is hold. We will consider two cases:
Firstly, if $d^{n c p}=-\frac{\delta_{k}}{\left\|P_{k} \nabla h_{k} h_{k}\right\|}\left(P_{k} \nabla h_{k} h_{k}\right)$ and $\left\|\delta_{k}\right\|\left(P_{k} \nabla h_{k}\right)^{T} P_{k} \nabla h_{k} h_{k}\left\|^{2} \leq\right\| P_{k} \nabla h_{k} h_{k} \|^{3}$ then

$$
\begin{align*}
\left\|h_{k}\right\|^{2}-\left\|h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} d_{k}^{n c p}\right\|^{2} & =-2\left(P_{k} \nabla h_{k} h_{k}\right)^{T} d_{k}^{n c p}-d_{k}^{n c p^{T}}\left(P_{k} \nabla h_{k}\right)\left(P_{k} \nabla h_{k}\right)^{T} d_{k}^{n c p} \\
& =2 \delta_{k}\left\|P_{k} \nabla h_{k} h_{k}\right\|-\frac{\delta_{k}^{2}\left\|\left(P_{k} \nabla h_{k}\right)^{T} P_{k} \nabla h_{k} h_{k}\right\|^{2}}{\left\|P_{k} \nabla h_{k} h_{k}\right\|^{2}} \\
& \geq 2 \delta_{k}\left\|P_{k} \nabla h_{k} h_{k}\right\|-\delta_{k}\left\|P_{k} \nabla h_{k} h_{k}\right\| \\
& \geq \delta_{k}\left\|P_{k} \nabla h_{k} h_{k}\right\| . \tag{3.5}
\end{align*}
$$

Secondly, if $d^{n c p}=-\frac{\left\|P_{k} \nabla h_{k} h_{k}\right\|^{2}}{\left\|\left(P_{k} \nabla h_{k}\right)^{T} P_{k} \nabla h_{k} h_{k}\right\|^{2}}\left(P_{k} \nabla h_{k} h_{k}\right)$ and $\delta_{k}\left\|\left(P_{k} \nabla h_{k}\right)^{T} P_{k} \nabla h_{k} h_{k}\right\|^{2} \geq\left\|P_{k} \nabla h_{k} h_{k}\right\|^{3}$, then

$$
\begin{aligned}
\left\|h_{k}\right\|^{2}-\left\|h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} d_{k}^{n c p}\right\|^{2}= & -2\left(P_{k} \nabla h_{k} h_{k}\right)^{T} d_{k}^{n c p}-d_{k}^{n c p^{T}}\left(P_{k} \nabla h_{k}\right)\left(P_{k} \nabla h_{k}\right)^{T} d_{k}^{n c p} \\
= & \frac{2\left\|P_{k} \nabla h_{k} h_{k}\right\|^{4}}{\left\|\left(P_{k} \nabla h_{k}\right)^{T} P_{k} \nabla h_{k} h_{k}\right\|^{2}} \\
& -\frac{\left\|P_{k} \nabla h_{k} h_{k}\right\|^{4}}{\left\|\left(P_{k} \nabla h_{k}\right)^{T} P_{k} \nabla h_{k} h_{k}\right\|^{2}} \\
= & \frac{\left\|P_{k} \nabla h_{k} h_{k}\right\|^{4}}{\left\|\left(P_{k} \nabla h_{k}\right)^{T} P_{k} \nabla h_{k} h_{k}\right\|^{2}}
\end{aligned}
$$

$$
\begin{equation*}
\geq \frac{\left\|P_{k} \nabla h_{k} h_{k}\right\|^{2}}{\left\|P_{k} \nabla h_{k}\left(P_{k} \nabla h_{k}\right)^{T}\right\|} \tag{3.6}
\end{equation*}
$$

Using assumption $G S_{2}$, we have

$$
\left\|P_{k} \nabla h_{k} h_{k}\right\| \geq \frac{\left\|h_{k}\right\|}{\left\|\left(\left(P_{k} \nabla h_{k}\right)^{T} P_{k} \nabla h_{k}\right)^{-1}\left(P_{k} \nabla h_{k}\right)^{T}\right\|}
$$

Then, from the above inequality, inequalities $3.5,3.6$, and using assumption $G S_{3}$, we have

$$
\left\|h_{k}\right\|^{2}-\left\|h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} d_{k}^{n c p}\right\|^{2} \geq K_{2}\left\|h_{k}\right\| \min \left\{\left\|h_{k}\right\|, \delta_{k}\right\}
$$

From the above inequality and 2.19 , we have

$$
\begin{equation*}
\left\|h_{k}\right\|^{2}-\left\|h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} d_{k}^{n}\right\|^{2} \geq K_{2}\left\|h_{k}\right\| \min \left\{\left\|h_{k}\right\|, \delta_{k}\right\} . \tag{3.7}
\end{equation*}
$$

Since $0<\gamma_{k} \leq 1$, then we have

$$
\left\|h_{k}\right\|^{2}-\left\|h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} \gamma_{k} d_{k}^{n}\right\|^{2} \geq \gamma_{k}\left[\left\|h_{k}\right\|^{2}-\left\|h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} d_{k}^{n}\right\|^{2}\right] .
$$

From inequality 3.7 and the above inequality, we have

$$
\begin{equation*}
\left\|h_{k}\right\|^{2}-\left\|h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} \gamma_{k} d_{k}^{n}\right\|^{2} \geq K_{2} \gamma_{k}\left\|h_{k}\right\| \min \left\{\left\|h_{k}\right\|, \delta_{k}\right\} \tag{3.8}
\end{equation*}
$$

From inequalities 2.32 and 3.8 we have

$$
\operatorname{Pred}_{k} \geq \frac{K_{2} \gamma_{k} \rho_{k}}{2}\left\|h_{k}\right\| \min \left\{\left\|h_{k}\right\|, \delta_{k}\right\} .
$$

Lemma 3.3. Under assumptions $G S_{1}-G S_{5}$, there exists a positive constant K_{3}, such that

$$
\begin{equation*}
\left[q_{k}\left(\gamma_{k} P_{k} d_{k}^{n}\right)-q_{k}\left(\gamma_{k} P_{k} d_{k}\right)\right] \geq K_{3} \gamma_{k}\left\|Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right\| \min \left\{\frac{\left\|Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right\|}{\|\bar{B}\|}, \Delta_{k}\right\} \tag{3.9}
\end{equation*}
$$

Proof. Since the conjugate gradient method is used to solve subproblem 2.22 to obtain an approximate solution for \bar{d}_{k}^{t}, then the fraction of Cauchy decrease condition 2.23 is hold and we will consider two cases:

Firstly, if $\bar{d}_{k}^{t c p}=-\frac{\Delta_{k}}{\left\|Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right\|}\left(Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right)$ and $\Delta_{k}\left(Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right)^{T} \bar{B}_{k} Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right) \leq$ $\left\|Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right\|^{3}$, then

$$
\begin{aligned}
q_{k}\left(P_{k} d_{k}^{n}\right)-q_{k}\left(P_{k}\left(d_{k}^{n}+Z_{k} \bar{d}_{k}^{t c p}\right)\right)= & q_{k}\left(P_{k} d_{k}^{n}\right)-q_{k}\left(P_{k}\left(d_{k}^{n}+Z_{k} \bar{d}_{k}^{t c p}\right)\right) \\
= & -\left(Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right)^{T} \bar{d}_{k}^{t c p}-\frac{1}{2} \bar{d}_{k}^{t c p^{T}} \bar{B}_{k} d_{k}^{t c p} \\
= & \Delta_{k}\left\|Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right\| \\
& -\frac{\Delta_{k}^{2}}{2\left\|Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right\|^{2}}\left[\left(Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right)^{T} \bar{B}_{k} Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right]
\end{aligned}
$$

$$
\begin{align*}
& \geq \Delta_{k}\left\|Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right\|-\frac{1}{2} \Delta_{k}\left\|Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right\| \\
& \geq \frac{1}{2} \Delta_{k}\left\|Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right\| . \tag{3.10}
\end{align*}
$$

Secondly, if $\bar{d}_{k}^{t c p}=-\frac{\left\|Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right\|^{2}}{\left.Z_{k}^{T} \nabla q_{k}\left(P_{k} k_{k}^{n}\right)\right)^{\bar{B}} \bar{B}_{K} Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)} Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)$ and $\Delta_{k}\left(Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right)^{T} \bar{B}_{k} Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right) \geq$ $\left\|Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right\|^{3}$, then

$$
\begin{align*}
q_{k}\left(P_{k} d_{k}^{n}\right)-q_{k}\left(P_{k}\left(d_{k}^{n}+Z_{k} \bar{d}_{k}^{t c p}\right)\right)= & q_{k}\left(P_{k} d_{k}^{n}\right)-q_{k}\left(P_{k}\left(d_{k}^{n}+Z_{k} \bar{d}_{k}^{t c p}\right)\right) \\
= & -\left(Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right)^{T} \bar{d}_{k}^{t c p}-\frac{1}{2} \bar{d}_{k}^{t c p^{T}} \bar{B}_{k} \bar{d}_{k}^{t c p} \\
= & \frac{\left\|Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right\|^{4}}{\left(Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right)^{T} \bar{B}_{k} Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)} \\
& -\frac{\left\|Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right\|^{4}}{2\left(Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right)^{T} \bar{B}_{k} Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)} \\
= & \frac{\left\|Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right\|^{4}}{2\left(Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right)^{T} \bar{B}_{k} Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)} \\
\geq \geq & \frac{\left\|Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right\|^{2}}{2\left\|\bar{B}_{k}\right\|} . \tag{3.11}
\end{align*}
$$

From inequalities $3.10,3.11$, and using necessary assumptions, we have

$$
q_{k}\left(P_{k} d_{k}^{n}\right)-q_{k}\left(P_{k}\left(d_{k}^{n}+Z_{k} d_{k}^{t c p}\right)\right) \geq K_{3}\left\|Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right\| \min \left\{\frac{\left\|Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right\|}{\|\bar{B}\|}, \Delta_{k}\right\}
$$

From condition 2.23 and the above inequality, we have

$$
\begin{equation*}
q_{k}\left(P_{k} d_{k}^{n}\right)-q_{k}\left(P_{k}\left(d_{k}^{n}+Z_{k} \bar{d}_{k}^{t}\right)\right) \geq K_{3}\left\|Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right\| \min \left\{\frac{\left\|Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right\|}{\|\bar{B}\|}, \Delta_{k}\right\} \tag{3.12}
\end{equation*}
$$

Since $0<\gamma_{k} \leq 1$, then we have

$$
q_{k}\left(\gamma_{k} P_{k} d_{k}^{n}\right)-q_{k}\left(\gamma_{k} P_{k}\left(d_{k}^{n}+Z_{k} \bar{d}_{k}^{t}\right)\right) \geq \gamma_{k}\left[q_{k}\left(P_{k} d_{k}^{n}\right)-q_{k}\left(P_{k}\left(d_{k}^{n}+Z_{k} \bar{d}_{k}^{t}\right)\right)\right] .
$$

From the above inequality and inequality 3.12 , we have

$$
q_{k}\left(\gamma_{k} P_{k} d_{k}^{n}\right)-q_{k}\left(\gamma_{k} P_{k} d_{k}\right) \geq K_{3} \gamma_{k}\left\|Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right\| \min \left\{\frac{\left\|Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right\|}{\|\bar{B}\|}, \Delta_{k}\right\}
$$

This completes the proof.
The following lemma is needed in many forthcoming lemmas. In what follows, we use implicitly that $\nabla h_{k} d_{k}^{n}=\nabla h_{k} d_{k}$.

