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Abstract: This paper investigates the event-triggered state estimation problem for a class of complex
networks (CNs) suffered by hybrid cyber-attacks. It is assumed that a wireless network exists between
sensors and remote estimators, and that data packets may be modified or blocked by malicious
attackers. Adaptive event-triggered scheme (AETS) is introduced to alleviate the network congestion
problem. With the help of two sets of Bernoulli distribution variables (BDVs) and an arbitrary
function related to the system state, a mathematical model of the hybrid cyber-attacks is developed
to portray randomly occurring denial-of-service (DoS) attacks and deception attacks. CNs, AETS,
hybrid cyber-attacks, and state estimators are then incorporated into a unified architecture. The system
state is cascaded with state errors as an augmented system. Furthermore, based on Lyapunov stability
theory and linear matrix inequalities (LMIs), sufficient conditions to ensure the asymptotic stability
of the augmented system are derived, and the corresponding state estimator is designed. Finally, the
effectiveness of the theoretical method is demonstrated by numerical examples and simulations.
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1. Introduction

In recent decades, the development of information technology has brought great portability to
people’s production and life [1]. CNs can be used to portray smart grids, intelligent transportation,
social networks and neural systems, etc., and have been given significant research significance and
wide application context by academia and industry [2]. It is well known that nodes and connection
relationships are two key factors that constitute CNs [3]. For example, in a power system network,
power plants are connected to each other by transmission lines, where power plants can be abstractly
considered as nodes, and similarly, transmission lines between power plants can be considered as
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connection relations [4]. For a multi-robot system, each mobile robot is considered as a node in the
network, and the mutual sensing and intercommunication between robots are seen as the connection
relationship. When the number of controlled objects is large, the cooperation and formation
maintenance for the multi-robot system can be studied with the help of the theory of CNs. Similarly,
the above ideas are also applicable to the study of multi-UAS. It can be seen that the connection
relations, nodes, and the interactions between connection relations and nodes constitute CNs [5].
From the perspective of control discipline, some works such as state estimation, synchronization and
control, and topology identification of CNs are still widely studied [6–8]. In addition, many practical
problems are inevitable in information transmission, such as channel redundancy, cyber-attacks, time
delay, packet loss, and noise [9, 10]. The authors in [7] studied the partial-nodes-based state
estimation problem on estimating the entire network state using partial outputs of the available nodes.
In this paper, the impact of cyber-attacks and channel redundancy on the state estimation for CNs is
discussed.

In practical engineering, the network bandwidth available to a system is usually limited [11, 12].
Due to the limitation of network resources, channel redundancy, data congestion, network-induced
delay, and packet loss inevitably occur when the components within the system perform network
access and information transmission [13, 14]. To mitigate the impact of these problems on system
performance, various data transmission mechanisms have been proposed, such as event-triggered
schemes (ETSs), communication protocol scheduling, and codec strategies. Currently, ETS is a
common data transmission scheduling strategy in networked systems [15, 16]. The core idea of the
scheme is to determine in real time whether the current system state satisfies the triggering conditions
to control the task execution on demand and meet the system performance [17]. On this basis, data
transmission strategies such as distributed ETS, AETS, self-triggered scheme, and dynamic ETS have
been proposed one after another [18–21]. By introducing the AETS, a fuzzy dynamic output feedback
controller is designed for the nonlinear system with actuator failure and packet loss [20]. In [21], the
authors propose a co-design method for filter and distributed AETS for nonlinear interconnected
systems.

