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Abstract: In 1997, Mauduit and Sarkozy first introduced the measures of pseudorandomness for
binary sequences. Since then, many pseudorandom binary sequences have been constructed and
studied. In particular, Gyarmati presented a large family of pseudorandom binary sequences using the
discrete logarithms. Ten years later, to satisfy the requirement from many applications in cryptography
(e.g., in encrypting “bit-maps” and watermarking), the definition of binary sequences is extended from
one dimension to several dimensions by Hubert, Mauduit and Sarkozy. They introduced the measure of
pseudorandomness for this kind of several-dimension binary sequence which is called binary lattices.

In this paper, large families of pseudorandom binary sequences and binary lattices are constructed
by both discrete logarithms and multiplicative inverse modulo p. The upper estimates of their
pseudorandom measures are based on estimates of either character sums or mixed exponential sums.

Keywords: discrete logarithm; pseudorandom binary lattice; pseudorandom measure; character sums;
exponential sums
Mathematics Subject Classification: 11K45, 11L07, 11L40, 11205

1. Introduction and main results

Over 20 years ago, Mauduit and Sarkozy (partly with coauthors) started to study pseudorandomness
of binary sequences

Eyx=(e, - ,ey) € {—1,+1}N,

and developed a quantitative and constructive theory of this subject. In particular, in [1] Mauduit
and Sarkozy introduced the measures of pseudorandomness: The well-distribution measure of Ey is

defined by
=1

Z €a+jb

J=0

W(Ey) = mgx
a,n,t

b
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where the maximum is taken over all a, b, t € Nwith 1 < a < a+ (t—1)b < N. The correlation
measure of order k of Ey is

M

E en+d1 en+d2 e €n+dk

C (Ey) = max
MD |

b

where the maximum is taken over all D = (d, - ,dy) and M with0 < d; <---<dy <N - M.

The sequence is considered as a “good” pseudorandom sequence if both W (Ey) and Cy (Ey) (at
least for small k) are “small” in terms of N. Later many pseudorandom binary sequences were given
and studied by using number theoretic methods (see [2—6]).

Let p be a prime number and g be a primitive root modulo p. For an integer n with ged(n, p) = 1,
let ind n be the smallest non-negative integer ¢ with g’ = n (mod p). That is,

ind n

n=g"" (mod p) and 0<indn<p-2.

We name ind (n) the discrete logarithm of n to the base g. Gyarmati [7] presented a large family of
pseudorandom binary sequences using the discrete logarithms.

Proposition 1.1. Let f(x) € F,[x] be a polynomial of degree I, and define E,,_; = (e1,--- ,e,_1) by

L, [ HLif 1 <ind fon) < B,
" -L if B <ind f() < p—1or pl f(n).

Then
W (E,-1) < 381p"/* (log p)°* .

Moreover, suppose that at least one of the following assumptions holds:

(i) f is irreducible;

(i) If f has a factorization f = @' 5> - - - @," where a; € N and ¢; is irreducible over F,, then there
exists a number B such that exactly one or two ¢;s have degree f3;

(iii) k = 2;

(iv) (4k)! < p or (4D < p.
Then we have

Ci (Ep1) < 1014 p (log p)*" .

The first purpose of this paper is to give large families of pseudorandom binary sequences using the
discrete logarithms.

Theorem 1.1. Let f(x) € F,[x] be a polynomial of degree |, and define E,_; = (e, ,e,-1) by

[ +1, if 1<ind(f(n) +7) < B2,
I i <ind(F) +m) < p—1or plfn)+7,

where n is the inverse of n modulo p such that nn = 1 (mod p) and 1 <n < p—1. Then
W (E,-1) < deg(f)p*(log p)*.
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Moreover, if the congruence xf(x) + 1 = 0 (mod p) has no solution, then for any k € N we have

Ci(Ep1) < 2k deg(f)p* log p)'*'.
Corollary 1.1. Suppose that p is a prime with p = 3 (mod 4), and f(x) = xg*(x) with g(x) € F,[x].
Define E,,_y = (e1,--- ,ep_1) by

[ +1, if 1<ind(f(n) +7) < B2,
TN -1, i Bl <ind(F) +m) < p—Lor pl f(n)+7,

Then

W (E,-1) < deg(f)p? (log p)’.