Lemma 3.4. Under assumptions $G S_{1}-G S_{5}$, there exists a positive constant K_{4}, such that

$$
\begin{equation*}
q_{k}(0)-q_{k}\left(\gamma_{k} P_{k} d_{k}^{n}\right)-\Delta \lambda_{k}^{T}\left(h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} \gamma_{k} d_{k}\right) \geq-K_{4} \gamma_{k}\left\|h_{k}\right\| . \tag{3.13}
\end{equation*}
$$

Proof. Since d_{k}^{n} is normal to the tangent space, then we have

$$
\begin{aligned}
\left\|d_{k}^{n}\right\| & =\left\|\left(P_{k} \nabla h_{k}\right)\left[\left(P_{k} \nabla h_{k}\right)^{T}\left(P_{k} \nabla h_{k}\right)\right]^{-1}\left(P_{k} \nabla h_{k}\right)^{T} d_{k}\right\| \\
& =\left\|\left(P_{k} \nabla h_{k}\right)\left[\left(P_{k} \nabla h_{k}\right)^{T}\left(P_{k} \nabla h_{k}\right)\right]^{-1}\left[h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} d_{k}-h_{k}\right]\right\| \\
& \leq\left\|\left(P_{k} \nabla h_{k}\right)\left[\left(P_{k} \nabla h_{k}\right)^{T}\left(P_{k} \nabla h_{k}\right)\right]^{-1}\right\|\left[\left\|h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} d_{k}\right\|+\left\|h_{k}\right\|\right] .
\end{aligned}
$$

Using the fact that $\left\|h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} d_{k}\right\| \leq\left\|h_{k}\right\|$, we have

$$
\left\|d_{k}^{n}\right\| \leq 2\left\|\left(P_{k} \nabla h_{k}\right)\left[\left(P_{k} \nabla h_{k}\right)^{T}\left(P_{k} \nabla h_{k}\right)\right]^{-1}\right\|\| \| h_{k} \| .
$$

From above inequality and necessary assumptions, we have

$$
\begin{equation*}
\left\|d_{k}^{n}\right\| \leq \kappa_{4}\left\|h_{k}\right\| . \tag{3.14}
\end{equation*}
$$

Since

$$
\begin{aligned}
q_{k}(0)-q_{k}\left(\gamma_{k} P_{k} d_{k}^{n}\right)-\Delta \lambda_{k}^{T}\left(h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} \gamma_{k} d_{k}\right)= & -\left(P_{k} \nabla_{x} \ell_{k}\right)^{T} \gamma_{k} d_{k}^{n}-\frac{1}{2} \gamma_{k}^{2} d_{k}^{n T} B_{k} d_{k}^{n} \\
& -\Delta \lambda_{k}^{T}\left(h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} \gamma_{k} d_{k}\right) \\
\geq & -\gamma_{k}\left\|P_{k} \nabla_{x} \ell_{k}\right\|\left\|d_{k}^{n}\right\|-\frac{1}{2} \gamma_{k}^{2}\left\|B_{k}\right\|\left\|d_{k}^{n}\right\|^{2} \\
& -\left\|\Delta \lambda_{k}\right\|\left\|\left(h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} \gamma_{k} d_{k}^{n}\right)\right\| \\
\geq & -\gamma_{k}\left[\left\|P_{k} \nabla_{x} \ell_{k}\right\|+\frac{1}{2} \gamma_{k}\left\|B_{k}\right\|\left\|d_{k}^{n}\right\|\right]\left\|d_{k}^{n}\right\|-\left\|\Delta \lambda_{k}^{T}\right\|\left\|h_{k}\right\| .
\end{aligned}
$$

From the above inequality and inequality 3.14 and using the fact that $\left\|d_{k}^{n}\right\| \leq \delta_{\max }$, we have

$$
q_{k}(0)-q_{k}\left(\gamma_{k} P_{k} d_{k}^{n}\right)-\Delta \lambda_{k}^{T}\left(h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} \gamma_{k} d_{k}\right) \geq-K_{4} \gamma_{k}\left\|h_{k}\right\| .
$$

This completes the proof.
Lemma 3.5. Under assumptions $G S_{1}-G S_{5}$,

$$
\begin{align*}
\text { Pred }_{k} \geq & K_{3} \gamma_{k}\left\|Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right\| \min \left\{\frac{\left\|Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k}^{n}\right)\right\|}{\|\bar{B}\|}, \Delta_{k}\right\} \\
& -K_{4} \gamma_{k}\left\|h_{k}\right\|+\rho_{k}\left[\left\|h_{k}\right\|^{2}-\left\|h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} \gamma_{k} d_{k}\right\|^{2}\right] . \tag{3.15}
\end{align*}
$$

Proof. From Equation 2.31, we have

$$
\begin{aligned}
\text { Pred }_{k}= & q_{k}(0)-q_{k}\left(\gamma_{k} P_{k} d_{k}\right)-\Delta \lambda_{k}^{T}\left(h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} \gamma_{k} d_{k}\right)+\rho_{k}\left[\left\|h_{k}\right\|^{2}-\left\|h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} \gamma_{k} d_{k}\right\|^{2}\right] \\
= & {\left[q_{k}\left(\gamma_{k} P_{k} d_{k}^{n}\right)-q_{k}\left(\gamma_{k} P_{k} d_{k}\right)\right]+\left[q_{k}(0)-q_{k}\left(\gamma_{k} P_{k} d_{k}^{n}\right)-\Delta \lambda_{k}^{T}\left(h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} \gamma_{k} d_{k}\right)\right] } \\
& +\rho_{k}\left[\left\|h_{k}\right\|^{2}-\left\|h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} \gamma_{k} d_{k}\right\|^{2}\right] .
\end{aligned}
$$

Using inequalities 3.9 and 3.13, we obtain the desired result.
The following lemma shows that, if $\left\|Z_{k}^{T} P_{k} \nabla_{x} \ell_{k}\right\| \geq \varepsilon_{1}$ and $\left\|h_{k}\right\| \leq \eta \delta_{k^{i}}$ at any trial iteration k^{i}, then the penalty parameter ρ_{k} is not increased.

Lemma 3.6. Under assumptions $G S_{1}-G S_{5}$, if $\left\|Z_{k}^{T} P_{k} \nabla_{x} \ell_{k}\right\| \geq \varepsilon_{1}$ and $\left\|h_{k}\right\| \leq \eta \delta_{k^{i}}$ at any trial iteration k^{i}, then there exists a positive constant K_{5}, such that

$$
\begin{equation*}
\operatorname{Pred}_{k^{i}} \geq K_{5} \gamma_{k^{i}} \delta_{k^{i}}+\rho_{k^{i}}\left\{\left\|h_{k}\right\|^{2}-\left\|h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} \gamma_{k^{i}} d_{k^{i}}\right\|^{2}\right\} \tag{3.16}
\end{equation*}
$$

where η is given by

$$
0<\eta \leq \min \left\{\frac{\sqrt{3}}{2 \kappa_{4}}, \frac{\varepsilon_{1}}{2 b_{1} \kappa_{4} \delta_{\max }}, \frac{K_{3} \varepsilon_{1}}{8 K_{4}} \min \left\{\frac{\varepsilon_{1}}{b_{1} \delta_{\max }}, 1\right\}\right\} .
$$

Proof. Since $\left\|Z_{k}^{T} P_{k} \nabla_{x} \ell_{k}\right\| \geq \varepsilon_{1}$ and $\left\|h_{k}\right\| \leq \eta \delta_{k^{i}}$, and using inequalities 3.1 and 3.14, we have

$$
\begin{aligned}
\left\|Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k^{i}}^{n}\right)\right\| & =\left\|Z_{k}^{T}\left(P_{k} \nabla_{x} \ell_{k}+B_{k} d_{k^{i}}^{n}\right)\right\| \\
& \geq\left\|Z_{k}^{T} P_{k} \nabla_{x} \ell_{k}\right\|-\left\|Z_{k}^{T} B_{k} d_{k^{i}}^{n}\right\| \\
& \geq \varepsilon_{1}-b_{1} \kappa_{4}\left\|h_{k^{i}}\right\| \geq \varepsilon_{1}-b_{1} \kappa_{4} \eta \delta_{k^{i}} .
\end{aligned}
$$

But $\eta \leq \frac{\varepsilon_{1}}{2 b_{1} K_{4} \delta_{\text {max }}}$, hence

$$
\begin{equation*}
\left\|Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k^{i}}^{n}\right)\right\| \geq \frac{1}{2} \varepsilon_{1} . \tag{3.17}
\end{equation*}
$$

From inequality 3.14 , assumption $\left\|h_{k}\right\| \leq \eta \delta_{k^{i}}$, and $\eta \leq \frac{\sqrt{3}}{2 k_{4}}$, then we have $\left\|d_{k^{i}}^{n}\right\| \leq \kappa_{4} \eta \delta_{k^{i}} \leq \kappa_{4} \frac{\sqrt{3}}{2 k_{4}} \delta_{k^{i}}=$ $\frac{\sqrt{3}}{2} \delta_{k^{i}}$. Since $\Delta_{k^{i}}=\sqrt{\delta_{k^{i}}^{2}-\left\|d_{k^{k}}^{n}\right\|^{2}}$, then $\Delta_{k^{i}} \geq \frac{1}{2} \delta_{k^{i}}$. Hence, from inequalities 3.15 and 3.17, we have

$$
\operatorname{Pred}_{k^{i}} \geq \frac{K_{3} \gamma_{k^{i}} \varepsilon_{1}}{4} \min \left\{\frac{\varepsilon_{1}}{b_{1} \delta_{\max }}, 1\right\} \delta_{k^{i}}-K_{4} \gamma_{k^{i}} \eta \delta_{k^{i}}+\rho_{k^{i}}\left[\left\|h_{k}\right\|^{2}-\left\|h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} \gamma_{k^{i}} d_{k^{i}}\right\|^{2}\right] .
$$

