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Abstract: The novel corona virus (COVID-19) has badly affected many countries (more than 180 

countries including China) in the world. More than 90% of the global COVID-19 cases are currently 

outside China. The large, unanticipated number of COVID-19 cases has interrupted the healthcare 

system in many countries and created shortages for bed space in hospitals. Consequently, better 

estimation of COVID-19 infected people in Sri Lanka is vital for government to take suitable action. 

This paper investigates predictions on both the number of the first and the second waves of COVID-19 cases 

in Sri Lanka. First, to estimate the number of first wave of future COVID-19 cases, we develop a 

stochastic forecasting model and present a solution technique for the model. Then, another solution 

method is proposed to the two existing models (SIR model and Logistic growth model) for the 



4673 

AIMS Mathematics  Volume 7, Issue 3, 4672–4699. 

prediction on the second wave of COVID-19 cases. Finally, the proposed model and solution 

approaches are validated by secondary data obtained from the Epidemiology Unit, Ministry of Health, 

Sri Lanka. A comparative assessment on actual values of COVID-19 cases shows promising 

performance of our developed stochastic model and proposed solution techniques. So, our new finding 

would definitely be benefited to practitioners, academics and decision makers, especially the 

government of Sri Lanka that deals with such type of decision making. 

Keywords: COVID-19; stochastic model; model validation method; SIR and Logistic growth models 

Mathematics Subject Classification: 92B05 

 

1. Introduction 

Better health leads to greater enjoyment of life. Nowadays, health has become an extremely 

vulnerable factor for all general public due to the COVID-19 outbreaks. The novel coronavirus 

disease (COVID-19) outbreaks is originated in December 2019 in Wuhan, China. The global 

growth of COVID-19-infected patients is gradually increasing and it is an outstanding rate 

compared with Sri Lanka. This situation is further exacerbated due to the mal practicing of health 

precautions. Better prediction of COVID-19 cases becomes a key factor for government’s 

decisions. 

1.1. Importance and research gap 

The COVID-19 virus transmits from one individual to another quite rapidly in many communities. 

Due to its randomly changing behavior, it can be considered as dynamic system. These uncertain and 

unsteady patterns are difficult to understand. Numbers of infected patients have been observed to 

change unpredictably within a tiny amount of time. It can be considered a dynamical system in place of 

the Markov chain approach. This situation cannot be described using ordinary differential equations [1]. 

For that reason, stochastic differential equations can be used to describe the behavior of the virus. 

These stochastic models are produced by considering major factors such as the infected people and the 

cured ones from the COVID-19 virus. Random behavior of the virus as well as any random situation 

can be analyzed by using stochastic differential equations. 

If government identifies the behavior of the virus, then following safety precautions can be 

arranged to minimize the death roll of the country: (1) Aggressive “social distancing” measures; (2) 

Issuing travel bans to other affected countries; (3) Island wide strict curfews; (4) Establishment of a 

COVID-19 virus Task Force, etc. In fact, preventive methods can be identified to reduce the factors 

which weaken the development of the country. These predictions can be used to maintain the economic 

growth rate of the country. 

It is very important to understand the pattern of the variable to predict the future. Most of the 

share markets, global currency markets are fitted well with this stochastic one. Most of the investors 

are blind about the randomness. Because, small change will make a huge difference in the chaotic 

world. This research leads to identify the patterns of the chaotic situation like stock market by using 

stochastic differential equations. It benefits for investors to take necessary actions before they 

capitalize money. 
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It would be the most appropriate time to make decisions by the industries to function the company 

without failure in the pandemic situation. This prediction paves the way to the well-being of the 

employees of the particular companies and their families during the pandemic situation. Although 

conventional mathematical models are attracted by many researchers, work on this COVID-19 virus 

by stochastic model is scant. Besides, in practice, behaviors of any viruses are random. In this situation, 

none of the existing conventional mathematical models can be applicable. So, development of stochastic 

differential equations to describe the Covid-19 spread (especially to estimate the COVID-19 infected 

people in Sri Lanka) is desirable. 

1.2. Contributions and organization 

This research attempts to predict coronavirus cases in a community by considering stochastic 

differential equations. This study contributes for the Armed forces, health sector that battle against 

spreading of the virus. Moreover, epidemic diseases analysts and others who draw the future patterns 

of the virus are also benefited. 

The proposed prediction model based on SDE, SIR and Logistic growth provides policy makers 

an evidence based scientific method for identifying suppression measures that can be relaxed at the 

most appropriate time. 

Subsequently, the key contributions of the proposed article are of the following seven folds: 

• Investigating first wave of COVID-19 outbreak and proposing a stochastic forecasting model to 

estimate the number of COVID-19-infected patients in the future. 

• The accuracy of the model in forecasting is validated by existing methods in the literature. 

• Achieving a solution technique to efficiently solve the proposed stochastic model. 

• Investigating second wave of COVID-19 outbreak using two existing models (SIR model and 

Logistic growth model) for estimating the number of COVID-19-infected patients in the future. 

• Developing another solution technique to efficiently solve two existing models. 

• Solution techniques are validated via secondary data obtained from the Epidemiology Unit, Ministry 

of Health, and Sri Lanka. 

• Finally, showing the merits and capabilities of the newly proposed solution methods in dealing with 

the novel COVID-19 scenario to make better decisions, especially for governments and scientific 

community, to prevent the spread of COVID-19 from the country. 

The rest of the paper is organized as follows: Section 2 reviews the related work. Basic concepts 

of the Markov Chain, Martingale, Euler–Maruyama method and Logistic growth and Susceptible–

Infected–Recovered (SIR) Models are described in Section 3, while Section 4 provides the 

methodology. The results and discussion are represented in Section 5. Finally, concluding remarks 

along with limitations and future research potential are drawn in section 6. 

2. Related work 

Over years, researchers have developed various types of mathematical models to recognize the 

pattern of random behavior of virus outbreaks. For a better understanding, we have the following 

subsections such as SIR models, SDE models, Virus behavior and other models. 
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2.1. SIR models 

SIR model can be considered as a traditional mathematical model in the Mathematical and 

Statistical analysis. Rihan et al. [2] developed epidemic SIR model with long-range temporal memory. 

This model used a suitable Lyapunov functional to formulate the global stability of the steady states. 

According to the findings, the combination of fractional-order derivative and time delay in the model 

improve the dynamics and increase the complexity of the model. Sharma et al. [3] presented the 

SEIRD (Susceptible–Exposed–Infected–Recovered–Death) pandemic spread model with a time 

delay on the heterogeneous population. According to their work they have verified total infection 

cases in India considering the effect of nationwide lockdown at the onset of the pandemic. They have 

forecasted the total number of infection cases in two extreme situations of nationwide no lockdown 

and strict lockdown scenarios. 

Guan et al. [4] identified 63 studies regarding modeling the transmission dynamics of COVID-19 

epidemic. Epidemiological parameters estimation, trend prediction, and control measure evaluation 

were studied from this research. Din et al. [5] used an epidemic model composed on four compartments: 

susceptible, exposed, infected and recovered (SEIR), which were used to describes the dynamics of 

COVID-19 under convex incidence rate. They simulated the results by using nonstandard finite 

difference method (NSFDS) which is a powerful numerical tool. The new model on some random data 

and then by the available data of a particular regions of subcontinents were described. 