For any k € N, we have

Ci (Ep1) < 2k deg(f)p* log p)**".

Let f, g be polynomials over F,. Define Jg% = f(n)g~'(n) for g(n) # 0. Mérai [8] studied the

distribution of Jg% in the residue classes modulo p and gave nontrivial upper bounds for the well-

distribution measure and correlation measure. We also generalize the sequence in Theorem 1.1 by
adding a simple rational function.

Theorem 1.2. Suppose that p is a prime number and s < log p is a positive integer. Let f(x), g(x) €
F,[x] andlet0 < a; <a, <--- <ay < p—1 beintegers with gcd(g(x), (x —ay) -+ - (x —ays)) = 1. Define
E,= (e, - ,e) by

+1 if pt(n—a)---(n—ay),pt fn)+ g(n)
(n—ap)---(n-ay)
g(n) p—1

e, = i
and1Slnd(f(”)Jr(n—al)-'-(n—as))S 2

—1 otherwise.

Then
1
W (E,) < (deg(f) + deg(g) + s) p*(log p)”.

Moreover, if the congruence (x —ay) - -+ (x —ay) f(x) + g(x) = 0 (mod p) has no solution and one of the
Jfollowing two conditions holds:

(i) min{s, k} < 2 and max{s,k} < p -1,

(i) (4k)* < p or (4s)* < p,
then for any k € N we have

Ci(Ep) < 2*k(deg(f) + deg(g) + s)p2(log p)F*!.

Hubert, Dartyge and Sarkozy [9] wrote the first paper on pseudorandom binary lattices in 2006,
since then, about 25 papers have been published in this field. One can refer to [9—-16] for further related
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results and constructions. In [9], the definition of binary sequences is extended from one dimension to
several dimensions by considering functions of type

n: Iy — {+1,-1},

where I}, denotes the set of the n-dimensional vectors whose all coordinates are selected from the set
{0,1,--- ,N —1}:
I]f\l] = {X: (X1,"' ’Xn) TXp, X € {0$1’ aN_ 1}}

We say that n is an n-dimensional binary N-lattice or briefly binary lattice. Let k € N and let u; (i =
1,---,n) be the n-dimensional unit vector whose i-coordinate is 1 and other coordinates are 0. The
measure of pseudorandomness of a binary lattice is defined as follows:

1

In
QAMzﬂﬁg;TZ;~§%Mhmm+-n+hmm+do
J1= Jn=

X“'Xn(.jlblul+"'+jnbnun+dk) s

where the maximum is taken over all n-dimensional vectors B = (by,---,b,), di,---,dg,
T = (1, -+ ,t,) whose coordinates are non-negative integers, by, - - , b, are non-zero, dy, --- ,d; are
distinct, and the points j;byu; + -+ - + j,b,u, + d; occurring in the multiple sum belong to I},.

A binary lattice 7 is said to have strong pseudorandom properties, or briefly, it is considered as a
“good” pseudorandom lattice if for fixed n, k and “large”N, the measure Q(n) is “small” (much
smaller, than the trivial upper bound N"). Gyarmati, Mauduit and Sarkozy gave the following
constructions in [11].

Proposition 1.2. Let p be an odd prime, f(x,y) € F,[x,y] be a polynomial of degree I. Suppose that
f(x,y) is square-free and it is not of the form [] f; (a/jx +,Bjy), where aj,5; € F, and f;(x) € F,[x] for
=1

Jj=1,---,r. Assume that k € N and one of the following conditions holds:
a) f(x,y) isirreducible,
b) k=2,
c) @D < p.
Define n : Ig — {-1,+1} by

(x,y) = +1, if (f(x,y),p)=1 and 1 <ind f(x,y) < 5,
15y = —1, otherwise.

Then we have
Ox(m) < lk4*p? (log p)**'.