But $\eta \leq \frac{K_{3} \varepsilon_{1}}{8 K_{4}} \min \left\{\frac{\varepsilon_{1}}{b_{1} \delta_{\text {max }}}, 1\right\}$, hence

$$
\text { Pred }_{k^{i}} \geq \frac{K_{3} \gamma_{k^{i}} \varepsilon_{1}}{8} \min \left\{\frac{\varepsilon_{1}}{b_{1} \delta_{\max }}, 1\right\} \delta_{k^{i}}+\rho_{k^{i}}\left[\left\|h_{k}\right\|^{2}-\left\|h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} \gamma_{k^{i}} d_{k^{i}}\right\|^{2}\right] .
$$

The result follows if we take $K_{5}=\frac{K_{3} \varepsilon_{1}}{8} \min \left\{\frac{\varepsilon_{1}}{b_{1} \delta_{\text {max }}}, 1\right\}$.
The following lemma shows that, at any iteration k, we can find an acceptable step after finite number of trials, or equivalently, the condition $\operatorname{Ared}_{k^{j}} / \operatorname{Pred}_{k^{j}} \geq \tau_{1}$ will be satisfied for some finite j.
Lemma 3.7. Under assumptions $G S_{1}-G S_{5}$, if $\left\|h_{k}\right\|>\varepsilon_{1}$, where $\varepsilon_{1}>0$, then Ared $_{k^{j}} / \operatorname{Pred}_{k^{j}} \geq \tau_{1}$ will be satisfied for some finite j.

Proof. From inequalities 3.2, 3.4, and assumption $\left\|h_{k}\right\|>\varepsilon_{1}$, we have

$$
\left|\frac{\text { Ared }_{k}}{\text { Pred }_{k}}-1\right|=\frac{\mid \text { Ared }_{k}-\text { Pred }_{k} \mid}{\text { Pred }_{k}} \leq \frac{2 K_{1} \gamma_{k} \delta_{k}^{2}}{K_{2} \gamma_{k} \varepsilon_{1} \min \left\{\varepsilon_{1}, \delta_{k}\right\}} .
$$

If the trial step $d_{k^{j}}$ gets rejected, then $\delta_{k^{j}}$ becomes small and hence we have

$$
\left|\frac{\text { Ared }_{k^{j}}}{\text { Pred }_{k^{j}}}-1\right| \leq \frac{2 K_{1} \delta_{k^{j}}}{K_{2} \varepsilon_{1}} .
$$

That is the acceptance rule will be met after finite number of trials (i.e.,for finite j) and this completes the proof.

Lemma 3.8. Under assumptions $G S_{1}-G S_{5}$ and at any iteration k, if

$$
\begin{equation*}
\left\|d_{k^{j}}\right\| \leq \min \left\{\frac{\left(1-\tau_{1}\right) K_{2}}{4 K_{1}}, 1\right\}\left\|h_{k}\right\|, \tag{3.18}
\end{equation*}
$$

at the $j^{\text {th }}$ trial step, then the step must be accepted.
Proof. Assume that inequality 3.18 holds and the step $d_{k^{j}}$ is rejected. From the way of updating trust-region radius which is clarified in Algorithm 2.2 we have

$$
\left(1-\tau_{1}\right)<\frac{\mid \text { Ared }_{k^{j}}-\text { Pred }_{k^{j}} \mid}{\text { Pred }_{k^{j}}} .
$$

From the above inequality and using inequalities $3.2,3.4$, and 3.18 we have

$$
\left(1-\tau_{1}\right)<\frac{\mid \text { Ared }_{k^{j}}-\text { Pred }_{k^{j}} \mid}{\operatorname{Pred}_{k^{j}}}<\frac{2 K_{1}\left\|d_{k^{j}}\right\|^{2}}{K_{2}\left\|h_{k}\right\|\left\|d_{k^{j}}\right\|} \leq \frac{1}{2}\left(1-\tau_{1}\right) .
$$

This is a contradiction with the assumption $d_{k^{j}}$ was rejected. Hence the step must be accepted.
Lemma 3.9. Under assumptions $G S_{1}-G S_{5}$ and for all trail iterates j of any iteration k we have

$$
\begin{equation*}
\delta_{k^{j}} \geq \min \left\{\frac{\delta_{\min }}{b_{2}}, \beta_{1} \frac{\left(1-\tau_{1}\right) K_{2}}{4 K_{1}}, \beta_{1}\right\}\left\|h_{k}\right\|, \tag{3.19}
\end{equation*}
$$

where $b_{2}=\sup _{x \in \Omega}\left\|h_{k}\right\|$.
Proof. Consider any trial iterate k^{j}, if $j=1$, then the step is accepted and hence

$$
\begin{equation*}
\delta_{k^{j}}=\delta_{k^{1}} \geq \delta_{\min } \geq \frac{\delta_{\min }}{b_{2}}\left\|H_{k}\right\|, \tag{3.20}
\end{equation*}
$$

such that $b_{2}=\sup _{x \in \Omega}\left\|h_{k}\right\|$.
Now, if $j>1$, then there exists at least one rejected trial step. For all rejected trial steps, we have from Lemma 3.8,

$$
\left\|d_{k^{i}}\right\|>\min \left\{\frac{\left(1-\tau_{1}\right) K_{2}}{4 K_{1}}, 1\right\}\left\|h_{k}\right\|,
$$

for all $i=1,2, \ldots j-1$. Since d_{k}^{i} is rejected trial step, then from the way of updating the radius of trust-region, we have

$$
\delta_{k^{j}}=\beta_{1}\left\|d_{k^{j-1}}\right\|>\beta_{1} \min \left\{\frac{\left(1-\tau_{1}\right) K_{2}}{4 K_{1}}, 1\right\}\left\|h_{k}\right\| .
$$

From the above inequality and inequality 3.20 , we obtain the desired results.
The following lemma show that the sequence of trust-region radii $\left\{\delta_{k j}\right\}$ is bounded away from zero if $\left\{\left\|h_{k}\right\|\right\}$ is bounded away from zero.

Lemma 3.10. Under assumptions $G S_{1}-G S_{5}$, if $\left\|h_{k}\right\| \geq \varepsilon_{1}$ where $\varepsilon_{1}>0$, then there exists a constant $K_{6}>0$ such that

$$
\begin{equation*}
\delta_{k^{j}}>K_{6}, \tag{3.21}
\end{equation*}
$$

for all trial iterates j of any iteration k.

Proof. From Lemma 3.9 and the condition $\left\|h_{k}\right\| \geq \varepsilon_{1}$, the proof follows directly by taking $K_{6}=$ $\min \left\{\frac{\delta_{\text {min }}}{b_{2}}, \beta_{1} \frac{\left(1-\tau_{1}\right) K_{2}}{4 K_{1}}, \beta_{1}\right\} \varepsilon_{1}$.

Lemma 3.11. Under assumptions $G S_{1}-G S_{5}$, there exists a subsequence $\left\{k_{i}\right\}$ of the iteration sequence at which ρ_{k} is increased such that at any trial steps j of any iteration $k \in\left\{k_{i}\right\}$, we have

$$
\begin{equation*}
\rho_{k^{j}}\left\|h_{k}\right\| \leq K_{7} . \tag{3.22}
\end{equation*}
$$

where K_{7} is a positive constant.
Proof. At any trial steps j of any iteration k, if $\rho_{k^{j}}$ is increased, then from equation 2.33, we have

$$
\begin{aligned}
\frac{\rho_{k j}}{2}\left[\left\|h_{k}\right\|^{2}-\| h_{k}+\right. & \left.\left(P_{k} \nabla h_{k}\right)^{T} \gamma_{k^{j}} d_{k^{j}} \|^{2}\right]=\left[q_{k}\left(P_{k} \gamma_{k j} d_{k^{j}}\right)-q_{k}\left(P_{k} \gamma_{k^{j}} d_{k^{j}}^{n}\right)\right] \\
& +\left[q_{k}\left(P_{k} \gamma_{k j} d_{k^{j}}^{n}\right)-q_{k}(0)+\Delta \lambda_{k^{j}}^{T}\left(h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} \gamma_{k j} d_{k j}^{n}\right)\right] \\
& +\frac{c_{0}}{2}\left[\left\|h_{k}\right\|^{2}-\left\|h_{k}+\left(P_{k} \nabla h_{k}\right)^{T} \gamma_{k j} d_{k^{j}}\right\|^{2}\right] .
\end{aligned}
$$

Applying inequality 3.8 on the left hand side and inequalities $3.9,3.13$, and 3.14 on the right hand side, we have

$$
\begin{aligned}
\frac{K_{2} \rho_{k j} \gamma_{k^{j}}}{2}\left\|h_{k}\right\| \min \left\{\left\|h_{k}\right\|, \delta_{k j}\right\} \leq & -K_{3} \gamma_{k^{j}}\left\|Z_{k}^{T} \nabla q_{k}\left(P_{k} d_{k^{j}}^{n}\right)\right\| \min \left\{\frac{\left\|Z_{k}^{T} \nabla q_{k}\left(P_{k} s_{k^{j}}^{n}\right)\right\|}{\|\bar{B}\|}, \Delta_{k^{j}}\right\} \\
& +K_{4} \gamma_{k^{j} \|}\left\|h_{k}\right\|+c_{0} \gamma_{k^{j} j}\left\|P_{k} \nabla h_{k} h_{k}\right\|\left\|d_{k^{j}}^{n}\right\| \\
& +\frac{c_{0} \gamma_{k^{j}}^{2}}{2}\left\|\left(P_{k} \nabla h_{k}\right)^{T}\right\|^{2}\left\|d_{k^{j}}^{n}\right\|^{2}, \\
\leq & {\left[K_{4}+c_{0} \kappa_{4}\left\|P_{k} \nabla h_{k} h_{k}\right\|+\frac{c_{0} \kappa_{4} \gamma_{k^{j}}}{2}\left\|\left(P_{k} \nabla h_{k}\right)^{T}\right\|^{2}\left\|d_{k^{j}}^{n}\right\|\right] \gamma_{k^{j}}\left\|h_{k}\right\| . }
\end{aligned}
$$

From assumptions $G S_{2}, G S_{3}$, and using the fact that $\left\|d_{k j}^{n}\right\| \leq \delta_{k^{j}} \leq \delta_{\max }$, we have

$$
\begin{equation*}
\rho_{k^{j}}\left\|h_{k}\right\| \min \left\{\left\|h_{k}\right\|, \delta_{k^{j}}\right\} \leq \tilde{K}_{7}\left\|h_{k}\right\| . \tag{3.23}
\end{equation*}
$$

From inequalities 3.19 and 3.23 , there exists a constant $K_{7}>0$ such that

$$
\rho_{k^{j}}\left\|h_{k}\right\| \leq K_{7},
$$

at any trial steps j for any iteration $k \in\left\{k_{i}\right\}$.
In the following lemma we will prove that the sequence $\left\{\left\|h_{k}\right\|\right\}$ is not bounded away from zero when $\left\{\rho_{k}\right\}$ unbounded sequence.