ETSs bring great convenience to networked systems, but open networks are vulnerable to
malicious attackers, which poses a potential security risk to networked systems [22, 23]. In networked
systems, network attacks appear in various ways and affect or even destroy system performance, such
as DoS attacks and deception attacks [24]. DoS attacks: attackers can block the transmission of
information in the communication network between sensors and controllers (estimators), resulting in
no available data [25]. Deception attack: attackers can tamper with the available data received by the
controller (estimator) from the sensor, thus corrupting the integrity of the data [26]. In recent years,
the security of networked systems has attracted widespread attention from the community, for
example, on May 11, 2021, Belgium’s public sector Internet service provider Belnet was subjected to
a massive distributed DoS attack, which took all internal systems of the Belgian government and
public-facing websites offline and forced many government websites and services in Belgium offline;
on August 1, 2021, Italy The local vaccination appointment system was forced to shut down due to
the cyber-attacks. In [10], the authors investigated the state estimation problem for a class of
uncertain complex networks with partial node failures resistant to deception attacks. A co-design
approach for dynamic ETS and observer-based PID controller against deception attacks has been
presented in [27]. In [28], the authors studied the problem of state estimation for cyberphysical
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systems constrained by communication resources, DoS attacks, and sensor saturation. The authors
in [29] presented event-triggered control countermeasures for the multiple cyber-attacks that can
occur in cyberphysical systems. Since large-scale CNs have a large number of nodes with intricate
connections, their states are usually unmeasurable and only partial information about the network
nodes can be obtained through the output of the communication channel [30]. Due to the limitation of
network bandwidth and the threat of cyber-attacks, only part of the node information is generally
measurable [31]. In order to solve the node state agnosticism, the design of state estimator for CNs is
necessary. In this paper, we use two sets of Bernoulli distribution variables and arbitrary functions
related to the system state to characterize randomly occurring DoS attacks and deception attacks.

Inspired by the above mentioned work, it can be seen that although event-triggered state estimation
for CNs has been extensively studied, relevant research on CNs with multiple attack scenarios is very
limited. Second, we also discuss how to efficiently conserve network resources under the condition of
limited communication channel capacity. The above two points are the two motivations that motivate
the completion of this paper.

Based on the above discussion, we focus on the design of event-triggered state estimators for CNs
with malicious attacks. In addition, an AETS is introduced to avoid sensors from sending unnecessary
packets to the remote estimator for the purpose of saving network bandwidth. Then, based on the
derived sufficient conditions for system stability, a feasible approach for co-design is proposed. Finally,
a numerical example verifies the effectiveness of the proposed method. The main contributions of this
paper are as follows.

• In order to reflect the real network environment, multiple scenarios of possible malicious attacks
in the transmission channel are considered. By introducing Bernoulli distribution variables and
an arbitrary function based on the system state, a mathematical model of the deception attacks is
developed. Then the action sequence of the DoS attacks is portrayed by introducing another set
of Bernoulli variables. The so-called hybrid network attack is modeled.

• We incorporate the plant to be studied, the state estimator, the network resource scheduling policy,
and the aforementioned attack model into a unified architecture and describe them through an
augmented system.

• We derive sufficient conditions to ensure the asymptotic stability of the above system (Theorem I).
Then we give a co-design method for computing the estimation gain of the estimator and the
weight matrix of the AETS (Theorem II).

Notations: Rn×m means n × m real matrix; Rn denotes n-dimensional Euclidean space;
A > 0(A ≥ 0) implies positive definite (positive semi-definite) symmetric matrix; E

{
A
}

represents
mathematical expectation of random variable A; colN{Xi} and diagN{Yi} stand for the block-column
matrix col{X1, X2, . . . , XN} and the block-diagonal matrix col{Y1,Y2, . . . ,YN}, respectively; ⊗ denotes
Kronecker product.
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2. Preliminaries

Consider the following class of CNs:
ẋi(t) = Dixi(t) + g(xi(t)) +

∑N
j=1 ai jΓ, x j(t) + Eiwi(t),

yi(t) = Cixi(t),
zi(t) = Mixi(t),
xi(t) = φi(θ), θ ∈ (−∞, 0], i = 1, 2, . . . ,N,

(2.1)

where xi(t), yi(t), and zi(t) denote, respectively, the state vector, the measurement output, and the output
of the i-th node. wi(t) ∈ L2[0,∞) denotes the disturbance noise. φ is the initial conditions. g(·) is the
the nonlinear vector-valued function. Γ = diag{γ1, γ2, . . . , γn} is an inner-coupling matrix. A = (ai j)N×N

is thecoupled configuration matrix with ai j > 0(i , j) but not all zero. As usual, the diagonal element
is described by aii = −

∑N
j=1, j,i ai j. Ci,Di, Ei, and Mi are the known matrices.