The second purpose of this paper is to construct a large family of pseudorandom binary lattices
using the discrete logarithms.
Theorem 1.3. Let p be an odd prime, and let f(x;,---,x,) € F,[x1,---,x,] be a polynomial in n

variables. Define n : r,—{-1+1 by

+1 if (f(xe) - f(x),p) =1
M) = and 0 < R, (ind (f(x) -+ f(x) + T %) < 552,
—1 otherwise,
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where R,(z) denotes the unique r € {0, 1,--- , p — 1} such that z = r(mod p). Then we have

Qu() < 2*kdeg(f)p"~* (log p)™**".

2. Proof of Theorem 1.1, Corollary 1.1 and Theorem 1.2.

We need the following lemmas.

Lemma 2.1. Let p be a prime number, and let x be a non-principal character modulo p of order d.
Suppose that f(x) € Fp[x] has s distinct roots in F,,, and f(x) is not the constant multiple of the d-th
power of a polynomial over . Lety be real number with 0 <y < p. Then for any x € R we have

> x(f)| < 9sp? log p.

x<n<x+y

Proof. This is Lemma 2 in [7]. O

Lemma 2.2. Let p be a prime number, and let 1 <d < p—1withd | p— 1. Then

p-1
2
> D x(e)| < 2d10g(d + 1).
x mod p | I=1
X#X0
x4=xo
Proof. This is Lemma 3 in [7]. O
Lemma 2.3. Suppose that p is a prime numberand 1 < 61, -+ ,0, < p-2,0<d; <dry <---<di <p
are integers. Let ay,- -+ ,as € F,, be distinct numbers and let

h(x) = (x —ap)--- (x = ay).

If one of the following two conditions holds:
(1) min{s, k} < 2 and max{s,k} < p -1,
(ii) (4k)* < p or (4s)* < p,
then the polynomial
H(x) = h(x +dy)P™' 70 - h(x + di)P ™%

has a (p — 1 —6,)-th root in F,,

Proof. From

p—1-0k

p—1-6
H(x):((x+d1—a1)---(x+d1—as)) ><---x((x+dk—a1)---(x+dk—as)) ,
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we have if there exists a ¢ such that
di_aj:c$ i€{1,"',k},j€{1,"~,s},

has exactly one solution which is (d,, a,) forsome 1 <u <k,1 <v < s,thena,—d,isa(p—-1-9,)-th
root of the function H(x).

Consider the sets A = {a;,a,,...,a5},D =1{d|,d,...,d;}. It was proved in [17, Theorem 2] that
under any of the following conditions:

(i) min{s, k} < 2 and max{s,k} < p—1,

(i) (4k)* < p or (4s)* < p,
there is a ¢ € Z,, such that

a+d=c ae€eA,deD

has exactly one solution. Thus the statement of the lemma follows easily from this. O

Now we prove Theorem 1.1. For 1 <n < p — 1 with (f(n) +n, p) = 1 we have

0, otherwise.

- Z EX( Nx (fn) +7) = { . if 1 <ind (f(n) +7) < 57,
1

Therefore

M~\‘

Z

mod p

)((f(n)+n)—1

v
o7
Ln

- % ST SR U . 1)
p 1)(modpl=1

X#X0
Fora,b,twithl <a<a+(t—-1)b<p-1,by (2.1) we get

pl
t—1 1—

1
Corip = =7 Z)( ) > x(fla+ jb) +a+ jb) + O (deg(f),
Jj=0 )( mod p I=1 j=0
X#X0

where the error term equals to the number of n such that (f(n) +n, p) > 1. Write 6 = ord y. From
Lemma 2.1 we have

t—1

[

-1
Z)((f(a + jb) +a+ jb) = X ((a + jb)6f(a + jb) + (a + jb)‘H) < deg(f)p% log p, (2.2)
=0

J=0

since the polynomial (a + jb)° f(a + jb) + (a + jb)°*~! has a zero j = —ab of order § — 1. Hence from
Lemma 2.2 we get

1 1 1
> eariy < p >0 1D x (&) |deg(Hp? log p < deg(f)p* (log p)*.
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Therefore
-1

eas p| < deg(f)p?(log p)*.

