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1. Introduction

Nowadays, multi-objective fractional programming problem (MFP) is as a powerful tool to
formulate optimization problems in management science and economic theory. MFP problem is a
special type of optimization problems in which at least two fractional objective functions should be
optimized subject to some certain constraints. The traditional MFP problems consider the situation
that all data are reported as certain parameters; see [5, 9, 22, 24, 26] for more studies about MFP
problems. However, this assumption can be violated due to the modelling errors, the estimation and
the prediction ones which lead to the uncertainty in data of an optimization problem; see [2] for more
details. Robust optimization (RO) technique is a method used to model optimization problems in the
case of data uncertainty aiming at determining an optimal solution which is the best for all or the most
possible realization of the uncertain parameters. Some characterizations of robust optimal solutions
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for uncertain fractional optimization and applications [29] is investigated by Sun et al. in 2017 by
using the properties of subdifferential sum formulae and introducing some robust basic subdifferential
constraint qualifications, also, they considered the multi-objective fractional programming problem in
the case of data uncertainty in the objective function and the parameters of the constraints and used
the closedness constraint qualification to present some conditions for determining the robust weakly
efficient solutions. Debnath and Qin have studied the problem of robust optimality and duality for
minimax fractional programming problems with support functions [6] in which they have considered
a class of robust nondifferentiable minimax fractional programming problems containing support
functions in both the objective functions and in the constraints by using the robust subdifferentiable
constraint qualification. For more details; see [1, 3, 4, 11, 12, 27]. In many cases, it is practically
impossible to find the exact optimal solution of an optimization problem. In this situation, the theory of
approximate solutions is used to determine an approximation of the optimal solution of the optimization
problem. Many scholars have presented the duality theorems and the optimality conditions for
approximate solutions in the situation that all data has certain values; see [10, 15, 16, 18, 25] for more
details.

In recent years, many studies have been presented on the optimality conditions and the duality
results of the robust approximation solution in the uncertain optimization problems. For example,
Lee and Lee [19, 20] proposed ε-duality and ε-optimality theorems for the convex optimization and
uncertain convex-concave fractional optimization problems with the geometric constraint set. Sun et
al. [28] used a robust type of the closed convex constraint qualification and investigated the necessary
and sufficient conditions for the optimality of the robust approximate solutions of an uncertain convex
programming problem. Also, they presented the strong and weak duality theorems for the robust
approximate solutions by introducing the Wolfe-dual and Mond-Weir dual and generalized it to the
multi-objective programming problems. For more studies about the approximate solutions of the
uncertain optimization problems; see [30, 31, 33].

On the other hand, the saddle point theorems have attracted the attentions of many scholars
due to their relationship with the optimal solution of the primal and dual problems. For example,
[23, 25, 32] considered the ε-saddle point in the situation that all parameters have certain values and
[8, 17] presented the weak vector saddle point theorems for the uncertain multi-objective optimization
problems. Given the importance of the uncertain multi-objective fractional programming problems,
the approximate solutions and the saddle points, this paper aims to present the robust weakly ε-
efficient optimality conditions and the robust ε-saddle point theorems for the uncertain multi-objective
fractional programming (UMFP) problems. For this purpose, we use a parametric approach to
convert an uncertain multi-objective fractional programming problem into a non-fractional multi-
objective programming problem and then closed convex constraint qualification and the scalarization
of the results are used to generalize the robust ε-optimality and the robust ε-saddle point theorem of
the uncertain convex programming problem to the uncertain multi-objective fractional programming
problem.

The rest of this paper is organized as follows: In section 2, we review some preliminaries and
basic definitions. In section 3, we consider the necessary and sufficient optimality conditions for
the uncertain multi-objective fractional programming problems by using the convex closed constraint
qualification. In section 4, we propose robust ε-saddle point theorem for the UMFP problems. Finally,
in section 5, we submite the conclusion of the paper.
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2. Preliminaries

In this section we review some preliminaries and basic concepts which are used throughout this
paper.

Suppose that f : Rn → R∪{+∞}. The function f is convex, if f (µx+(1−µ)x′) ≤ µ f (x)+(1−µ) f (x′),
for all x, x′ ∈ Rn and any µ ∈ [0, 1]. The domain ( effective domain) and the epigraph of f are the
nonempty sets which are defined by dom f = {x ∈ Rn : f (x) < +∞} and epi f = {(x, r) ∈ Rn × R : r ≥
f (x)}, respectively. If f is a proper lower semi-continuous convex function, then its conjugate function
f ∗ : Rn → R ∪ {+∞} is defined by f ∗(x∗) = sup{〈x∗, x〉 − f (x)|x ∈ Rn}, where 〈., .〉 denotes the inner
product on Rn.