Lemma 3.12. Under assumptions $G S_{1}-A S_{6}$, there exists a subsequence $\left\{k_{i}\right\}$ of the iteration sequence at which ρ_{k} is increased such that

$$
\begin{equation*}
\lim _{k_{i} \rightarrow \infty}\left\|h_{k_{i}}\right\|=0 . \tag{3.24}
\end{equation*}
$$

Proof: From Lemma 3.11 and the assumption ρ_{k} is increased, we obtain the desired result.
In the following section, we prove the main global convergence results for IPTR algorithm 2.4.

3.3. Fundamental convergence theorem

In the following theorem we prove that the sequence of the iterates generated by algorithm 2.4 converges to the feasible set.

Theorem 3.1. Under assumptions $G S_{1}-G S_{5}$, the sequence of iterates generated by IPTR algorithm satisfies

$$
\lim _{k \rightarrow \infty}\left\|h_{k}\right\|=0
$$

Proof. The proof of this theorem is by contradiction, so we assume that $\lim \sup _{k \rightarrow \infty}\left\|h_{k}\right\| \geq \varepsilon_{1}$ where $\varepsilon_{1}>0$. This implies the existence an infinite subsequence of indices $\left\{k_{j}\right\}$ indexing iterates that satisfy $\left\|h_{k}\right\| \geq \frac{\varepsilon_{1}}{2}$, for all $k \in\left\{k_{j}\right\}$. From Lemma 3.7, there exists a finite sequence of acceptable steps. Without lose of generality, we assume all members of the sequence $\left\{k_{j}\right\}$ are acceptable iterates. Now we will consider two cases:

Firstly, if the sequence of the penalty parameter $\left\{\rho_{k}\right\}$ is unbounded, then there exists a subsequence $\left\{k_{i}\right\}$ of the iteration sequence at which ρ_{k} is increased. Using Lemma 3.12, we have $\lim _{k_{i} \rightarrow \infty}\left\|h_{k_{i}}\right\|=0$. Therefore, there are no common elements between $\left\{k_{i}\right\}$ and $\left\{k_{j}\right\}$ at iteration k which is sufficiently large. From inequality 3.4 and Lemma 3.10, we have

$$
\begin{equation*}
\frac{\text { Ared }_{k}}{\rho_{k}} \geq \tau_{1} \frac{\text { Pred }_{k}}{\rho_{k}} \geq \tau_{1} \frac{\varepsilon_{1} K_{2} \gamma_{k}}{4} \min \left[\frac{\varepsilon_{1}}{2}, \delta_{k}\right] \geq \tau_{1} \frac{\varepsilon_{1} K_{2} \gamma_{k}}{4} \min \left[\frac{\varepsilon_{1}}{2}, \bar{K}_{6}\right], \tag{3.25}
\end{equation*}
$$

for all $k \in\left\{k_{j}\right\}$, such that $\bar{K}_{6}=\frac{\varepsilon_{1}}{2} \min \left\{\frac{\delta_{\text {min }}}{b_{2}}, \beta_{1} \frac{\left(1-\tau_{1}\right) K_{2}}{2 K_{1}}, \beta_{1}\right\}$. Since

$$
\begin{aligned}
\text { Ared }_{k} & =\Phi\left(x_{k}, \lambda_{k} ; \rho_{k}\right)-\Phi\left(x_{k}+\gamma_{k} P_{k} d_{k}, \lambda_{k+1} ; \rho_{k}\right), \\
& =\ell\left(x_{k}, \lambda_{k}\right)-\ell\left(x_{k+1}, \lambda_{k+1}\right)+\rho_{k}\left[\left\|h_{k}\right\|^{2}-\left\|h_{k+1}\right\|^{2}\right],
\end{aligned}
$$

then from 3.25 we have

$$
\begin{equation*}
\frac{\text { Ared }_{k}}{\rho_{k}}=\frac{\ell_{k}-\ell_{k+1}}{\rho_{k}}+\left\|h_{k}\right\|^{2}-\left\|h_{k+1}\right\|^{2} \geq \tau_{1} \frac{\varepsilon_{1} K_{2} \gamma_{k}}{4} \min \left[\frac{\varepsilon_{1}}{2}, \bar{K}_{6}\right]>0 . \tag{3.26}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\frac{\ell_{k}-\ell_{k+1}}{\rho_{k}}+\left\|h_{k}\right\|^{2}-\left\|h_{k+1}\right\|^{2} \geq 0 \tag{3.27}
\end{equation*}
$$

for all acceptable steps which are generated by IPTR algorithm 2.4. Let $k \in\left\{k_{j}\right\}$ be an element between the two elements $k_{\hat{i}}$ and $k_{\hat{i}+1}$ which are consecutive elements of the sequence $\left\{k_{i}\right\}$. From inequality 3.26 , we have

$$
\sum_{k=k_{i}}^{k_{i+1}-1} \frac{\left\{\ell_{k}-\ell_{k+1}\right\}}{\rho_{k}}+\left\|h_{k_{i}}\right\|^{2}-\left\|h_{k_{i+1}}\right\|^{2} \geq \tau_{1} \frac{\varepsilon_{1} K_{2} \gamma_{k}}{4} \min \left[\frac{\varepsilon_{1}}{2}, \bar{K}_{6}\right]>0
$$

Since the value of ρ_{k} is the same for all iterates $k_{\hat{i}}, \ldots, k_{\hat{i}+1}-1$, we have

$$
\frac{\ell_{k_{i}}-\ell_{k_{i+1}}}{\rho_{k_{i}}}+\left\|h_{k_{i}}\right\|^{2}-\left\|h_{k_{i+1}}\right\|^{2} \geq \tau_{1} \frac{\varepsilon_{1} K_{2} \gamma_{k}}{4} \min \left[\frac{\varepsilon_{1}}{2}, \bar{K}_{6}\right] .
$$

Since $\rho_{k} \rightarrow \infty$ as $k \rightarrow \infty$, and $\left|\ell_{k}\right|$ is bounded, we can write

$$
\left\|h_{k_{i}}\right\|^{2}-\left\|h_{k_{i+1}}\right\|^{2} \geq \tau_{1} \frac{\varepsilon_{1} K_{2} \gamma_{k}}{8} \min \left[\frac{\varepsilon_{1}}{2}, \bar{K}_{6}\right]>0
$$

for k_{i} sufficiently large. But this leads to a contradiction with Lemma 3.12.
Secondly, if the sequence of the penalty parameters $\left\{\rho_{k}\right\}$ is bounded, then there exists an integer \bar{k} such that for all $k \geq \bar{k}$, we have $\rho_{k}=\bar{\rho}$. Since all the iterates of $\left\{k_{j}\right\}$ are acceptable, then for any $\bar{k} \in\left\{k_{j}\right\}$ we have

$$
\begin{equation*}
\Phi_{\tilde{k}}-\Phi_{\tilde{k}+1}=\operatorname{Ared}_{\tilde{k}} \geq \tau_{1} \operatorname{Pred}_{\tilde{k}} \tag{3.28}
\end{equation*}
$$

From Lemma 3.10, inequality 3.4, we have for any $\tilde{k} \in\left\{k_{j}\right\}$ and $\tilde{k} \geq \bar{k}$

$$
\begin{align*}
\operatorname{Pred}_{\tilde{k}} & \geq \frac{K_{2} \tau_{\tilde{k}} \bar{\rho}}{2}\left\|h_{\tilde{k}}\right\| \min \left\{\left\|h_{\tilde{k}}\right\|, \delta_{\tilde{k}}\right\} \\
& \geq \frac{K_{2} \tau_{\tilde{k}} \bar{\rho} \varepsilon_{1}}{4} \min \left\{\| \frac{\varepsilon_{1}}{2 \delta_{\max }}, 1\right\} \delta_{\tilde{k}} \\
& \geq K_{8} \delta_{\tilde{k}} \geq K_{6} K_{8}, \tag{3.29}
\end{align*}
$$

such that $K_{8}=\frac{K_{2} \tau \bar{\mu} \overline{\rho_{1}}}{4} \min \left\{\| \frac{\varepsilon_{1}}{2 \delta_{\text {max }}}, 1\right\}$. From inequalities 3.28 and 3.29 , we have

$$
\Phi_{\tilde{k}}-\Phi_{\tilde{k}+1} \geq \tau_{1} K_{6} K_{8}>0
$$

This gives a contradiction with the fact that $\left\{\Phi_{k}\right\}$ is bounded below when $\left\{\rho_{k}\right\}$ is bounded. Hence in both cases, we have a contradiction. Thus, the supposition is not correct and the theorem is proved.

Theorem 3.2. Under assumptions $G S_{1}-G S_{5}$, the algorithm is terminated because

$$
\lim _{k \rightarrow \infty}\left[\left\|Z_{k}^{T} P_{k} \nabla \ell_{k}\right\|+\left\|h_{k}\right\|\right]=0
$$

Proof. Assume that IPTR algorithm 2.4 does not terminate and that some subsequences of $\left\{\left\|Z_{k}^{T} P_{k} \nabla \ell_{k}\right\|\right\}$ convergence to zero, then the nontermination is immediately contradicted by Theorem 3.1.