In a networked system, the instant information in the communication network is usually
transmitted in an equal-period transmission scheme, which can cause unnecessary waste of limited
network bandwidth. The event-based transmission strategy allows the communication channel not to
be occupied all the time, thus reducing the network burden and achieving the goal of saving network
resources. However, an open network environment also exposes the system to potential security risks,
and for this reason, the impact of cyber attacks on the system is further discussed. The main work of
this paper is to discuss a co-design approach of state estimators and AETS for a class of complex
networks suffering from hybrid cyber attacks. Then, we incorporate the above-mentioned complex
network model with AETS, hybrid cyber attack model and state estimator into a unified framework as
shown in Figure 1. In the rest of this section, AETS, hybrid cyber attack modeling, and system
modeling are discussed respectively. The details are as follows:

Figure 1. The systematic structure.

2.1. Adaptive event-triggered scheme

With the booming development of network technology, the ETS has been very effective in
scheduling network resources. Under the ETS, the successful transmission of sampled data needs to
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satisfy a triggering condition:

(yi(bkh) − yi(bkh + lh))T Ωi(yi(bkh) − yi(bkh + lh)) − %yT
i (bkh)Ωiyi(bkh) > 0. (2.2)

Based on the traditional ETS, a new ETS with variable threshold is proposed to save more network
resources. Under the AETS, the threshold in the triggering condition can be described as:

%̇(t) =
1
%(t)

(
1
%(t)
−$)eT

ki(t)Ωieki(t), (2.3)

where 0 < %(0) ≤ 1, $ > 0, and eki(t) = yi(bkh) − yi(bkh + lh).
Define that τk = tk − bkh and `k = bk+1 − bk − 1, where τk is network-induced delay, and

τk ∈ [τm, τM]. According to tk < tk+1, the interval [tk, tk+1) can be divided as
⋃`k

l=0=l, where

=n =

[tk + lh, tk + (l + 1)h), l = 0, 1, . . . , `k − 1,
[tk + lh, tk+1), l = `k.

(2.4)

By setting d(t) = t − (bkh + lh), we have

d(t) =


t − bkh, t ∈ =0,

t − bkh − h, t ∈ =1,
...

...,

t − bkh − `kh, t ∈ =`k ,

(2.5)

eki(t) =


0, t ∈ =0,

yi(bkh) − yi(bkh + h), t ∈ =1,
...

...,

yi(bkh) − yi(bkh + `kh), t ∈ =`k .

(2.6)

From (2.1)–(2.6), the actual measurement output under AETM can be expressed as:

ȳi(t) = yi(t − d(t)) + eki(t), (2.7)

where 0 < τm ≤ d(t) ≤ h + τM = dM.

Remark 1. In the ith sensor-to-estimator channel, the ith trigger determines whether the current
sampled data of the ith sensor corresponding to the node needs to be sent, i.e., whether the current
sampled data in sensor i satisfies the ith adaptive event-triggered condition (2.2). The above scheme
is introduced to ensure that the information transmission efficiency can be effectively improved under
the limitation of network bandwidth.

2.2. Hybrid cyber attack modeling

The AETS greatly facilitate the transfer of data between components in a networked system.
However, the actual network network environment is complex and volatile, and there may be potential
security threats. From the defender’s standpoint, the attack type and attack moment cannot be
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determined. For this reason, both deception attacks and DoS attacks are considered, both of which are
the most common attack behaviors in network. Also, two sets of Bernoulli distributed variables are
introduced to characterize the moment of occurrence of the two attack behaviors. Denote that
F = f (yi(t − η(t))). The hybrid attack model can be expressed as follows:

ỹi(t) = (1 − βi(t))[(1 − αi(t))ȳi(t) + αi(t)F ], (2.8)

where, αi(t) and βi(t) are BDVs, and satisfy the following statistical properties:

Pr{αi(t) = 1} = ᾱi, Pr{αi(t) = 0} = 1 − ᾱi,

E{αi(t)} = ᾱi,E{αi(t) − ᾱi} = 0,E{(αi(t) − ᾱi)2} = ᾱi(1 − ᾱi) = δ2
α.

