
AIMS Mathematics, 7(3): 4338–4358. 

DOI: 10.3934/math.2022241 

Received: 01 October 2021 

Revised: 05 December 2021 

Accepted: 13 December 2021 

Published: 20 December 2021 

http://www.aimspress.com/journal/Math 

 

Research article 

Some new Jensen, Schur and Hermite-Hadamard inequalities for log 

convex fuzzy interval-valued functions 

Muhammad Bilal Khan1, Hari Mohan Srivastava2,3,4,5, Pshtiwan Othman Mohammed6, 

Kamsing Nonlaopon7,* and Y. S. Hamed8 

1 Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, Pakistan 
2 Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8W 3R4, Canada 
3 Department of Medical Research, China Medical University Hospital, China Medical University, 

Taichung 40402, Taiwan 
4 Department of Mathematics and Informatics, Azerbaijan University, 71 Jeyhun Hajibeyli Street, 

AZ1007 Baku, Azerbaijan 
5 Section of Mathematics, International Telematic University Uninettuno, I-00186 Rome, Italy 
6 Department of Mathematics, College of Education, University of Sulaimani, Sulaimani 46001, 

Kurdistan Region, Iraq  
7 Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, 

Thailand 
8 Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, 

Taif 21944, Saudi Arabia 

* Correspondence: Email: nkamsi@kku.ac.th. 

Abstract: The inclusion relation and the order relation are two distinct ideas in interval analysis. 

Convexity and nonconvexity create a significant link with different sorts of inequalities under the 

inclusion relation. For many classes of convex and nonconvex functions, many works have been 

devoted to constructing and refining classical inequalities. However, it is generally known that 

log-convex functions play a significant role in convex theory since they allow us to deduce more 

precise inequalities than convex functions. Because the idea of log convexity is so important, we 

used fuzzy order relation(≼) to establish various discrete Jensen and Schur, and Hermite-Hadamard 

(H-H) integral inequality for log convex fuzzy interval-valued functions (L-convex F-I-V-Fs). Some 

nontrivial instances are also offered to bolster our findings. Furthermore, we show that our 

conclusions include as special instances some of the well-known inequalities for L-convex F-I-V-Fs 

and their variant forms. Furthermore, we show that our conclusions include as special instances some 
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of the well-known inequalities for L-convex F-I-V-Fs and their variant forms. These results and 

different approaches may open new directions for fuzzy optimization problems, modeling, and 

interval-valued functions. 

Keywords: log convex fuzzy interval-valued function; Riemann integral operator; Jensen type 

inequality; Schur type inequality; Hermite-Hadamard type inequality; Hermite-Hadamard-Fejér type 

inequality 

Mathematics Subject Classification: 26A33, 26A51, 26D10 

 

1. Introduction 

Convex functions are well-known for their importance and superior applications in a variety of 

domains, particularly in integral inequalities, variational inequalities, and optimization. As a result, 

substantial effort has gone into analyzing and describing many aspects of the traditional concept of 

convexity. Several writers have recently examined several extensions and generalizations of convex 

functions, such as generalized convexity [1], 𝑠-convexity in the second sense [2], 𝒽-convexity [3], 

𝑃-convexity [4], and so on. 

In classical approach, a real mapping 𝔄:𝐾 → ℝ is named as convex if 

𝔄(𝜍𝜕 + (1 − 𝜍)𝑦 ) ≤ 𝜍𝔄(𝜕) + (1 − 𝜍)𝔄(𝑦),                    (1) 

for all 𝜕, 𝑦 ∈ 𝐾, 𝜍 ∈ [0, 1]. If  𝔄 is a concave, then inequality (1) is flipped. 

The integral problem and the idea of convexity is a fascinating subject for investigation. As a 

result, several inequalities have been offered as convex function applications. Among these, the H-H 

inequality is a fascinating convex analytic result. The H-H inequality [5,6] for convex function 

𝔄:𝐾 → ℝ on an interval 𝐾 = [𝜇, 𝜐] 

𝔄(
𝜇+𝜐

2
) ≤

1

𝜐−𝜇
 ∫ 𝔄(𝜕)𝑑𝜕
𝜐

𝜇
≤

𝔄(𝜇) + 𝔄(𝜐)

2
,                      (2) 

for all  𝜕 ∈ 𝐾. If 𝔄 is a concave, then inequality (2) is flipped. 

We should notice that H-H inequality is a refinement of the idea of convexity, and it readily 

follows from Jensen's inequality. In the recent few decades, H-H inequality has drawn a large number 

of authors to this topic. It's worth noting that (2) may be used to generate some of the standard 

inequalities for function 𝔄 selection. 

If 𝔄 is concave, both inequalities hold in the opposite direction. Ostrowski inequality [7,8], 

Jensen type inequality [9], and H-H type inequalities are examples of inequalities that generalize, 

enhance, and extend the inequality (2). Fejér created the H-H Fejér inequality as the most important 

weighted extension of H-H inequality in [10]. 

Let 𝔄: [𝜇, 𝜐] → ℝ+ be a convex function on a convex set  𝐾 and 𝜇, 𝜐 ∈ 𝐾 with 𝜇 ≤  𝜐 . 

Then, 

𝔄(
𝜇+𝜐

2
) ≤

1

∫ 𝔔(𝜕)𝑑𝜕
𝜐
𝜇

 ∫ 𝔄(𝜕)𝔔(𝜕)𝑑𝜕
𝜐

𝜇
≤

𝔄(𝜇)+ 𝔄(𝜐)

2
∫ 𝔔(𝜕)𝑑𝜕
𝜐

𝜇
.           (3) 

If 𝔄 is concave, then inequality (3) is flipped. If 𝔔(𝜕) = 1, then we obtain (2) from (3) with 
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the assistance of inequality (3), many inequalities can be obtained through special symmetric 

function 𝔔(𝜕) for convex functions. 

It is well knowledge that log-convex functions are important in convex theory because they 

allow us to construct more precise inequalities than convex functions. Some writers have recently 

studied other classes of log-convex and log-nonconvex functions, such as 𝒽-convexity [11], 𝑠-log 

convexity [12], and log-preinvexity [13,14], among others. The log-convex functions introduced by 

Pecari’c et al. [15] are a significant subclass of convex functions. Dragomir further looked into 

several log convex function features and developed H-H and Jensen [16–22] type inequalities for 

various log convex function classes. 

On the other hand, to improve the accuracy of measurement findings and perform error analysis 

automatically, Moore [23] and, Kulish and Miranker [24] have proposed and examined the notion of 

interval analysis, replacing interval operations with simple operations. It is a field in which an 

uncertain variable is represented by a range of real numbers. Robotics, computer graphics, error 

analysis, experimental and computational physics, and many more fields have applications. 

Following their research, other writers turned to the literature to present several key generalized 

convex classes and inequalities for set-valued and interval-valued functions. With the use of fuzzy 

variational inequality, Nanda and Kar [25] and Chang [26] studied the concept of convex fuzzy 

mapping and discovered its optimality condition. Fuzzy convexity generalization and extension play 

an important role in a variety of applications. Let us mention that preinvex fuzzy mapping is one of 

the most well studied nonconvex fuzzy mapping classes. Noor [27] presented this concept and 

demonstrated certain findings using a fuzzy variational-like inequality to identify the fuzzy 

optimality condition of differentiable fuzzy preinvex mappings. We suggest readers to [28–32] and 

the references therein for more examination of literature on the applications and properties of 

variational-like inequalities and generalized convex fuzzy mappings. Román-Flores et al. found 

Beckenbaches inequality for interval-valued functions in [33,34]. Chalco-Cano et al. derived 

Ostrowski type inequalities for interval-valued functions using the Hukuhara derivative in [35,36]. 

Zhang et al. [37] used a pseudo order relation to establish a novel version of Jensen's inequalities for 

set-valued and fuzzy set-valued functions, proving that these Jensen's inequalities are an expanded 

form of Costa Jensen's inequalities [38]. In addition, for interval-valued functions (I-V-Fs) and 

F-I-V-Fs, fuzzy-interval and interval inequalities [39–41], fuzzy differential inequalities [42], are 

some related inequalities. See [43–58] for further details. 

The goal of this study is to use fuzzy Riemann integrals to establish novel Jensen, Schur, H-H, 

and H-H Fejér type inequalities for L-convex F-I-V-Fs. For some exceptional circumstances, such as 

log convex functions, we establish our results. We further demonstrate the validity of our major 

findings using nontrivial examples. A brief conclusion is presented at the end. 

2. Preliminaries 

In this section, we introduces some preliminary notions, elementary concepts, and results as a 

pre-work, including operations, orders, and distance between interval and fuzzy numbers, 

Riemannian integrals, and fuzzy Riemann integrals. Some new definitions and results are also 

provided, which will be helpful to prove our main results. 

Let ℝ be the set of real numbers and 𝒦𝐶 be the space of all closed and bounded intervals of ℝ, 

and 𝜛 ∈ 𝒦𝐶 be established by 
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𝜛 = [𝜛∗, 𝜛
∗] = {𝜕 ∈ ℝ| 𝜛∗ ≤ 𝜕 ≤ 𝜛∗}, (𝜛∗, 𝜛

∗ ∈ ℝ). 

If 𝜛∗ = 𝜛∗, then 𝜛 is named as degenerate. If 𝜛∗ ≥ 0, then [𝜛∗, 𝜛
∗] is named as positive 

interval. The set of all positive interval is denoted by 𝒦𝐶
+  and established as 𝒦𝐶

+ =

{[𝜛∗, 𝜛
∗]: [𝜛∗, 𝜛

∗] ∈ 𝒦𝐶  and 𝜛∗ ≥ 0}. 

Let 𝚜 ∈ ℝ and 𝚜𝜛 be established by 

𝚜.𝜛 = {

 
[𝚜𝜛∗, 𝚜𝜛

∗] if 𝚜 > 0,
{0}                if  𝚜 = 0,
[𝚜𝜛∗, 𝚜𝜛∗]  if 𝚜 < 0.

  

Then the Minkowski difference 𝜉 − 𝜛 , addition 𝜛 + 𝜉  and 𝜛 × 𝜉  for 𝜛, 𝜉 ∈ 𝒦𝐶  are 

established by 

 
[𝜉∗, 𝜉

∗] − [𝜛∗, 𝜛
∗]  = [𝜉∗ −𝜛∗, 𝜉

∗ −𝜛∗],
[𝜉∗, 𝜉

∗] + [𝜛∗, 𝜛
∗]  = [𝜉∗ +𝜛∗, 𝜉

∗ +𝜛∗],
  

and 

[𝜉∗, 𝜉
∗] × [𝜛∗, 𝜛

∗] = [𝑚𝑖𝑛{𝜉∗𝜛∗, 𝜉
∗𝜛∗, 𝜉∗𝜛

∗, 𝜉∗𝜛∗},𝑚𝑎𝑥{𝜉∗𝜛∗, 𝜉
∗𝜛∗, 𝜉∗𝜛

∗, 𝜉∗𝜛∗}]. 

The inclusion " ⊆ " means that 𝜉 ⊆ 𝜛 if and only if, [𝜉∗, 𝜉
∗] ⊆ [𝜛∗, 𝜛

∗], if and only if 

𝜛∗ ≤ 𝜉∗, 𝜉
∗ ≤ 𝜛∗.                              (4) 

Remark 2.1. [24] The relation " ≤𝐼 " established on 𝒦𝐶 by[𝜉∗, 𝜉
∗] ≤𝐼 [𝜛∗, 𝜛

∗] if and only if 

𝜉∗ ≤ 𝜛∗, 𝜉
∗ ≤ 𝜛∗,                              (5) 

for all [𝜉∗, 𝜉
∗], [𝜛∗, 𝜛

∗] ∈ 𝒦𝐶 , it is an order relation. 

For [𝜉∗, 𝜉
∗], [𝜛∗, 𝜛

∗] ∈ 𝒦𝐶 , the Hausdorff-Pompeiu distance between intervals [𝜉∗, 𝜉
∗] and 

[𝜛∗, 𝜛
∗] is established by 

𝑑([𝜉∗, 𝜉
∗], [𝜛∗, 𝜛

∗]) = 𝑚𝑎𝑥{|𝜉∗ − 𝜛∗|, |𝜉
∗ −𝜛∗|}.               (6) 

It is familiar fact that (𝒦𝐶 , 𝑑) is a complete metric space. 

A fuzzy subset 𝑇 of ℝ is characterize by a mapping 𝜉:ℝ → [0,1] named as the membership 

function, for each fuzzy set and 𝜃 ∈ (0, 1], then 𝜃-cut sets of 𝜉 is denoted and established as 

follows 𝜉𝜃 = {𝜇 ∈ ℝ| 𝜉(𝜇) ≥ 𝜃} . If 𝜃 = 0 , then 𝑠𝑢𝑝𝑝(𝜉) = {𝜕 ∈ ℝ| 𝜉(𝜕) > 0}  is named as 

support of 𝜉. 