W (E,-1) =

4
J=0

Now we consider the correlation measure of E,_;. We suppose that the congruence xf(x) + 1 =
0 (mod p) has no solution. For0 < d; <--- <d; < p—1—- M, from (2.1) we have

M
€n+d; """ Cntdy
n=1
p 1
l l
- o Zx ) 2 Zx "
X1 modph Xk modplk
X1#X0 XE#FX0
M — D —
x Y i (Fn+d)y+n+d)- oy (fn+d) + n+ di) + O (kdeg(/)). (2.3)

n=1

Let y* be a generator of the group modulo p characters, and let
=)™, 1<6,<p-2 for uefl,2, -k} (2.4)

Then

M
Doxi(fa+dy+n+d)-xi(fn+do +n+ dy)

M
:ZX*((f(n+d1)+n+d1)6l~-(f(n+dk)+n+dk)6k)

M
= ZX* (((n +d)f(n+d))+ 1) (n + dl)P—1—5I o ((n+d)f(n+dy) + 1% (n + dk)p_]_ék) '

Since xf(x) + 1 = 0 (mod p) has no solution, —d,, is the (p — 1 — ¢6,,)-th zero of the polynomial
(n+d)f(n+d) + 1 (n+dy ™00 (4 d)f(n+ d) + D 1+ d)P™

for u = 1,2,--- ,k. Thus this function is not the constant multiple of the (p — 1)-th power of a
polynomial over F,, from Lemma 2.1 we get

M
D oxi(fe+d)+n+adr) - xi(fn+di) +n+ dy) < kdeg(f)p? log p. (2.5)

n=1

Combining (2.3), (2.5) and Lemma 2.2 we have

-l
2

M
2k _ 1 1
D Cniar - Cneay < PRV > D x ()| kdea(f)p? log p < 2k deg(f)p? (log p)*!.

n=1 x mod p | I=1
X#X0
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Therefore

M

§ en+d1 en+d2 U en+dk

n=1

<« 2 kdeg(f)p? (log p)**.

Cy (Ep_l) = r}r‘}jag(

This proves Theorem 1.1.

Now we prove Corollary 1.1. From f(x) = xg*(x) we get xf(x) = (xg(x)). Since —1 is a quadratic
non-residue modulo p for p = 3 (mod 4), the congruence xf(x) + 1 = 0 (mod p) has no solution. So,
from Theorem 1.1, we conclude that

W (E,1) < deg(f)p*(log p)’,
Ci(Epm1) < 2%k deg(f)p> (log p)**'.

This completes the proof of Corollary 1.1.
Now we prove Theorem 1.2. For 1 <n < p — 1 with (f(n) + %,p) =1, we have

p—1
2

1 _ g(n)
p—1 2, X(gl)x(f(”” (n—a1>--~<n—as>)

x mod p I=1

_ [ 1 1 <ind(fon) + o) < B
0, otherwise.

Therefore
2 %— i g(n) )
n = _1
) P—lmd,,;)‘(g)*(ﬂ””<n—a1>--~<n—as>
2 S 5 )
P- X;p,zl"(g)"(f(””(n—al)--~<n—as)
X#X0
and then
t—1 pr1 t—1 .
2 —( : gla+ jb) )
atjp = — b , -
2,0 P—lxéplf(g)ﬁo)‘(ﬂ“””(aﬂb—ao---(aﬂb—as)

XFX0

+0 (deg(f) + deg(g) + 5),

where the error term equals to the number of n such that ( f(n) + %, p) > 1. Since
gcd(g(n),(n—ay)---(n—ay)) =1 and 6 = ord y, we obtain the following estimate similar to (2.2).

gla + jb) )
(a+ jb—ay)---(a+ jb—ay)

—_

—

X(f(a+jb)+

T
=)

t—1

>x((@+ jo—ap)---(a+ jb-a)yfa+jb)

J=0
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+((a+jb—a))---(a+ jb—a)) ' gla+ jb))
< (deg(f) + deg(g) + s) p* log p.

Hence from Lemma 2.2 we get

t—1 LEI
1 _ 1
Dt < —= >, > %(¢) (deg(f) + deg(g) + 5) p* log p
. p—1
Jj=0 x mod p | I=1
X#X0

< (deg(f) + deg(g) + s) p*(log p)°.