The indicator function of the nonempty set C ⊆ X, δC : X → R ∪ {+∞} is defined as follows:

δC =

{
0 if x ∈ C,

+∞ otherwise.

•

Let ε ≥ 0, the ε-subdifferential of f at a ∈ dom f is defined as follows:

∂ε f (a) =
{
a∗ ∈ Rn : f (x) − f (a) ≥ 〈a∗, x − a〉 − ε,∀x ∈ Rn

}
.

If ε = 0, then ∂0 f (a) is the classical subdifferential of f at a ∈ dom f .
Throughout this paper, the convex hull and the closure of A ⊆ Rn are denoted by coA and clA,

respectively. For any closed convex set C ⊆ Rn and ε ≥ 0, the ε-normal cone of C at x ∈ Rn, denoted
by Nε

C(x), is defined as follows:

Nε
C(x) =

{
x̄ ∈ Rn : 〈x̄, y − x〉 ≤ ε, ∀y ∈ C

}
.

If ε = 0, then NC(x) is the classical normal cone of C at x ∈ C, also if C is a closed convex cone, then
NC(0) is denoted by C∗. In the following, we present some lemmas which help us to prove our main
results.

Lemma 2.1 ( [13]). Suppose that f : Rn → R is a convex function and g : Rn → R ∪ {+∞} is a proper
lower semi-continuous convex function; then

epi( f + g)∗ = epi f ∗ + epi g∗.

The following lemma shows that epi f ∗ can be expressed by ε-subdifferentials.

Lemma 2.2 ( [14]). Assume that f : Rn → R∪{+∞} is a proper lower semi-continuous convex function
and a ∈ dom f ; then

epi f ∗ =
⋃
ε≥0

{(
b, 〈b, a〉 + ε − f (a)

)∣∣∣b ∈ ∂ε f (a)
}
.

Lemma 2.3 ( [21]). Let f j : Rn → R ∪ {+∞}, j ∈ J, be proper lower semi-continuous convex functions
with sup

j∈J
f j(x0) < +∞, for some x0 ∈ X; then

epi
(

sup
j∈J

f j

)∗
= cl

(
co

⋃
j∈J

epi f ∗j
)
,

where J is an arbitrary index set.
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Lemma 2.4 ( [11]). Suppose that h j : Rn × Rq0 → R, j = 1, . . . ,m, are continuous functions such that,
for any w j ∈ W j, h j(.,w j) is a convex function; then⋃

w j∈W j,λ j≥0

epi
( m∑

j=1

λ jh j(.,w j)
)∗
,

is a cone.

Lemma 2.5 ( [11]). Let h j : Rn × Rq0 → R, j = 1, . . . ,m, be continuous functions and C be a closed
convex cone on Rn. Also, suppose thatW j ⊆ R

q0 , j = 1, . . . ,m, are convex sets and for any w j ∈ W j,

h j(.,w j) is a convex function and for any x ∈ Rn, h j(x, .) is a concave function; then,⋃
w j∈W j,λ j≥0

epi
( m∑

j=1

λ jg j(.,w j)
)∗

+ C∗ × R+,

is convex.

Lemma 2.6 ( [11]). Assume that h j : Rn × Rq0 → R, j = 1, . . . ,m, are continuous functions such that
for any w j ∈ R

q0 , h j(.,w j) is a convex function and C is a closed convex cone in Rn. Furthermore,
suppose thatW j, j = 1, . . . ,m, are compact and convex sets and there is x0 ∈ C such that

h j(x0,w j) < 0, ∀w j ∈ W j, j = 1, . . . ,m.

Then ⋃
w j∈W j,λ j≥0

epi
( m∑

j=1

λ jg j(.,w j)
)∗

+ C∗ × R+,

is a closed set.

3. ε-optimality theorems

In this section, we consider the uncertain multi-objective fractional programming (UMFP) problem
with a geometric constraint set as follows:

(UMFP) min
( f1(x, u1)
g1(x, v1)

, . . . ,
fl(x, ul)
gl(x, vl)

)
s.t. h j(x,w j) ≤ 0, j = 1, . . . ,m,

x ∈ C,

where C ⊆ Rn is a closed convex cone. Assume that fi : Rn × Rp → R, gi : Rn × Rq → R, i = 1, . . . , l
and h j : Rn × Rq0 → R, j = 1, . . . ,m. Also, suppose that ui, vi,w j are uncertain parameters which
belong to the convex and compact uncertainty setsUi ⊆ R

p,Vi ⊆ R
q andW j ⊆ R

q0 , respectively.
Throughout this paper, we assume that, for any ui ∈ Ui, fi(x, ui) is a convex non-negative function

and for any vi ∈ Vi, gi(x, vi) is a concave positive function, for all i = 1, . . . , l. The robust counterpart
of UMFP problem, namely RMFP, is formulated as follows:

(RMFP) min
(maxu1∈U1 f1(x,u1)

minv1∈V1 g1(x,v1) , . . . ,
maxul∈Ul fl(x,ul)
minvl∈Vl gl(x,vl)

)
s.t. h j(x,w j) ≤ 0, ∀w j ∈ W j, j = 1, . . . ,m,

x ∈ C.
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Clearly, F = {x ∈ C : h j(x,w j) ≤ 0,∀w j ∈ W j, j = 1, . . . ,m} is a feasible solution set for RMFP.