Let 𝔽(ℝ) be the collection of all fuzzy sets and 𝜉 ∈ 𝔽(ℝ) be a fuzzy set. Then, we establish 

the following: 

(1) 𝜉 is named as normal if there exists 𝜕 ∈ ℝ and 𝜉(𝜕) = 1; 

(2) 𝜉 is named as upper semi continuous on ℝ if for provided 𝜕 ∈ ℝ, there exist 𝜀 > 0 there 

exist 𝛿 > 0 such that 𝜉(𝜕) − 𝜉(𝑦) < 𝜀 for all 𝑦 ∈ ℝ with |𝜕 − 𝑦| < 𝛿; 

(3) 𝜉 is named as fuzzy convex if 𝜉𝜃 is convex for every 𝜃 ∈ [0, 1]; 

(4) 𝜉 is compactly supported if 𝑠𝑢𝑝𝑝(𝜉) is compact. 

A fuzzy set is named as a fuzzy number or fuzzy interval if it has properties (1)–(4). We denote 

by 𝔽𝑪(ℝ) the group of all fuzzy intervals. 



4342 

AIMS Mathematics  Volume 7, Issue 3, 4338–4358. 

Let 𝜉 ∈  𝔽𝐶(ℝ) be a fuzzy-interval, if and only if, 𝜃-cuts [𝜉]𝜃 is a noempty compact convex 

set of ℝ. From these definitions, we have 

[𝜉]𝜃 = [𝜉∗(𝜃), 𝜉
∗(𝜃)],                           (7) 

where 

𝜉∗(𝜃) = 𝑖𝑛𝑓{𝜕 ∈ ℝ| 𝜉(𝜕) ≥ 𝜃}, 𝜉∗(𝜃) = 𝑠𝑢𝑝{𝜕 ∈ ℝ| 𝜉(𝜕) ≥ 𝜃}. 

Proposition 2.2. [39] If 𝜉,𝜛 ∈ 𝔽𝐶(ℝ), then relation " ≼ " established on 𝔽𝐶(ℝ) by 𝜉 ≼ 𝜛 if and 

only if, 

[𝜉]𝜃 ≤𝐼 [𝜛]
𝜃, for all 𝜃 ∈ [0, 1],                       (8) 

this relation is known as partial order relation. 

For 𝜉,𝜛 ∈ 𝔽𝐶(ℝ) and 𝚜 ∈ ℝ, the sum 𝜉+̃𝜛, product 𝜉 ×̃ 𝜛, scalar product 𝚜. 𝜉 and sum 

with scalar are established by: 

Then, for all 𝜃 ∈ [0, 1], we have 

[𝜉+̃𝜛]𝜃 = [𝜉]𝜃 + [𝜛]𝜃,                                                        (9) 

[𝜉 ×̃ 𝜛]𝜃 = [𝜉]𝜃 × [ 𝜛]𝜃,                                                   (10) 

[𝚜. 𝜉]𝜃 = 𝚜. [𝜉]𝜃.                           (11) 

For 𝜓 ∈ 𝔽𝐶(ℝ) such that 𝜉 = 𝜛+̃𝜓, then by this result we have existence of Hukuhara 

difference of 𝜉 and 𝜛, and we say that 𝜓 is the H-difference of 𝜉 and 𝜛, and denoted by 𝜉−̃𝜛. 

Definition 2.3. [39] A fuzzy-interval-valued map 𝔄: 𝐾 ⊂ ℝ → 𝔽𝐶(ℝ) is named as F-I-V-F. For each 

𝜃 ∈ (0, 1],  𝜃 -cuts establish the series of I-V-Fs 𝔄𝜃: 𝐾 ⊂ ℝ → 𝒦𝐶  are provided by 𝔄𝜃(𝜕) =

[𝔄∗(𝜕, 𝜃), 𝔄
∗(𝜕, 𝜃)]  for all 𝜕 ∈ 𝐾.  Here, for each 𝜃 ∈ (0, 1],  the end point real functions 

𝔄∗(. , 𝜃), 𝔄
∗(. , 𝜃): 𝐾 → ℝ are named as lower and upper functions of  𝔄. 

The following conclusions can be drawn from the preceding literature review [7,39,40,42]: 

Definition 2.4. Let 𝔄: [𝘶, 𝜐] ⊂ ℝ → 𝔽𝐶(ℝ) be a F-I-V-F. Then, fuzzy Riemann integral of 𝔄 over 

[𝜇, 𝜐], denoted by (𝐹𝑅)∫ 𝔄(𝜕)𝑑𝜕
𝜐

𝜇
, it is provided by level-wise 

[(𝐹𝑅)∫ 𝔄(𝜕)𝑑𝜕
𝜐

𝜇
]

 
𝜃
= (𝐼𝑅)∫ 𝔄𝜃(𝜕)𝑑𝜕

𝜐

𝜇
= {∫ 𝔄(𝜕, 𝜃)𝑑𝜕

𝜐

𝜇
: 𝔄(𝜕, 𝜃) ∈ ℛ([𝜇,𝜐],𝜃)},     (12) 

for all 𝜃 ∈ (0, 1], where ℛ([𝜇,𝜐],𝜃) denotes the collection of Riemannian integrable functions of 

I-V-Fs. 𝔄 is 𝐹𝑅-integrable over [𝜇, 𝜐] if (𝐹𝑅)∫ 𝔄(𝜕)𝑑𝜕
𝜐

𝜇
∈ 𝔽𝐶(ℝ). Note that, if both end point 

functions are Lebesgue-integrable, then 𝔄 is fuzzy Aumann-integrable function over [𝜇, 𝜐], see [39]. 

Theorem 2.5. Let 𝔄: [𝜇, 𝜐] ⊂ ℝ → 𝔽𝐶(ℝ) be a F-I-V-F and for all 𝜃 ∈ (0, 1], 𝜃-cuts establish the 

series of I-V-Fs 𝔄𝜃: [𝜇, 𝜐] ⊂ ℝ → 𝒦𝐶 are provided by 𝔄𝜃(𝜕) = [𝔄∗(𝜕, 𝜃), 𝔄
∗(𝜕, 𝜃)] for all 𝜕 ∈

[𝜇, 𝜐]. Then, 𝔄 is fuzzy Riemann integrable (𝐹𝑅-integrable) over [𝜇, 𝜐] if and only if, 𝔄∗(𝜕, 𝜃) 

and 𝔄∗(𝜕, 𝜃)  both are Riemann integrable ( 𝑅 -integrable) over [𝜇, 𝜐] . Moreover, if 𝔄  is 

𝐹𝑅-integrable over [𝜇, 𝜐], then 
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[(𝐹𝑅)∫ 𝔄(𝜕)𝑑𝜕
𝜐

𝜇

]

 
𝜃

= [(𝑅)∫ 𝔄∗(𝜕, 𝜃)𝑑𝜕
𝜐

𝜇

,   (𝑅)∫ 𝔄∗(𝜕, 𝜃)𝑑𝜕
𝜐

𝜇

] 

= (𝐼𝑅) ∫ 𝔄𝜃(𝜕)𝑑𝜕
𝜐

𝜇
,                              (13) 

for all 𝜃 ∈ (0, 1], where 𝐼𝑅 represent interval Riemann integration of 𝔄𝜃(𝜕). For all 𝜃 ∈ (0, 1], 
ℱℛ([𝜇,𝜐],𝜃) denotes the collection of all 𝐹𝑅-integrable F-I-V-Fs over [𝜇, 𝜐]. 

Definition 2.12. [15] A function 𝔄:𝐾 → ℝ is named as log-convex function if 

𝔄(𝜍𝜕 + (1 − 𝜍)𝑦) ≤ 𝔄(𝜕)𝜍𝔄(𝑦)1−𝜍, ∀ 𝜕, 𝑦 ∈ 𝐾, 𝜍 ∈ [0, 1],           (14) 

where 𝔄(𝜕) ≥ 0, where 𝐾 is a convex set. If (14) is flipped, then 𝔄 is named as log-concave. 

Definition 2.13. [25] Let 𝐾 be a convex set. Then F-I-V-F 𝔄:𝐾 → 𝔽𝐶(ℝ) is named as convex 

F-I-V-F on 𝐾 if 

𝔄(𝜍𝜕 + (1 − 𝜍)𝑦 ) ≼ 𝜍𝔄(𝜕)+̃(1 − 𝜍)𝔄(𝑦),                 (15) 

for all 𝜕, 𝑦 ∈ 𝐾, 𝜍 ∈ [0, 1], where 𝔄(𝜕) ≽ 0̃. If inequality (15) is flipped, then 𝔄 is named as 

concave F-I-V-F on [𝜇, 𝜐]. 𝔄 is affine if and only if it is both convex I-V-F and concave I-V-F. 

Definition 2.14. [25] Let 𝐾 be a convex set. Then F-I-V-F 𝔄:𝐾 → 𝔽𝐶(ℝ) is named as log convex 

F-I-V-F (L-log convex F-I-V-F) on 𝐾 if 

𝔄(𝜍𝜕 + (1 − 𝜍)𝑦 ) ≼ 𝔄(𝜕)𝜍 ×̃ 𝔄(𝑦)(1−𝜍),                 (16) 

for all 𝜕, 𝑦 ∈ 𝐾, 𝜍 ∈ [0, 1], where 𝔄(𝜕) ≽ 0̃. If inequality (16) is flipped, then 𝔄 is named as L-concave 

F-I-V-F on [𝜇, 𝜐]. 𝔄 is L-affine if and only if it is both L-convex F-I-V-F and L-concave F-I-V-F. 

Remark 2.15. If 𝔄 is L-convex F-I-V-F, then 𝛶𝔄 is also L-convex F-I-V-F for 𝛶 ≥ 0. 

If 𝔄 and 𝒥 both are L-convex F-I-V-F s, then max(𝔄(𝜕), 𝒥(𝜕)) is also L-convex F-I-V-F. 

Theorem 2.16. Let 𝐾 be a convex set and let 𝔄:𝐾 → 𝔽𝐶(ℝ) be a F-I-V-F with 𝔄(𝜕) ≽ 0̃, whose 

𝛳-cuts establish the series of I-V-Fs 𝔄𝛳: 𝐾 ⊂ ℝ → 𝒦𝐶
+ ⊂ 𝒦𝐶  are provided by 

𝔄𝛳(𝜕) = [𝔄∗(𝜕, 𝛳), 𝔄
∗(𝜕, 𝛳)],                    (17) 

for all 𝜕 ∈ 𝐾 and for all 𝛳 ∈ (0, 1]. Then 𝔄 is L-convex (resp. concave) on 𝐾, if and only if, for 

all 𝛳 ∈ (0, 1], 𝔄∗(𝜕, 𝛳) and 𝔄∗(𝜕, 𝛳) both are L-convex (resp. L-concave). 

Proof. Let 𝔄 be a L-convex F-I-V-F on 𝐾. Then, for all 𝜕, 𝑦 ∈ 𝐾 and 𝜍 ∈ [0, 1], we have 

𝔄(𝜍𝜕 + (1 − 𝜍)𝑦) ≼ 𝔄(𝜕)𝜍 ×̃ 𝔄(𝑦)(1−𝜍).  

Therefore, from inequality (17) and Proposition 2.4, we have 

[𝔄∗(𝜍𝜕 + (1 − 𝜍)𝑦, 𝛳), 𝔄
∗(𝜍𝜕 + (1 − 𝜍)𝑦, 𝛳)] 

≤𝐼 [𝔄∗(𝜕, 𝛳)
𝜍, 𝔄∗(𝜕, 𝛳)𝜍] × [𝔄∗(𝑦, 𝛳)

(1−𝜍),  𝔄∗(𝑦, 𝛳)(1−𝜍)].         (18) 

It follows that 𝔄∗(𝜍𝜕 + (1 − 𝜍)𝑦, 𝛳) ≤ 𝔄∗(𝜕, 𝛳)
𝜍𝔄∗(𝑦, 𝛳)

(1−𝜍), and 𝔄∗(𝜍𝜕 + (1 − 𝜍)𝑦, 𝛳) ≤

𝔄∗(𝜕, 𝛳)𝜍 𝔄∗(𝑦, 𝛳)(1−𝜍), for each 𝛳 ∈ (0, 1]. This shows that 𝔄∗(𝜕, 𝛳) and 𝔄∗(𝜕, 𝛳) both are 

L-convex functions. 

Conversely, suppose that 𝔄∗(𝜕, 𝛳) and 𝔄∗(𝜕, 𝛳) both are L-convex functions. Then from 
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definition and above inequality (19), it follows that 𝔄(𝜕) is L-convex F-I-V-F. 

