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1. Introduction

Fractional differential systems have been widely investigated due to their applications in science
and engineering, including solving nonlinear equations, associative memory, data analysis, intelligent
control, and optimization [3,4,6,8,11–14,17,18]. The advantages of fractional-order calculus are that
it can increase the flexibility of a system with infinite memory and genetic characteristics. There have
been studied and developments in the theoretic aspects such as controllability, periodicity, asymptotic
behavior etc.

In [9], R. Khalil et al. defined the conformable fractional derivative. Recently, many researchers
have studied definitions and properties of conformable fractional derivatives other than the Caputo, the
GrunwaldLetnikov and the RiemannLiouville fractional derivatives for all of them do not satisfy the
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rules

Tα
t0µ(t)υ(t) = µ(t)Tα

t0υ(t) + υ(t)Tα
t0µ(t),

Tα
t0

µ(t)
υ(t)

=
υ(t)Tα

t0µ(t) − µ(t)Tα
t0υ(t)

υ(t)2 ,

where

Tα
t0µ(t) = lim

ς→0

µ(t + ς(t − t0)1−α) − µ(t)
ς

,

for all t > t0 and α ∈ (0, 1].
The aim of this paper is to construct Razumikhin-type uniform stability and a uniform asymptotic

stability theorem for the conformable fractional system with delay. Moreover, a numerical example is
given to show that our theorem can be applied in an uncomplicated way.

2. Problem formulation and preliminaries

In this section, we approach some preliminary definitions and necessary lemmas.

Definition 2.1. [10] For a function µ : [t0,∞)→ R, the conformable fractional derivative of µ of order
α is defined by

Tα
t0µ(t) = lim

ς→0

µ(t + ς(t − t0)1−α) − µ(t)
ς

, (2.1)

for all t > t0 and α ∈ (0, 1].

If the conformable fractional derivative of µ(t) of order α exists on (t0,∞), then the function µ(t) is
said to be α-differentiable on the interval (t0,∞).

Definition 2.2. [10] Given a function µ : [t0,∞) → R, the conformable fractional integral starting
from t0 of µ of order α, where 0 < α ≤ 1 is defined by

Iαt0µ(t) =

∫ t

t0
(s − t0)α−1µ(s)ds. (2.2)

Lemma 2.3. [10] Given α ∈ (0, 1) and a continuous function µ : [t0,∞)→ R, we have

Tα
t0(I

α
t0µ(t)) = µ(t), (2.3)

for all t > t0.

Lemma 2.4. [10] Given a α-differentiable function µ : [t0,∞)→ R with α ∈ (0, 1], we have

Iαt0(T
α
t0µ(t)) = µ(t) − µ(t0), (2.4)

for all t > t0.

Lemma 2.5. [10] Given a symmetric positive definite matrix P and a α-differentiable function µ :
[t0,∞)→ R with α ∈ (0, 1]. Then Tα

t0µ
T (t)Pµ(t) exists on [t0,∞) and

Tα
t0µ

T (t)Pµ(t) = 2µT (t)PTα
t0µ(t), (2.5)

for all t > t0.
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Consider the conformable fractional system with delay

Tα
t0µ(t) = g(t, µ(t − η)), t ≥ t0, (2.6)

where 0 < α ≤ 1, µ(t) ∈ Rn is the state vector, and g : R × C([−η, 0],Rn) → Rn. For each solution µ(t)
of (2.6), we assume the initial condition

µ(t0 + s) = φ(s), s ∈ [−η, 0],

where φ ∈ C([−η, 0],Rn).

3. Main results

Theorem 3.1. Suppose that κ1, κ2, κ3 : R+ → R+ are continuous non-decreasing functions, κ1(s) and
κ2(s) are positive for s > 0, κ1(0) = κ2(0) = 0, and κ2 is strictly increasing. If there exists a differentiable
functional ∨ : R × Rn → R+ such that

κ1(‖µ‖) ≤ ∨(t, µ) ≤ κ2(‖µ‖), (3.1)

for t ∈ R, µ ∈ Rn, and for any given t0 ∈ R the conformable fractional derivative of ∨ along the solution
µ(t) of conformable system (2.6) satisfies

Tα
t0 ∨ (t, µ(t)) ≤ −κ3(‖µ(t)‖), (3.2)

whenever ∨(t + θ, µ(t + θ)) ≤ ∨(t, µ(t)) for all θ ∈ [−η, 0], then conformable system (2.6) is uniformly
stable. If κ3(s) > 0 for s > 0 and there exists a continuous non-decreasing function ζ(s) > s for s > 0
such that

Tα
t0 ∨ (t, µ(t)) ≤ −κ3(‖µ(t)‖), (3.3)

whenever ∨(t+θ, µ(t+θ)) ≤ ζ(∨(t, µ(t))) for all θ ∈ [−η, 0], then conformable system (2.6) is uniformly
asymptotically stable.