Now assume that for \bar{k} sufficiently large, there exists an index $\tilde{k}>\bar{k}$ such that $\left\|Z_{k}^{T} P_{k} \nabla \ell_{k}\right\| \geq \varepsilon_{1}$. Let $\left\{k_{j}\right\}$ be a subsequence of iterates that satisfy $\left\|h_{k_{j}}\right\|>\eta \delta_{k_{j}}$, then $\lim _{k_{j} \rightarrow \infty} \delta_{k_{j}}=0$ such that $\lim _{k_{j} \rightarrow \infty}\left\|h_{k_{j}}\right\|=$ 0 . This implies the existence of an infinite sequence $\left\{k_{j}\right\}$ of rejected trial steps. But this leads to contradiction. To show this, we consider two cases:

Firstly, if the sequence of the penalty parameter $\left\{\rho_{k}\right\}$ is unbounded, then from inequalities 3.3 and 3.4, we have

$$
\begin{aligned}
\frac{\mid \text { Ared }_{k_{j}}-\operatorname{Pred}_{k_{j}} \mid}{\operatorname{Pred}_{k_{j}}} & \leq \frac{\left[\kappa_{1}\left\|d_{k_{j}}\right\|^{2}+\kappa_{2} \rho_{k_{j}}\left\|d_{k_{j}}\right\|^{3}+\kappa_{3} \rho_{k_{j}}\left\|d_{k_{j}}\right\|^{2}\left\|h_{k_{j}}\right\|\right]}{\frac{K_{2}}{2} \rho_{k_{j}}\left\|h_{k_{j}}\right\| \min \left\{\left\|h_{k_{j}}\right\|, \delta_{k_{j}}\right\}} \\
& \leq \frac{\left[\kappa_{1}\left\|d_{k_{j}}\right\|^{2}+\kappa_{2} \rho_{k_{j}}\left\|d_{k_{k}}\right\|^{3}+\kappa_{3} \rho_{k_{j}}\left\|d_{k_{j}}\right\|^{2}\left\|h_{k_{j}}\right\|\right]}{\frac{K_{2}}{2} \rho_{k_{j}}\left\|h_{k_{j} j}\right\|\left\|d_{k_{j}}\right\| \min \{\eta, 1\}} \\
& \leq \frac{2 \kappa_{1}}{K_{2} \rho_{k_{j}} \eta \min \{\eta, 1\}}+\left[\frac{2 \kappa_{2}}{K_{2}}+\frac{2 \kappa_{3}}{K_{2} \eta}\right] \frac{\delta_{k_{j}}}{\min \{\eta, 1\}} .
\end{aligned}
$$

As $\rho_{k_{j}} \rightarrow \infty$ and $\delta_{k_{j}} \rightarrow 0$, then $\frac{\mid \text { Ared }_{k_{j}}-\text { Pred }_{k_{j}} \mid}{\text { Pred }_{k_{j}}} \rightarrow 0$. This means that for k_{j} large enough, all trial steps $\left\|d_{k_{j}}\right\|$ must be accepted. This leads to a contradiction, so $\delta_{k_{j}}$ must be bounded away from zero in this case.

Secondly, if the sequence of the penalty parameter $\left\{\rho_{k}\right\}$ is bounded, then there exists an integer \bar{k} such that for all $k \geq \bar{k}, \rho_{k}=\bar{\rho}$. Now, we discuss three cases:

1] If the previous step is accepted $(j=1)$, then from the way of updating the trust-region radius in algorithm 2.2, we have $\delta_{k_{j}} \geq \delta_{\text {min }}$. That is $\delta_{k_{j}}$ is bounded away from zero in this case.

2] If $j>1$ and $\left\|h_{k_{r}}\right\|>\eta \delta_{k_{r}}$ for all $r=1, \cdots, j-1$. Then

$$
\left(1-\tau_{1}\right)<\frac{\mid \text { Ared }_{k_{r}}-\text { Pred }_{k_{r} r} \mid}{\text { Pred }_{k_{r}}}
$$

such that all the trial steps on $\left\{k_{j}\right\}$ are rejected. From above inequality and inequalities 3.2 and 3.4 we have

$$
\left(1-\tau_{1}\right)<\frac{\mid \text { Ared }_{k_{r}}-\operatorname{Pred}_{k_{r}} \mid}{\text { Pred }_{k_{r}}} \leq \frac{2 K_{1}\left\|d_{k_{k}}\right\|}{K_{2}\left\|h_{k_{r}}\right\| \min \{1, \eta\}} .
$$

Hence

$$
\left\|d_{k_{r}}\right\|>\frac{K_{2}\left(1-\tau_{1}\right) \min \{1, \eta\}}{2 K_{1}}\left\|h_{k_{k}}\right\| .
$$

But from the way of updating the radius of trust-region in algorithm 2.2, all the rejected trial steps satisfy $\delta_{k_{r}}=\beta_{1}\left\|d_{k_{r}}\right\|$, hence

$$
\begin{aligned}
\delta_{k_{r}}=\beta_{1}\left\|d_{k_{r-1}}\right\| & \geq \frac{K_{2} \beta_{1} \eta\left(1-\tau_{1}\right) \min \{1, \eta\}}{2 K_{1}} \delta_{k_{r}} \\
& \geq \frac{K_{2} \beta_{1} \eta\left(1-\tau_{1}\right) \min \{1, \eta\}}{2 K_{1}} \delta_{\min } .
\end{aligned}
$$

This means that $\delta_{k_{r}}$ is bounded away from zero in this case.
3] If $j>1$ and $\left\|h_{k_{r}}\right\|>\eta \delta_{k_{r}}$ does not hold for all r. Hence, there exists an integer i such that $\left\|h_{k_{r}}\right\| \leq \eta \delta_{k_{r}}$ for all $r=1, \cdots, i$, and $\left\|h_{k_{r}}\right\|>\eta \delta_{k_{r}}$ for all $r=i+1, \cdots, j-1$. Since $\left\|h_{k_{r}}\right\|>\eta \delta_{k_{r}}$ for all $r=i+1, \cdots, j-1$, then as the above case we can prove $\delta_{k_{r}}$ is bounded away from zero.

The case when $\left\|h_{k_{r}}\right\| \leq \eta \delta_{k_{r}}$ for all $r=1, \cdots, i$, then for all rejected trial steps, we have

$$
\left(1-\tau_{1}\right)<\frac{\mid \text { Ared }_{k_{r}}-\text { Pred }_{k_{r}} \mid}{\text { Pred }_{k_{r}}} .
$$

From inequality 3.2, Lemma 3.6, and the above inequality, we have

$$
\left(1-\tau_{1}\right)<\frac{\mid \text { Ared }_{k_{r}}-\operatorname{Pred}_{k_{r}} \mid}{\text { Pred }_{k_{r}}} \leq \frac{K_{1} \bar{\rho}\left\|d_{k_{r}}\right\|}{K_{5}} .
$$

Hence

$$
\left\|d_{k_{r}}\right\|>\frac{K_{5}\left(1-\tau_{1}\right)}{K_{1} \bar{\rho}}
$$

From the way of updating the radius of trust-region, we have for all rejected trial step

$$
\delta_{k_{r}}=\beta_{1}\left\|d_{k_{r-1}}\right\|>\frac{\beta_{1} K_{5}\left(1-\tau_{1}\right)}{K_{1} \bar{\rho}} .
$$

Hence, $\delta_{k_{r}}$ is bounded away from zeros. This leads to a contradiction and then for k_{j} sufficiently large, all the iterates satisfy $\left\|h_{k}\right\| \leq \eta \delta_{k_{j}}$.

For all successful steps and from the way of updating the radius of trust-region and Lemma 3.6, we have for all $k \in\left\{k_{j}\right\}$ and $k \geq \bar{k}$

$$
\Phi_{k}-\Phi_{k+1}=\text { Ared }_{k} \geq \tau_{1} \text { Pred }_{k} \geq \tau_{1} K_{5} \gamma_{k} \delta_{k}, \quad \text { for all } k \geq \bar{k} .
$$

We proved in the above cases, that $\delta_{k_{j}}$ is bounded away from zeros. Then $\Phi_{k}-\Phi_{k+1}>0$. This leads to a contradiction with the fact that $\left\{\Phi_{k}\right\}$ is bounded below when $\left\{\rho_{k}\right\}$ is bounded. Hence in both cases, we have a contradiction. Thus, the supposition is not correct and the theorem is proved.

4. Application

In this section, firstly the proposed algorithm IPTR is applied to the engineering application which is called two-echelon supply chain system with one manufacturer and one retailer.

The manufacturer purchases raw materials from the supplier first, then after the manufacturer's production and processing, the end products are sold to the retailer, this problem is formulated as bilevel models for joint pricing and lot-sizing decisions, see [34].

$$
\begin{array}{cl}
\max _{t_{1}, t_{2}} & f_{u}=\left(t_{2}-\tilde{P}_{s}-\tilde{T}_{c}-\tilde{M}_{c}\right) t_{1} t_{3} y_{1}-0.5 \tilde{c}_{m} \tilde{T} \tilde{P}_{s} t_{3}\left(y_{1}-1\right)-\tilde{O}_{m} t_{1} \\
\text { s.t. } & \tilde{P}_{s}+\tilde{T}_{c}+\tilde{M}_{c} \leq t_{2} \leq 10, \\
& t_{1} \geq 0, \\
\max _{y_{1}, y_{2}} & f_{l}=t_{1} t_{2} t_{3} y_{1}\left(y_{2}-1\right)-0.5 \tilde{c}_{r} \tilde{T} t_{2} t_{3}-\tilde{O}_{r} t_{1} y_{1} \\
\text { s.t. } & 1 \leq y_{2} \leq 5, \\
& y_{1} \geq 0 .
\end{array}
$$

where $\tilde{T}=52 ; \tilde{P}_{s}=4 ; \tilde{T}_{c}=0.5 ; \tilde{M}_{c}=1 ; \tilde{c}_{m}=\tilde{c}_{r}=0.001 ; \tilde{O}_{m}=400 ; \tilde{O}_{r}=200$. For more details about the above application and its notations, see [34].

We solve this model in case of the manufacturer is the leader, who makes the first decision, and the retailer is the follower. Our results, when applying Algorithm (2.4) is $t_{1}=5.8778, t_{2}=6.002$, $t_{3}=19710.195, y_{1}=7.691, y_{2}=2.6007, f_{u}=431230$, and $f_{l}=8548300$, which is closed to whose reported in [34].

Secondly, we introduce an extensive variety of possible numeric bilevel nonlinear programming problems to clarify the effectiveness of our IPTR algorithm, since, Problems $1,2,6,7,13$, and 14 have quadratic functions in both levels. Problems $3,4,5,8,9$ all the inner level functions are convex and Problem 10 [27], at fixed x, the inner problem is convex. These problems are solved numerically with the help of algorithm (2.4) to clarify the effectiveness of that approach. For each test example, 10 independent runs with different initial starting point are performed to observe the consistency of the outcome. Statistical results of all examples are summarized in Table 1 which shows that the results found by the IPTR algorithm (2.4) are approximate or equal to those by the compared algorithms in the literature.