Pr{βi(t) = 1} = β̄i, Pr{βi(t) = 0} = 1 − β̄i,

E{βi(t)} = β̄i,E{βi(t) − β̄i} = 0,E{(βi(t) − β̄i)2} = β̄i(1 − β̄i) = δ2
β.

(2.9)

Remark 2. Equation (2.8) is a hybrid-driven cyber-attack behavior, i.e., the deception attacks and the
DoS attacks both switch with each other at different frequencies in the communication channel. The
BDVs α(t) and β(t) describe the occurrence sequence of deception attacks and DoS attacks,
respectively. For example, if β(t) = 1, the communication network is under DoS attacks, which means
that all transmission data is blocked. If α(t) = 1, the communication network suffers from under
deception attack, which means that the real transmission data is replaced by the deception attack
signal.

Remark 3. For the hybrid attack model, a nonlinear function with time delay η(t) on the interval
(0, ηM] is introduced to express the deception attack signal F , and satisfies the following assumption:

|| f (yi(t − η(t)))||2 ≤ ||Fiyi(t − η(t))||2, (2.10)

where F is a known matrix.

2.3. System modeling

Under AETM and hybrid attacks, the estimator on the node i is given as follows:
x̂i(t) = Di x̂i(t) + g(x̂i(t)) +

∑N
j=1 ai jΓx̂ j(t) + Li(ỹi(t) − ŷi(t)),

ŷi(t) = Ci x̂i(t),
ẑi(t) = Mi x̂i(t),

(2.11)

where x̂ ∈ Rn is the estimated state on the node i, ẑi(t) ∈ Rm is the estimate of zi(t), and Li is the
estimator gain to be designed.

Define
ei(t) = xi(t) − x̂i(t),

and
z̃i(t) = zi(t) − ẑi(t).
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For simplicity, we denote that

e(t) = colN{ei(t)}, ed(t) = colN{ei(t − d(t))},
x(t) = colN{xi(k)}, xd(t) = colN{xi(t − d(t))},
x̃(t) = colN{x̃i(t)},w(t) = colN{wi(t)}, z(t) = colN{zi(t)},
C|D|E|L|M|Ω = diagN{Ci|Di|Ei|Li|Mi|Ωi},

α(t)|β(t) = diagN{αi(t)|βi(t)}, ᾱ|β̄ = diagN{ᾱi|β̄i},

ek(t) = colN{eki(t)}, f (y(t − η(t))) = colN{ f (yi(t − η(t)))}.

Then, by combining (2.1)–(2.11) and utilizing Kronecker product, we have
ė(t) = (D + A ⊗ Γ − LC)e(t) + g(e(t)) + LCx(t) + Ew(t)

−{(1 − β(t))(1 − α(t))LC[x(t − d(t)) + ek(t)] + (1 − β(t))α(t)LF },

z̃(t) = Me(t).

(2.12)

Denote x̃(t) =

[
x(t)
e(t)

]
, and the augmented system can be obtained from (2.1) and (2.11) as follows:


˙̃x(t) = D x̃(t) + g(x̃(t)) + E w(t) − (1 − β(t))(1 − α(t)){Λ1 x̃(t − d(t)) + Λ2ek(t)}

−(1 − β(t))α(t)Λ3F .

z̃(t) = M̃x̃(t).

(2.13)

where

D =

[
D + A ⊗ Γ 0

LC D + A ⊗ Γ − LC

]
,E =

[
E
E

]
, M̃ =

[
0 M

]
,

Λ1 =

[
0 0

LC 0

]
,Λ2 =

[
0

LC

]
,Λ3 =

[
0
L

]
,H =

[
I 0
]
,

system (2.13) can be written as:

˙̃x(t) = Π1 + (α(t) − ᾱ)Π2 + (β(t) − β̄)Π3 + (α(t) − ᾱ)(β(t) − β̄)Π4, (2.14)

where

Π1 =D x̃(t) + g(x̃(t)) + Eω(t) − (1 − β̄)(1 − ᾱ){Λ1 x̃(t − d(t)) + Λ2ek(t)} − (1 − β̄)ᾱΛ3F ,

Π2 =(1 − β̄)[Λ1 x̃(t − d(t)) + Λ2ek(t) − Λ3F ],
Π3 =(1 − ᾱ)[Λ1 x̃(t − d(t)) + Λ2ek(t)] + ᾱΛ3F ,

Π4 = − Λ1 x̃(t − d(t)) − Λ2ek(t) + Λ3F .