Example 2.17. We consider the F-I-V-F 𝔄: [1, 4] → 𝔽𝐶(ℝ) established by, 

𝔄(𝜕)(𝚜) =

{
 
 

 
 
𝚜

 
1

𝜕

        𝚜 ∈ [0,
1

𝜕
] ;

2

𝜕
−𝚜

1

𝜕

   𝚜 ∈ (
1

𝜕
,
2

𝜕
] ; 

0         𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒.

                                                  (19) 

Then, for each 𝛳 ∈ (0, 1],  we have 𝔄𝛳(𝜕) = [𝛳
1

𝜕
, (2 − 𝛳)

1

𝜕
] . Since end point functions 

𝔄∗(𝜕, 𝛳),  𝔄
∗(𝜕, 𝛳)  are L-convex functions for each 𝛳 ∈ (0, 1] , then by Theorem 2.16, 𝔄(𝜕)  is 

L-convex F-I-V-F. 

Remark 2.18. If 𝔄∗(𝜕, 𝛳) = 𝔄∗(𝜕, 𝛳)  with 𝛳 = 1, then L-convex F-I-V-F becomes classical 

L-convex function [15]. 

3. Jensen and Schur inequalities for log convex fuzzy interval-valued functions 

Now, we prove the Jensen inequality for L-convex F-I-V-F. 

Theorem 3.1. Let 𝜔𝑗 ∈ ℝ
+, 𝜕𝑗 ∈ [𝜇, 𝜐], (𝑗 = 1, 2, 3, … , 𝑘, 𝑘 ≥ 2) and 𝔄: [𝜇, 𝜐] → 𝔽𝐶(ℝ) be a 

L-convex F-I-V-F, whose 𝛳-cuts establish the series of I-V-Fs 𝔄𝛳: [𝜇, 𝜐] ⊂ ℝ → 𝒦𝐶
+ are 

provided by 𝔄𝛳(𝜕) = [𝔄∗(𝜕, 𝛳), 𝔄
∗(𝜕, 𝛳)] for all 𝜕 ∈ [𝜇, 𝜐] and for all 𝛳 ∈ (0, 1]. Then 

 𝔄(
1

𝑊𝑘
∑ 𝜔𝑗
𝑘
𝑗=1 𝜕𝑗) ≼ ∏ [𝔄(𝜕𝑗)]

𝜔𝑗

𝑊𝑘𝑘
𝑗=1 ,                         (20) 

where 𝑊𝑘 = ∑ 𝜔𝑗
𝑘
𝑗=1 . If 𝔄 is L-concave then, inequality (20) is flipped. 

Proof. When 𝑘 = 2 inequality (20) is true. Consider inequality (20) is true for 𝑘 = 𝑛 − 1, then 

𝔄(
1

𝑊𝑛−1
∑ 𝜔𝑗
𝑛−1
𝑗=1 𝜕𝑗) ≼ ∏ [𝔄(𝜕𝑗)]

𝜔𝑗

𝑊𝑛−1𝑛−1
𝑗=1 . 

Now, let us prove that inequality (20) holds for 𝑘 = 𝑛, we have 

𝔄(
1

𝑊𝑛
∑ 𝜔𝑗
𝑛
𝑗=1 𝜕𝑗) = 𝔄(

𝑊𝑛−2

𝑊𝑛

1

𝑊𝑛−2
∑ 𝜔𝑗
𝑛−2
𝑗=1 𝜕𝑗 +

𝜔𝑛−1+𝜔𝑛

𝑊𝑛
(

𝜔𝑛−1

𝜔𝑛−1+𝜔𝑛
𝜕𝑛−1 +

𝜔𝑛

𝜔𝑛−1+𝜔𝑛
𝜕𝑛).  

Therefore, for every 𝛳 ∈ (0, 1], we have 

𝔄∗ (
1

𝑊𝑛
∑ 𝜔𝑗
𝑛
𝑗=1 𝜕𝑗 , 𝛳)  

≤ 𝔄∗ (
𝑊𝑛−2

𝑊𝑛

1

𝑊𝑛−2
∑ 𝜔𝑗
𝑛−2
𝑗=1 𝜕𝑗 +

𝜔𝑛−1+𝜔𝑛

𝑊𝑛
(

𝜔𝑛−1

𝜔𝑛−1+𝜔𝑛
𝜕𝑛−1 +

𝜔𝑛

𝜔𝑛−1+𝜔𝑛
𝜕𝑛, 𝛳) ,  

≤ ∏ [𝔄∗(𝜕𝑗, 𝛳)]

𝜔𝑗

𝑊𝑛𝑛−2
𝑗=1 [𝔄∗ (

𝜔𝑛−1

𝜔𝑛−1+𝜔𝑛
𝜕𝑛−1 +

𝜔𝑛

𝜔𝑛−1+𝜔𝑛
𝜕𝑛, 𝛳)]

𝜔𝑛−1+𝜔𝑛
𝑊𝑛

,     
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≤ ∏ [𝔄∗(𝜕𝑗, 𝛳)]

𝜔𝑗

𝑊𝑛𝑛−2
𝑗=1 [ [𝔄∗(𝜕𝑛−1, 𝛳)]

𝜔𝑛−1
𝜔𝑛−1+𝜔𝑛  [𝔄∗(𝜕𝑛, 𝛳)]

𝜔𝑛
𝜔𝑛−1+𝜔𝑛]

 
𝜔𝑛−1+𝜔𝑛

𝑊𝑛

,     

≤ ∏ [𝔄∗(𝜕𝑗, 𝛳)]

𝜔𝑗

𝑊𝑛𝑛−2
𝑗=1 [𝔄∗(𝜕𝑛−1, 𝛳)]

𝜔𝑛−1
𝑊𝑛  [𝔄∗(𝜕𝑛, 𝛳)]

𝜔𝑛
𝑊𝑛 ,     

= ∏ [𝔄∗(𝜕𝑗 , 𝛳)]

𝜔𝑗

𝑊𝑛𝑛
𝑗=1

.  

Similarly, for 𝔄∗(𝜕, 𝛳), we have 

𝔄∗ (
1

𝑊𝑛
∑ 𝜔𝑗
𝑛
𝑗=1 𝜕𝑗 , 𝛳) ≤ ∏ [𝔄∗(𝜕𝑗 , 𝛳)]

𝜔𝑗

𝑊𝑛𝑛
𝑗=1 . 

From which, we have 

[𝔄∗ (
1

𝑊𝑛
∑ 𝜔𝑗
𝑛
𝑗=1 𝜕𝑗 , 𝛳) , 𝔄

∗ (
1

𝑊𝑛
∑ 𝜔𝑗
𝑛
𝑗=1 𝜕𝑗 , 𝛳)] ≤𝐼 [∏ [𝔄∗(𝜕𝑗 , 𝛳)]

𝜔𝑗

𝑊𝑛𝑛
𝑗=1 , ∏ [𝔄∗(𝜕𝑗 , 𝛳)]

𝜔𝑗

𝑊𝑛𝑛
𝑗=1 ],  

that is, 

𝔄(
1

𝑊𝑛
∑ 𝜔𝑗
𝑛
𝑗=1 𝜕𝑗) ≼ ∏ [𝔄(𝜕𝑗)]

𝜔𝑗

𝑊𝑛𝑛
𝑗=1 ,  

and the result follows. 

If 𝜔1 = 𝜔2 = 𝜔3 = ⋯ = 𝜔𝑘 = 1, then Theorem 3.1 reduces to the following result: 

Corollary 3.2. Let 𝜕𝑗 ∈ [𝜇, 𝜐],  (𝑗 = 1, 2, 3, … , 𝑘, 𝑘 ≥ 2)  and 𝔄: [𝜇, 𝜐] → 𝔽𝐶(ℝ)  be a L-convex 

F-I-V-F, whose 𝛳 -cuts establish the series of I-V-Fs 𝔄𝛳: [𝜇, 𝜐] ⊂ ℝ → 𝒦𝐶
+  are provided by 

𝔄𝛳(𝜕) = [𝔄∗(𝜕, 𝛳), 𝔄
∗(𝜕, 𝛳)] for all 𝜕 ∈ [𝜇, 𝜐] and for all 𝛳 ∈ (0, 1]. Then, 

𝔄(
1

𝑘
∑ 𝜕𝑗
𝑘
𝑗=1 ) ≼ ∏ [𝔄(𝜕𝑗)]

1

𝑘𝑘
𝑗=1 .                                                   (21) 

If 𝔄 is a L-concave then, inequality (21) is flipped. 

Now we obtain Schur inequality for L-convex F-I-V-Fs. 

Theorem 3.3. Let 𝔄: [𝜇, 𝜐] → 𝔽𝐶(ℝ) be a F-I-V-F, whose 𝛳-cuts establish the series of I-V-Fs 

𝔄𝛳: [𝜇, 𝜐] ⊂ ℝ → 𝒦𝐶
+ are provided by 𝔄𝛳(𝜕) = [𝔄∗(𝜕, 𝛳), 𝔄

∗(𝜕, 𝛳)] for all 𝜕 ∈ [𝜇, 𝜐] and for 

all 𝛳 ∈ (0, 1]. If 𝔄 be a L-convex F-I-V-F then, for 𝜕1, 𝜕2, 𝜕3 ∈ [𝜇, 𝜐], 𝜕1 < 𝜕2 < 𝜕3  such that 

𝜕3 − 𝜕1, 𝜕3 − 𝜕2, 𝜕2 − 𝜕1 ∈ [0, 1], we have 

𝔄(𝜕2)
(𝜕3−𝜕1) ≼ 𝔄(𝜕1)

𝜕3−𝜕2𝔄(𝜕3)
𝜕2−𝜕1.                  (22) 

If 𝔄 is a L-concave then, inequality (22) is flipped. 

Proof. Let 𝜕1, 𝜕2, 𝜕3 ∈ [𝜇, 𝜐]  and 𝜕3 − 𝜕1 > 0.  Taking 𝜆 =
𝜕3−𝜕2

𝜕3−𝜕1
, then 𝜕2 = 𝜆𝜕1 + (1 − 𝜆)𝜕3. 

Since 𝔄 is a L-convex F-I-V-F then, by hypothesis, we have 
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𝔄∗(𝜕2, 𝛳) ≤ [𝔄∗(𝜕1, 𝛳)]
𝜕3−𝜕2
𝜕3−𝜕1[𝔄∗(𝜕3, 𝛳)]

 
𝜕2−𝜕1

𝜕3−𝜕1 ,

𝔄∗(𝜕2, 𝛳) ≤ [𝔄
∗(𝜕1, 𝛳)]

𝜕3−𝜕2
𝜕3−𝜕1[𝔄∗(𝜕3, 𝛳)]

𝜕2−𝜕1
𝜕3−𝜕1 .

                                    (23) 

Taking “log” on the both sides of (23), we have 

(𝜕3 − 𝜕1)𝑙𝑛 𝔄∗(𝜕2, 𝛳) ≤ (𝜕3 − 𝜕2) 𝑙𝑛𝔄∗(𝜕1, 𝛳) + (𝜕2 − 𝜕1) 𝑙𝑛 𝔄∗(𝜕3, 𝛳),
(𝜕3 − 𝜕1)𝑙𝑛 𝔄

∗(𝜕2, 𝛳) ≤ (𝜕3 − 𝜕2)𝑙𝑛 𝔄
∗(𝜕1, 𝛳) + (𝜕2 − 𝜕1) 𝑙𝑛𝔄

∗(𝜕3, 𝛳).
      (24) 

From (24), we have 

𝔄∗(𝜕2, 𝛳)
(𝜕3−𝜕1) ≤ [𝔄∗(𝜕1, 𝛳)]

(𝜕3−𝜕2)[𝔄∗(𝜕3, 𝛳)]
(𝜕2−𝜕1),

𝔄∗(𝜕2, 𝛳)
(𝜕3−𝜕1) ≤ [𝔄∗(𝜕1, 𝛳)]

(𝜕3−𝜕2)[𝔄∗(𝜕3, 𝛳)]
𝜕2−𝜕1 .

 

That is 

[𝔄∗(𝜕2, 𝛳)
(𝜕3−𝜕1), 𝔄∗(𝜕2, 𝛳)

(𝜕3−𝜕1)]

 ≤𝐼 [[𝔄∗(𝜕1, 𝛳)]
(𝜕3−𝜕2)[𝔄∗(𝜕3, 𝛳)]

(𝜕2−𝜕1),  [𝔄∗(𝜕1, 𝛳)]
(𝜕3−𝜕2)[𝔄∗(𝜕3, 𝛳)]

(𝜕2−𝜕1)], 

Hence 

𝔄(𝜕2)
(𝜕3−𝜕1) ≼ 𝔄(𝜕1)

(𝜕3−𝜕2)𝔄(𝜕3)
(𝜕2−𝜕1). 