Mello et al. [6] studied the key feature to the SIR model for various epidemics and given a brief 

conversation about its mathematical description. Numerous forms of mathematical models related to 

the containment, risk analysis, and features of COVID-19 were investigated by Adekola et al. [7]. 

Hajji et al. [8] considered a system of delay differential equations as a model for the dynamics of tumor 

immune system interaction. They carried out a stability analysis of the proposed model and showed 

that the system could have up to two steady states. They also determined an upper bound for the delay, 

such that stability was preserved. Numerical simulations of the system under different parameter values 

were performed. 

2.2. SDE models 

In practice, the spreading of virus follows a random process. Consequently, appropriate stochastic 

mathematical tools are urgent to study the random behavior of the virus. Most of the existing researches 

on predicting the virus’ spread have used geometric Brownian motion with Ito’s Lemma approach 

(refer to Allen [1]). Further, most of the existing works on the COVID-19 virus have been carried out 

using ODE or PDE (refer to Kucharski [9]). 

Allen [10, 11] conducted a study to identify the factors and mathematical formulas which describe 

the stochastic differential equation (SDE) model for the wave of coins in circulation. Allen [12] found 

that the SDE model is suitable for environmental variability and mean-reverting processes. The mean-

reverting processes possess several important features that better characterize environmental 

variability in biological systems than a linear function of white noise. Allen [1] investigated the topic 

of stochastic epidemic modeling from the perspective of an ordinary differential equations framework, 

with an emphasis on continuous-time Markov chains and stochastic differential equations. This work 

is more important to describe the COVID-19 behavior [13–15]. Bukiet and Ovens [16] found 

similarities in the cricket batting order of the ODI with the SDE model. While scoring strategies and 

https://www.sciencedirect.com/topics/mathematics/heterogeneous-population
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player performance in cricket had been studied, there were very few publications on the influence of 

batting order. This research is more helpful to understand the SDE applications. 

2.3. Virus behavior 

The organisms of all the viruses are similar in structure. But the effect of the different types of 

viruses on human being is different. Zika is a virus transmitted to humans through either the bites of 

infected mosquitoes or sexual transmission. Zika has been linked to congenital anomalies such as 

microcephaly. Spreading of this virus is simulated by using a stochastic method to identify the 

pattern (Agusto et al. [17]). Eltoukhy et al. [18] demonstrated data analytic approach to predict the 

spread of COVID-19 cases in top affected countries. Daniel [19] used digital tracing to consider 

variations in test sensitivities in a virus. Rao and Brandeau [20] developed analytical conditions 

showing the optimal allocation for four objectives on viruses. It is a vital research to comprehend the 

comportment of the viruses. Ciupe and Heffernan’s [21] models had been used to gain new knowledge 

on the pathogenesis of in-host diseases (including characteristics of the pathogen lifecycle, information 

on medicine and public health, and aiding the development of effective drug therapies and vaccines); 

this was used to understand the spread of disease by differential equation. 

2.4. Other models 

Antonietta et al. [22] extended the algorithm for automatically simplifying systems of initial value 

ODEs. Khan et al. [23] investigated the existence of results and stability analysis for a nabla discrete 

ABC-fractional-order COVID-19 model. The existence and uniqueness theorems along with Hyers–

Ulam stability were used to analyze the model. Sindhu et al. [24] developed the Gumbel type-II model 

to predict the percentage of patients from the pandemic. Lautaro et al. [25] studied the impact of a 

massive testing strategy with a threshold. Stefanie et al. [26] presented a hierarchy of mathematical 

models for spatiotemporal population dynamics using Galerkin projection and population scaling for 

model reduction. Ting-Yu et al. [27] used the Laplace-transformed likelihood method for multistate 

disease epidemiology, which estimates the parameters with it and dispenses with the individual time-

stamped data. Singh et al. [28] investigated a dynamical systems of fractional-order corona model 

showing the efficiency of the model regarding CPU time. Srivastava et al. [29] presented a novel 

approach of fractional derivative to comprehensive study of transmission phenomena of dengue 

infection. Srivastava et al. [30] found out an effective power series solution of compartmental 

epidemiological models. Henry et al. [31] evaluated the discriminative ability of hematologic, 

biochemical and immunologic biomarkers in patients with and without the severe or fatal forms of 

COVID-19. The risk stratification models for predicting severe and fatal COVID-19 were identified. 

Bhattacharjee et al. [32] utilized a modified van der Pol symmetric oscillator equation for 

implementing the series connection of two same type conduction cells of the cardiovascular system 

that helped to describe the complete process of conduction. 

3. Preliminaries 

In this section, following the references [33, 34], the basic definitions of the Markov Chain and 

Martingale are described first. Then, the Euler–Maruyama method of finding the numerical solution 
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to the stochastic differential equations (SDEs) is presented. Thereafter, the two existing models, 

Logistic growth and Susceptible–Infected–Recovered (SIR), are provided. 

3.1. Markov chain 

Let {𝑋0, 𝑋1, 𝑋2, ……………}  be a sequence of discrete random variables. Then 

{𝑋0, 𝑋1, 𝑋2, ……………}  is a Markov chain if it satisfies the Markov 

property: 𝑃(𝑋𝑡+1 = 𝑆|𝑋𝑡 = 𝑆𝑡 , …… . , 𝑋0 = 𝑆0) = 𝑃(𝑋𝑡+1 = 𝑆|𝑋𝑡 = 𝑆𝑡)∀ 𝑡𝜖𝑁 and for all states 

𝑆 𝜖 {𝑆0, 𝑆1, …………𝑆𝑡}. 

3.2. Martingale 

Following [34], Discrete-time martingale is a discrete-time stochastic process (i.e., a sequence of 

random variables) {𝑋1, 𝑋2, ……………𝑋𝑡} that satisfies for any time 𝑡, 

𝐸(|𝑋𝑡|) < ∞ and 

𝐸(𝑋𝑡+1 ∶  𝑋1, 𝑋2, ……………𝑋𝑡 ) = 𝑋𝑡 

Here, the conditional expected value of the next observation given all the past observations is equal to 

the most recent observation. 

3.3. Euler–Maruyama method 

The simplest computational method for the approximation of ordinary differential equations is 

Euler’s method [35]. The Euler–Maruyama method [36] is an analogue of the Euler method for 

ordinary differential equations. To find the numerical solution to stochastic differential equations (SDEs), 

the Euler–Maruyama method is used. Although the Euler method for ordinary differential equations has 

order 1, the strong order for the Euler–Maruyama method for stochastic differential equations is 1/2. 

This fact was proved in Gikhman and Skorokhod [36]. 

To develop an approximate solution on the given interval, 

        𝑡0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛 

Approximation of 𝑋 

        𝑋0 < 𝑋1 < 𝑋2 < ⋯ < 𝑋𝑛 

will be determined at the respective 𝑡 point, 

𝑑𝑋(𝑡) =  𝛼(𝑡, 𝑋)𝑑𝑡 +  𝜎(𝑡, 𝑋)𝑑𝑊𝑡 

where                  𝑋(𝑡) =  𝑋𝑡 

(One of the simplest numerical approximations for the SDE is the Euler-Maruyama method. If Ito’s 

formula of the stochastic Taylor series is truncated after the first order terms, the Euler method or 

Euler-Maruyama method is obtained.) 