Definition 3.1. Let ε ∈ Rl
+. A point x̄ ∈ F is a robust weakly ε-efficient solution of UMFP problem if

and only if x̄ is a weakly ε-efficient solution of RMFP.

Definition 3.2. Let ε ∈ Rl
+. A point x̄ ∈ F is a weakly ε-efficient solution of RMFP problem if and only

if there does not exist any x ∈ F such that

maxui∈Ui fi(x, ui)
minvi∈Vi gi(x, vi)

<
maxui∈Ui fi(x̄, ui)
minvi∈Vi gi(x̄, vi)

− εi for all i = 1, . . . , l.

In the following, we use the parametric approach, introduced by Dinkelbach [7], to associate the
corresponding RMFP model to the robust multi-objective convex optimization problem (RMCP) with
a parameter vector r ∈ Rl

+:

(RMCP)

min
(

max
u1∈U1

f1(x, u1) − r1 min
v1∈V1

g1(x, v1), . . . ,max
ul∈Ul

fl(x, ul) − rl min
vl∈Vl

gl(x, vl)
)

s.t. h j(x,w j) ≤ 0, ∀w j ∈ W j, j = 1, . . . ,m,
x ∈ C.

Definition 3.3. Let ε ∈ Rl
+. A point x̄ ∈ F is a weakly ε-efficient solution of RMCP problem if and only

if there does not exist any x ∈ F such that

max
ui∈Ui

fi(x, ui) − ri min
vi∈Vi

gi(x, vi) < max
ui∈Ui

fi(x̄, ui) − ri min
vi∈Vi

gi(x̄, vi) − εi,

for all i = 1, . . . , l.

Lemma 3.4. Let fi : Rn × Rp → R and gi : Rn × Rq → R, i = 1, . . . , l, be functions such that
fi(., ui), ui ∈ Ui, is a convex function and gi(., vi), vi ∈ Vi, is a concave function. Moreover, suppose
that x̄ ∈ F and ε ∈ Rl

+. If r̄i = max(ui,vi)∈Ui×Vi
fi(x̄,ui)
gi(x̄,vi)

− εi ≥ 0, i = 1, . . . , l, then the following statements
are equivalent:

(i) x̄ is a weakly ε-efficient solution of RMFP;
(ii) x̄ is a weakly ε̄-efficient solution of RMCP;

(iii) there is µ̄ ∈ ∆l, such that

l∑
i=1

µ̄i

[
max
ui∈Ui

fi(x, ui) − r̄i min
vi∈Vi

gi(x, vi)
]
≥

l∑
i=1

µ̄i

[
max
ui∈Ui

fi(x̄, ui) − r̄i min
vi∈Vi

gi(x̄, vi)
]
−

l∑
i=1

µ̄iε̄i,

for all x ∈ F. Where

ε̄ =
(
ε1 min

v1∈V1
g1(x̄, v1), . . . , εl min

vl∈Vl
gl(x̄, vl)

)
,

and

∆l =
{
δ ∈ Rl

+ :
l∑

i=1

δi = 1
}
.
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Proof. In the following, the equivalence of (i) and (ii) is proved.
Suppose that x̄ ∈ F is a weakly ε-efficient solution of RMFP, so there does not exist any x ∈ F such
that

max
ui∈Ui

fi(x, ui) − r̄i min
vi∈Vi

gi(x, vi) < 0, i = 1, . . . , l.

On the other hand,

max
ui∈Ui

fi(x̄, ui) − r̄i min
vi∈Vi

gi(x̄, vi) − εi min
vi∈Vi

gi(x̄, vi) = 0, i = 1, . . . , l,

hence, we have

max
ui∈Ui

fi(x, ui) − r̄i min
vi∈Vi

gi(x, vi)

< max
ui∈Ui

fi(x̄, ui) − r̄i min
vi∈Vi

gi(x̄, vi) − εi min
vi∈Vi

gi(x̄, vi), i = 1, . . . , l.

This means that x̄ ∈ F is a weakly ε̄-efficient solution of RMCP.
(ii)⇒ (iii)
Assume that,

φ(x) = (φ1(x), . . . , φl(x)), for all x ∈ F,

where

φi(x) = max
ui∈Ui

fi(x, ui) − r̄i min
vi∈Vi

gi(x, vi), i = 1, . . . , l.