Table 1 also including the mean number of iterations (iter),the mean number of function evaluations (nfunc), the mean value of CPU time (CPUs) in seconds.

For comparison, we have included the corresponding results of the mean value of CPU time (CPUs) obtained by Method in [31](Table 2), [27](Table 3), and [44](Table 4) respectively. It is clear from the results that our approach is capable for treating nonlinear bilevel programming problems even the

Problem 1 [31]:

$$
\begin{array}{cl}
\min _{t} & f_{u}=y_{1}^{2}+y_{2}^{2}+t^{2}-4 t \\
\text { s.t. } & 0 \leq t \leq 2, \\
\min _{y} & f_{l}=y_{1}^{2}+0.5 y_{2}^{2}+y_{1} y_{2}+ \\
& (1-3 t) y_{1}+(1+t) y_{2}, \\
\text { s.t. } & 2 y_{1}+y_{2}-2 t \leq 1, \\
& y_{1} \geq 0, \quad y_{2} \geq 0 .
\end{array}
$$

Problem 2 [31]:

$$
\begin{array}{cl}
\min _{t} & f_{u}=y_{1}^{2}+y_{3}^{2}-y_{1} y_{3}-4 y_{2}-7 t_{1}+4 t_{2} \\
\text { s.t. } & t_{1}+t_{2} \leq 1, \\
& t_{1} \geq 0, \quad t_{2} \geq 0 \\
\min _{y} & f_{l}=y_{1}^{2}+0.5 y_{2}^{2}+0.5 y_{3}^{2}+y_{1} y_{2}+ \\
& \left(1-3 t_{1}\right) y_{1}+\left(1+t_{2}\right) y_{2}, \\
\text { s.t. } & 2 y_{1}+y_{2}-y_{3}+t_{1}-2 t_{2}+2 \leq 0, \\
& y_{1} \geq 0 ; \quad y_{2} \geq 0 \quad y_{3} \geq 0 .
\end{array}
$$

$$
\begin{array}{cl}
\min _{t} & f_{u}=0.1\left(t_{1}^{2}+t_{2}^{2}\right)-3 y_{1}-4 y_{2}+0.5\left(y_{1}^{2}+y_{2}^{2}\right) \\
\text { s.t. } & \\
\min _{y} & f_{l}=0.5\left(y_{1}^{2}+5 y_{2}^{2}\right)-2 y_{1} y_{2}-t_{1} y_{1}-t_{2} y_{2}, \\
\text { s.t. } & -0.333 y_{1}+y_{2}-2 \leq 0, \\
& y_{1}-0.333 y_{2}-2 \leq 0, \\
& y_{1} \geq 0, \quad y_{2} \geq 0,
\end{array}
$$

Problem 4 [31]:

$\min _{t} \quad f_{u}=t_{1}^{2}-2 t_{1}+t_{2}^{2}-2 t_{2}+y_{1}^{2}+y_{2}^{2}$
s.t. $\quad t_{1} \geq 0, \quad t_{2} \geq 0$
$\min _{y} f_{l}=\left(y_{1}-t_{1}\right)^{2}+\left(y_{2}-t_{2}\right)^{2}$,
s.t. $\quad 0.5 \leq y_{1} \leq 1.5$,
$0.5 \leq y_{2} \leq 1.5$,
upper and the lower levels are convex or not and the computed results converge to the optimal solution which is similarly or approximate to the optimal that reported in literature. Finally, it is clear from the comparison between the solutions obtained using IPTR algorithm with literature, that IPTR is able to find the optimal solution of all problems by a small number of iterations, small number of function evaluations, and less time.

We offered the numerical results of our algorithm using MATLAB (R2013a)(8.2.0.701)64$\operatorname{bit}\left(\right.$ win64) and a starting point $x_{0} \in \operatorname{int}(\hat{\boldsymbol{G}})$. The following parameter setting is used: $\delta_{\text {min }}=10^{-3}$, $\delta_{0}=\max \left(\left\|s_{0}^{c p}\right\|, \delta_{\min }\right), \delta_{\max }=10^{3} \delta_{0}, \tau_{1}=10^{-4}, \tau_{2}=0.75, \beta_{1}=0.5, \beta_{2}=2, \hat{\varepsilon}=0.01, \varepsilon_{1}=10^{-8}$, and $\varepsilon_{2}=10^{-10}$.

Problem 5 [31]:

$$
\begin{array}{cl}
\min _{t} & f_{u}=t^{2}+(y-10)^{2} \\
\text { s.t. } & -t+y \leq 0, \\
& 0 \leq t \leq 15, \\
\min _{y} & f_{l}=(t+2 y-30)^{2}, \\
\text { s.t. } & t+y \leq 20, \\
& 0 \leq y \leq 20,
\end{array}
$$

Problem 6 [31]:

$$
\begin{array}{cl}
\min _{t} & f_{u}=(t-1)^{2}+2 y_{1}^{2}-2 t \\
\text { s.t. } & t \geq 0, \\
\min _{y} & f_{l}=\left(2 y_{1}-4\right)^{2}+\left(2 y_{2}-1\right)^{2}+t y_{1}, \\
\text { s.t. } & 4 t+5 y_{1}+4 y_{2} \leq 12, \\
& -4 t-5 y_{1}+4 y_{2} \leq-4, \\
& 4 t-4 y_{1}+5 y_{2} \leq 4, \\
& -4 t+4 y_{1}+5 y_{2} \leq 4, \\
& y_{1} \geq 0, \quad y_{2} \geq 0,
\end{array}
$$

Problem 7 [31]:

```
\(\min _{t} \quad f_{u}=(t-5)^{2}+(2 y+1)^{2}\)
    s.t. \(\quad t \geq 0\),
    \(\min _{y} f_{l}=(2 y-1)^{2}-1.5 t y\),
    s.t. \(\quad-3 t+y \leq-3\),
            \(t-0.5 y \leq 4\),
            \(t+y \leq 7\),
            \(y \geq 0\).
```


Problem 9 [27]:

$$
\begin{array}{cl}
\min _{t} & f_{u}=16 t^{2}+9 y^{2} \\
\text { s.t. } & -4 t+y \leq 0, \\
& t \geq 0, \\
\min _{y} & f_{l}=(t+y-20)^{4}, \\
\text { s.t. } & 4 t+y-50 \leq 0, \\
& y \geq 0
\end{array}
$$

Problem 11 [44]:

$\min _{t} \quad f_{u}=2 t_{1}+2 t_{2}-3 y_{1}-3 y_{2}-60$
s.t. $\quad t_{1}+t_{2}+y_{1}-2 y_{2} \leq 40$,
$0 \leq t_{1} \leq 50$,
$0 \leq t_{2} \leq 50$,
$\min _{y} f_{l}=\left(y_{1}-t_{1}+20\right)^{2}+\left(y_{2}-t_{2}+20\right)^{2}$,
s.t. $\quad t_{1}-2 y_{1} \geq 10$,
$t_{2}-2 y_{2} \geq 10$,
$-10 \leq y_{1} \leq 20$,
$-10 \leq y_{2} \leq 20$.

Problem 13 [44]:

$$
\begin{array}{ll}
\min _{t} & f_{u}=-t_{1}^{2}-3 t_{2}^{2}-4 y_{1}+y_{2}^{2} \\
\text { s.t. } & t_{1}^{2}+2 t_{2} \leq 4, \\
& t_{1} \geq 0, \quad t_{2} \geq 0, \\
\min _{y} & f_{l}=2 t_{1}^{2}+y_{1}^{2}-5 y_{2}, \\
\text { s.t. } & t_{1}^{2}-2 t_{1}+2 t_{2}^{2}-2 y_{1}+y_{2} \geq-3, \\
& t_{2}+3 y_{1}-4 y_{2} \geq 4, \\
& y_{1} \geq 0, \quad y_{2} \geq 0 .
\end{array}
$$

Problem 10 [27]:

$\min _{t} \quad f_{u}=t^{3} y_{1}+y_{2}$
s.t. $\quad 0 \leq t \leq 1$,
$\min _{y} f_{l}=-y_{2}$
s.t. $t y_{1} \leq 10$,
$y_{1}^{2}+t y_{2} \leq 1$,
$y_{2} \geq 0$.
Problem 8 [31]:
$\min _{t}$
$f_{u}=t_{1}^{2}-3 t_{1}+t_{2}^{2}-3 t_{2}+y_{1}^{2}+y_{2}^{2}$
s.t. $t_{1} \geq 0, \quad t_{2} \geq 0$,
$\min _{y} f_{l}=\left(y_{1}-t_{1}\right)^{2}+\left(y_{2}-t_{2}\right)^{2}$,
s.t. $\quad 0.5 \leq y_{1} \leq 1.5$,
$0.5 \leq y_{2} \leq 1.5$,

Problem 12 [27]:

$$
\begin{array}{ll}
\min _{t} & f_{u}=(t-3)^{2}+(y-2)^{2} \\
\text { s.t. } & -2 t+y-1 \leq 0, \\
& t-2 y+2 \leq 0, \\
& t+2 y-14 \leq 0, \\
& 0 \leq t \leq 8, \\
\min _{y} & f_{l}=(y-5)^{2} \\
\text { s.t. } & y \geq 0 .
\end{array}
$$

Problem 14 [44]:

$\min _{t} \quad f_{u}=(t-1)^{2}+(y-1)^{2}$
s.t. $\quad t \geq 0$,
$\min _{y} \quad f_{l}=0.5 y^{2}+500 y-50 t y$
s.t. $\quad y \geq 0$.

Problem 15 [44]:

$\min _{t} \quad f_{u}=-8 t_{1}-4 t_{2}+4 y_{1}-40 y_{2}-4 y_{3}$
s.t. $\quad t_{1} \geq 0, \quad t_{2} \geq 0$
$\min _{y} \quad f_{l}=t_{1}+2 t_{2}+y_{1}+y_{2}+2 y_{3}$,
s.t. $\quad y_{2}+y_{3}-y_{1} \leq 1$,
$2 t_{1}-y_{1}+2 y_{2}-0.5 y_{3} \leq 1$,
$2 t_{2}+2 y_{1}-y_{2}-0.5 y_{3} \leq 1$, $y_{i} \geq 0, \quad i=1,2,3$.