Approximate solution of the above is as follows: 

https://en.wikipedia.org/wiki/Discrete-time_stochastic_process
https://en.wikipedia.org/wiki/Stochastic_process
https://en.wikipedia.org/wiki/Sequence
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Conditional_expected_value
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𝑋𝑡+1 = 𝑋𝑡 +  𝜇𝑋𝑡−1∆𝑡 +  𝜎𝑋𝑡−1𝜂√Δ𝑡; 

∆𝑡 =  𝑡𝑖+1 − 𝑡𝑖; 

3.4. Logistic growth and Susceptible–Infected–Recovered (SIR) Models 

3.4.1. The Logistic growth model 

The Logistic growth model of the study indicates an exponential growth at the beginning of the 

epidemic, followed by a steady increase and finally ending with a declining growth rate. The Logistic 

growth model is a regression model that is widely used in epidemiology mathematical models to 

estimate the growth and decline rate of pathogens. The model assumes an exponential curve. The 

logistic model is presented by [37] as an equation, 

1

C

𝑑𝐶

𝑑𝑡
= 𝑟 (1 −

𝐶

𝐾
) 

where 𝐶 is the number of infected cases, 𝑟 is defined as the rate of infection and 𝐾 is the final epidemic 

size. Given that the initial condition of 𝐶(0) = 𝐶0, the number of infected cases is defined as 

C =
𝐾

1 + (
𝐾−𝐶0

𝐶0
) 𝑒𝑟𝑡

 

and the maximum growth rate peaks at the time are 

𝑡𝑝 =
𝑙𝑛 (

𝐾−𝐶0

𝐶0
)

𝑟
 

3.4.2. Susceptible–Infected–Recovered (SIR) model 

The SIR model [38–41] has been widely used in literature and by policymakers to predict the 

spread of many diseases. The basic SIR model divides the population into three sections: 

𝑆: Susceptible healthy population who are at risk of getting infected; 

𝐼: Infected populations who have symptoms, whether mild or severe; 

𝑅: Recovered population who have recovered from the disease and gained immunity; 

𝐷: Death population. 

Thus, the total population can be depicted as in Figure 1. i.e., 𝑁 = 𝑆 + 𝐼 + 𝑅 + 𝐷. 

The model estimates the rate of change of the susceptible, infected, recovered and death 

population by differential equations, respectively, as follows: 

𝑑𝑆

𝑑𝑡
= −𝛽𝐼

𝑆

𝑁
 ; 

𝑑𝐼

𝑑𝑡
= 𝛽𝐼

𝑆

𝑁
 –  𝛾𝐼 ; 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼; 

𝑑𝐷

𝑑𝑡
= ∅𝐼 

with the parameters defined as follows: 

𝛽: the infection rate, defined as the proportion of the infected population per day; 
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𝛾: the recovery rate, defined as the proportion of the recovered population per day; 

∅: death rate—defined as the proportion of the death population per day. 

Using the infection and recovery rate parameters, the SIR model estimates the reproduction number of 

the disease 𝑅0 as the ratio 𝑅0 =
𝛽

𝛾
. 

 

Figure 1. Schematic diagram of the model. 

4. Methodology 

This section reviews the methodology of the study for both the first and second waves of COVID-19 

in Sri Lanka. It covers the hypothesis building, development of the stochastic differential equation (SDE) 

models, data collection (identification of the population for the study and sample) and data analysis 

and interpretation. Microsoft Excel (2013) and SPSS software are used to analyze and represent the 

outcome. This section presents assumptions and notations, the SDE–Virus spreading model 

formulations and two new solution approaches. 

4.1. Assumptions and notation for the SDE–Virus spreading model formulations 

Most of the predictions are based on assumptions that may be considered for a better 

understanding of the mathematical modeling. To develop the models for predicting numbers of the first 

and second waves of COVID-19cases in Sri Lanka, we respectively adopt the notations of Tables 1 

and 2 along with the following set of realistic assumptions. 

Assumption. Large jumps in infected individuals caused by sudden major changes in the virus 

spreading environment are not considered in this model. 

4.2. Development of the SDE model, its validation and the solution technique of the first wave of 

COVID-19 

4.2.1. SDE model 

Following the notation in Table 1, new SDE model is developed first for predicting the first wave 

of COVID-19 cases in Sri Lanka. Thereafter, a solution method is presented to validate the developed 

SDE model. 
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Table 1. Notation of SDE model for the first wave of COVID-19. 

Notations Description 

(a) Decision variables 

𝑋(𝑡) Number of COVID-19 infected patients at time t  

𝑊(𝑡) Wiener process 

𝑡 Time 

𝑃𝑖,𝑘(𝑡) Transition probability of a discrete stochastic process 

(b) Input parameters 

𝑁 

𝑖 ∈ {0,… ,𝑁} 

Number of days 

Index of days 

𝑗 ∈ {… ,−2,−1, 0, 1, 2, … } Index of patients 

𝑔 New infected rate per capita  

𝑙 Cured rate per capita 

𝜂 Random number generator 

𝑡𝑖 ith day 

∆𝑡 Small time increment 

𝜎 Volatility  

𝜇 Drift 

Prediction of the number of COVID-19 cases in any community is very difficult at this stage. 

The main reason for the virus spread is rapid contact between individuals [42]. The number of 

patients is presented at the National Epidemiology Center each day [43]. The secondary data is 

used to create the (SDE) model to identify the pattern of COVID-19 cases in the community. 

Following the Forward Kolmogorov equation (refer [1]) along with the notation of Table1, the 

stochastic differential equation (SDE) model is developed as follows: 

According to the Forward Kolmogorov equation, let 𝑡𝑖 = 𝑖∆𝑡 for 𝑖 = 0, 1, … ,𝑁 and let 𝑥𝑗 = 𝑗𝛿, 

for 𝑗 =  … . . , −2,−1, 0, 1, 2, ………  Let 𝑥0  be given. Consider the transition probability of a 

discrete stochastic process, where 𝑔 and 𝑙 are constant. If Δ𝑥changes in the stochastic process at 

time 𝑡, 𝑋(𝑡) =  𝑥𝑖 

 

Figure 2. Illustration of the simple virus infection procedure. 

The main actions and reactions are indicated as newly infected and cured. According to Figure 2, the 

number of COVID-19 patients in the country is determined according to the infected action and cured 

action. Each infected person increases the number of patients and each cured person decreases the number 

of patients in the community. It is considered that ‘𝑔’ is the per capita newly infected rate and ‘𝑙’is the per 

capita cured rate. So, we assume that ‘𝑔’ and ‘𝑙’ are constant according to the first case. 
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Assume that 𝑔(𝑡, 𝑥) = 𝑔 and 𝑙(𝑡, 𝑥) = 𝑙 are non-negative constants. 