Therefore, φi(x), i = 1, . . . , l, are convex functions. On the other hand, since x̄ is a weakly ε-efficient
solution of RMCP, so there does not exist x ∈ F such that φi(x) < 0 for all i = 1, . . . , l. By using the
generalized Gordan theorem, there exist µ̄i ≥ 0, i = 1, . . . , l,

∑l
i=1 µ̄i = 1, such that

l∑
i=1

µ̄iφi(x) ≥ 0, for all x ∈ F.

This means that, the statement (iii) holds.
(iii)⇒ (ii)
Assume that the statement (ii) does not hold. Therefore, x̄ is not a weakly robust ε̄-efficient for RMCP.
This means that the statement (iii) cannot be held. �

Lemma 3.5. Assume that fi : Rn × Rp → R, i = 1, . . . , l, h j : Rn × Rq0 , j = 1, . . . ,m, are continuous
functions such that fi(., ui), ui ∈ Ui and h j(.,wi), w j ∈ W j are convex functions and fi(x, .), x ∈ Rn is
a concave function. Furthermore, let gi : Rn × Rq → R, i = 1, . . . , l, be continuous concave-convex
functions. Also, suppose that Ui ⊆ R

p,Vi ⊆ R
q, i = 1, . . . , l, andW j ⊆ R

q0 , j = 1, . . . ,m, are convex
and compact sets. Let (r, µ) ∈ Rl

+ × ∆l and let C ⊆ Rn be a closed convex cone. If F , 0, then the
following statements are equivalent:
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(i) {
x ∈ C

∣∣∣∣h j(x,w j) ≤ 0,∀w j ∈ W j, j = 1, . . . ,m
}

⊆
{
x ∈ Rn

∣∣∣∣ l∑
i=1

µi
(

max
ui∈Ui

fi(x, ui) − ri min
vi∈Vi

gi(x, vi)
)
≥ 0

}
;

(ii)

(0, 0) ∈
l∑

i=1

[
epi

(
max
ui∈Ui

(
µi fi(., ui)

))∗
+ epi

(
− ri min

vi∈Vi

(
µigi(., vi)

))∗]
+ cl co

( ⋃
w j∈W j,λ j≥0

epi
( m∑

j=1

λ jh j(.,w j)
)∗

+ C∗ × R+

)
;

(iii)

(0, 0) ∈
l∑

i=1

[ ⋃
ui∈Ui

epi
(
µi fi(., ui)

)∗
+

⋃
vi∈Vi

epi
(
− riµigi(., vi)

)∗]
+ cl co

( ⋃
w j∈W j,λ j≥0

epi
( m∑

j=1

λ jh j(.,w j)
)∗

+ C∗ × R+

)
.

Proof. It is very easy to verify and prove the equivalence of (i) and (ii) through the following few lines.
Let f (x) =

∑l
i=1 µi

(
max
ui∈Ui

fi(x, ui) − ri min
vi∈Vi

gi(x, vi)
)
; then applying [20, Lemma 2.1], the statement (i) is

equivalent to

(0, 0) ∈ epi f ∗ + cl co
( ⋃

w j∈W j,λ j≥0

epi
( m∑

j=1

λ jh j(.,w j)
)∗

+ C∗ × R+

)
.

Since max
ui∈Ui

(
µi fi(., ui)

)
and −ri min

vi∈Vi

(
µigi(., vi)

)
are continuous convex functions, so by using Lemma 2.1,

we have

epi f ∗ =

l∑
i=1

[
epi

(
max
ui∈Ui

(
µi fi(., ui)

))∗
+ epi

(
− ri min

vi∈Vi

(
µigi(., vi)

))∗]
.

It means that, the statements (i) and (ii) are equivalent.
In the following, we prove the equivalence of (ii) and (iii). For this purpose, it is sufficient to show that

epi
(

max
ui∈Ui

µi fi(., ui)
)∗

=
⋃

ui∈Ui

epi
(
µi fi(., ui)

)∗
,

and

epi
(
− ri min

vi∈Vi
µigi(., vi)

)∗
=

⋃
vi∈Vi

epi
(
− riµigi(., vi)

)∗
.
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According to Lemma 2.3, we have

epi
(

max
ui∈Ui

µi fi(., ui)
)∗

= cl co
⋃

ui∈Ui

epi
(
µi fi(., ui)

)∗
.