Therefore

t—1

Z €a+jb
Jj=0

According to (2.3) and (2.4) we get a similar equality for the correlation measure of E), that

M
E en+d1 e en+dk

W(Ep) = max < (deg(f) + deg(g) + s)p%(log »)°.

a,b,t

n=1
— 11 l
B (p— 1)k Z Z/\'/l Z ZX '
x1mod p 1= yx mod p =
X1#X0 XKFEXO
oz gn+dp)
d 1
X;XI(f(n+ 1)+(n+d1+a1)---(n+d1—as))
g(n+dy)
.. d
X x)(k(f(n+ k)+(n+dk+a1)~-(n+dk—as))

+0 (k(deg(f) + deg(g) +5))

N (p—1)k 2 ZXl CORNDY ZX (")

x1mod p 1= xx mod p =1
X1#X0 XkFEX0

M
x Y X ((n+di—a)--(n+di —a)fn+dy) + gn+dy)

X((n+dy—a))---(n+d, - as))p_l_‘sl)
X=X ) (4 di =) (1 + di = a) f(n + di) + g(n + )™
X ((n+di—ar) - (n+ dy - a))’ %)

+0 (k(deg(f) + deg(g) + 5)) .

We assume that (x — a;)---(x — ay)f(x) + g(x) = 0 (mod p) has no solution, thus from this and
Lemma 2.3 we obtain that the function

AIMS Mathematics Volume 7, Issue 3, 4655-4671.
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(n+dy—a)---(n+dy—a)f(n+d) +gn+d)) (n+dy —ay)--(n+d —a,)’"™"
XX ((n+dy—ar) - (n+di —a) f(n+ dy) + g(n + di)™
X((n+di—a)-- (n+dp—ag)’'™*
= (n+di—a)---(n+dy —a,) f(n+dy) + g(n +dy))"
XX ((n+dp—ay) - (n+dy —a)) f(n+dy) + gn + dy))™ x H(n)

has a (p — 1 - ¢,)-throot in . Then this function is not the constant multiple of the (p — 1)-th power
of a polynomial over F,, so from Lemmas 2.1 and 2.2 we have

k

2k .
< 2, [2.%(8)]| Kdeg(r) +deg(g) + $)p? log p

< 2Mk(deg(f) + deg(g) + s)p* (log p)**".

Therefore,

M
Ci (Ep) = MaXup | Tl CnediCnids Cnvd]

< 2%k(deg(f) + deg(g) + s)p? (log p)+!.

This proves Theorem 1.2.
3. Estimate of mixed exponential sums and proof of Theorem 1.3

We need the following estimates for mixed exponential sums to prove Theorem 1.2.

Lemma 3.1. Let p be a prime number. Let  be a nontrivial additive character and xy a multiplicative
character of F, of order d. Furthermore, let F = "g;, 0= % be non-zero rational functions over F,, and
let s be the number of distinct zeros of g in Fp. Assume that S is the set of poles of F and Q. If one of
the following conditions holds:

@) g(x) 1 f(x),

(ii) Q(x) is not of the form bB(x)" for any b € F, and B(x) € F,(x).
If 1 < N < p, then we have

D WF@H(Qm)| < 3(max{deg(f), deg(9)} + s + deg(q) + deg(r)p' " log p. 3.1
Vs
Proof. See Theorem 5 in [18]. O
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Lemma 3.2. Assume that p > 2 is a prime, 6, -- , 0y are integers, and x* is a generator of the group
of characters modulo p. Let uy,- - - ,uy be integers with (uy - - - uy, p) = 1, and let

dy =(di, - ,di), - di = iy 5 dra)
be distinct vectors whose coordinates are integers. Suppose that f(x) € F,[x]. Let 1 < N < p. For any
integers 1 <ty,--- ,t,<Nand1 < by, - ,b, < p, define

13 In

Y

jl =0 jn:()
((1b1+di1)(j1b1+dr), p)=1 (Unbutdin)=Cinbntdm), p)=1

xx" (f(jlbl +di)" - fGabn + din)™ - fGrby + dia) - fGaba + dkn)ék)
y (uljlbl +dyy o juby +dyy + -+ w1y +dig - by + dkn)
e .
V4

Then we have
1
Y <« kdeg(f)p" 2 log p.