Define the transition probabilities of a discrete stochastic process by the following: 

𝑃𝑖,𝑘(𝑡) =  {

𝑔𝑥𝑖∆𝑡 𝐹𝑜𝑟𝑘 = 𝑖 + 1
1 − 𝑔𝑥𝑖∆𝑡 − 𝑙𝑥𝑖∆𝑡 𝐹𝑜𝑟𝑘 = 𝑖

𝑙𝑥𝑖∆𝑡 𝐹𝑜𝑟𝑘 = 𝑖 − 1
                     (1) 

If 𝑃𝑖 ,𝑖+1(𝑡) is considered, where 𝑘 = 𝑖 + 1, then 𝑃(𝑖 ,𝑖+1) = 𝑔𝑥𝑖∆𝑡 by substituting 

𝑃(0 ,1) = 𝑔𝑥0∆𝑡, 𝑃(1 ,2) = 𝑔𝑥1∆𝑡, 𝑃(2 ,3) = 𝑔𝑥2∆𝑡                    (2) 

If 𝑃𝑖 ,𝑖+1(𝑡) is considered, where 𝑘 = 𝑖 + 1, then 𝑃(𝑖 ,𝑖+1) = 𝑔𝑥𝑖∆𝑡 by substituting 

𝑃(0 ,1) = 𝑔𝑥0∆𝑡, 𝑃(1 ,2) = 𝑔𝑥1∆𝑡, 𝑃(2 ,3) = 𝑔𝑥2∆𝑡                (3) 

If 𝑃𝑖 ,𝑖+1(𝑡) is considered, where 𝑘 = 𝑖 + 1, then 𝑃(𝑖 ,𝑖+1) = 𝑔𝑥𝑖∆𝑡 by substituting 

𝑃(0 ,1) = 𝑔𝑥0∆𝑡, 𝑃(1 ,2) = 𝑔𝑥1∆𝑡, 𝑃(2 ,3) = 𝑔𝑥2∆𝑡                 (4) 

Let us consider Eq (1): 

𝑃𝑖 ,𝑘(𝑡) =  [

𝑃00 𝑃01 ⋯ 𝑃0𝑛

𝑃10 𝑃11 ⋯ ⋮
⋮

𝑃𝑚 0

⋮
⋯

⋱ ⋮
⋯ 𝑃𝑚𝑛

] 

Then, substituting Eqs (2)–(4) in the above matrix, we have 

𝑃𝑖 ,𝑘(𝑡) =  

[
 
 
 
 
1 − 𝑔𝑥0∆𝑡 − 𝑙𝑥0∆𝑡 𝑔𝑥0∆𝑡     0 ⋯

𝑙𝑥1∆𝑡 1 − 𝑔𝑥1∆𝑡 − 𝑙𝑥1∆𝑡 ⋯ ⋮

0
0
⋮

𝑙𝑥2∆𝑡
0
⋮

⋱ ⋮
⋯ 1 − 𝑔𝑥𝑚∆𝑡 − 𝑙𝑥𝑚∆𝑡

]
 
 
 
 

 

E(∆𝑥 )   (𝑔 − 𝑓)
∆𝑡

𝛿
 ; 𝑉𝑎𝑟 (∆𝑥)   (𝑔 + 𝑓)∆𝑡 . It is assumed that ∆𝑡/ 𝛿2  is smallest so that1 −

𝑏∆𝑡/ 𝛿2 − 𝑑∆𝑡/ 𝛿2is positive.  

Let 𝑃𝑘(𝑡) = 𝑃(𝑋(𝑡) =  𝑥𝑘) be the probability distribution at time t. Then, 𝑃𝑘(𝑡 +  𝛥𝑡) satisfies 

𝑃𝑘(𝑡 + ∆𝑡) = 𝑃𝑘+1(𝑡)𝑙𝑥𝑘+1∆𝑡 + 𝑃𝑘(𝑡)(1 − 𝑔𝑥𝑘 − 𝑙𝑥𝑘)∆𝑡 + 𝑃𝑘−1(𝑡)𝑔𝑥𝑘−1∆𝑡 

Then, we derive 
𝑑𝑃𝑘(𝑡)

𝑑𝑡
, 

𝑃𝑘(𝑡+∆𝑡)−𝑃𝑘(𝑡)

∆𝑡
 =  𝑃𝑘+1(𝑡)𝑙𝑥𝑘+1 − 𝑃𝑘(𝑡)(𝑔𝑥𝑘 + 𝑙𝑥𝑘) + 𝑃𝑘−1(𝑡)𝑔𝑥𝑘−1          (5) 
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It follows that the probability distribution in continuous time (letting 𝛥𝑡 →  0) satisfies the Forward 

Kolmogorov equations. As Δ𝑡 → 0, the discrete stochastic process is transformed to a continuous time 

process. 

∴ ∆𝑡 → 0
𝑝𝑘(𝑡+∆𝑡)−𝑝𝑘(𝑡)

∆𝑡
=

𝑑𝑝𝑘(𝑡)

𝑑𝑡
                         (5.1) 

From Eqs (5) and (5.1), 

𝑑𝑃𝑘(𝑡)

𝑑𝑡
= 𝑃𝑘+1(𝑡) [

𝑙𝑥𝑘+1

2
+

𝑙𝑥𝑘+1

2
+

𝑔𝑥𝑘+1

2
−

𝑔𝑥𝑘+1

2
]+ 𝑃𝑘(𝑡) [−𝑔𝑥𝑘 − 𝑙𝑥𝑘] 

 + 𝑃𝑘−1(𝑡) [
𝑔𝑥𝑘−1

2
+

𝑔𝑥𝑘−1

2
+

𝑙𝑥𝑘−1

2
−

𝑙𝑥𝑘−1

2
] 

𝑑𝑃𝑘(𝑡)

𝑑𝑡
=

𝑃𝑘+1(𝑡)𝑙𝑥𝑘+1

2
+

𝑃𝑘+1(𝑡)𝑙𝑥𝑘+1

2
+

𝑃𝑘+1(𝑡)𝑔𝑥𝑘+1

2
−

𝑃𝑘+1(𝑡)𝑔𝑥𝑘+1

2
−𝑃𝑘(𝑡)𝑔𝑥𝑘−𝑃𝑘(𝑡)𝑙𝑥𝑘 

 +
𝑃𝑘−1(𝑡)𝑔𝑥𝑘−1

2
+

𝑃𝑘−1(𝑡)𝑔𝑥𝑘−1

2
+

𝑃𝑘−1(𝑡)𝑙𝑥𝑘−1

2
−

𝑃𝑘−1(𝑡)𝑙𝑥𝑘−1

2
 

𝑑𝑃𝑘(𝑡)

𝑑𝑡
= −(𝑔 − 𝑙) [

𝑃𝑘+1(𝑡)𝑥𝑘+1

2
−

𝑃𝑘−1(𝑡)𝑥𝑘−1

2
] 

 +(
𝑔 + 𝑙

2
)[ 𝑃𝑘+1(𝑡)𝑥𝑘+1 − 2𝑃𝑘+1(𝑡)𝑥𝑘+1 + 𝑃𝑘−1(𝑡)𝑥𝑘−1 ]             (5.2) 

Assume that 𝛿  is small enough such that the stochastic process approaches a continuous valued 

process. 