Since fi’s are continuous convex-concave functions and gi’s are continuous concave-convex functions,
therefore, it is easy to show that

⋃
ui∈Ui

epi
(
µi fi(., ui)

)∗ and
⋃

vi∈Vi
epi

(
− riµigi(., vi)

)∗ are closed convex
sets and this completes the proof. �

In the following theorem, we propose a necessary optimality condition for the robust weakly ε-
efficient solution of UMFP problem.

Theorem 3.6. Let fi : Rn × Rp → R, i = 1, . . . , l, h j : Rn × Rq0 , j = 1, . . . ,m, are continuous functions
such that fi(., ui), ui ∈ Ui and h j(.,w j), w j ∈ W j are convex functions and fi(x, .), x ∈ Rn is a
concave function. Furthermore, let gi : Rn × Rq → R, i = 1, . . . , l, are continuous concave-convex
functions. Assume that ε ∈ Rl

+ and r̄i = max(ui.vi)∈Ui×Vi
fi(x̄,ui)
gi(x̄,vi)

− εi ≥ 0. If x̄ ∈ F is a weakly ε-efficient
solution of RMFP and

⋃
w j∈W j,λ j≥0(

∑m
i=1 λ jh j(.,w j))∗ +C∗ × R+ is a closed convex set, then there exist

(ū, v̄, w̄) ∈ U ×V ×W and (µ̄, λ̄, α, β, γ) ∈ ∆l × Rm
+ × R

l
+ × R

l
+ × R

m+1
+ , such that

0 ∈
l∑

i=1

[
∂αi

(
µ̄i fi(., ūi)

)
(x̄) + ∂βi

(
− r̄iµ̄igi(., v̄i)

)
(x̄)

]
+

m∑
j=1

∂γ j

(
λ̄ jh j(., w̄ j)

)
(x̄) + Nγm+1

C (x̄), (3.1)

max
ui∈Ui

fi(x̄, ui) − r̄i min
vi∈Vi

gi(x̄i, vi) = εi min
vi∈Vi

gi(x̄, vi), i = 1, . . . , l, (3.2)

l∑
i=1

(αi + βi) −
l∑

i=1

εiµ̄i min
vi∈Vi

gi(x̄, vi) +

m+1∑
k=1

γk+1 ≤

m∑
j=1

λ̄ jh j(x̄, w̄ j), (3.3)

whereU = U1 × · · · × Ul,V = V1 × · · · × Vl, andW =W1 × · · · ×Wm.

Proof. Assume that x̄ is a weakly ε-efficient solution of RMFP. Regarding the statement (iii) in Lemma
3.4, there exists µ̄ ∈ ∆l, such that

l∑
i=1

µ̄i[max
ui∈Ui

fi(x, ui) − r̄i min
vi∈Vi

gi(x, vi)]

≥

l∑
i=1

µ̄i[max
ui∈Ui

fi(x̄, ui) − r̄i min
vi∈Vi

gi(x̄, vi)] +

l∑
i=1

µ̄iεi min
vi∈Vi

gi(x, vi), ∀x ∈ F, (3.4)

so relation (3.4) can be rewritten as follows:

l∑
i=1

µ̄i[max
ui∈Ui

fi(x, ui) − r̄i min
vi∈Vi

gi(x, vi)] ≥ 0,

thus, using Lemma 3.5, we have

(0, 0) ∈
l∑

i=1

[ ⋃
ui∈Ui

epi
(
µ̄i fi(., ui)

)∗
+

⋃
vi∈Vi

epi
(
− r̄iµ̄igi(., vi)

)∗]
AIMS Mathematics Volume 7, Issue 2, 2331–2347.
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+ cl co
( ⋃

w j∈W j,λ j≥0

epi
( m∑

j=1

λ jh j(.,w j)
)∗

+ C∗ × R+

)
,

according to the assumption,

(0, 0) ∈
l∑

i=1

[ ⋃
ui∈Ui

epi
(
µ̄i fi(., ui)

)∗
+

⋃
vi∈Vi

epi
(
− r̄iµ̄igi(., vi)

)∗]
+

⋃
w j∈W j,λ j≥0

epi
( m∑

j=1

λ jh j(.,w j)
)∗

+ C∗ × R+,

thus, there are ūi ∈ Ui, v̄i ∈ Vi, w̄ j ∈ W j and λ̄ j ≥ 0, for all i = 1, . . . , l, j = 1, . . . ,m, such that

(0, 0) ∈
l∑

i=1

[
epi

(
µ̄i fi(., ūi)

)∗
+ epi

(
− r̄iµ̄igi(., v̄i)

)∗]
+ epi

( m∑
j=1

λ̄ jh j(., w̄ j)
)∗

+ epiδ∗C.