Assumption 1. [24] For positive diagonal maxtrix U = diag{µ1, µ2, · · · , µn}, the following inequality
holds: [

x̃(t)
g(x̃(t))

]T [
−UG1 ∗

G2U −U

] [
x̃(t)

g(x̃(t))

]
≥ 0, (2.15)
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where

G1 =diag{ν−1ν
+
1 , ν

−
2ν

+
2 , · · · , ν

−
nν

+
n },

G2 =diag{
ν−1 + ν+

1

2
,
ν−2 + ν+

2

2
, · · · ,

ν−n + ν+
n

2
}.

Lemma 1. [24] For any matrices R1|2 > 0, positive scalars dM |ηM, and d(t)|η(t) ∈ [0, dM |ηM], if there

exist matrices N1|2 ∈ R
n×n such that

[
R1|2 ∗

N1|2 R1|2

]
> 0, the following inequality holds:

−dM |ηM

∫ t

t−dM |ηM

˙̃xT (s)R1|2 ˙̃x(s)ds ≤ ΞT


−R1|2 ∗ ∗

R1|2 − N1|2 −2R1|2 + N1|2 + NT
1|2 ∗

N1|2 R1|2 − N1|2 −R1|2

Ξ. (2.16)

where Ξ =


x̃(t)

x̃(t − d(t)|η(t))
x̃(t − dM |ηM)

.
Lemma 2. [11] For any positive-definite matrices R,Z and scalar ε, the following inequality holds.

−ZR−1Z ≤ ε2R − 2εZ. (2.17)

3. Main results

This section is concerned with the design problem for adaptive event-triggered state estimators such
that the augmented dynamics (2.14) of the CNs (2.1) is asymptotically stable.

Theorem 1. For given constants dM, ηM, ᾱ, β̄, $, estimator gain L, and weighting matrix Ω, the
augmented dynamics (2.14) is asymptotically stable if there exist matrices P > 0,Qi > 0,Ri > 0, and
Ni, such that the following inequalities are satisfied for i = 1, 2:

Θ =


Σ ∗ ∗ ∗ ∗

Ψ1 R
∗ ∗ ∗ ∗

Ψ2 0 R∗ ∗ ∗

Ψ3 0 0 R∗ ∗

Ψ4 0 0 0 R∗


< 0, (3.1)

[
R1 ∗

N1 R1

]
> 0, (3.2)

[
R2 ∗

N2 R2

]
> 0, (3.3)
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where

Σ =[(1.1) = DT
P +PD +Q1 +Q2 − UG1 − R1 − R2 + M̃T M̃

(2.1) = −(1 − ᾱ)(1 − β̄)ΛT
1P + R1 − N1

(2.2) = HTCT ΩCH − 2R1 + N1 + NT
1

(3.1) = N1, (3.2) = R1 − N1, (3.3) = −R1 −Q1

(4.1) = R2 − N2, (4.4) = −2R2 + N2 + NT
2 + HTCT FT FCH

(5.1) = N2, (5.4) = R2 − N2, (5.5) = −Q2 − R2

(6.1) = −(1 − β̄)(1 − ᾱ)ΛT
2P, (6.6) = −$Ω

(7.1) = −(1 − β̄)ᾱΛT
3P, (7.7) = −I

(8.1) = P + G2U, (8.8) = −U

(9.1) = EP, (9.9) = −γ2],

Ψ j =

[
dMΓ j

ηMΓ j

]
,

Γ1 =
[
PD −(1 − β̄)(1 − ᾱ)PΛ1 0 0 0 −(1 − β̄)(1 − ᾱ)PΛ2 −(1 − β̄)(1 − ᾱ)PΛ3 P PE

]
,

Γ2 =
[
0 δα(1 − β̄)PΛ1 0 0 0 δα(1 − β̄)PΛ2 −δα(1 − β̄)PΛ3 0 0

]
,

Γ3 =
[
0 δβ(1 − ᾱ)PΛ1 0 0 0 δβ(1 − ᾱ)PΛ2 δαδβPΛ3 0 0

]
,

Γ4 =
[
0 −δαδβPΛ1 0 0 0 −δαδβPΛ2 δαδβPΛ3 0 0

]
,

R
∗ =diag{−PR−1

1 P,−PR
−1
2 P}.

Proof. Contruct an Lyapunov functional candidate:

V(x(t), t) =

3∑
i=1

Vi(x(t), t) + V4(t), (3.4)

where

V1(x(t), t) =x̃T (t)Px̃(t),

V2(x(t), t) =

∫ t

t−dM

x̃T (s)Q1 x̃(s)ds +

∫ t

t−ηM

x̃T (s)Q2 x̃(s)ds,

V3(x(t), t) =dM

∫ 0

−dM

∫ t

t+θ

˙̃xT (s)R1 ˙̃x(s)dsdθ + ηM

∫ 0

−ηM

∫ t

t+θ

˙̃xT (s)R2 ˙̃x(s)dsdθ,

V4(t) =
1
2
%2(t),
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The derivative and mathematical expectation of (3.4) can be calculated as:

E{V̇(x(t), t)} =sym{x̃T (t)PΠ1} + x̃T (t)(Q1 +Q2)x̃(t)
− x̃T (t − dM)Q1 x̃(t − dM) − x̃T (t − ηM)Q2 x̃(t − ηM)
+ ΠT

1 ΞΠ1 + δ2
αΠ

T
2 ΞΠ2 + δ2

βΠ
T
3 ΞΠ3 + δ2

αδ
2
βΠ

T
4 ΞΠ4

+
1
%(t)

eT
k (t)Ωek(t) −$eT

k (t)Ωek(t)

− dM

∫ t

t−dM

˙̃xT (s)R1 ˙̃x(s)ds − ηM

∫ t

t−ηM

˙̃xT (s)R2 ˙̃x(s)ds,

(3.5)

where Ξ = d2
MR1 + η2

MR2.
Then, the following inequality can be obtained from Remark 3:

x̃T (t − η(t))HTCT FT FCHx̃(t − η(t)) −F TF ≥ 0. (3.6)

Combining (3.5) and (3.6), using Lemma 1 to estimate one cross term in (3.5), taking the adaptive
triggering condition (2.2) and (2.3) to bound the term 1

%(t)e
T
k (t)Ωek(t) in (3.5), and adding (2.15) in

Assumption 1 to the right-hand side of (3.5), one obtains

E{V̇(x(t), t)} + z̃T (t)z̃(t) − γ2wT (t)w(t)
≤ ξT (t)Σξ(t) + ΠT

1 ΞΠ1 + δ2
αΠ

T
2 ΞΠ2 + δ2

βΠ
T
3 ΞΠ3 + δ2

αδ
2
βΠ

T
4 ΞΠ4,

(3.7)

where ξ(t) = {x̃(t), x̃(t − d(t)), x̃(t − dM), x̃(t − η(t)), x̃(t − ηM), ek(t),F , g(x̃(t)),w(t)}.
Utilizing Schur complement, we can obtain that (3.7) is equivalent to (3.1)–(3.3). When w(t) = 0, it

can be seen that the system (2.14) is asymptotically stable from the LMIs (3.1)–(3.3). This completes
the proof. �

So far, the stability analysis problem of augmented systems for state estimation about complex
network has been solved. Based on Theorem 1, we can easily obtain the estimator gains. Details are
as follows.