Now, we obtain a refinement of Schur’s inequality for L-convex F-I-V-F, which is provided in 

the following results. 

Theorem 3.4. Let 𝜔𝑗 ∈ ℝ
+ , 𝜕𝑗 ∈ [𝜇, 𝜐], (𝑗 = 1, 2, 3, … , 𝑘, 𝑘 ≥ 2) and 𝔄: [𝜇, 𝜐] → 𝔽𝐶(ℝ) be a 

L-convex F-I-V-F, whose 𝛳-cuts establish the series of I-V-Fs 𝔄𝛳: [𝜇, 𝜐] ⊂ ℝ → 𝒦𝐶
+ are provided 

by 𝔄𝛳(𝜕) = [𝔄∗(𝜕, 𝛳), 𝔄
∗(𝜕, 𝛳)] for all 𝜕 ∈ [𝜇, 𝜐] and for all 𝛳 ∈ (0, 1]. If (𝐿, 𝑈) ⊆ [𝜇, 𝜐] then, 

∏ [𝔄(𝜕𝑗)]
(
𝜔𝑗

𝑊𝑘
)𝑘

𝑗=1 ≼ ∏ ([𝔄(𝐿)]
(
𝑈−𝜕𝑗

𝑈−𝐿
)(

𝜔𝑗

𝑊𝑘
)
[𝔄(𝑈)]

(
𝜕𝑗−𝐿

𝑈−𝐿
)(

𝜔𝑗

𝑊𝑘
)
)𝑘

𝑗=1 ,         (25) 

where 𝑊𝑘 = ∑ 𝜔𝑗
𝑘
𝑗=1 . If 𝔄 is L-concave then, inequality (25) is flipped. 

Proof. Consider = 𝜕1, 𝜕𝑗 = 𝜕2, (𝑗 = 1, 2, 3, … , 𝑘), 𝑈 = 𝜕3 in inequality (23). Then, for each 𝛳 ∈

(0, 1], then 

𝔄∗(𝜕𝑗 , 𝛳) ≤ [𝔄∗(𝐿, 𝛳)]
(
𝑈−𝜕𝑗
𝑈−𝐿

)
[𝔄∗(𝑈, 𝛳)]

(
𝜕𝑗−𝐿

𝑈−𝐿
)
,

𝔄∗(𝜕𝑗 , 𝛳) ≤ [𝔄
∗(𝐿, 𝛳)]

(
𝑈−𝜕𝑗
𝑈−𝐿

)
[𝔄∗(𝑈, 𝛳)]

(
𝜕𝑗−𝐿

𝑈−𝐿
)
.

 

Above inequality can be written as, 



4347 

AIMS Mathematics  Volume 7, Issue 3, 4338–4358. 

𝔄∗(𝜕𝑗 , 𝛳)
(
𝜔𝑗

𝑊𝑘
)
≤ [𝔄∗(𝐿, 𝛳)]

(
𝑈−𝜕𝑗

𝑈−𝐿
)(

𝜔𝑗

𝑊𝑘
)
[𝔄∗(𝑈, 𝛳)]

(
𝜕𝑗−𝐿

𝑈−𝐿
)(

𝜔𝑗

𝑊𝑘
)
,

𝔄∗(𝜕𝑗 , 𝛳)
(
𝜔𝑗

𝑊𝑘
)
≤ [𝔄∗(𝐿, 𝛳)]

(
𝑈−𝜕𝑗

𝑈−𝐿
)(

𝜔𝑗

𝑊𝑘
)
[𝔄∗(𝑈, 𝛳)]

(
𝜕𝑗−𝐿

𝑈−𝐿
)(

𝜔𝑗

𝑊𝑘
)
.

              (26) 

Taking multiplication of all inequalities (26) for 𝑗 = 1, 2, 3, … , 𝑘, we have 

∏ 𝔄∗(𝜕𝑗 , 𝛳)
(
𝜔𝑗

𝑊𝑘
)𝑘

𝑗=1 ≤ ∏ ([𝔄∗(𝐿, 𝛳)]
(
𝑈−𝜕𝑗

𝑈−𝐿
)(

𝜔𝑗

𝑊𝑘
)
[𝔄∗(𝑈, 𝛳)]

(
𝜕𝑗−𝐿

𝑈−𝐿
)(

𝜔𝑗

𝑊𝑘
)
)𝑘

𝑗=1 ,

∏ 𝔄∗(𝜕𝑗 , 𝛳)
(
𝜔𝑗

𝑊𝑘
)𝑘

𝑗=1 ≤ ∏ ([𝔄∗(𝐿, 𝛳)]
(
𝑈−𝜕𝑗

𝑈−𝐿
)(

𝜔𝑗

𝑊𝑘
)
[𝔄∗(𝑈, 𝛳)]

(
𝜕𝑗−𝐿

𝑈−𝐿
)(

𝜔𝑗

𝑊𝑘
)
)𝑘

𝑗=1 ,

  

that is 

∏ 𝔄𝛳(𝜕𝑗)
(
𝜔𝑗

𝑊𝑘
)𝑘

𝑗=1 = [∏ 𝔄∗(𝜕𝑗 , 𝛳)
(
𝜔𝑗

𝑊𝑘
)
, ∏ 𝔄∗(𝜕𝑗 , 𝛳)

(
𝜔𝑗

𝑊𝑘
)𝑘

𝑗=1
𝑘
𝑗=1 ]

 ≤𝐼 [∏ ([𝔄∗(𝐿, 𝛳)]
(
𝑈−𝜕𝑗

𝑈−𝐿
)(

𝜔𝑗

𝑊𝑘
)
[𝔄∗(𝑈, 𝛳)]

(
𝜕𝑗−𝐿

𝑈−𝐿
)(

𝜔𝑗

𝑊𝑘
)
)𝑘

𝑗=1 ,

∏ ([𝔄∗(𝐿, 𝛳)]
(
𝑈−𝜕𝑗

𝑈−𝐿
)(

𝜔𝑗

𝑊𝑘
)
[𝔄∗(𝑈, 𝛳)]

(
𝜕𝑗−𝐿

𝑈−𝐿
)(

𝜔𝑗

𝑊𝑘
)
)𝑘

𝑗=1 ],  

≤𝐼 ∏ ([[𝔄∗(𝐿, 𝛳)]
(
𝑈−𝜕𝑗

𝑈−𝐿
)(

𝜔𝑗

𝑊𝑘
)
, [𝔄∗(𝐿, 𝛳)]

(
𝑈−𝜕𝑗

𝑈−𝐿
)(

𝜔𝑗

𝑊𝑘
)
])𝑘

𝑗=1 . ∏ ([[𝔄∗(𝑈, 𝛳)]
(
𝜕𝑗−𝐿

𝑈−𝐿
)(

𝜔𝑗

𝑊𝑘
)
,𝑘

𝑗=1

[𝔄∗(𝑈, 𝛳)]
(
𝜕𝑗−𝐿

𝑈−𝐿
)(

𝜔𝑗

𝑊𝑘
)
]), 

=∏[𝔄𝛳(𝐿)]
(
𝑈−𝜕𝑗
𝑈−𝐿

)(
𝜔𝑗
𝑊𝑘

)
𝑘

𝑗=1

.∏[𝔄𝛳(𝑈)]
(
𝜕𝑗−𝐿

𝑈−𝐿
)(
𝜔𝑗
𝑊𝑘

)
𝑘

𝑗=1

. 

Thus, 

∏[𝔄(𝜕𝑗)]
(
𝜔𝑗
𝑊𝑘

)
𝑘

𝑗=1

≼∏([𝔄(𝐿)]
(
𝑈−𝜕𝑗
𝑈−𝐿

)(
𝜔𝑗
𝑊𝑘

)
[𝔄(𝑈)]

(
𝜕𝑗−𝐿

𝑈−𝐿
)(
𝜔𝑗
𝑊𝑘

)
)

𝑘

𝑗=1

, 

this completes the proof. 

Remark 3.5. If 𝔄∗(𝜕, 𝛳) = 𝔄∗(𝜕, 𝛳) with 𝛳 = 1, then Theorem 3.1, Theorem 3.3 and Theorem 

3.4 reduce to the result for convex function, see [21]. 

4. Hermite-Hadamard type inequalities 

Now, we will establish some integral inequalities of H-H type for L-convex F-I-V-F using fuzzy 
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order relation. 

Theorem 4.1. Let 𝔄: [𝜇, 𝜐] → 𝔽𝐶(ℝ) be a L-convex F-I-V-F, whose 𝛳-cuts establish the series of 

I-V-Fs 𝔄𝛳: [𝜇, 𝜐] ⊂ ℝ → 𝒦𝐶
+  are provided by 𝔄𝛳(𝜕) = [𝔄∗(𝜕, 𝛳), 𝔄

∗(𝜕, 𝛳)]  for all 𝜕 ∈ [𝜇, 𝜐] 
and for all 𝛳 ∈ (0, 1]. If 𝔄 ∈ ℱℛ([𝜇,𝜐],𝛳), then 

 𝔄 (
𝜇+𝜐

2
) ≼ 𝑒𝑥𝑝 [

1

𝜐−𝜇
 (𝐹𝑅) ∫ 𝑙𝑛 𝔄(𝜕)𝑑𝜕

𝜐

𝜇
] ≼ √𝔄(𝜇) ×̃  𝔄(𝜐).                          (27) 

If 𝔄 is L-concave then, inequality (27) is flipped. 

Proof. Let 𝔄: [𝜇, 𝜐] → 𝔽𝐶(ℝ), L-convex F-I-V-F. Then, by hypothesis, we have 

𝔄(
𝜇 + 𝜐

2
) ≼ [𝔄(𝜍𝜇 + (1 − 𝜍)𝜐)]

1
2 ×̃ [𝔄((1 − 𝜍)𝜇 + 𝜍𝜐)]

1
2. 

Therefore, for every 𝛳 ∈ (0, 1], we have 

𝔄∗ (
𝜇+𝜐

2
, 𝛳) ≤ [𝔄∗(𝜍𝜇 + (1 − 𝜍)𝜐, 𝛳)]

1

2 × [𝔄∗((1 − 𝜍)𝜇 + 𝜍𝜐, 𝛳)]
1

2,

𝔄∗ (
𝜇+𝜐

2
, 𝛳) ≤ [𝔄∗(𝜍𝜇 + (1 − 𝜍)𝜐, 𝛳)]

1

2 × [𝔄∗((1 − 𝜍)𝜇 + 𝜍𝜐, 𝛳)]
1

2.

         (28) 

Taking logarithms on both sides of (28), then we obtain 

2 𝑙𝑛 𝔄∗ (
𝜇 + 𝜐

2
, 𝛳) ≤ 𝑙𝑛 𝔄∗(𝜍𝜇 + (1 − 𝜍)𝜐, 𝛳) + 𝑙𝑛 𝔄∗((1 − 𝜍)𝜇 + 𝜍𝜐, 𝛳) ,

2 𝑙𝑛 𝔄∗ (
𝜇 + 𝜐

2
, 𝛳) ≤ 𝑙𝑛 𝔄∗(𝜍𝜇 + (1 − 𝜍)𝜐, 𝛳) + 𝑙𝑛 𝔄∗((1 − 𝜍)𝜇 + 𝜍𝜐, 𝛳).

 

Then, 

2∫ 𝑙𝑛 𝔄∗ (
𝜇+𝜐

2
, 𝛳) 𝑑𝜍

1

0
≤ ∫ 𝑙𝑛 𝔄∗(𝜍𝜇 + (1 − 𝜍)𝜐, 𝛳)𝑑𝜍

1

0
+ ∫ 𝑙𝑛 𝔄∗((1 − 𝜍)𝜇 + 𝜍𝜐, 𝛳)𝑑𝜍

1

0
,

2 ∫ 𝑙𝑛 𝔄∗ (
𝜇+𝜐

2
, 𝛳) 𝑑𝜍

1

0
≤ ∫ 𝑙𝑛 𝔄∗(𝜍𝜇 + (1 − 𝜍)𝜐, 𝛳)𝑑𝜍

1

0
+ ∫ 𝑙𝑛 𝔄∗((1 − 𝜍)𝜇 + 𝜍𝜐, 𝛳)𝑑𝜍

1

0
.
  