According to Lemma 2.2, we have

(0, 0) ∈
l∑

i=1

[{ ⋃
αi≥0

(
a1i, 〈a1i, x̄〉 + αi − µ̄i fi(x̄, ūi)

)∣∣∣a1i ∈ ∂αi

(
µ̄i fi(., ūi)

)
(x̄)

}
+

{⋃
βi≥0

(
a2i, 〈a2i, x̄〉 + βi − r̄iµ̄igi(x̄, v̄i)

)∣∣∣a2i ∈ ∂βi

(
− r̄iµ̄igi(., v̄i)

)
(x̄)

}]
+

{⋃
γi≥0

(
a3 j, 〈a3 j, x̄〉 + γ j −

m∑
j=1

λ̄ jh j(x̄, w̄ j)
)∣∣∣a3 j ∈ ∂γ j

( m∑
j=1

λ̄ jh j(., w̄ j)
)
(x̄)

}
+

{ ⋃
γm+1

(am+1, 〈am+1, x̄〉 + γm+1 − δC
(
x̄)

)∣∣∣am+1 ∈ ∂γm+1δC(x̄)
}
.

So, there are ā1 j ∈ ∂αi

(
µ̄i fi(., ūi)

)
(x̄), ā2 j ∈ ∂βi

(
− r̄iµ̄igi(., v̄i)

)
(x̄), ā3 j ∈ ∂γ j

(∑m
j=1 λ̄ jh j(., w̄ j)

)
(x̄), ām+1 ∈

∂γm+1δC(x̄) and αi, βi, γ j, γm+1 ≥ 0, i = 1, . . . , l, j = 1, . . . ,m, such that

0 ∈
m∑

i=1

(
∂αi

(
µ̄i fi(., ūi)

)
(x̄) + ∂βi

(
− r̄iµ̄igi(., v̄i)

)
(x̄)

)
+

m∑
j=1

∂γ j

(
λ̄ jh j(., w̄ j)

)
(x̄) + Nγm+1

C (x̄),

and
l∑

i=1

(αi + βi) +

m+1∑
j=1

γ j =

l∑
i=1

[
µ̄i fi(x̄, ūi) − r̄iµ̄igi(x̄, v̄i)

]
+

m∑
j=1

λ̄ jh j(x̄, w̄ j)

≤

l∑
i=1

µ̄i
(

max
ui∈Ui

fi(x̄, ui) − r̄i min
vi∈Vi

gi(x̄, vi)
)

+

m∑
j=1

λ̄ jh j(x̄, w̄ j)

=

l∑
i=1

µ̄iεi min
vi∈Vi

gi(x̄, vi) +

m∑
j=1

λ̄ jh j(x̄, w̄ j).

Thus, the proof is completed. �
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Definition 3.7. Let ε ∈ Rl
+. The vector (x̄, λ̄, µ̄, ū, v̄, w̄) ∈ Rn×Rm

+ ×∆l×U×V×W satisfies the robust
ε-KKT for UMFP problem, if there is (α, β, γ) ∈ Rl

+ × R
l
+ × R

m+1
+ , such that the conditions (3.1)-(3.3)

hold.

In the following, we present a sufficient optimality condition for a robust weakly ε-efficient solution
of UMFP problem.

Theorem 3.8. Let ε ∈ Rl
+ and let r̄i = max(ui.vi)∈Ui×Vi

fi(x̄,ui)
gi(x̄,vi)

− εi ≥ 0, i = 1, . . . , l. If (x̄, λ̄, µ̄, ū, v̄, w̄) ∈

F ×Rm
+ ×∆l ×U ×V×W is a robust ε-KKT for UMFP problem and

maxui∈Ui fi(x̄,ui)
minvi∈Vi gi(x̄,vi)

=
fi(x̄,ūi)
gi(x̄,v̄i)

, then x̄ ∈ F
is a robust weakly ε-efficient solution for UMFP problem.

Proof. Suppose that (x̄, λ̄, µ̄, ū, v̄, w̄) ∈ F × Rm
+ × ∆l × U × V × W is a robust ε-KKT; then there

is (α, β, γ) ∈ Rl
+ × R

l
+ × R

m+1
+ , such that the conditions (3.1)-(3.3) hold. Therefore, there are u∗i ∈

∂αi

(
µ̄i fi(., ūi)

)
(x̄), v∗i ∈ ∂βi

(
− r̄iµ̄igi(., v̄i)

)
(x̄),w∗j ∈ ∂γ j

(
λ̄ jh j(., w̄ j)

)
(x̄) and n∗ ∈ Nγm+1

C such that

l∑
i=1

u∗i +

l∑
i=1

v∗i +

m∑
j=1

w∗j + n∗ = 0. (3.5)

On the other hand, according to the definition of ε-subdifferential, we have

µ̄i fi(x, ūi) ≥ µ̄i fi(x̄, ūi) + 〈u∗i , x − x̄〉 − αi, i = 1, . . . , l,
−r̄iµ̄igi(x, v̄i) ≥ −r̄iµ̄igi(x̄, v̄i) + 〈v∗i , x − x̄〉 − βi, i = 1, . . . , l,
λ̄ jh j(x, w̄i) ≥ λ̄ jh j(x̄, w̄ j) + 〈w∗j, x − x̄〉 − γ j, j = 1, . . . ,m,

δC(x) ≥ δC(x̄) + 〈n∗, x − x̄〉 − γm+1.