Proof of Theorem 1. Suppose that µ(t) = µ(t, t0, φ), ∨(t) = ∨(t, µ(t)), and

∨∗(t) = sup
−η≤θ≤0

∨(t + θ, µ(t + θ)).

There exists θ̂ ∈ [−η, 0] such that ∨∗(t) = ∨(t + θ̂, µ(t + θ̂)), and either θ̂ = 0 or θ̂ < 0 and

∨ (t + θ, µ(t + θ)) ≤ ∨(t + θ̂, µ(t + θ̂)), (3.4)

for θ̂ ≤ θ ≤ 0.
Next, we show that

Tα
t0 ∨

∗ (t, µ(t)) ≤ 0. (3.5)

For θ̂ < 0, we have∨∗(t+∆t, µ(t+∆t)) = ∨∗(t, µ(t)) for sufficiently small ∆t > 0, and thus Tα
t0∨
∗(t, µ(t)) =

0.
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For θ̂ = 0, we have ∨∗(t) = ∨(t, µ(t)) and Tα
t0 ∨

∗ (t, µ(t)) = Tα
t0 ∨ (t, µ(t)) ≤ 0 by (3.2), So (3.5) holds.

Moreover, we have

κ1(‖µ(t)‖) ≤ ∨(t, µ(t)) ≤ ∨∗(t, µ(t)) ≤ ∨(t0, µ(t0)) ≤ κ2(‖µ(t0)‖). (3.6)

Given ε > 0, we can choose a sufficiently small δ > 0 with κ2(δ) < κ1(ε).
Assume that ‖µt0‖ < δ. Then from (3.6), it follows that

κ1(‖µ(t)‖) ≤ κ2(‖µ(t0)‖) ≤ κ2(‖µt0‖) ≤ κ2(δ) < κ1(ε), (3.7)

which implies that ‖µ(t)‖ < ε. This shows that conformable system (2.6) is uniformly stable.
Suppose δ > 0 and H > 0 are such that %(δ) = u(H). Since ‖φ‖ ≤ δ, we have ‖µt0‖ ≤ H and

∨(t, µ(t)) < %(δ) for t ≥ t0 − η.
Suppose that β with 0 < β ≤ H is arbitrary. From the properties of the function ζ(s), there exists

ι > 0 such that ζ(s)− s > ι for u(β) ≤ s ≤ %(δ). Let M be the smallest integer such that u(β)+ Mι ≥ %(δ)

and let T =
M%(δ)
γ

when γ = inf
β≤s<H

κ3(s).

Next, we will show that ∨(t, µ(t)) ≤ u(β) + (M−1)ι for t ≥ t0 +%(δ)/γ. If u(β) + (M−1)ι < ∨(t, µ(t))
for t0 − η ≤ t < t0 + %(δ)/γ, then the fact that ∨(t, µ(t)) ≤ %(δ) for all t ≥ t0 − η yields

ζ(∨(t, µ(t))) > ∨(t, µ(t)) + ι ≥ u(β) + Mι ≥ %(δ) ≥ ∨(t + ζ, µ(t + ζ)),

for t0 − η ≥ t ≥ t0 + %(δ)/γ and ζ ∈ [−η, 0]. Thus Tα
t0%(t, µ(t)) ≤ −κ3(|µ(t)|) ≤ −γ for t0 ≤ t < t0 + %(δ)/γ.

Consequently, we have

∨(t, µ(t)) ≤ ∨(t0, µ(t0)) − γ(t − t0) ≤ %(δ) − γ(t − t0).

Then ∨(t, µ(t)) ≤ u(β) + (M − 1)ι at t1 = t0 + %(δ)/γ. This implies that ∨(t, µ(t)) ≤ u(β) + (M − 1)ι
for all t ≥ t0 + %(δ)/γ, since Tα

t0 ∨ (t, µ(t)) is negative when ∨(t, µ(t)) = u(β) + (M − 1)ι.
Now, let t̄ j = j%(δ)/γ for j = 1, 2, . . . ,M, and let t̄0 = 0. Assume that, for some integer k ≥ 1, in the

interval t̄k−1 − r ≤ t − t0 ≤ t̄k, we have

u(β) + (M − k)ι ≤ ∨(t, µ(t)) ≤ u(β) + (M − k + 1)ι.