It follows that 

𝑙𝑛 𝔄∗ (
𝜇+𝜐

2
, 𝛳) ≤

1

𝜐−𝜇
 ∫ 𝑙𝑛 𝔄∗(𝜕, 𝛳)𝑑𝜕
𝜐

𝜇
,

𝑙𝑛 𝔄∗ (
𝜇+𝜐

2
, 𝛳) ≤

1

𝜐−𝜇
 ∫ 𝑙𝑛 𝔄∗(𝜕, 𝛳)𝑑𝜕
𝜐

𝜇
,
  

which implies that 

𝔄∗ (
𝜇+𝜐

2
, 𝛳) ≤ 𝑒𝑥𝑝 (

1

𝜐−𝜇
 ∫ 𝑙𝑛 𝔄∗(𝜕, 𝛳)𝑑𝜕
𝜐

𝜇
) ,

 𝔄∗ (
𝜇+𝜐

2
, 𝛳) ≤ 𝑒𝑥𝑝 (

1

𝜐−𝜇
 ∫ 𝑙𝑛 𝔄∗(𝜕, 𝛳)𝑑𝜕
𝜐

𝜇
) .

  

That is 

[𝔄∗ (
𝜇+𝜐

2
, 𝛳) , 𝔄∗ (

𝜇+𝜐

2
, 𝛳)] ≤𝐼 [𝑒𝑥𝑝 (

1

𝜐−𝜇
 ∫ 𝑙𝑛 𝔄∗(𝜕, 𝛳)𝑑𝜕
𝜐

𝜇
) , 𝑒𝑥𝑝 (

1

𝜐−𝜇
 ∫ 𝑙𝑛 𝔄∗(𝜕, 𝛳)𝑑𝜕
𝜐

𝜇
)].  
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Thus, 

 𝔄 (
𝜇+𝜐

2
) ≼ 𝑒𝑥𝑝 [

1

𝜐−𝜇
 (𝐹𝑅) ∫ 𝑙𝑛 𝔄(𝜕)𝑑𝜕

𝜐

𝜇
].                     (29) 

In a similar way as above, we have 

𝑒𝑥𝑝 [
1

𝜐−𝜇
 (𝐹𝑅)∫ 𝑙𝑛 𝔄(𝜕)𝑑𝜕

𝜐

𝜇
] ≼ √𝔄(𝜇) ×̃  𝔄(𝜐).                 (30) 

Combining (29) and (30), we have 

 𝔄 (
𝜇 + 𝜐

2
) ≼ 𝑒𝑥𝑝 [

1

𝜐 − 𝜇
 (𝐹𝑅)∫ 𝑙𝑛 𝔄(𝜕)𝑑𝜕

𝜐

𝜇

] ≼ √𝔄(𝜇) ×̃  𝔄(𝜐), 

the required result. 

Remark 4.2. If 𝔄∗(𝜕, 𝛳) = 𝔄∗(𝜕, 𝛳) with 𝛳 = 1, then Theorem 4.1 reduces to the result for L-convex 

function see [16]: 

 𝔄(
𝜇+𝜐

2
) ≤ 𝑒𝑥𝑝 [

1

𝜐−𝜇
 (𝑅) ∫ 𝑙𝑛 𝔄(𝜕)𝑑𝜕

𝜐

𝜇
] ≤ √𝔄(𝜇) ×  𝔄(𝜐). 

Example 4.3. We consider the F-I-V-F 𝔄: [1, 4] → 𝔽𝐶(ℝ) established by,  

𝔄(𝜕)(𝚜) =

{
 
 

 
 

𝚜

 𝑒𝜕
2 ,           𝚜 ∈ [0, 𝑒

𝜕2],

2𝑒𝜕
2
− 𝚜

𝑒𝜕
2 ,   𝚜 ∈ (𝑒𝜕

2
, 2𝑒𝜕

2
],

0,             𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒,

 

Then, for each 𝛳 ∈ (0, 1],  we have 𝔄𝛳(𝜕) = [𝛳𝑒𝜕
2
, (2 − 𝛳)𝑒𝜕

2
] . Since end point 

functions 𝔄∗(𝜕, 𝛳), 𝔄
∗(𝜕, 𝛳) are L-convex functions for each 𝛳 ∈ (0, 1] then, by Theorem 

2.16, 𝔄(𝜕) is L-convex F-I-V-F. Since, 𝔄∗(𝜕, 𝛳) = 𝛳𝑒
𝜕2  and 𝔄∗(𝜕, 𝛳) = (2 − 𝛳)𝑒𝜕

2
 then, 

we have 

 𝔄∗ (
𝜇 + 𝜐

2
, 𝛳) = 𝛳𝑒(

5
2
)

 
2

= 𝛳𝑒
25
4 , 

𝑒𝑥𝑝 (
1

𝜐−𝜇
 ∫ 𝑙𝑛 𝔄∗(𝜕, 𝛳)𝑑𝜕
𝜐

𝜇
) = 𝑒𝑥𝑝 ( 

1

3
∫ 𝑙𝑛 (𝛳𝑒𝜕

2
)𝑑𝜕

4

1
) = 𝑒𝑙𝑛(𝛳)+7,   

√𝔄∗(𝜇)  × 𝔄∗(𝜐) =  [(𝛳𝑒)(4𝛳𝑒
16)]

1
2 = 2 𝛳𝑒

17
2 , 

for all 𝛳 ∈ (0, 1]. That means 𝛳𝑒
25

4 ≤ 𝑒𝑙𝑛(𝛳)+7 ≤ 2𝛳𝑒
17

2 . 

Similarly, it can be easily show that 

 𝔄∗ (
𝜇+𝜐

2
, 𝛳) ≤ 𝑒𝑥𝑝 [

1

𝜐−𝜇
 ∫ 𝑙𝑛 𝔄∗(𝜕, 𝛳)𝑑𝜕
𝜐

𝜇
] ≤ √𝔄∗(𝜇, 𝛳) × 𝔄∗(𝜐, 𝛳),  
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for all 𝛳 ∈ (0, 1], such that 

𝔄∗ (
𝜇 + 𝜐

2
, 𝛳) = (2 − 𝛳)𝑒(

5
2
)

 
2

= (2 − 𝛳)𝑒
25
4 , 

𝑒𝑥𝑝 (
1

𝜐−𝜇
 ∫ 𝑙𝑛 𝔄∗(𝜕, 𝛳)𝑑𝜕
𝜐

𝜇
) = 𝑒𝑥𝑝 ( 

1

3
∫ 𝑙𝑛 ((2 − 𝛳)𝑒𝜕

2
)𝑑𝜕

4

1
) = 𝑒𝑙𝑛(2−𝛳)+7,   

√𝔄∗(𝜇, 𝛳) × 𝔄∗(𝜐, 𝛳) =  [(2 − 𝛳)𝑒. 4(2 − 𝛳)𝑒16]
1

2 = 2(2 − 𝛳)𝑒

 
17
2 .   

From which, it follows that 

(2 − 𝛳)𝑒
25

4 ≤ 𝑒𝑙𝑛(2−𝛳)+7 ≤ 2 (2 − 𝛳)𝑒
17

2 ,  

that is 

[𝛳𝑒

 
25
4 , (2 − 𝛳)𝑒

25

4 ] ≤𝐼 [𝑒
𝑙𝑛(𝛳)+7,  𝑒𝑙𝑛(2−𝛳)+7] ≤𝐼 [2𝛳𝑒

17

2 , 2(2 − 𝛳)𝑒
1

2],  for all 𝛳 ∈ (0, 1]. 

Hence, Theorem 4.1 is verified. 

To obtain H-H Fejér inequality for L-convex F-I-V-F, firstly, we give the following results 

connected with the right part of (3). 

Theorem 4.4. Let 𝔄: [𝜇, 𝜐] → 𝔽𝐶(ℝ) be a L-convex F-I-V-F with 𝜇 < 𝜐, whose 𝛳-cuts establish 

the series of I-V-Fs 𝔄𝛳: [𝜇, 𝜐] ⊂ ℝ → 𝒦𝐶
+ are provided by 𝔄𝛳(𝜕) = [𝔄∗(𝜕, 𝛳), 𝔄

∗(𝜕, 𝛳)] for all 

𝜕 ∈ [𝜇, 𝜐] and for all 𝛳 ∈ (0, 1]. If 𝔄 ∈ ℱℛ([𝜇,𝜐],𝛳) and 𝔔: [𝜇, 𝜐] → ℝ,𝔔(𝜕) ≥ 0, symmetric with 

respect to 
𝜇+𝜐

2
, then 

1

𝜐−𝜇
 (𝐹𝑅)∫ [𝑙𝑛 𝔄(𝜕)]𝔔(𝜕)𝑑𝜕

𝜐

𝜇
≼ 𝑙𝑛 [𝔄(𝜇) ×̃  𝔄(𝜐)] ∫ 𝜍𝔔((1 − 𝜍)𝜇 + 𝜍𝜐)𝑑𝜍

1

0
.     (31) 

If 𝔄 is L-concave then, inequality (31) is flipped. 

Proof. Let 𝔄 be a L-convex F-I-V-F. Then, for each 𝛳 ∈ (0, 1], we have 

  
[𝑙𝑛 𝔄∗(𝜍𝜇 + (1 − 𝜍)𝜐, 𝛳)]𝔔(𝜍𝜇 + (1 − 𝜍)𝜐)                                                          

                                 ≤ (𝜍𝑙𝑛 𝔄∗(𝜇, 𝛳) + (1 − 𝜍)𝑙𝑛 𝔄∗(𝜐, 𝛳))𝔔(𝜍𝜇 + (1 − 𝜍)𝜐),

[𝑙𝑛 𝔄∗(𝜍𝜇 + (1 − 𝜍)𝜐, 𝛳)]𝔔(𝜍𝜇 + (1 − 𝜍)𝜐)                                                          

                                ≤ (𝜍𝑙𝑛 𝔄∗(𝜇, 𝛳) + (1 − 𝜍)𝑙𝑛 𝔄∗(𝜐, 𝛳))𝔔(𝜍𝜇 + (1 − 𝜍)𝜐).

      (32) 

And  

[𝑙𝑛 𝔄∗((1 − 𝜍)𝜇 + 𝜍𝜐, 𝛳)]𝔔((1 − 𝜍)𝜇 + 𝜍𝜐)                                           

                   ≤ ((1 − 𝜍)𝑙𝑛 𝔄∗(𝜇, 𝛳) + 𝜍𝑙𝑛 𝔄∗(𝜐, 𝛳))𝔔((1 − 𝜍)𝜇 + 𝜍𝜐),

[𝑙𝑛 𝔄∗((1 − 𝜍)𝜇 + 𝜍𝜐, 𝛳)]𝔔((1 − 𝜍)𝜇 + 𝜍𝜐)                                           

                ≤ ((1 − 𝜍)𝑙𝑛 𝔄∗(𝜇, 𝛳) + 𝜍𝑙𝑛 𝔄∗(𝜐, 𝛳))𝔔((1 − 𝜍)𝜇 + 𝜍𝜐).

        (33) 

After adding (32) and (33), and then integrating over (0, 1), we get 
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 ∫ [𝑙𝑛 𝔄∗(𝜍𝜇 + (1 − 𝜍)𝜐, 𝛳)]𝔔(𝜍𝜇 + (1 − 𝜍)𝜐)
1

0
𝑑𝜍                            

+ ∫ 𝑙𝑛 𝔄∗((1 − 𝜍)𝜇 + 𝜍𝜐, 𝛳)𝔔((1 − 𝜍)𝜇 + 𝜍𝜐)
1

0
𝑑𝜍  

                               ≤ ∫ [
𝑙𝑛 𝔄∗(𝜇, 𝛳){𝜍𝔔(𝜍𝜇 + (1 − 𝜍)𝜐) + (1 − 𝜍)𝔔((1 − 𝜍)𝜇 + 𝜍𝜐)}

+𝑙𝑛 𝔄∗(𝜐, 𝛳){(1 − 𝜍)𝔔(𝜍𝜇 + (1 − 𝜍)𝜐) + 𝜍𝔔((1 − 𝜍)𝜇 + 𝜍𝜐)}
]

1

0
𝑑𝜍,

∫ [𝑙𝑛 𝔄∗((1 − 𝜍)𝜇 + 𝜍𝜐, 𝛳)]𝔔((1 − 𝜍)𝜇 + 𝜍𝜐)
1

0
𝑑𝜍                            

+ ∫ 𝑙𝑛 𝔄∗(𝜍𝜇 + (1 − 𝜍)𝜐, 𝛳)𝔔(𝜍𝜇 + (1 − 𝜍)𝜐)
1

0
𝑑𝜍 

                               ≤ ∫ [
𝑙𝑛 𝔄∗(𝜇, 𝛳){𝜍𝔔(𝜍𝜇 + (1 − 𝜍)𝜐) + (1 − 𝜍)𝔔((1 − 𝜍)𝜇 + 𝜍𝜐)}

+𝑙𝑛 𝔄∗(𝜐, 𝛳){(1 − 𝜍)𝔔(𝜍𝜇 + (1 − 𝜍)𝜐) + 𝜍𝔔((1 − 𝜍)𝜇 + 𝜍𝜐)}
]

1

0
𝑑𝜍

  

  

= 2𝑙𝑛 𝔄∗(𝜇, 𝛳) ∫ 𝜍𝔔(𝜍𝜇 + (1 − 𝜍)𝜐)
1

0
𝑑𝜍 + 2𝑙𝑛 𝔄∗(𝜐, 𝛳) ∫ 𝜍𝔔((1 − 𝜍)𝜇 + 𝜍𝜐)

1

0
𝑑𝜍,

= 2𝑙𝑛 𝔄∗(𝜇, 𝛳) ∫ 𝜍𝔔(𝜍𝜇 + (1 − 𝜍)𝜐)
1

0
𝑑𝜍 + 2𝑙𝑛 𝔄∗(𝜐, 𝛳) ∫ 𝜍𝔔((1 − 𝜍)𝜇 + 𝜍𝜐)

1

0
𝑑𝜍.