Theorem 2. For given constants dM, ηM, ᾱ, β̄, $, the estimator (2.11) for the system (2.14) can be
designed if there exist matrices P = diag{P1,P2} > 0,Qi > 0,Ri > 0, and Ni, such that the following
inequalities are satisfied for i = 1, 2:

Θ̂ =



Σ̂ ∗ ∗ ∗ ∗

Ψ̂1 R̂
∗ ∗ ∗ ∗

Ψ̂2 0 R̂∗ ∗ ∗

Ψ̂3 0 0 R̂∗ ∗

Ψ̂4 0 0 0 R̂∗


< 0, (3.8)
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(3.2) and (3.3), where

Σ̂ =[(1.1) = Λ4 + ΛT
4 +Q1 +Q2 − UG1 − R1 − R2 + M̃T M̃

(2.1) = −(1 − ᾱ)(1 − β̄)ΛT
5 + R1 − N1

(2.2) = HTCT ΩCH − 2R1 + N1 + NT
1

(3.1) = N1, (3.2) = R1 − N1, (3.3) = −R1 −Q1

(4.1) = R2 − N2, (4.4) = −2R2 + N2 + NT
2 + HTCT FT FCH

(5.1) = N2, (5.4) = R2 − N2, (5.5) = −Q2 − R2

(6.1) = −(1 − β̄)(1 − ᾱ)ΛT
6 , (6.6) = −$Ω

(7.1) = −(1 − β̄)ᾱΛT
7 , (7.7) = −I

(8.1) = P + G2U, (8.8) = −U

(9.1) = EP, (9.9) = −γ2],

Ψ̂ j =

dMΓ̂ j

ηMΓ̂ j

 ,
Γ̂1 =

[
Λ4 −(1 − β̄)(1 − ᾱ)Λ5 0 0 0 −(1 − β̄)(1 − ᾱ)Λ6 −(1 − β̄)(1 − ᾱ)Λ7 P PE

]
,

Γ̂2 =
[
0 δα(1 − β̄)Λ5 0 0 0 δα(1 − β̄)Λ6 −δα(1 − β̄)Λ7 0 0

]
,

Γ̂3 =
[
0 δβ(1 − ᾱ)Λ5 0 0 0 δβ(1 − ᾱ)Λ6 δαδβΛ7 0 0

]
,

Γ̂4 =
[
0 −δαδβΛ5 0 0 0 −δαδβΛ6 δαδβΛ7 0 0

]
,

R̂
∗ =diag{ε2

R1 − 2εP, ε2
R2 − 2εP},

Λ4 =

[
P1D +P1A ⊗ Γ 0

XC P2D +P2A ⊗ Γ − XC

]
,

Λ5 =

[
0 0

XC 0

]
,Λ6 =

[
0

XC

]
,Λ7 =

[
0
X

]
.

In addition, the estimator gains can be obtained by Li = P−1
2i Xi(i = 1, 2, . . . ,N).

Proof. By applying Lemma 2, replacing −PR1P in (3.1) by εR1 − 2εP, a new R̂∗ is obtained as:

R̂
∗ = diag{ε2

R1 − 2εP, ε2
R2 − 2εP}.

Noticing that X = P2L, (3.8) can be obtained. This completes the proof. �

4. Examples and simulations

In this section, we provide numerical simulations to demonstrate the validity of the theoretical
approach. We take a complex network with three nodes as an example.
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Example 1. The system parameters are given as follows:

D1 =D2 = D3 =

[
−1 0
0 −1

]
,

Γ =

[
0.5 0
0 0.5

]
,

ai j =

−2, i , j

1, i = j
,

E1 =

[
0.3
0.3

]
, E2 =

[
0.5
0.5

]
, E3 =

[
0.4
0.4

]
,

C1 =
[
0.4 0.5

]
,C2 =

[
−0.4 0.5

]
,C3 =

[
0.4 −0.5

]
,

M1 =M2 = M3 =
[
0.3 0.7

]
,

g(xi(t)) =

[
0.5xi1(t) − tanh(0.2xi1(t)) + 0.2xi2(t),

0.95xi2(t) − tanh(0.75xi1(t))

]
.

The deception attack signal is chosen as

f (xi(t)) =

[
−tanh(−0.3xi2(t))
−tanh(−0.3xi1(t))

]
.

Moreover, other parameters are selected by

dM = 0.1, ηM = 0.1, ᾱ = 0.2, β̄ = 0.2, $ = 7, γ = 4, ε = 1,
F = diagN{0.3, 0.3},G1 = diagN{0, 0},G2 = diagN{0.02, 0.02}.