Problem 16 [44]:

$\min _{t} \quad f_{u}=-8 t_{1}-4 t_{2}+4 y_{1}-40 y_{2}-4 y_{3}$
s.t. $\quad t_{1} \geq 0, t_{2} \geq 0$
$\min _{y} \quad f_{l}=\frac{1+t_{1}+t_{2}+2 y_{1}-y_{2}+y_{3}}{6+2 t_{1}+y_{1}+y_{2}-3 y_{3}}$,
s.t. $\quad-y_{1}+y_{2}+y_{3}+y_{4}=1$,
$2 t_{1}-y_{1}+2 y_{2}-0.5 y_{3}+y_{5}=1$,
$2 t_{2}+2 y_{1}-y_{2}-0.5 y_{3}+y_{6}=1$,
$y_{i} \geq 0, \quad i=1, \ldots, 6$.

Table 1. Comparisons of the results by IPTR algorithm 2.4 and methods in reference.

Problem name	$\left(t_{*}, y_{*}\right)$ IPTR	$\begin{aligned} & \hline \hline f_{u}^{*} \\ & f_{l}^{*} \\ & \text { IPTR } \end{aligned}$	iter nfunc IPTR	CPUs time IPTR	$\left(t_{*}, y_{*}\right)$ Ref.	$\begin{aligned} & \hline f_{u}^{*} \\ & f_{l}^{*} \\ & \text { Ref. } \end{aligned}$
prob(1)	$\begin{aligned} & \hline \hline(0.8503,0.0227, \\ & 0.03589) \end{aligned}$	-2.6764	11	1.43	(0.8438, 0.7657, 0)	-2.0769
			12			-0.5863
prob(2)	$\begin{aligned} & (0.609,0.391,0, \\ & 0,1.828) \end{aligned}$	$\begin{aligned} & 0.6086 \\ & 1.6713 \end{aligned}$	10 14	1.987	$\begin{aligned} & (0.609,0.391,0, \\ & 0,1.828) \end{aligned}$	0.6426
			14			1.6708
prob(3)	$\begin{aligned} & (0.97,3.14, \\ & 2.6,1.8) \end{aligned}$	$\begin{aligned} & -8.92 \\ & -6.05 \end{aligned}$	6	2.9	$\begin{aligned} & (0.97,3.14, \\ & 2.6,1.8) \end{aligned}$	-8.92
			8			-6.05
prob(4)	$(.5, .5, .5, .5)$	-1		1.68	(0.5, 0.5, 0.5, 0.5)	-1
			14			0
prob(5)	$(9.839,10.059)$	96.8090.0019	6	1.635	(10.03, 9.969)	100.58
			9			0.001
prob(6)	(1.6879, 0.8805,0)	$\begin{aligned} & -1.3519 \\ & 7.4991 \end{aligned}$		4.1	NA	3.57
			11			2.4
$\operatorname{prob}(7)$	$(1,0)$	17	12	1.9	$(1,0)$	17
			13			1
prob(8)	(0.75, 0.75 ,	-2.25	10	1.002	($\sqrt{3} / 2, \sqrt{3} / 2, \sqrt{3} / 2$,	-2.1962
	0.75, 0.75)	0	11		$\sqrt{3} / 2)$	0
prob(9)	$(11.138,5)$	$\begin{aligned} & 2209.8 \\ & 222.52 \end{aligned}$	10	1.95	$(11.25,5)$	2250
			13			197.753
prob(10)	(1,0,6.6387e-06)	$\begin{aligned} & \text { 6.6387e-06 } \\ & -6.6387 e-06 \end{aligned}$	5	2.987	$(1,0,1)$	1
			7			-1
prob(11)	$\begin{aligned} & (24.972,29.653, \\ & 5.0238,9.7565) \end{aligned}$	4.9101	912	3.742	(25,30,5,10)	5
		0.01332				0
prob(12)	$(3,5)$	9	8	1.23	$(3,5)$	9
		0	9			0
prob(13)	$\begin{aligned} & (0,1.7405, \\ & 1.8497,0.9692) \\ & (10.016,0.81967) \end{aligned}$	-15.548	5	2.1	(0,2,1.875,0.9063)	-12.68
		-1.4247	7			-1.016
prob(14)		$\begin{aligned} & 81.328 \\ & -0.3359 \end{aligned}$	6	2.12	(10.04,0.1429)	82.44
			8			0.271
prob(15)	(0,0.9,0,0.6,0.4)	$\begin{aligned} & -29.2 \\ & 3.2 \end{aligned}$		20.512	(0,0.9,0,0.6,0.4)	-29.2
			6			3.2
prob(16)	(0,0.9, $0,0.6,0.4,0,0,0)$	$\begin{aligned} & -29.2 \\ & 0.3148 \end{aligned}$	57	40.319	(0,0.9,0,0.6,0.4,0,0,0)	-29.2
						0.3148

Table 2. Comparisons of the results by IPTR (2.4) and method [31].

Problem name	$\left(t_{*}, y_{*}\right)$ IPTR	$\begin{aligned} & \hline f_{u}^{*} \\ & f_{l}^{*} \\ & \text { IPTR } \end{aligned}$	$\begin{aligned} & \text { CPUs } \\ & \text { IPTR } \end{aligned}$	$\overline{\left(t_{*}, y_{*}\right)}$ method [31]	$\begin{aligned} & \hline f_{u}^{*} \\ & f_{l}^{*} \\ & \text { method [31] } \end{aligned}$	CPUs method [31]. 1.734
prob(1)	$\begin{aligned} & \hline(0.8503,0.0227, \\ & 0.03589) \end{aligned}$	-2.6764	1.43	(0.8462,0.769 2,0)	-2.0769	1.734
		0.0332			-0.5917	
prob(2)	$\begin{aligned} & (0.609,0.391,0, \\ & 0,1.828) \end{aligned}$	0.6086	1.987	(0.6111, 0.3889, 0 ,	0.6389	2.375
		1.6713		0, 1.8333)	1.6806	
prob(3)	$\begin{aligned} & (0.97,3.14, \\ & 2.6,1.8) \\ & (0.5,0.5,0.5,0.5) \end{aligned}$	-8.92	2.9	(1.031 6, 3.0978 ,	-8.9172	3.315
		-6.05		$2.5970,1.7929)$	-6.137 0	
prob(4)		-1	1.68	(0.5,0.5,0.5,0.5)	-1	1.576
		0			0	
prob(5)	(9.839,10.059)	96.809	1.635	$(10,10)$	100	1.825
		0.0019			0	
prob(6)	(1.6879, 0.8805,0)	-1.3519	4.1	(1.8889, 0.8889,0)	-1.2099	4.689
		7.4991			7.6173	
prob(7)	$(1,0)$	17	1.9	$(1,0)$	17	1.769
		1			1	
prob(8)	(0.75,0.75,	-2.25	1.002	(0.75, 0.75 ,	-2.25	1.124
	0.75, 0.75)	0		$0.75,0.75)$	0	

Table 3. Comparisons of the results by IPTR (2.4) and method [27].

Problem	$\left(t_{*}, y_{*}\right)$	f_{u}^{*}	CPUs	$\left(t_{*}, y_{*}\right)$	f_{u}^{*}	CPUs
		f_{l}^{*}			f_{l}^{*}	
name	IPTR	IPTR	IPTR	method [27]	method [27]	method [27].
$\operatorname{prob}(9)$	$(11.138,5)$	2209.8	1.95	$(11.25,5)$	2250	2.21
		222.52			197.753	
$\operatorname{prob}(10)$	$(1,0,6.6387 \mathrm{e}-06)$	$6.6387 \mathrm{e}-06$	1.9	$(1,0,-1)$	-1	3.38
		$-6.6387 \mathrm{e}-06$			1	
$\operatorname{prob}(12)$	$(3,5)$	9	1.23	$(3,5)$	9	-

Table 4. Comparisons of the results by IPTR (2.4) and method [44].

Problem	$\left(t_{*}, y_{*}\right)$	f_{u}^{*}	CPUs	$\left(t_{*}, y_{*}\right)$	f_{u}^{*}	CPUs
name	IPTR	f_{l}^{*}		f_{l}^{*}		
$\operatorname{prob}(3)$	$(0.97,3.14$,	-8.92	2.9	$(1.03,3.097$,	-8.92	11.854
	$2.6,1.8)$	-6.05		$2.59,1.79$	-6.14	
$\operatorname{prob}(5)$	$(9.839,10.059)$	96.809	1.635	$(10,10)$	100.014	5.888
		0.0019			$4.93 \mathrm{e}-7$	
$\operatorname{prob}(6)$	$(1.6879,0.8805,0)$	-1.3519	4.1	$(1.8888,0.888)$	-1.2091	25.332
		7.4991			7.6145	
$\operatorname{prob}(11)$	$(24.972,29.653$	4.9101	3.742	$(0,30,-10,10)$	0	37.308
	$5.0238,9.7565)$	0.01332			100	
$\operatorname{prob}(13)$	$(0,1.7405$,	-15.548	2.1	$(4.4 \mathrm{e}-7,2$,	-12.65	14.42
	$1.8497,0.9692)$	-1.4247		$1.875,0.9063)$	-1.021	
$\operatorname{prob}(14)$	$(10.016,0.81967)$	81.328	2.12	$(10.0164,0.8197)$	18.3279	4.218
		-0.3359			-0.3359	
$\operatorname{prob}(15)$	$(0,0.9,0,0.6,0.4)$	-29.2	20.512	$(0,0.9,0,0.6,0.4)$	-29.2	45.39
		3.2			3.2	
$\operatorname{prob}(16)$	$(0,0.9,0,0.6,0.4,0,0,0)$	-29.2	40.319	$(0,0.9,0,0.6,0.4,0,0,0)$	-29.2	107.55
		0.3148			0.3148	

5. Concluding remarks

This paper presented a new technique for solving a nonlinear bilevel optimization problem based on using the slack variable with KKT condition to transform NBLP problem into an equivalent smooth SONP problem. A Newton's interior-point method with Das scaling matrix is utilized to solve the equivalent smooth SONP problem effectively. Newton's method is locally method, so a trust region technique is utilized to ensure global convergence from any starting point. On applying this methodology we overcome some known difficulties on treating such problems, as

- A trust-region technique can induce strongly global convergence, which is very important technique for solving a smooth optimization problems and is more robust when they deal with rounding errors
- Our approach used to transform Problem 1.3 which is not smooth to smooth problem
- Using the interior-point method guarantees the converges quadratically to a stationary point.