So according to relations (3.2) and (3.5), it follows that

l∑
i=1

µ̄i
[
( fi(x, ūi) − r̄igi(x, v̄i)

]
+

m∑
j=1

λ̄ jh j(x, w̄ j)

≥

l∑
i=1

µ̄i
[
( fi(x̄, ūi) − r̄igi(x̄, v̄i)

]
+

m∑
j=1

λ̄ jh j(x̄, w̄ j) −
l∑

i=1

(αi + βi) −
m+1∑
k=1

γk

≥

l∑
i=1

µ̄i
[
( fi(x̄, ūi) − r̄igi(x̄, v̄i)

]
+

l∑
i=1

µ̄iεi min
vi∈Vi

gi(x̄, vi),

since
∑m

j=1 λ̄ jh j(x, w̄ j) ≤ 0, thus,

l∑
i=1

µ̄i
[
( fi(x, ūi) − r̄igi(x, v̄i)

]
≥

l∑
i=1

µ̄i
[
( fi(x̄, ūi) − r̄igi(x̄, v̄i)

]
+

l∑
i=1

µ̄iεi min
vi∈Vi

gi(x̄, vi).

On the other hand, since maxui∈Ui fi(x̄,ui)
minvi∈Vi gi(x̄,vi)

=
fi(x̄,ūi)
gi(x̄,v̄i)

, thus, we have

l∑
i=1

µ̄i
[
(max

ui∈Ui
fi(x, ui) − r̄i min

vi∈Vi
gi(x, vi)

]
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≥

l∑
i=1

µ̄i
[
max
ui∈Ui

( fi(x̄, ui) − r̄i min
vi∈Vi

gi(x̄, vi)
]
+

l∑
i=1

µ̄iεi min
vi∈Vi

gi(x̄, vi).

Hence, according to Lemma 3.4, x̄ ∈ F is a weakly ε-efficient solution of RMFP and it completes the
proof. �

Corollary 3.9. Let fi : Rn × Rp → R, i = 1, . . . , l, h j : Rn × Rq0 → R, j = 1, . . . ,m, are continuous
convex-concave on Rn × Ui and Rn ×W j, respectively. Moreover, assume that gi : Rn × Rq → R is a
continuous concave-convex on Rn×Vi. Also, assume that ε ∈ Rl

+ and r̄i = max(ui.vi)∈Ui×Vi
fi(x̄,ui)
gi(x̄,vi)

−εi ≥ 0.
If x̄ ∈ F is a weakly robust ε-efficient solution for UMFP problem, then (x̄, λ̄, µ̄, ū, v̄, w̄) ∈ F × Rm

+ ×

∆l ×U ×V ×W is a robust ε-KKT of UMFP problem.

Proof. We use Lemma 2.5 and Lemma 2.6 to show that
⋃

w j∈W j,λ j≥0
(∑m

i=1 λ jh j(.,w j)
)∗

+ C∗ × R+ is a
closed and convex set. Finally, by the same argument similar to that of the Theorem 3.6 the proof is
completed. �

4. Robust ε-saddle point theorems

In this section, we prove robust ε-saddle point theorem for UMFP problem.
The Lagrangian-type function associated to UMFP problem with respect to (µ, r) ∈ ∆l × Rl

+, is
defined as follow:

Lµ,r(x, λ, u, v,w) =

l∑
i=1

µi
[
fi(x, ui) − rigi(x, vi)

]
+

m∑
j=1

λ jh j(x,w j),

where (x, λ, u, v,w) ∈ Rn × Rm
+ ×U ×V ×W.

Definition 4.1. Let ε ≥ 0. A point (x̄, λ̄, ū, v̄, w̄) ∈ C × Rm
+ ×U ×V ×W is a robust ε-saddle point of

UMFP problem with respect to (µ̄, r̄) ∈ ∆l × Rl
+, if the following two conditions hold:

(i) Lµ̄,r̄(x̄, λ, u, v,w) ≤ Lµ̄,r̄(x̄, λ̄, ū, v̄, w̄) + ε, ∀(λ, u, v,w) ∈ Rm
+ ×U ×V ×W.

(ii) Lµ̄,r̄(x̄, λ̄, ū, v̄, w̄) ≤ Lµ̄,r̄(x, λ̄, ū, v̄, w̄) + ε, ∀x ∈ C.