Then, 
𝐹(𝑥+𝛿)−𝐹(𝑥−𝛿)

2𝛿
= [

𝑃𝑘+1(𝑡)𝑥𝑘+1−𝑃𝑘−1(𝑡)𝑥𝑘−1

2𝛿
] 

𝐹(𝑥 + 𝛿) − 2𝐹(𝑥) + 𝐹(𝑥 − 𝛿)

𝛿2
= 

𝑃𝑘+1(𝑡)𝑥𝑘+1 − 2𝑃𝑘+1(𝑡)𝑥𝑘+1 + 𝑃𝑘−1(𝑡)𝑥𝑘−1

𝛿2
 

According to the above equations, it can be considered as central difference approximation for some 

values 𝜀1 , 𝜀2 such that 

𝑥 − 𝛿 ≤ 𝜀1, 𝜀2 ≤ 𝑥 + 𝛿 

𝐹(𝑥 + 𝛿) − 𝐹(𝑥 − 𝛿)

2𝛿
=  𝐹′(𝑥) + 

𝛿2

6
𝐹′′′(𝜀1) 

𝐹(𝑥 + 𝛿) − 2𝐹(𝑥) + 𝐹(𝑥 − 𝛿)

𝛿2
= 𝐹′′(𝑥) + 

𝛿2

12
𝐹′′′(𝜀2) 

Note that we fixed 𝑋(𝑡)  =  𝑥𝑖 at time t, 𝐸(𝛥𝑋)  =  (𝑔 − 𝑙)𝑥∆𝑡 and 𝑉𝑎𝑟(𝛥𝑋) = (𝑔 + 𝑙)𝑥∆𝑡 to order 

(𝛥𝑡)2. The above equations approximately satisfy the Fokker–Planck equation (refer to [1]). Then the 

above system of differential equation approximates the partial differential equation. 
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𝜕𝑝(𝑡,𝑥)

𝜕𝑡
= −

𝜕

𝜕𝑥
((𝑔 − 𝑙)𝑥𝑝(𝑡, 𝑥)) +

1

2

𝜕2

𝜕𝑥2 ((𝑔 + 𝑙)2𝑥𝑝(𝑡, 𝑥))                      (5.3) 

Consider the ‘𝑚’ and ‘𝑛’ functions and the stochastic differential equation, 

𝑑𝑋(𝑡) = 𝑚(𝑡, 𝑋(𝑡))𝑑𝑡 + 𝑛(𝑡, 𝑋(𝑡))𝑑𝑊(𝑡)                      (5.4) 

From (5.3) and (5.4), 

𝑑𝑋(𝑡) = (𝑔 − 𝑙)𝑋(𝑡)𝑑𝑡 + √(𝑔 + 𝑙)𝑋(𝑡)𝑑𝑊(𝑡)                    (6) 

Equation (6) is the SDE model used to predict the first wave of COVID-19 cases in Sri Lanka. 

The probability density of the solution of the stochastic differential equation satisfies the partial 

differential equation. Therefore, there exists a close relationship between the discrete stochastic 

process and the continuous process. In particular, for small ∆t and δ, the probability distribution of the 

solutions to Forward Kolmogorov equation will be approximately the same as the probability 

distribution of solutions to the discrete stochastic process [1]. Then, an appropriate stochastic 

differential equation model is inferred from the above argument. 

Finally, it is useful to note in the above argument that the coefficients at time t of the stochastic 

differential equation are related to the discrete stochastic model through the mean and variance in the 

change in the process ∆𝑋 over a short time interval ∆t fixing 𝑋(𝑡) = 𝑥. 

4.2.2. SDE model validation 

The stochastic equation in our SDE model can be validated by using the Mean absolute 

deviation (MAD) method, mean absolute percentage error (MAPE) method and Bias method. It is 

inevitable to ensure the data fittings of the curve drawn according to the stochastic equation. The 

predicted data deviate from the actual data and those changes ensure the validity of the derived 

equation. 

The accuracy model equations and the scale of judgment of forecast accuracy (Table 2) are 

defined as follows [44]: 

(1) Mean Absolute Percentage Error (MAPE) method 

𝜀MAPE =
1

𝑛
∑ |

𝐴−𝑃

𝐴
|𝑛

𝑖=0                                (7) 

(2) Mean Absolute Deviation (MAD) method 

𝜀MAD =
1

𝑛
∑ |𝐴 − 𝑃|𝑛

𝑖=0                            (8) 

Where 𝐴 and 𝑃 represent the actual value and predicted value of the indices, respectively. 

(3) Absolute Bias method 

𝜀Bias = |𝐴 − 𝑃|                                (9) 

Using SDE model in Eq (6) with the sample data (14 March to 17 April 2020), the MAPE, MAD 

and absolute bias are 2.63%, 0.247 and 8.6571, respectively. According to the error analysis, the new 

proposed model is highly accurate (less than 10%) with lowest MAPE error values (refer to Table 6). 
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Note that Table 2 represents the scale of judgment of forecast accuracy regarding to Error (MAPE) and 

Table 3 contains the notations of the proposed model. It clearly indicates that minimum values of 

MAPE result in greater accuracy for forecasting the future predictions [44]. 

Table 2. Model accuracy testing. 

MAPE Judgment of Forecast Accuracy 

<10% Highly Accurate 

11% to 20% Good Forecast 

21% to 50% Reasonable Forecast 

>51% Inaccurate Forecast 

Table 3. Notation of SDE model for the second wave of COVID-19. 

4.2.3. SDE model validation solution procedure 

To obtain considerable valuation for forecasting the data set, a useful model requires more 

COVID-19 infection data. Thus, the major challenge of this study is to find a suitable data range for a 

particular community. The current study is carried out on the basis of secondary data, which are 

obtained from the Epidemiology Unit, Ministry of Health, Sri Lanka [43]. Daily trading data for one-

month and four-day period, from 17 March 2020 to 14 April 2020, are extracted and tabulated for 

calculations. In this study, a new proposed stochastic model is widely applied to identify the random 

behavior of a virus with the combination of volatility and drift of the equation. To solve our new SDE 

model for predicting the first wave of COVID-19 patients, the following step-by-step procedure is 

presented. 

Notations Description 

(a) Decision variables 

𝐶 C is the number of infected cases 

𝐾 Final epidemic size 

𝑡 Time 

(b) Input parameters 

𝑆 Susceptible healthy population that is at risk of getting infected. 

𝐼 Infected population showing symptoms, whether mild or severe 

𝑅 Recovered population who have recovered from the 

disease and gained immunity 

𝛽 Infection rate—defined as the proportion of the infected population per 

day. 

𝛾 Recovery rate—defined as the proportion of the recovered population 

per day 

∅ Death rate—defined as the proportion of the infected population per 

day 

𝑅0 = 2.2 Reproduction number of the disease 

𝑟 0.126 Rate of infection 

𝑁 Population 
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Approach 1: Algorithm for solving the SDE model for the 1st wave of COVID-19 

Step 1: First, during the past three months (14 of March 2020 to 8 of July 2020), infected patients in 

the country are taken as the population in this study. Data are collected through secondary data 

sources [43]. Then, the infected patients are selected during 14 March 2020 to 17 April 2020 

as the sample using random sampling technique. 