Proof. This lemma can be proved by using the methods in [15] with slight modifications. For a
completeness we give detailed proof. Without loss of generality, we may assume that dyy, - - - ,d;; are
not the same, since d, - - - , d; are distinct. If there are / distinct elements in {d;, - - - , di1}, we find that

{dll"” ’dkl} = {dilla"' 7di11}’

where d;, 1, - -+, d;; are distinct. Then

u1x1+d11--~xn+d1n+~--+ukx1+dk1-~~xn+dkn

k k
= Ltj)C2+dj2"')Cn+djn X1+d,'11+"'+ Z u.,-x2+dj2---xn+d,~n )C1+d511.
=) =1
dji=d;, 1 dji=d;1
Let
k k
a;, = Z ujx2+dj2~-xn+dj,,,...,al~,: Z ujx2+dj2--~xn+djn,
J=1 j=1
dji=d;, 1 dji=d;1
and define

A = {(Xz,---,xn)EB1((x2+d12)"'(x2+dk2),19): L...,((xy +din)

k
G+ d),p) = Lpt D wxtdp X, +d,
j=1
dji=dj

AIMS Mathematics Volume 7, Issue 3, 4655-4671.
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k
NN X Z ujx2+dj2~-xn+djn},
=ty
where
B={(x2-,x) | xi=Jib;, 0< ji<t;, i=2,---,n.}.
It is not hard to see that
Al < p"! + O (kp"?),

where the error term equals to the number of vectors (x,, - - - , x,,) such that

(2 +dp2) - (x2+dia),p) > 1.

Then we have

p-1 p-1
¥ = Z e ZX* (f(xz +dp)" - f(x + dkz)ék) X (f(xn +di)™ e (g + dk,,)‘s")
x2=0 x,=0
2()cz ..... Xn)EA
1

X Z X*(f(jlbl +d)’ - f(Giby +dkl)6k)
J1=0
((1br+dy)-(rbr1+di),p)=1

e a,-ljlbl + dill +---+ ai,jlbl + dill

p
+0 (kp"_l).
Define
z(x)) = (xy +dij1) - (01 +diy),
and
i i
g(xy) = Z a;; 1_[ (x1 +di,1).
j:l mzlf
We get
1
> X (FGby+di)® - f(Gaby + di)™)
J1=0

((j1b1+d11)-(j1b1+dr1),p)=1
. a, by +di +---+a;,j1b) +diy
p

1
= Z X (f(j1b1 +di)™ - (b +dk1)6")€(
J1=0
((j1b1+d11)(j1b1+dk1),p)=1

g(j1by) )
z2(ibp)’
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Since —d,1,...,—d; are not zeros of g(x), we have z(x) 1 g(x). There exist at most k deg(f)
different roots for the function f(j b, +d;,)* - -+ f(ji1b) + di;)%. Thus we can use Lemma 3.1 to get
3l
> X (FGiby +di) - fGaby + di)™)

J1=0
((j1b1+d11)+(j1b1+dr1),p)=1

ai|jlb1 + di|1 + -+ ai1j1b1 + di[l
e
p
< kdeg(f)p* log p,

Therefore, 1
Y <« kdeg(f)p" 2 log p.

This completes the proof of Lemma 3.2.

Now we prove Theorem 1.3. For xy, - -, x, with (f(x;)--- f(x,), p) = 1 we have

p-1

%ZZ (u(ind(f(xo---f(xn»+—x1---xn—v) »
P50 p
I, if 0<R,(nd (f(x) - f(x) + 3 %) < 57,

—1, otherwise.