   

Since 𝔔 is symmetric, then 

  

= 2𝑙𝑛[ 𝔄∗(𝜇, 𝛳) × 𝔄∗(𝜐, 𝛳)] ∫ 𝜍𝔔((1 − 𝜍)𝜇 + 𝜍𝜐)
1

0
𝑑𝜍,   

= 2𝑙𝑛[ 𝔄∗(𝜇, 𝛳) × 𝔄∗(𝜐, 𝛳)] ∫ 𝜍𝔔((1 − 𝜍)𝜇 + 𝜍𝜐)
1

0
𝑑𝜍.

           (34) 

Since  
  

 ∫ [𝑙𝑛 𝔄∗(𝜍𝜇 + (1 − 𝜍)𝜐, 𝛳)]𝔔(𝜍𝜇 + (1 − 𝜍)𝜐)
1

0
𝑑𝜍                                         

= ∫ [𝑙𝑛 𝔄∗((1 − 𝜍)𝜇 + 𝜍𝜐, 𝛳)]𝔔((1 − 𝜍)𝜇 + 𝜍𝜐)
1

0
𝑑𝜍

  =
1

𝜐−𝜇
 ∫ [𝑙𝑛 𝔄∗(𝜕, 𝛳)]𝔔(𝜕)𝑑𝜕,
𝜐

𝜇
                                         

∫ [𝑙𝑛 𝔄∗((1 − 𝜍)𝜇 + 𝜍𝜐, 𝛳)]𝔔((1 − 𝜍)𝜇 + 𝜍𝜐)
1

0
𝑑𝜍                                        

= ∫ [𝑙𝑛 𝔄∗(𝜍𝜇 + (1 − 𝜍)𝜐, 𝛳)]𝔔(𝜍𝜇 + (1 − 𝜍)𝜐)
1

0
𝑑𝜍

=
1

𝜐−𝜇
 ∫ [𝑙𝑛 𝔄∗(𝜕, 𝛳)]𝔔(𝜕)𝑑𝜕
𝜐

𝜇
.                                      

  (35) 

From (34) and (35), we have 

  
1

𝜐−𝜇
 ∫ [𝑙𝑛 𝔄∗(𝜕, 𝛳)]𝔔(𝜕)𝑑𝜕
𝜐

𝜇
≤ 𝑙𝑛[𝔄∗(𝜇, 𝛳) × 𝔄∗(𝜐, 𝛳)] ∫ 𝜍𝔔((1 − 𝜍)𝜇 + 𝜍𝜐)

1

0
𝑑𝜍,

1

𝜐−𝜇
 ∫ [𝑙𝑛 𝔄∗(𝜕, 𝛳)]𝔔(𝜕)𝑑𝜕
𝜐

𝜇
 ≤ 𝑙𝑛[𝔄∗(𝜇, 𝛳) ×  𝔄∗(𝜐, 𝛳)] ∫ 𝜍𝔔((1 − 𝜍)𝜇 + 𝜍𝜐)

1

0
𝑑𝜍,

   

that is 

[
1

𝜐−𝜇
 ∫ [𝑙𝑛 𝔄∗(𝜕, 𝛳)]𝔔(𝜕)𝑑𝜕
𝜐

𝜇
,
1

𝜐− 𝜇
 ∫ [𝑙𝑛 𝔄∗(𝜕, 𝛳)]𝔔(𝜕)𝑑𝜕
𝜐

𝜇
]  

≤𝐼 [𝑙𝑛 [𝔄∗(𝜇, 𝛳) × 𝔄∗(𝜐, 𝛳)], 𝑙𝑛 [𝔄
∗(𝜇, 𝛳) × 𝔄∗(𝜐, 𝛳)]] ∫ 𝜍𝔔((1 − 𝜍)𝜇 + 𝜍𝜐)

1

0
𝑑𝜍,   

hence 
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1

𝜐−𝜇
 (𝐹𝑅)∫ [𝑙𝑛 𝔄(𝜕)]𝔔(𝜕)𝑑𝜕

𝜐

𝜇
≼ 𝑙𝑛[𝔄(𝜇) ×̃ 𝔄(𝜐)] ∫ 𝜍𝔔((1 − 𝜍)𝜇 + 𝜍𝜐)𝑑𝜍

1

0
.  

This concludes the proof. 

Now, we give the following result connected with the left part of (3) for L-convex F-I-V-F using 

fuzzy order relation. 

Theorem 4.5. Let 𝔄: [𝜇, 𝜐] → 𝔽𝐶(ℝ)  be a L-convex F·-I·-V·-F with 𝜇 < 𝜐,  whose 𝛳 -cuts 

establish the series of I·-V·-Fs 𝔄𝛳: [𝜇, 𝜐] ⊂ ℝ → 𝒦𝐶
+  are provided by 𝔄𝛳(𝜕) =

[𝔄∗(𝜕, 𝛳), 𝔄
∗(𝜕, 𝛳)] for all 𝜕 ∈ [𝜇, 𝜐] and for all 𝛳 ∈ (0, 1]. If 𝔄 ∈ ℱℛ([𝜇,𝜐],𝛳) and 𝔔: [𝜇, 𝜐] →

ℝ,𝔔(𝜕) ≥ 0, symmetric with respect to 
𝜇+𝜐

2
, and ∫ 𝔔(𝜕)𝑑𝜕 > 0

𝜐

𝜇
, then 

𝑙𝑛 𝔄 (
𝜇+𝜐

2
) ≼

1

∫ 𝔔(𝜕)𝑑𝜕
𝜐
𝜇

 (𝐹𝑅)∫ [𝑙𝑛 𝔄(𝜕)]𝔔(𝜕)𝑑𝜕
𝜐

𝜇
.                 (36) 

If 𝔄 is a L-concave then, inequality (36) is flipped. 

Proof. Since 𝔄 is a L-convex then, for 𝛳 ∈ (0, 1] we have  

2 𝑙𝑛 𝔄∗ (
𝜇+𝜐

2
, 𝛳) ≤ 𝑙𝑛 𝔄∗(𝜍𝜇 + (1 − 𝜍)𝜐, 𝛳) + 𝑙𝑛 𝔄∗((1 − 𝜍)𝜇 + 𝜍𝜐, 𝛳) ,

2 𝑙𝑛 𝔄∗ (
𝜇+𝜐

2
, 𝛳) ≤ 𝑙𝑛 𝔄∗(𝜍𝜇 + (1 − 𝜍)𝜐, 𝛳) + 𝑙𝑛 𝔄∗((1 − 𝜍)𝜇 + 𝜍𝜐, 𝛳).

                (37) 

By multiplying (37) by 𝔔((1 − 𝜍)𝜇 + 𝜍𝜐) = 𝔔(𝜍𝜇 + (1 − 𝜍)𝜐) and integrate it by 𝜍 over [0, 1], 

we obtain 

  

 2 [𝑙𝑛 𝔄∗ (
𝜇+𝜐

2
, 𝛳)] ∫ 𝔔((1 − 𝜍)𝜇 + 𝜍𝜐)𝑑𝜍

1

0
                                                            

                                    ≤ ∫ [𝑙𝑛 𝔄∗(𝜍𝜇 + (1 − 𝜍)𝜐, 𝛳)]𝔔(𝜍𝜇 + (1 − 𝜍)𝜐)𝑑𝜍
1

0

                                              + ∫ [𝑙𝑛 𝔄∗((1 − 𝜍)𝜇 + 𝜍𝜐, 𝛳)]𝔔((1 − 𝜍)𝜇 + 𝜍𝜐)𝑑𝜍
1

0
,

2 [𝑙𝑛 𝔄∗ (
𝜇+𝜐

2
, 𝛳)] ∫ 𝔔((1 − 𝜍)𝜇 + 𝜍𝜐)𝑑𝜍

1

0
                                                          

                                   ≤ ∫ [𝑙𝑛 𝔄∗(𝜍𝜇 + (1 − 𝜍)𝜐, 𝛳)]𝔔(𝜍𝜇 + (1 − 𝜍)𝜐)𝑑𝜍
1

0

                                            + ∫ [𝑙𝑛 𝔄∗((1 − 𝜍)𝜇 + 𝜍𝜐, 𝛳)]𝔔((1 − 𝜍)𝜇 + 𝜍𝜐)𝑑𝜍.
1

0

      (38) 

Since 

  

 ∫ [𝑙𝑛 𝔄∗(𝜍𝜇 + (1 − 𝜍)𝜐, 𝛳)]𝔔(𝜍𝜇 + (1 − 𝜍)𝜐)
1

0
𝑑𝜍                                               

                                           = ∫ [𝑙𝑛 𝔄∗((1 − 𝜍)𝜇 + 𝜍𝜐, 𝛳)]𝔔((1 − 𝜍)𝜇 + 𝜍𝜐)
1

0
𝑑𝜍,

    =
1

𝜐−𝜇
 ∫ [𝑙𝑛 𝔄∗(𝜕, 𝛳)]𝔔(𝜕)𝑑𝜕
𝜐

𝜇
,

∫ [𝑙𝑛 𝔄∗(𝜍𝜇 + (1 − 𝜍)𝜐, 𝛳)]𝔔(𝜍𝜇 + (1 − 𝜍)𝜐)
1

0
𝑑𝜍                                            

                                           = ∫ [𝑙𝑛 𝔄∗((1 − 𝜍)𝜇 + 𝜍𝜐, 𝛳)]𝔔((1 − 𝜍)𝜇 + 𝜍𝜐)
1

0
𝑑𝜍,

   =
1

𝜐−𝜇
 ∫ [𝑙𝑛 𝔄∗(𝜕, 𝛳)]𝔔(𝜕)𝑑𝜕
𝜐

𝜇
.

       (39) 

From (38) and (39), we have 
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𝑙𝑛 𝔄∗ (
𝜇+𝜐

2
, 𝛳)  ≤

1

∫ 𝔔(𝜕)𝑑𝜕
𝜐
𝜇

 ∫ [𝑙𝑛 𝔄∗(𝜕, 𝛳)]𝔔(𝜕)𝑑𝜕
𝜐

𝜇
,

𝑙𝑛 𝔄∗ (
𝜇+𝜐

2
, 𝛳)  ≤

1

∫ 𝔔(𝜕)𝑑𝜕
𝜐
𝜇

 ∫ [𝑙𝑛 𝔄∗(𝜕, 𝛳)]𝔔(𝜕)𝑑𝜕
𝜐

𝜇
.

              

  

From which, we have 

 

  

[𝑙𝑛 𝔄∗ (
𝜇+𝜐

2
, 𝛳) , 𝑙𝑛 𝔄∗ (

𝜇+𝜐

2
, 𝛳)]                                                                              

                            ≤𝐼
1

∫ 𝔔(𝜕)𝑑𝜕
𝜐
𝜇

[ ∫ [𝑙𝑛 𝔄∗(𝜕, 𝛳)]𝔔(𝜕)𝑑𝜕
𝜐

𝜇
,   ∫ [𝑙𝑛 𝔄∗(𝜕, 𝛳)]𝔔(𝜕)𝑑𝜕

𝜐

𝜇
] ,

              

 

that is 

𝑙𝑛 𝔄 (
𝜇+𝜐

2
) ≼

1

∫ 𝔔(𝜕)𝑑𝜕
𝜐
𝜇

 (𝐹𝑅)∫ [𝑙𝑛 𝔄(𝜕)]𝔔(𝜕)𝑑𝜕
𝜐

𝜇
.  

Then we complete the proof. 

Remark 4.6. If 𝔄∗(𝜇, 𝛳) = 𝔄
∗(𝜇, 𝛳) with 𝛳 = 1, then Theorem 4.4 and Theorem 4.5 reduces to 

classical first and second H-H Fejér inequality for L-convex function. 