Step 2: The model is derived using the Kolmogorov equation. The per capita infected rate 𝑔 and per 

capita cured rate 𝑙 are taken to measure the volatility and drift of the stochastic differential 

equation. 

Step 3: The Euler–Maruyama method is used to find the numerical solution to the presented stochastic 

differential equation–Virus spreading model in Eq (6). Let X(t) be the dependent variable for 

stochastic differential equation: 

𝑋𝑡+1 = 𝑋𝑡 +  𝛼𝑋𝑡−1∆𝑡 +  𝜎𝑋𝑡−1𝜂√Δ𝑡                       (10) 

𝜂 = Random number generator. 

Step 4: First, calculate 𝑔  and 𝑙  by using secondary data. Then, Eq (10) is transformed into the 

following Microsoft Excel formula to find the data pattern. 

We assume the following parameters in the Microsoft Excel (2013) sheet provided in Appendix 

A: 

Time ∆𝑡:  1/365 = 0.0027397 

Drift 𝜇:  $𝐶$7 ∗ $𝐶$8 ∗ 𝐸12 

Uncertainty 𝜎: NORM.INV (RAND (), 0, 1)*SQRT ($C$8)*$C$6*SQRT (E12) 

Change: 𝐶13 + 𝐵13 

Patients: 𝐷14 + 𝐸13 

Random number generator is used to create the pattern and, by changing the values of the drift 

and volatility, many patterns are obtained until the most appropriate pattern is found. 

Simultaneously, the actual data are plotted in the same graph. 

Step 5: The obtained data pattern in Step 4 is validated using the existing validation methods MAPE, 

MAD and bias to see whether this resulted data patter is better fit with the actual data pattern. 

4.3. Two well-known models and the solution technique for the second wave of COVID-19 outbreak 

Here, two well-known models are presented for predicting the second wave of COVID-19 

scenarios in Sri Lanka. Then, a solution method is proposed for the presented models. 

4.3.1. Two well-known models for the second wave of COVID-19 outbreak 

To predict the second wave of COVID-19 cases in Sri Lanka, two well-known Logistic growth 

and SIR models (refer to [37] and [38–41]) with the notations in Table 3 are obtained as follows: 

The Logistic growth model [37] 

1

C

𝑑𝐶

𝑑𝑡
= 𝑟 (1 −

𝐶

𝐾
)                                (11) 

𝑑𝐶

𝑑𝑡
= 𝑟 (1 −

𝐶

𝐾
) 𝐶                               (12) 



4686 

AIMS Mathematics  Volume 7, Issue 3, 4672–4699. 

Integrating (12), 

∫
𝑑𝐶

𝐶(1−
𝐶

𝐾
)
= ∫ 𝑟𝑑𝑡                              (13) 

Then, by solving Eq (13), we can obtain 

C =
𝐾

1+ (
𝐾−𝐶0

𝐶0
)𝑒𝑟𝑡

                              (14) 

Further, the maximum growth rate peaks at the time 

𝑡𝑝 =
𝑙𝑛(

𝐾−𝐶0
𝐶0

)

𝑟
                                (15) 

SIR Model [38– 41] 

𝑑𝑆

𝑑𝑡
= −𝛽𝐼

𝑆

𝑁
                                 (16) 

𝑑𝐼

𝑑𝑡
= 𝛽𝐼

𝑆

𝑁
– 𝛾𝐼                                (17) 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼                                  (18) 

𝑑𝐷

𝑑𝑡
= ∅𝐼                                  (19) 

4.3.2. Solution technique for the two well-known models for predicting the second wave of 

COVID-19 outbreak 

To solve the two model (Logistic growth equation and SIR model) for predicting the second wave 

of COVID-19 patient, the following step-by-step procedure is presented. 

Approach 2: Algorithm for solving the SDE model for the second wave of COVID-19 

Step 1: Define the population as the Sri Lankan population for this study. 

Step 2: Apply the Logistic growth and SIR models. 

Step 3: To plot the predicted pattern of the virus spreading, a MATLAB computational program 

(Appendix B) is developed for solving SIR model. 

Step 4: To plot the predicted pattern of the Logistic growth model, Equations (14) and (15) are solved. 

5. Results and discussion 

5.1. Results of the first wave of COVID-19 patients in Sri Lanka 

According to the solution technique (3.2.3), the first and second steps are completed in the 

previous sections. This section analyzes the data based on the predictive model [1]. 

According to Step 3, Eq (6) is approximated by using Euler–Maruyama method [36] in the given 
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time interval 𝑡0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛, approximating the𝑋0 < 𝑋1 < 𝑋2 < ⋯ < 𝑋𝑛 values. 

Determine the respective 𝑡 point from (6) 

𝑑𝑋(𝑡) = (𝑔 − 𝑙)𝑋(𝑡)𝑑𝑡 + √(𝑔 + 𝑙)𝑋(𝑡)𝑑𝑊(𝑡)                       (6) 

Approximate solution from Eq (10) is as follows: 

𝑋𝑡+1 = 𝑋𝑡 +  𝜇𝑋𝑡−1∆𝑡 +  𝜎𝑋𝑡−1𝜂√Δ𝑡                        (10) 

∆𝑡 =  𝑡𝑖+1 − 𝑡𝑖 

where: 𝜂 = Random number generator, 𝜎 = 𝑉𝑜𝑙𝑎𝑡𝑖𝑙𝑖𝑡𝑦 and 𝜇 = Drift. 

According to Step 4, to find the predicted data, it is required to calculate the per capita infected 

rate (𝑔 ) and per capita cured rate (𝑙 ). Therefore, the number of sample data in Table 4 is used to 

determine these rates. 

Table 4. Secondary data sources, published by the Epidemiology Unit, Ministry of Health, 

Sri Lanka [43]. 

Date_2020 Sum of infected Active cases Infected𝑋𝑖 Cured 𝑌𝑖 

4-Mar 1 0 0 0 

5-Mar 1 0 0 0 

6-Mar 1 0 0 0 

7-Mar 1 0 0 0 

8-Mar 1 0 0 0 

9-Mar 1 0 0 0 

10-Mar 2 0 1 0 

11-Mar 2 1 0 1 

12-Mar 4 3 0 0 

13-Mar 6 5 0 0 

14-Mar 11 10 8 0 

15-Mar 19 18 8 0 

16-Mar 29 28 10 0 

17-Mar 42 41 16 0 

18-Mar 53 52 7 2 

19-Mar 66 65 9 0 

20-Mar 72 71 13 0 

21-Mar 78 77 4 0 

22-Mar 87 86 5 0 

23-Mar 97 95 15 0 

24-Mar 102 100 5 0 

25-Mar 102 99 0 1 

26-Mar 106 100 4 4 

27-Mar 106 99 0 0 

Continued on next page 
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Date_2020 Sum of infected Active cases Infected 𝑋𝑖 Cured 𝑌𝑖 