Therefore
n(xy, -, Xy)
2 i”‘le(m i ()8 + T2
p v=0 u=0 p
2’”(‘31 ( uv)] (uind(f(xl)---f(xn))) (uxl—x) I
== e[-—||e e +—
pu:l v=0 p p p p

x”) +Lao
P

ux;
p(pl);[z ( )]szwp;)((g)e( )X(f(xl) f(xn))e(T

Let by, --- , b, be positive integers, and write d; = (d;,- -+ ,d;,) fori € {1,--- ,k}. By (3.2) we get

13 In

Z---Zn(hblul + ot Jubgu, +dy) - (b + - - + jubyu, + dy)

Jj1=0 j,=0
tl‘l
—Z Zn<hb1+dn,~--,jnbn+d1n)---n<jlb1+dk1,--~,jnbn+dkn>
JlO Jn
p-1 p-1
2k Ly (—ulvl) 2 & —Up Vg
= = 1F ¢ e( )
pp=1 Z[Z;J p ;; p
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x Y Z»m(gl')e(”lll) > Z)( <g1k>e(”"l")

x1 mod p [1=0 Xk mod p ;=0

131 ty

S VS
J1=0 Jn=0

((jlbl+dll)'"(jlhl+dk1), P)zl ((jnhn+d1n)"'(jnbn+dkn)’ 17):1

Xx1 (f(iby +din) -+ fGubn +din) - xx (f(G1by + diy) - -+ f(nby + din))
« [uljlbl +di o Juby Hdig o+ iby Hdig e by + dkn)
e

P

+0 (kdeg(f)p"™"). (3.3)

Let y* be a generator of the group of characters modulo p, and let v, = (")

,where 1 <¢,<p-1
forue{l,2,---,k}. From Lemma 3.2 we have

131 In

J1 =0 jn:()
((1br+di1)-(j1b1+dr1), p)=1 ((nbu+din)~Cnbu+di), p)=1

Xx1 (f(1br +di) -+ fGubn +din) - xx (f(G1b1 + dia) - -+ f(nbn + din))
Xe(”ljlbl +dyy o juby +diy + s+ ji1by +dig - by + dkn)

p

n In

jl =0 jnzO
((1b1+di1)-(1b1+dr), p)=1 ((nbntdin)(ubntdim), p)=1

" (FGrbr + i)’ f(Gabn + i)'+ f(Gaby + dia)™ -+ f b + dia)™)
(uljlbl +dy o Juby +di, +
Xe

+uibyr +di - Jubn + dkn]
14

<k deg(f)p"‘% log p.

(3.4
Then combining (3.3) and (3.4) we get
n th
Z e Z’?(jlbllll + o+ jubgu, +dy) - (ibyag + - - + Jubyu, +dy)
J1=0 Jn=0
2k I e uyv s UV
—Uvi —Up Vi
< — e e
p"(p—l)";v; ( p ) ;;) ( P )
= ul
x Z)a(g“)e( ) T ’w(ﬂ)
x1 mod p |1= Xk mod p [ ;=0 P
xk deg(f)p"* log p
1 5 = 1
— ! 141
< EIET Z Z Z/\,/l(gl)e(—)
ur= 1 < >)(] modp 11:0
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g2 ul
Z)Fk(glk)e (ﬂ)
p

=0

X"'XZ@ D

=1 Xk mod p
x2'k deg(f)p"~* log p. (3.5)
where (6) = min (6 — [6], 1 — (6 — |6])) denotes the distance from 6 to nearest integer. Noting that

p-2 I
D x(@he (u—)
p

m=0 =0 \P~ L p
p_2 1

< T < (p—Dlog(p—1). (3.6)
= (5

Combining (3.5) and (3.6) we obtain

n iy
Z e Z’?(jlblul + o+ Jubgu, +dy) o (i + -+ + jubyu, + dy)

J1=0 Jn=0
< 2fkdeg(f ) (log p)**'.

Therefore,

Q) < 2'kdeg()p"* (log p)**".
This completes the proof of Theorem 1.3.

4. Conclusions

In this paper, a method is given for the application of primitive characters modulo p and the
estimates of both character sums and mixed exponential sums to the estimates of pseudorandom
measures. The binary sequences in Theorem 1.1, Corollary 1.1 and Theorem 1.2 are demonstrated to
be pseudorandom, since the upper bounds of both the well-distribution measure and the correlation
measure of those sequences are o(p) as p — oo. With the growth of the number of dimensions, the
error term of the pseudorandom measure in (3.3) is up to kdeg(f)p""!, thus the result in Theorem 1.3
is the best one by now which is based on Lemma 3.2.
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