Example 4.7. We consider the F-I-V-F 𝔄: [𝜇, 𝜐] = [
𝜋

4
,
𝜋

2
] → 𝔽𝐶(ℝ) established by, 

𝔄(𝜕)(𝚜) = {

𝚜

𝑒sin(𝜕) ,           𝚜 ∈ [0, 𝑒
sin(𝜕)],

2𝑒sin(𝜕)−𝚜

𝑒sin(𝜕) ,   𝚜 ∈ (𝑒sin(𝜕), 2𝑒sin(𝜕)],

0,             𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒.

  

Then, for each 𝛳 ∈ (0, 1], we have 

𝔄𝛳(𝜕) = [𝛳𝑒
sin(𝜕), (2 − 𝛳)𝑒sin(𝜕)]. 

Since end point functions 𝔄∗(𝜕, 𝛳) = 𝛳𝑒
sin(𝜕) , 𝔄∗(𝜕, 𝛳) = (2 − 𝛳)𝑒sin(𝜕)  are L-convex 

functions, for each 𝛳 ∈ (0, 1] then, by Theorem 2.16, 𝔄(𝜕) is L-convex F-I-V-F. If 

𝔔(𝜕) = {
𝜕 −

𝜋

4
,    𝚜 ∈ [

𝜋

4
,
3𝜋

8
] ,

𝜋

2
− 𝜕,   𝚜 ∈ (

3𝜋

8
,
𝜋

2
] .

  

Then, we have 
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1

𝜐−𝜇
∫ [𝑙𝑛 𝔄∗(𝜕, 𝛳)]𝔔(𝜕)𝑑𝜕
𝜐

𝜇
=

4

𝜋
∫ [𝑙𝑛 𝔄∗(𝜕, 𝛳)]𝔔(𝜕)𝑑𝜕
𝜋

2
𝜋

4

                                                           

                                                  =
4

𝜋
∫ [𝑙𝑛 𝔄∗(𝜕, 𝛳)]𝔔(𝜕)𝑑𝜕
3𝜋

8
𝜋

4

+
4

𝜋
∫ 𝑙𝑛 𝔄∗(𝜕, 𝛳)𝔔(𝜕)𝑑𝜕
𝜋

2
3𝜋

8

,

1

𝜐−𝜇
∫ [𝑙𝑛 𝔄∗(𝜕, 𝛳)]𝔔(𝜕)𝑑𝜕
𝜐

𝜇
=

4

𝜋
∫ [𝑙𝑛 𝔄∗(𝜕, 𝛳)]𝔔(𝜕)𝑑𝜕
𝜋

2
𝜋

4

                                                         

                                                    =
4

𝜋
∫ [𝑙𝑛 𝔄∗(𝜕, 𝛳)]𝔔(𝜕)𝑑𝜕
3𝜋

8
𝜋

4

+
4

𝜋
∫ 𝑙𝑛 𝔄∗(𝜕, 𝛳)𝔔(𝜕)𝑑𝜕
𝜋

2
3𝜋

8

,

   

 =
4

𝜋
∫ [𝑙𝑛(𝛳𝑒sin(𝜕))] (𝜕 −

𝜋

4
)𝑑𝜕

3𝜋

8
𝜋

4

+
4

𝜋
∫ [𝑙𝑛(𝛳𝑒sin(𝜕))] (

𝜋

2
− 𝜕)𝑑𝜕

𝜋

2
3𝜋

8

                   

≈
1

25𝜋
[
31

2
𝑙𝑛(𝛳) + 14],                              

=
4

𝜋
∫ [𝑙𝑛(2 − 𝛳)𝑒sin(𝜕)] (𝜕 −

𝜋

2
)𝑑𝜕

3𝜋

8
𝜋

4

+
4

𝜋
∫ [𝑙𝑛  ((2 − 𝛳)𝑒sin(𝜕))] (

𝜋

2
− 𝜕)𝑑𝜕

𝜋

2
3𝜋

8

≈
1

25𝜋
[
31

2
𝑙𝑛(2 − 𝛳) + 14] ,

      (40) 

and 

𝑙𝑛 [𝔄∗(𝜇, 𝛳) × 𝔄∗(𝜐, 𝛳)] ∫ 𝜍𝔔((1 − 𝜍)𝜇 + 𝜍𝜐)
1

0
𝑑𝜍  

𝑙𝑛 [𝔄∗(𝜇, 𝛳) × 𝔄∗(𝜐, 𝛳)] ∫ 𝜍𝔔((1 − 𝜍)𝜇 + 𝜍𝜐)
1

0
𝑑𝜍

  

= [2𝑙𝑛(𝛳) +
2+√2

2
] [∫ 𝜍2𝑑𝜕

1

2
0

+ ∫ 𝜍(1 + 𝜍)𝑑𝜍
1
1

2

] ≈
17

24𝜋
[
63

10
𝑙𝑛(𝛳) +

2+√2

2
],                

 

= [2𝑙𝑛(2 − 𝛳) +
2+√2

2
] [∫ 𝜍2𝑑𝜕

1

2
0

+ ∫ 𝜍(1 + 𝜍)𝑑𝜍
1
1

2

] ≈
17

24𝜋
[
63

10
𝑙𝑛(2 − 𝛳) +

2+√2

2
] ,

         (41)  

From (40) and (41), we have 

[
1

25𝜋
[
31

2
𝑙𝑛(𝛳) + 14] ,

1

25𝜋
[
31

2
𝑙𝑛(2 − 𝛳) + 14]]  

  ≤𝐼 [
17

24𝜋
[
63

10
𝑙𝑛(𝛳) +

2+√2

2
] ,

17

24𝜋
[
63

10
𝑙𝑛(2 − 𝛳) +

2+√2

2
]],  

for all 𝛳 ∈ (0, 1]. Hence, Theorem 4.4 is verified. 

For Theorem 4.5, we have  

𝑙𝑛 𝔄∗ (
𝜇+𝜐

2
, 𝛳) = 𝑙𝑛 𝔄∗ (

3𝜋

8
, 𝛳) ≈ 𝑙𝑛 (

5

2
𝛳) ,

𝑙𝑛 𝔄∗ (
𝜇+𝜐

2
, 𝛳) = 𝑙𝑛 𝔄∗ (

3𝜋

8
, 𝛳) ≈ 𝑙𝑛 (

5

2
(2 − 𝛳)) ,

              

                               (42) 

  ∫ 𝔔(𝜕)𝑑𝜕
𝜐

𝜇
= ∫ (𝜕 −

𝜋

4
)𝑑𝜕

3𝜋

8
𝜋

4

+ ∫ (
𝜋

2
− 𝜕)𝑑𝜕

𝜋

2
3𝜋

8

≈
3

20
,  
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1

∫ 𝔔(𝜕)𝑑𝜕
𝜐
𝜇

 ∫ [𝑙𝑛 𝔄∗(𝜕, 𝛳)]𝔔(𝜕)𝑑𝜕
𝜐

𝜇
≈

2

15
[
31

4
𝑙𝑛(𝛳) + 7] ,

1

∫ 𝔔(𝜕)𝑑𝜕
𝜐
𝜇

 ∫ [𝑙𝑛 𝔄∗(𝜕, 𝛳)]𝔔(𝜕)𝑑𝜕
𝜐

𝜇
≈

2

15
[
31

4
𝑙𝑛(2 − 𝛳) + 7] ,

              

                         (43) 

From (42) and (43), we have 

     [𝑙𝑛 (
5

2
𝛳) , 𝑙𝑛 (

5

2
(2 − 𝛳))]  ≤𝐼 [

2

15
[
31

4
𝑙𝑛(𝛳) + 7] ,

2

15
[
31

4
𝑙𝑛(2 − 𝛳) + 7]]. 

Hence, Theorem 4.5 is verified. 

5. Conclusions 

In this research, some new Jensen, Schur, and H-H-Inequalities of L-convex F-I-V-Fs are 

offered using fuzzy order relation. We also prove that the results provided in this study generalize the 

results given for classical L-convex functions. It is an interesting and new problem that the upcoming 

researchers can obtain new results for different kinds of convexities and inequalities in their future 

investigations. In future, we will try to explore this concept for interval-valued functions. Morever, 

we will try to find fuzzy inequalities for L-convex F-I-V-Fs by using different fractional integral 

operators. 

Acknowledgements 

This work was supported by the Taif University Researchers Supporting Project (No. 

TURSP-2020/155), Taif University, Taif, Saudi Arabia, and the National Science, Research and 

Innovation Fund (NSRF), Thailand. 

Conflict of interest 

The authors declare that they have no competing interests. 

References 

1. G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Generalized convexity and inequalities, J. 

Math. Anal. Appl., 335 (2007), 1294–1308. https://doi.org/10.1016/j.jmaa.2007.02.016 

2. M. Avci, H. Kavurmaci, M. E. Özdemir, New inequalities of Hermite–Hadamard type via 

s-convex functions in the second sense with applications, Appl. Math. Comput., 217 (2011), 

5171–5176. https://doi.org/10.1016/j.amc.2010.11.047 

3. F. Chen, S. Wu, Integral inequalities of Hermite-Hadamard type for products of two h-convex 

functions, Abstr. Appl. Anal., 6 (2014), 1–6. 

4. W. Liu, New integral inequalities involving beta function via P-convexity, Miskolc Math. Notes, 

15 (2014), 585–591. https://doi.org/10.18514/MMN.2014.660 

5. J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d’une fonction 

considérée par Riemann, J. Math. Pure. Appl., 5 (1893), 171–216. 

https://doi.org/10.1016/j.jmaa.2007.02.016
https://doi.org/10.1016/j.amc.2010.11.047


4356 

AIMS Mathematics  Volume 7, Issue 3, 4338–4358. 

6. C. Hermite, Sur deux limites d’une intégrale définie, Mathesis, 3 (1883), 1–82. 

7. M. Alomari, M. Darus, S. S. Dragomir, P. Cerone, Ostrowski type inequalities for functions 

whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23 (2010), 1071–1076. 

https://doi.org/10.1016/j.aml.2010.04.038 

8. P. Cerone, S. S. Dragomir, Ostrowski type inequalities for functions whose derivatives satisfy 

certain convexity assumptions, Demonstr. Math., 37 (2004), 299–308. 

https://doi.org/10.1515/dema-2004-0208 

9. M. A. Latif, S. Rashid, S. S. Dragomir, Y. M. Chu, Hermite-Hadamard type inequalities for 

co-ordinated convex and quasi-convex functions and their applications, J. Inequal. Appl., 2019 

(2019), 317. https://doi.org/10.1186/s13660-019-2272-7 

10. L. Fejér, Uber die fourierreihen, II, Math. Naturwise. Anz, Ungar. Akad. Wiss., 24 (1906), 369–

390. 

11. S. Varošanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303–311. 

https://doi.org/10.1016/j.jmaa.2006.02.086 

12. B. Y. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for s-log convex functions, 

Acta Math. Sci. Ser. A (Chin. Ed.), 35 (2015), 515–524. https://doi.org/10.13140/RG.2.1.4385.9044 

13. M. A. Noor, F. Qi, M. U. Awan, Some Hermite-Hadamard type inequalities for log-h-convex 

functions, Analysis, 33 (2013), 367–375. https://doi.org/10.1524/anly.2013.1223 

14. M. A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, J. Math. Anal. 

Approx. Theory, 2 (2007), 126–131. 

15. J. E. Peajcariaac, F. Proschan, Y. L. Tong, Convex functions, partial orderings and statistical 

applications, Academic Press, 1992. 

16. S. S. Dragomir C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and 

applications, 2003. 

17. S. S. Dragomir, Refinements of the Hermite-Hadamard integral inequality for log-convex 

functions, 2000. 

18. S. S. Dragomir, B. Mond, Integral inequalities of Hadamard type for log convex functions, 

Demonstr. Math., 31 (1998), 354–364. https://doi.org/10.1515/dema-1998-0214 

19. S. S. Dragomir, New inequalities of Hermite-Hadamard type for log convex functions, Khayyam 

J. Math., 3 (2017), 98–115. https://doi.org/10.22034/kjm.2017.47458 

20. S. S. Dragomir, J. Pecaric, L. E. Persson, Some inequalities of Hadamard type, Soochow J. 

Math., 21 (1995), 335–341. 

21. S. S. Dragomir, A survey of Jensen type inequalities for log-convex functions of self adjoint 

operators in Hilbert spaces, Commun. Math. Anal., 10 (2011), 82–104. 

22. Jr R. Goetschel, W. Voxman, Elementary fuzzy calculus, Fuzzy set. syst., 18 (1986), 31–43. 

https://doi.org/10.1016/0165-0114(86)90026-6 

23. R. E. Moore, Interval analysis, Englewood Cliffs: Prentice Hall, 1966. 

24. U. W. Kulish, W. Miranker, Computer arithmetic in theory and practice, New York: Academic 

Press, 1981. 