Then
Tα

t0 ∨ (t, µ(t)) ≤ −γ, t̄k−1 ≤ t − t0 ≤ t̄k,

and

∨(t, µ(t)) ≤ ∨(t0 + t̄k−1, µ(t0 + t̄k−1)) − γ(t − t0 − t̄k−1)
≤ %(δ) − γ(t − t0 − t̄k−1) ≤ 0,

when t − t0 − t̄k−1 ≥ %(δ)/γ. Consequently, we have

∨(t0 + t̄k−1, µ(t0 + t̄k−1)) ≤ u(β) + (M − k)ι,

which implies that ∨(t, µ(t)) ≤ u(β) + (M − k)ι for all t ≥ t0 + t̄k−1.
Finally, we have ∨(t, µ(t)) ≤ u(β) for all t ≥ t0 + M%(δ)/γ. This shows that conformable system

(2.6) is uniformly asymptotically stable. �
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Consider the conformable fractional linear system with delay

Tα
t0µ(t) = −Aµ(t) + B f (µ(t − η)), t ≥ t0, (3.8)

where 0 < α ≤ 1, µ(t) ∈ Rn is the state vector, A, B are known real constant matrices and η is a positive
real constant. For each solution µ(t) of (3.8), we assume the initial condition

µ(t) = φ(t), t ∈ [−η, 0],

where φ ∈ C([−η, 0];Rn). The uncertainty f (·) represents the nonlinear parameter perturbation with
respect to the state x(t) and is bounded in magnitude of the form

f T (µ(t − η)) f (µ(t − η)) ≤ δ2µT (t − η)µ(t − η), (3.9)

where δ is a given constant.

Theorem 3.2. Given a positive scalar δ, system (3.8) is uniformly stable if there exists a symmetric
positive definite matrix K such that the following symmetric linear matrix inequality holds:

−2KA + ηαK 0 KB
∗ εδ2I − ηαK 0
∗ ∗ −εI

 < 0. (3.10)

Proof of Theorem 2. Let K be a symmetric positive definite matrices. Consider the
Lyapunov-Razumikhin functional of the form

∨(t) = µT (t)Kµ(t).

Taking the conformable fractional derivative of ∨(t) along the trajectory of system (3.8), we have

Tα
t0 ∨ (t) = µT (t)KTα

t0µ(t)
= 2µT (t)K[−Aµ(t) + B f (µ(t − η))]. (3.11)

Next, from (3.9), we obtain

0 ≤ εδ2µT (t − η)µ(t − η) − ε f T (µ(t − η)) f (µ(t − η)), (3.12)

for ε > 0. When ∨(t + θ, µ(t + θ)) ≤ ∨(t, µ(t)) for all θ ∈ [−η, 0], we obtain

0 ≤ ηαµT (t)Kµ(t) − ηαµT (t − η)Kµ(t − η). (3.13)

According to (3.11) and (3.13), it is straightforward to see that

Tα
t0∨(t) ≤ ξT (t)


−2KA + ηαK 0 KB

∗ εδ2I − ηαK 0
∗ ∗ −εI

 ξ(t),
where ξ(t) = col{µ(t), µ(t − η), f (µ(t − η))}. Note that if condition (3.10) holds, then system (3.8) is
uniformly stable. �
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4. A numerical example

In this section, a numerical example is given in order to present the effectiveness of our main results
by showing the maximum upper bound of the parameter δ.

Example 4.1. Consider the conformable linear system

Tα
t0µ(t) = −Aµ(t) + B f (µ(t − η)). (4.1)

Solving LMI (3.10) with A =

[
2 0
0 0.9

]
, B =

[
−1 0
−1 −1

]
, η = 0.3 and α = 0.8, we obtain the parameters

ε = 0.9033 and K =

[
0.4522 −0.0649
−0.0649 0.4652

]
, which guarantee asymptotic stability of system (4.1) when

δ = 0.3.
Moreover, the maximum upper bound of the parameter δwhich guarantees the asymptotical stability

of system (4.1) is 0.4131 in Table 1. The permissible upper bounds δ for various η and α are shown in
Table 1.

Table 1. The least upper bound of δ for Example 4.1.

η = 0.1 η = 0.3 η = 0.5
α = 0.6 0.2172 0.3650 0.4536
α = 0.8 0.2495 0.4131 0.5073
α = 1 0.2774 0.4536 0.5490

We let A =

[
2 0
0 0.9

]
, B =

[
−1 0
−1 −1

]
, η = 0.5, α = 1, f (t) = 0.01t and φ(t) =

[
2 −4

]T
, ∀

t ∈ [−0.5, 0]. Figure 1. shows the trajectories of solutions µ(t) of system (4.1).

Figure 1. The trajectories of solutions µ(t) of system (4.1).
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5. Conclusions

In this paper, an approach using the Lyapunov-Razumikhin theorem for the uniform stability and
uniform asymptotic stability of the conformable fractional system with a delay has been presented.
Some inequalities are adopted along with a Lyapunov-Razumikhin functional. Then we show a new
delay-dependent asymptotic stability criterion of a conformable fractional linear system with delay.
Finally, we give a numerical example to illustrate some advantages and applicability of our result. It
will be important that future research investigate the asymptotic stability of the conformable fractional
system with time-varying delay.
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