28-Mar 115 105 7 2 

29-Mar 117 105 4 2 

30-Mar 122 106 5 4 

31-Mar 143 124 21 2 

1-Apr 146 122 3 4 

2-Apr 151 126 5 0 

3-Apr 159 131 8 3 

4-Apr 166 134 7 3 

5-Apr 176 138 10 6 

6-Apr 178 135 2 5 

7-Apr 185 137 7 4 

8-Apr 189 138 4 2 

9-Apr 190 134 1 5 

10-Apr 197 136 0 5 

11-Apr 199 138 8 0 

12-Apr 210 147 12 2 

13-Apr 218 155 7 0 

14-Apr 233 165 16 5 

15-Apr 238 168 5 2 

16-Apr 238 163 0 5 

17-Apr 244 160 6 9 

Following the infected values (𝑋𝑖) and cured values (𝑌𝑖) in Table 4, 𝑔 and 𝑙 can be computed as 

follows: 

𝑔  
∑ (𝑋𝑖+1−𝑋𝑖)

𝑁
𝑖=0

𝑁
  

185

30
= 6.11;𝑙 =

∑ (𝑌𝑖+1−𝑌𝑖)
𝑁
𝑖=0

𝑁
 

3

30
  0.1 thus,(𝑔 − 𝑙) = 6.01;(𝑔 + 𝑙) = 6.21 

Substituting Eq (6), 

𝑑𝑋(𝑡) = (𝑔 − 𝑙)𝑋(𝑡)𝑑𝑡 + √(𝑔 + 𝑙)𝑋(𝑡)𝑑𝑊(𝑡) 

𝑑𝑋(𝑡) = (6.01)𝑋(𝑡)𝑑𝑡 + √(6.21)𝑋(𝑡)𝑑𝑊(𝑡) 

Table 5. Values of the parameters in our developed SDE model. 

Parameters Values 

Initial number of patients  1 

Volatility  σ  (𝑔 + 𝑙) 6.21 

Drift μ  (𝑔 − 𝑙) 6.01 

Time Step ∆t   1/365 0.002739726 

Based on the above notion (Table 5), first, Eq (10) is converted using Microsoft Excel (2013). 
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Then, predicted patients are found in Appendix A. Finally, the predicted and actual data can be 

tabulated (Table 6) as follows: 

Table 6. Difference between two values in consecutive days and related percentages. 

Date Actual Predicted Difference Absolute bias 

14-Mar 17 16 1 1 

15-Mar 27 22 5 5 

16-Mar 43 29 14 14 

17-Mar 50 36 14 14 

18-Mar 59 43 16 16 

19-Mar 72 51 21 21 

20-Mar 76 58 18 18 

21-Mar 81 64 17 17 

22-Mar 96 71 25 25 

23-Mar 101 81 20 20 

24-Mar 101 89 12 12 

25-Mar 105 98 7 7 

26-Mar 105 107 -2 2 

27-Mar 112 117 -5 5 

28-Mar 116 125 -9 9 

29-Mar 121 131 -10 10 

30-Mar 142 137 5 5 

31-Mar 145 144 1 1 

1-Apr 150 150 0 0 

2-Apr 158 156 2 2 

3-Apr 165 163 2 2 

4-Apr 175 168 7 7 

5-Apr 177 174 3 3 

6-Apr 184 180 4 4 

7-Apr 188 185 3 3 

8-Apr 189 190 -1 1 

9-Apr 189 194 -5 5 

10-Apr 197 199 -2 2 

11-Apr 209 205 4 4 

12-Apr 216 211 5 5 

13-Apr 232 217 15 15 

14-Apr 237 222 15 15 

15-Apr 237 227 10 10 

16-Apr 243 233 10 10 

17-Apr 253 240 13 13 

MAPE 2.63% 

MAD 0.247 

Absolute bias 8.657 
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In Figure 3, the predicted solution is plotted as a blue curve and actual data graph is plotted as red 

curve. The Euler–Maruyama approximations with drift and volatility parameters are set to 6.211 and 6.01, 

respectively. 

 

Figure 3. Solution to the virus infection changes from stochastic differential equation. 

 

Figure 4. Residual values of geometric Brownian motion values vs. actual values. 

In the above figure, the 𝑋 axis shows the number of days and the 𝑌 axis shows the difference 

between GBM [45] and actual values. The corresponding results are summarized in Table 6 and 

Figures 3 and 4. The reported results in Table 6 represent the differences and similarities between 

forecasting results with respect to the actual data patterns. According to Table 3, the proposed model 

is highly accurate (less than 10%) with lowest MAPE error values. 

The mean absolute bias is 8.6571 and Figure 4 depicts the residual values of GBM vs. actual values. 

Moreover, MAPE values suggest that our proposed stochastic differential equation (MAPE: 2.63%, 

MAD: 0.247) is more significant for forecasting short time predictions. 

5.1.1. Discussion of the first wave of COVID-19 patients in Sri Lanka 

In the current study, the proposed stochastic model approach is used to discuss our result. This 

newly developed model values and the actual data were plotted at the same graph (Figure 3). These 
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two graphs depicted similar pattern and the mean absolute percentage error (MAPE) results also reveal 

that (MAPE  2.63%) the proposed stochastic model is more accurate and gives the solution for 

predicting virus spread in a community. Generally, the COVID-19 virus spread is disordered and shows 

very quick transmission behaviors. Therefore, the accuracy of forecast might be enhanced by modeling 

the stochastic differential methods as well. It is more important for governments to take action to 

prevent the spread of COVID-19 all over the country. 

5.2. Results and discussion of the second wave of COVID-19 patients in Sri Lanka 

5.2.1. Logistic growth model 

When analyzing the Daily Reported Cases, the country is yet to reach the spike rate of cases in 

the third week of December and the pandemic will reach the end in the fourth week of January 2021. 

Through firm preventive action, the number of cases, the peak date and the eradication is yet to come. 

According to the Logistic growth model, the normal behavior of the virus will affect 77,838 people. 

Blue colored bars in Figure 5 indicate the daily actual infectious COVID-19 cases during the 

period of two months (from 5 October 2020 to 5 December 2020). The Logistic growth model 

prediction curve in Figure 5 depicts the daily predicted infectious COVID-19 cases from 05 October 

2020 to 15 February 2021. It can be easily observed from Figure 5 that the highest number of infectious 

COVID-19 cases obtained on the 70th day (i.e., on 14 December 2020). These findings are also 

provided in Table 6. 

 

Figure 5. Logistic growth model prediction curve and actual situation of infectious 

individuals in Sri Lanka from 5 of October 2020 to 15 February 2021. 

Table 7 indicates that the highest number of predicted infectious COVID-19 cases (estimated peak 

day cases) is 933, observed on 14 December 2020. However, the highest number of actual infectious 

COVID-19 cases (actual peak day cases) on this day is 701. Please note that a slight deviation of the 
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predicted cases (933) from the actual cases (701) can be observed. Similarly, on the 15 February 2021, 

the estimated and the actual epidemic sizes (cumulative) of the COVID-19 cases are 77,838 and 75,085 

respectively. Note that a slight deviation of the estimated epidemic size (77,838) from the actual 

epidemic size (75,085) can be observed. Besides, the Logistic growth model can be extended by 

incorporating safety measures (taken by government) as the external factor (that affect the spread of 

the virus) to minimize the above stated deviations. 