25. S. Nanda, K. Kar, Convex fuzzy mappings, Fuzzy Set. Syst., 48 (1992), 129–132. 

https://doi.org/10.1016/0165-0114(92)90256-4 

26. S. S. Chang, Variational inequality and complementarity problems theory and applications, 

Shanghai: Shanghai Scientific and Technological Literature Publishing House, 1991. 

27. M. A. Noor, Fuzzy preinvex functions, Fuzzy Set. Syst., 64 (1994), 95–104. 

https://doi.org/10.1016/j.aml.2010.04.038
https://doi.org/10.1515/dema-2004-0208
https://doi.org/10.1186/s13660-019-2272-7
https://doi.org/10.1016/j.jmaa.2006.02.086
http://dx.doi.org/10.13140/RG.2.1.4385.9044
https://doi.org/10.1524/anly.2013.1223
https://doi.org/10.1515/dema-1998-0214
https://doi.org/10.1016/0165-0114(86)90026-6
https://doi.org/10.1016/0165-0114(92)90256-4


4357 

AIMS Mathematics  Volume 7, Issue 3, 4338–4358. 

https://doi.org/10.1016/0165-0114(94)90011-6 

28. B. Bede, Mathematics of fuzzy sets and fuzzy logic studies in fuzziness and soft computing, In: 

Studies in fuzziness and soft computing springer, 2013. https://doi.org/10.1007/978-3-642-35221-8 

29. J. Cervelati, M. D. Jiménez-Gamero, F. Vilca-Labra, M. A. Rojas-Medar, Continuity for 

s-convex fuzzy processes, In: Soft methodology and random information systems, 2004, 653–660. 

https://doi.org/10.1007/978-3-540-44465-7_81 

30. Y. Chalco-Cano, M. A. Rojas-Medar, H. Román-Flores, M-convex fuzzy mappings and fuzzy integral 

mean, Comput. Math. Appl., 40 (2000), 1117–1126. https://doi.org/10.1016/S0898-1221(00)00226-1 

31. M. B. Khan, M. A. Noor, K. I. Noor, A. T. Ab Ghani, L. Abdullah, Extended perturbed mixed 

variational-like inequalities for fuzzy mappings, J. Math., 2021 (2021), 6652930. 

https://doi.org/10.1155/2021/6652930 

32. M. L. Puri, D. A. Ralescu, Fuzzy random variables, J. Math. Anal. Appl., 114 (1986), 409–422. 

https://doi.org/10.1016/0022-247X(86)90093-4 

33. H. Román-Flores, Y. Chalco-Cano, W. A. Lodwick, Some integral inequalities for interval-valued 

functions, Comput. Appl. Math., 37 (2018), 1306–1318. https://doi.org/10.1007/s40314-016-0396-7 

34. H. Roman-Flores, Y. Chalco-Cano, G. N. Silva, A note on Gronwall type inequality for 

interval-valued functions, In: 2013 IFSA World Congress and NAFIPS Annual Meeting 

(IFSA/NAFIPS), 2013, 1455–1458. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608616 

35. Y. Chalco-Cano, A. Flores-Franulic, H. Román-Flores, Ostrowski type inequalities for 

interval-valued functions using generalized Hukuhara derivative, Comput. Appl. Math., 31 (2012), 

457–472. https://doi.org/10.1590/S1807-03022012000300002 

36. Y. Chalco-Cano, W. A. Lodwick, W. Condori-Equice, Ostrowski type inequalities and 

applications in numerical integration for interval-valued functions, Soft Comput., 19 (2015), 

3293–3300. https://doi.org/10.1007/s00500-014-1483-6 

37. D. Zhang, C. Guo, D. Chen, G. Wang, Jensen's inequalities for set-valued and fuzzy set-valued 

functions, Fuzzy Set. Syst., 404 (2021), 178–204. https://doi.org/10.1016/j.fss.2020.06.003 

38. T. M. Costa, Jensen’s inequality type integral for fuzzy-interval-valued functions, Fuzzy Set. 

Syst., 327 (2017), 31–47. https://doi.org/10.1016/j.fss.2017.02.001 

39. T. M. Costa, H. Roman-Flores, Some integral inequalities for fuzzy-interval-valued functions, 

Inform. Sci., 420 (2017), 110–125. https://doi.org/10.1016/j.ins.2017.08.055 

40. O. Kaleva, Fuzzy differential equations, Fuzzy set. Sys., 24 (1987), 301–317. 

https://doi.org/10.1016/0165-0114(87)90029-7 

41. J. Matkowski, K. Nikodem, An integral Jensen inequality for convex multifunctions, Results 

Math., 26 (1994), 348–353. https://doi.org/10.1007/BF03323058 

42. P. Diamond, P. E. Kloeden, Metric spaces of fuzzy sets: Theory and applications, World Scient, 

1994. 

43. M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, Higher-order strongly preinvex fuzzy mappings 

and fuzzy mixed variational-like inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 186–1870. 

https://doi.org/10.2991/ijcis.d.210616.001 

44. P. Liu, M. B. Khan, M. A. Noor, K. I. Noor, On strongly generalized preinvex fuzzy mappings, J. 

Math., 2021 (2021), 6657602. https://doi.org/10.1155/2021/6657602 

45. P. Liu, M. B. Khan, M. A. Noor, K. I. Noor, New Hermite-Hadamard and Jensen inequalities for 

log-s-convex fuzzy-interval-valued functions in the second sense, Complex Intell. Syst., 2021 

(2021), 1–15. https://doi.org/10.1007/s40747-021-00379-w 

https://doi.org/10.1016/0165-0114(94)90011-6
https://doi.org/10.1007/978-3-540-44465-7_81
https://doi.org/10.1016/S0898-1221(00)00226-1
https://doi.org/10.1155/2021/6652930
https://doi.org/10.1016/0022-247X(86)90093-4
https://doi.org/10.1007/s40314-016-0396-7
https://ieeexplore.ieee.org/xpl/conhome/6596206/proceeding
https://doi.org/10.1109/IFSA-NAFIPS.2013.6608616
https://doi.org/10.1590/S1807-03022012000300002
https://doi.org/10.1007/s00500-014-1483-6
https://doi.org/10.1016/j.fss.2020.06.003
https://doi.org/10.1016/j.fss.2017.02.001
https://doi.org/10.1016/j.ins.2017.08.055
https://doi.org/10.1016/0165-0114(87)90029-7
https://doi.org/10.1007/BF03323058
https://dx.doi.org/10.2991/ijcis.d.210616.001
https://doi.org/10.1155/2021/6657602
https://doi.org/10.1007/s40747-021-00379-w


4358 

AIMS Mathematics  Volume 7, Issue 3, 4338–4358. 

46. M. B. Khan, M. A. Noor, L. Abdullah, K. I. Noor, New Hermite-Hadamard and Jensen 

inequalities for log-h-convex fuzzy-interval-valued functions, Int. J. Comput. Intell. Syst., 14 

(2021), 1–16. https://doi.org/10.1007/s44196-021-00004-1 

47. M. B. Khan, M. A. Noor, K. I. Noor, Y. M. Chu, New Hermite-Hadamard type inequalities for 

(h1,h2)-convex fuzzy-interval-valued functions, Adv. Differ. Equ., 2021 (2021), 6–20. 

https://doi.org/10.1186/s13662-021-03245-8 

48. M. B. Khan, M. A. Noor, L. Abdullah, Y. M. Chu, Some new classes of preinvex 

fuzzy-interval-valued functions and inequalities, Int. J. Comput. Intell. Syst., 14 (2021), 1403–1418. 

https://doi.org/10.2991/ijcis.d.210409.001 

49. H. M. Srivastava, S. M. El-Deeb, Fuzzy differential subordinations based upon the Mittag-Leffler 

type Borel distribution, Symmetry, 13 (2021), 1–15. https://doi.org/10.3390/sym13061023 

50. M. B. Khan, H. M. Srivastava, P. O. Mohammad, J. L. G. Guirao, Fuzzy mixed variational-like 

and integral inequalities for strongly preinvex fuzzy mappings, Symmetry, 13 (2021), 1816. 

https://doi.org/10.3390/sym13101816 

51. M. B. Khan, P. O. Mohammed, M. A. Noor, Y. S. Hamed, New Hermite-Hadamard inequalities in 

fuzzy-interval fractional calculus and related inequalities, Symmetry, 13 (2021), 673. 

https://doi.org/10.3390/sym13040673 

52. M. B. Khan, M. A. Noor, H. M. Al-Bayatti, K. I. Noor, Some new inequalities for 

LR-Log-h-convex interval-valued functions by means of pseudo order relation, Appl. Math. 

Inform. Sci., 15 (2021), 459–470. https://doi.org/10.18576/amis/150408 

53. G. Sana, M. B. Khan, M. A. Noor, P. O. Mohammed, Y. M. Chu, Harmonically convex 

fuzzy-interval-valued functions and fuzzy-interval Riemann-Liouville fractional integral inequalities, 

Int. J. Comput. Intell. Syst., 14 (2021), 1809–1822. https://dx.doi.org/10.2991/ijcis.d.210620.001 

54. H. M. Srivastava, Z. H. Zhang, Y. D. Wu, Some further refinements and extensions of the 

Hermite-Hadamard and Jensen inequalities in several variables, Math. Comput. Model., 54 

(2021), 2709–2717. https://dx.doi.org/10.1016/j.mcm.2011.06.057 

55. M. B. Khan, M. A. Noor, K. I. Noor, H. Almusawa, K. S. Nisar, Exponentially preinvex fuzzy 

mappings and fuzzy exponentially mixed variational-like inequalities, Int. J. Nonlinear Anal. 

Appl., 19 (2021), 518–541. https://dx.doi.org/10.28924/2291-8639-19-2021-518 

56. M. B. Khan, P. O. Mohammed, M. A. Noor, K. Abuahalnaja, Fuzzy integral inequalities on 

coordinates of convex fuzzy interval-valued functions, Math. Biosci. Eng., 18 (2021), 6552–6580. 

https://dx.doi.org/10.3934/mbe.2021325 

57. M. B. Khan, P. O. Mohammed, M. A. Noor, Y. Hameed. K. I. Noor, New fuzzy-interval 

inequalities in fuzzy-interval fractional calculus by means of fuzzy order relation, AIMS 

Mathematics, 6 (2021), 10964–10988. https://dx.doi.org/10.3934/math.2021637 

58. M. B. Khan, P. O. Mohammed, M. A. Noor, D. Baleanu, J. Guirao, Some new fractional 

estimates of inequalities for LR-p-convex interval-valued functions by means of pseudo order 

relation, Axioms, 10 (2021), 175. https://doi.org/10.3390/axioms10030175 

© 2022 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 

https://doi.org/10.1007/s44196-021-00004-1
https://dx.doi.org/10.2991/ijcis.d.210409.001
https://doi.org/10.3390/sym13061023
https://doi.org/10.3390/sym13101816
https://doi.org/10.3390/sym13040673
http://dx.doi.org/10.18576/amis/150408
https://dx.doi.org/10.2991/ijcis.d.210620.001
http://dx.doi.org/10.1016/j.mcm.2011.06.057
http://dx.doi.org/10.28924/2291-8639-19-2021-518
https://www.researchgate.net/scientific-contributions/Khalidajah-Abuahalnaja-2198255341
https://www.researchgate.net/publication/353288076_Fuzzy_Integral_Inequalities_on_Coordinates_of_Convex_Fuzzy_Interval-Valued_Functions?_sg=v8-dkZViaqzqOAZDGVvm5_yoASOZQdQYPbFAP5vCJni1J-IZ0EjrnW983ejNA1xX9oQaLali0BKqgtbhUakRGYYkeEh_-6CsdZKZvQe7.MWehpR7P3HRbcdL7jFrn-7BKjrhidzd1Sfeoxv3IZO4sTsdTbjxgSRZfgbCmDaHKYeiEZ8dqKhdyPlMc8kOmJg
https://www.researchgate.net/publication/353288076_Fuzzy_Integral_Inequalities_on_Coordinates_of_Convex_Fuzzy_Interval-Valued_Functions?_sg=v8-dkZViaqzqOAZDGVvm5_yoASOZQdQYPbFAP5vCJni1J-IZ0EjrnW983ejNA1xX9oQaLali0BKqgtbhUakRGYYkeEh_-6CsdZKZvQe7.MWehpR7P3HRbcdL7jFrn-7BKjrhidzd1Sfeoxv3IZO4sTsdTbjxgSRZfgbCmDaHKYeiEZ8dqKhdyPlMc8kOmJg
https://dx.doi.org/10.3934/math.2021637
https://doi.org/10.3390/axioms10030175