On the other hand, the global convergence theorems for the IPTR algorithm is presented and numerical results reflect the good behavior of our algorithm and computed results converge to the optimal solutions. Finally, it is clear from the comparison between the solutions obtained using IPTR algorithm with literature, that IPTR is able to find the optimal solution of all problems by a small number of iterations.

Acknowledgments

The authors would like to thank the anonymous referees for their valuable comments and suggestions which have helped to greatly improve this paper.

Conflict of interest

The authors declare that there is no conflict of interest in this paper.

References

1. D. Aksen, S. Akca, N. Aras, A bilevel partial interdiction problem with capacitated facilities and demand outsourcing, Comput. Oper. Res., 41 (2014), 346-358. https://doi.org/10.1016/j.cor.2012.08.013
2. Y. Abo-Elnaga, M. El-Shorbagy, Multi-Sine Cosine Algorithm for Solving Nonlinear Bilevel Programming Problems, Int. J. Comput. Int. Sys., 13 (2020), 421-432. https://doi.org/10.2991/ijcis.d.200411.001
3. Y. Abo-Elnaga, S. Nasr, Modified Evolutionary Algorithm and Chaotic Search for Bilevel Programming Problems, Symmetry, 12 (2020), 1-29. https://doi.org/10.3390/sym12050767
4. Y. Abo-Elnag, S. Nasr, K-means cluster interactive algorithm-basedevolutionary approach for solving bilevel multi-objective programming problems, Alexandria Engineering Journal, 61 (2022), 811-827. https://doi.org/10.1016/j.aej.2021.04.098
5. M. Bazaraa, H. Sherali, C. Shetty, Nonlinear programming theory and algorithms, John Wiley and Sons, 2006. https://doi.org/10.1002/0471787779
6. R. Byrd, Omojokun, Robust trust-region methods for nonlinearly constrained optimization, A talk presented at the Second SIAM Conference on Optimization, Houston, TX, 1987.
7. A. Burgard, P. Pharkya, C. Maranas, Optknock: a bilevel programming framework for identifying gene knockout strategies formicrobial strain optimization, Biotechnol. Bioeng., 84 (2003), 647657. https://doi.org/10.1002/bit. 10803
8. O. Ben-Ayed, O. Blair, Computational difficulty of bilevel linear programming, Oper. Res., 38 (1990), 556-560. https://doi.org/10.1287/opre.38.3.556
9. R. Byrd, M. Hribar, J. Nocedal, An interior point algorithm for largescale nonlinear programming, SIAM J. Optim., 9 (1999), 877-900. https://doi.org/10.1137/S1052623497325107
10. R. Byrd, J. Gilbert, J. Nocedal, A trust region method based on interior point techniques for nonlinear programming, Math. Program., 89 (2000), 149-185. https://doi.org/10.1007/PL00011391
11. F. E. Curtis, O. Schenk, A. Wachter, An interior-point algorithm for large-scale nonlinear optimization with inexact step computations, SIAM J. Sci. Comput., 32 (2010), 3447-3475. https://doi.org/10.1137/090747634
12. I. Das, An interior point algorithm for the general nonlinear programming problem with trust region globlization, Technical Report 96-61, Institute for Computer Applications in Science and Engineering, NASA Langley Research Center Hampton, VA, USA, 1996.
13. J. Dennis, M. Heinkenschloss, L. Vicente, Trust-region interior-point SQP algorithms for a class of nonlinear programming problems, SIAM J. Control Optim., 36 (1998), 1750-1794. https://doi.org/10.1137/S036012995279031
14. S. Dempe, Foundations of Bilevel Programming, Kluwer Academic Publishers, London, 2002.
15. H. Esmaeili, M. Kimiaei, An efficient implementation of a trust-region method for box constrained optimization, J. Appl. Math. Comput., 48 (2015), 495-517. https://doi.org/10.1007/s12190-014-0815-0
16. B. El-Sobky, A global convergence theory for an active trust region algorithm for solving the general nonlinear programming problem, Appl. Math. Comput., 144 (2003), 127-157. https://doi.org/10.1016/S0096-3003(02)00397-1
17. B. El-Sobky, A Multiplier active-set trust-region algorithm for solving constrained optimization problem, Appl. Math. Comput., 219 (2012), 928-946. https://doi.org/10.1016/j.amc.2012.06.072
18. B. El-Sobky, An interior-point penalty active-set trust-region algorithm, Journal of the Egyptian Mathematical Society, 24 (2016), 672-680. https://doi.org/10.1016/j.joems.2016.04.003
19. B. El-Sobky, An active-set interior-point trust-region algorithm, Pac. J. Optim., 14 (2018), 125159.
20. B. El-Sobky, Y. Abouel-Naga, Multi-objective optimal load flow problem with interior-point trust-region strategy, Electr. Pow. Syst. Res., 148 (2017), 127-135. https://doi.org/10.1016/j.epsr.2017.03.014
21. B. El-Sobky, Y. Abouel-Naga, A penalty method with trust-region mechanism for nonlinear bilevel optimization problem, J. Comput. Appl. Math., 340 (2018), 360-374. https://doi.org/10.1016/j.cam.2018.03.004
22. B. El-Sobky, A. Abotahoun, An active-set algorithm and a trust-region approach in constrained minimax problem, Comput. Appl. Math., 37 (2018), 2605-2631. https://doi.org/10.1007/s40314-017-0468-3
23. B. El-Sobky, A. Abotahoun, A Trust-Region Algorithm for Solving Mini-Max Problem, J. Comput. Math., 36 (2018), 881-902. https://doi.org/10.4208/jcm.1705-m2016-0735
24. T. Edmunds, J. Bard, Algorithms for nonlinear bilevel mathematical programs, IEEE transactions on Systems, Man, and Cybernetics, 21 (1991), 83-89. https://doi.org/10.1109/21.101139
25. J. Falk, J. Liu, On bilevel programming, Part I: general nonlinear cases, Math. Program., 70 (1995), 47-72. https://doi.org/10.1007/BF01585928
26. M. Hestenes, Muliplier and gradient methods, J. Optimiz. Theory App., 4 (1969), 303-320. https://doi.org/10.1007/BF00927673
27. Z. H. Gumus, C. A. Flouda, Global Optimization of Nonlinear Bilevel Programming Problems, J. Global Optim., 20 (2001), 1-31.
28. V. Gonzlez, J. Vallejo, G. Serrano, A scatter search algorithm for solving a bilevel optimization model for determining highway tolls, Comput. Syst., 19 (2015), 3529-3549. https://doi.org/10.13053/cys-19-1-1916
29. G. Hibino, M. Kainuma, Y. Matsuoka, Two-level mathematical programming for analyzing subsidy options to reduce greenhouse-gas emissions, Tech. Report WP-96-129, IIASA, Laxenburg, Austria, 1996.
30. D. Kouri, M. Heinkenschloss, D. Ridzal, B. van Bloemen Waanders, A Trust-Region Algorithm with Adaptive Stochastic Collocation for PDE Optimization under Uncertainty, SIAM J. Sci. Comput., 35 (2020), 1847-1879. https://doi.org/10.1137/120892362
31. H. Li, Y. Jiao, L. Zhang, Orthogonal genetic algorithm for solving quadratic bilevel programming problems, J. Syst. Eng. Electron., 21 (2010), 763-770. https://doi.org/10.3969/j.issn.10044132.2010.05.008
32. N. Li, D. Xue, W. Sun, J. Wang, A stochastic trust-region method for unconstrained optimization problems, Math. Probl. Eng., (2019). https://doi.org/10.1155/2019/8095054
33. Y. Lva, T. Hua, G. Wanga, Z. Wanb, A neural network approach for solving nonlinear bilevel programming problem, Comput. Math. Appl., 55 (2008), 2823-2829. https://doi.org/10.1016/j.camwa.2007.09.010
34. W. Ma, M. Wang, X. Zhu, Improved particle swarm optimization based approach for bilevel programming problem-an application on supply chain model, Int. J. Mach. Learn. Cyber, 5 (2014), 281-290. https://doi.org/10.1007/s13042-013-0167-3
35. L. Ma, G. Wang, A Solving Algorithm for Nonlinear Bilevel Programing Problems Based on Human Evolutionary Model, Algorithms, 13 (2020), 1-12. https://doi.org/10.3390/a13100260
36. L. F. Niu, Y. Yuan, A new trust region algorithm for nonlinear constrained optimization, J. Comput. Math., 28 (2010), 72-86. https://doi.org/10.4208/jcm.2009.09-m2924
37. E. Omojokun, Trust-region strategies for optimization with nonlinear equality and inequality constraints, PhD thesis, Department of Computer Science, University of Colorado, Boulder, Colorado, 1989.
38. T. Steihaug, The conjugate gradient method and trust-region in large scale optimization, Siam J. Numer. Anal., 20 (1983), 626-637. https://doi.org/10.1137/0720042
39. S. Sadatrasou, M. Gholamian, K. Shahanaghi, An application of data mining classification and bi-level programming for optimal credit allocation, Decis. Sci. Lett., 4 (2015), 35-50. https://doi.org/10.5267/j.dsl.2014.9.005
40. G. Savard, J. Gauvin, The steepest descent direction for the nonlinear bilevel programming problem, Oper. Res. Lett., 15 (1994), 265-272. https://doi.org/10.1016/0167-6377(94)90086-8
41. N. Thoai, Y. Yamamoto, A. Yoshise, Global optimization method for solving mathematical programs with linear complementarity constraints, Discussion Paper No. 987, Institute of Policy and Planning Sciences, University of Tsukuba, Japan, 2002.
42. X. Wang, Y. Yuan, A trust region method based on a new affine scaling technique for simple bounded optimization, Optimization Methods and Software, 28 (2013), 871-888. https://doi.org/10.1080/10556788.2011.622378
43. X. Wang, Y. Yuan, An augmented Lagrangian trust region method for equality constrained optimization, Optimization Methods and Software, 30 (2015), 559-582. https://doi.org/10.1080/10556788.2014.940947
44. Y. Wang, Y. Jiao, H. Li, An evolutionary algorithm for solving nonlinear bilevel programming based on a new constraint-Handling scheme, IEEE T. Syst. Man Cy. C, 35 (2005), 221-232. https://doi.org/10.1109/TSMCC.2004.841908
45. Y. Yuan, Recent advances in trust region algorithms, Math. Program. Ser. B, 151 (2015), 249-281. https://doi.org/10.1007/s 10107-015-0893-2
46. M. Zeng, Q. Ni, A new trust region method for nonlinear equations involving fractional mode, Pac. J. Optim., 15 (2019), 317-329.
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