Table 7. Estimated simulation results of the logistics growth model. 

Parameters Values 

Estimated epidemic rate (per day) 0.126 

Estimated start of ending phase date 15/02/2021 

Estimated epidemic size (Cumulative) 77,838 Cumulative cases 

Actual epidemic size (Cumulative) 75,085 Cumulative cases 

Estimated peak date  14/12/2020 

Estimated peak day cases 933 cases 

Actual peak day cases 701 cases 

A comparison between actual cases and those without intervention is shown in Figure 6 below. 

 

Figure 6. Logistic growth model prediction curves between no intervention of government 

and prevailing situation in Sri Lanka from 5 October 2020 to 5 December 2020. 

When viewing the number of cases that should have been reported with no intervention, it will 

reach to approximately over 70,000 cases (refer to Figure 6). However, the government of Sri Lanka 

has been successfully mitigating the situation with less than 30,000 cases as of 10 December 2020. 

This shows the immense contribution of the government and its stakeholders in their decision making 

and preventive, fighting, managing and accountability theatres. 

5.2.2. SIR model 

When the existence of the virus is forecasted to an extended year from 5 October 2020 to 5 



4693 

AIMS Mathematics  Volume 7, Issue 3, 4672–4699. 

January 2021, in the Sri Lankan context, the people of the country are more susceptible to the virus 

when the government’s involvement in the pandemic is absent. To solve the SIR model, a MATLAB 

computational program in Appendix B is utilized. Thus, the future prediction of COVID-19 in Sri 

Lanka (when the government’s involvement of preventing the virus is absent) can be seen in Figure 7 

below. 

 

Figure 7. Predicted spread of COVID-19 in Sri Lanka if the government is not involved 

in prevention of the virus. 

Suitable control over the infected people and reducing the risk of contact with the virus kept the 

country at an advantageous position. The stakeholders also deserve some credit for controlling the 

pandemic as the recovery rate remains comparatively higher than the death rate. 

5.3. Comparison of the fatality rates and recovery rates of Sri Lanka vs. the Globe 

Following [43], Sri Lankan fatality statistics are shown below, where the fatality rates of SriLanka 

arecompared to other countries. Note that these fatality and recovery ratecomparisons are obtained 

from [43] at the beginning of the second wave on 5 October 2020. 

According to Figure 8, the fatality rate of Sri Lanka is the lowest compared with the global rate. 

By now, the world has a 2.29% fatality rate whereas Sri Lanka stands at 0.5%. This shows the success 

of Sri Lanka’s COVID-19 response despite the fact that most of the developed and developing 

countries failed in this aspect, even those using the latest technology, health services and facilities. 

When the main causes behind the COVID-19 deaths are analysed, it is apparent thatpeople with 

NCDs (non communicable diseases) such as Cardiac arrest (17.7 %), pneumenia (11.5%)and diabetes 

are the most vulnerable group. It is noticed in Figure 9 that Sri Lanka’s recovery rate stands at a higher 

level compared with the global recovery rate. 
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Figure 8. Comparision of fatality rates of many countries (COVID-19 tracker). 

 

Figure 9. Comparison of recovery rates of many countries (COVID-19 tracker). 

6. Conclusions 

The novel coronavirus (COVID-19) has badly affected many countries in the world. Sri Lanka 

recorded the first confirmed case of COVID-19 on 27 January 2020, who was 44-year-old Chinese 

women from Hubei province in China. She had arrived as a tourist with another group of travelers and 

had been screened at the Bandaranayaka International Airport after having a high fever. She fully 

recovered and was later released on 19 February 2020. This incident made the health ministry and 

other relevant authorities more focused on the ongoing crisis around the globe. Predicting the number 

of COVID-19 cases has become vital for governments to take proper actions to prevent virus-spread. 

The first and second waves of COVID-19 cases in the country are investigated in this paper. First, a 
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new stochastic forecasting model is developed to predict the future COVID-19 outbreak in the country. 

The newly developed model is validated with the best available methods in the literature and a solution 

method is presented to solve the model efficiently. Thereafter, the solution method is presented to 

efficiently solve two existing models for predicting the number of second wave of COVID-19 outbreak. 

The presented models and solution approaches of this paper are validated with secondary data obtained 

from the Epidemiology Unit, Ministry of Health, Sri Lanka. Our new SDE model solutions 

approximately coincide with the actual data; thus, this forecasting model can predict future values with 

an accuracy of 92 percent. This percentage accuracy can be further improved by fine-tuning the SDE 

model parameters such as variance and expectation of the formulae. Moreover, the mean absolute 

percentage error (MAPE) results also reveal that (MAPE  2.63%) the new proposed SDE is more 

accurate and gives better solution for predicting virus spread in a community. Besides, according to 

Figure 8, the fatality rate of Sri Lanka remains at the lowest level compared with the global rate and 

other countries. By now, the world suffers from a 2.29% fatality rate, whereas Sri Lanka stands at 0.5%. 

It is noticed from Figure 9 that Sri Lanka’s recovery rate stands at a higher level compared with the 

global recovery rate. By utilizing our models, these fatality rates and recovery rates can be improved 

further. Hence, our findings (new proposed SDE model, two existing models, and the new solution 

techniques) are beneficial to the government of the country for making better decisions and to take 

better actions to prevent the spreading of the COVID-19 virus. 

Although the proposed SDE model predicts the future values for the first wave of COVID-19 

cases with a better accuracy (92%), a significant deviation of the estimated epidemic size (77,838) 

from the actual epidemic size (75,085) during the second wave of COVID-19can be found with the 

Logistic growth model. So, future research can be directed to extend the Logistic growth model by 

incorporating safety measures (taken by government) as the external factor (that affects the spread of 

the virus) to minimize the deviation. Also, our proposed new SDE model could be further extended to 

study the behavior of new Covid variant, the Omicron. 
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Excel file is provided as supplementary data set. 

Appendix B 

MATLAB computational program for solving the S-I-R model 

clearall; clc; 

 

%% Parameters 

Pre_infec   5.2; 
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f   1/Pre_infec; 

 

Duration   14; 

r 1/Duration; 

 

R_0   2.2; % A single infected person will infect about 2.2 others in a totally susceptible population 

 

N   21670000; % Population of  Sri Lanka (2020) 

beta   R_0/(N*Duration); 

 

%% Differential equations 

tspan   0:1:365; % We will observe what happens over the next year 

y0   [N-3733, 262, 3733, 3259, 13]; % Coronavirus count of Sri Lanka (Mar 12, 2020) 

 

[t,y] ode45(@(t,y) ode_fun_simple(t,y,beta), tspan, y0); 

% ode45 is a built in Numerical Differential Equations solver in MATLAB. 

% There are packages for this solver in other programming languages. 

 

%% plot 

plot(t,y,'LineWidth', 1.5, 'MarkerSize', 18) 

%legend('Susceptible','Deaths','Infectious','Recovered', 'Location', 'Best') 

xlabel('Days after October 05, 2020') 

ylabel('Population') 

title('Predicted Spread of COVID - 19 in Sri Lanka') 

gridon; 

gridminor; 

set(gca, 'FontSize', 36) 

%saveas(gcf, 'corona_simple1.png') 
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