By utilizing the MATLAB LMI Toolbox, the feasible solutions can be obtained based on the
constraints (3.8), (3.2) and (3.3) in Theorem 2.

X1 =

[
11.4784
11.2668

]
, X2 =

[
0.1131
2.8645

]
, X3 =

[
0.1590
−2.6171

]
.

P21 =103 ×

[
2.5019 −2.4698
−2.4698 2.5020

]
,

P22 =103 ×

[
2.5087 −2.4629
−2.4629 2.5088

]
,

P23 =103 ×

[
2.5087 −2.4628
−2.4628 2.5089

]
,

Ω1 =52.0965,Ω2 = 839.7490,Ω2 = 950.6389.

Further, the estimator gains can be designed as:

L1 =

[
0.3538
0.3538

]
, L2 =

[
0.0322
0.0327

]
, L3 =

[
−0.0264
−0.0270

]
.
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Given the initial state x1(0) =
[
1 −1

]T
, x2(0) =

[
1 0
]T

, x3(0) =
[
0 −1

]T
, x̂i(0) =

[
0 0
]T

, and
%i(0) = 0.25(i = 1, 2, 3), numerical simulations further verify the validity of our theoretical approach.
Figures 2–4 show the state responses for node i. Figures 2–7 plot the output estimation error for node
i. Figures 8 and 9 depict the occurring instants of deception attacks and DoS attacks, respectively.
Figures 10–12 present the release instants and intervals under AETS for node i. In addition, the
release instants and intervals of ETS are plotted in Figures 13–15, respectively. The average period,
maximum release interval, and transmission rate by Theorem 2 and reported in [24] are listed in

Table 1, which the transmission rate indicates
the transmitted data

the sampled data
×100%. Obviously, the AETS

can obtain a larger release interval than the traditional ETS, and have a lower data delivery rate.

Figure 2. Response of x(t) for node 1.

Figure 3. Response of x(t) for node 2.
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Figure 4. Response of x(t) for node 3.

Figure 5. Output estimation error of z̃(t) for node 1.

Figure 6. Output estimation error of z̃(t) for node 2.
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Figure 7. Output estimation error of z̃(t) for node 3.

Figure 8. Occurring instants of deception attacks.

Figure 9. Occurring instants of DoS attacks.
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Figure 10. Release instants and intervals under AETS of node 1.

Figure 11. Release instants and intervals under AETS of node 2.

Figure 12. Release instants and intervals under AETS of node 3.
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Figure 13. Release instants and intervals under ETS [24] of node 1.

Figure 14. Release instants and intervals under ETS [24] of node 2.

Figure 15. Release instants and intervals under ETS [24] of node 3.

AIMS Mathematics Volume 7, Issue 2, 2858–2877.



2875

Table 1. The average period, maximum release interval and transmission rate for different
scheme in Example 1.

sampling period h = 0.1s average period maximum release interval transmission rate
AETS in node 1 0.4000 4.4 25%
AETS in node 2 1.4285 4.3 7%
AETS in node 3 1.4285 3.5 7%
ETS [24] in node 1 0.3571 3.0 28%
ETS [24] in node 2 1.2500 4.0 8%
ETS [24] in node 3 1.2500 3.2 8%

5. Conclusions

The issue of event-triggered state estimation has been studied for CNs under hybrid cyber-attacks
in this paper. AETS has been introduced to alleviate the network congestion problem. With the help
of two sets of BDVs and an arbitrary function related to the system state, a mathematical model of the
hybrid cyber-attacks has been established to portray randomly occurring DoS attacks and deception
attacks. Then, CNs, AETS, hybrid cyber-attacks, and state estimators have been incorporated into
a unified architecture. As a result, an augmented system has been presented. Furthermore, based
on Lyapunov stability theory and LMIs, sufficient conditions to ensure the asymptotic stability of
the augmented system have been derived, and the corresponding state estimator has been designed.
Finally, the effectiveness of the theoretical method has been demonstrated by numerical examples and
simulations. In the future, security state estimation problems for a class of CNs suffered by underlying
attacks will be studied.
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