Theorem 4.2. Let ε ≥ 0. Suppose that (x̄, λ̄, µ̄, ū, v̄, w̄) ∈ F × Rm
+ × ∆l × U × V × W is a

robust ε-KKT for UMFP problem. If
maxui∈Ui fi(x̄,ui)
minvi∈Vi gi(x̄,vi)

=
fi(x̄,ūi)
gi(x̄,v̄i)

, then (x̄, λ̄, ū, v̄, w̄) is a robust ε∗-saddle

point for UMFP problem with respect to (µ̄, r̄) ∈ ∆l × Rl
+, where ε∗ =

∑l
i=1 µ̄iεi min

vi∈Vi
gi(x̄, vi) and

r̄i = max(ui,vi)×Ui×Vi
f (x̄,ui)
g(x̄,vi)

− εi, i = 1, . . . , l.

Proof. Assume that (x̄, λ̄, µ̄, ū, v̄, w̄) ∈ F×Rm
+ ×∆l×U×V×W is a robust ε-KKT for UMFP problem;

then there exists (α, β, γ) ∈ Rl
+ × R

l
+ × R

m+1
+ , such that the conditions (3.1)-(3.3) hold. Hence, there are

u∗i ∈ ∂αi

(
µ̄i fi(., ūi)

)
(x̄), v∗i ∈ ∂βi

(
− r̄iµ̄igi(., v̄i)

)
(x̄), w∗j ∈ ∂γ j

(
λ̄ jh j(., w̄ j)

)
(x̄) and n∗ ∈ Nγm+1

C such that

l∑
i=1

u∗i +

l∑
i=1

v∗i +

m∑
j=1

w∗j + n∗ = 0. (4.1)
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On the other hand, according to the definition of ε-subdifferential, we have

µ̄i fi(x, ūi) ≥ µ̄i fi(x̄, ūi) + 〈u∗i , x − x̄〉 − αi, i = 1, . . . , l,
−r̄iµ̄igi(x, v̄i) ≥ −r̄iµ̄igi(x̄, v̄i) + 〈v∗i , x − x̄〉 − βi, i = 1, . . . , l,
λ̄ jh j(x, w̄i) ≥ λ̄ jh j(x̄, w̄ j) + 〈w∗j, x − x̄〉 − γ j, j = 1, . . . ,m,

δC(x) ≥ δC(x̄) + 〈n∗, x − x̄〉 − γm+1.

So by adding recent inequalities and using relation (4.1), it follows that

l∑
i=1

µ̄i
[
( fi(x, ūi) − r̄igi(x, v̄i)

]
+

m∑
j=1

λ̄ jh j(x, w̄ j)

≥

l∑
i=1

µ̄i
[
( fi(x̄, ūi) − r̄igi(x̄, v̄i)

]
+

m∑
j=1

λ̄ jh j(x̄, w̄ j) −
l∑

i=1

(αi + βi) −
m+1∑
k=1

γk

≥

l∑
i=1

µ̄i
[
( fi(x̄, ūi) − r̄igi(x̄, v̄i)

]
−

l∑
i=1

µ̄iεi min
vi∈Vi

gi(x̄, vi)

≥

l∑
i=1

µ̄i
[
( fi(x̄, ūi) − r̄igi(x̄, v̄i)

]
+

m∑
j=1

λ jh j(x̄, w̄ j) −
l∑

i=1

µ̄iεi min
vi∈Vi

gi(x̄, vi).

Hence, we have

Lµ̄,r̄(x̄, λ̄, ū, v̄, w̄) ≤ Lµ̄,r̄(x, λ̄, ū, v̄, w̄) +

l∑
i=1

εiµ̄i min
vi∈Vi

gi(x̄, vi), for all x ∈ C.

On the other hand, according to the relation (3.3), we have

0 ≤
l∑

i=1

(αi + βi) +

m+1∑
j=1

γ j+1 ≤

m∑
j=1

λ̄ jh j(x̄, w̄ j) +

l∑
i=1

εiµ̄i min
vi∈Vi

gi(x̄, vi),

since
∑m

j=1 λ jh j(x̄,w j) ≤ 0, it follows that

m∑
j=1

λ̄ jh j(x̄, w̄ j) +

l∑
i=1

εiµ̄i min
vi∈Vi

gi(x̄, vi) ≥
m∑

j=1

λ jh j(x̄,w j),

hence,

l∑
i=1

µ̄i
[
fi(x̄, ūi) − r̄igi(x̄, v̄i)

]
+

m∑
j=1

λ̄ jh j(x̄, w̄ j) +

l∑
i=1

εiµ̄i min
vi∈Vi

gi(x̄, vi)

≥

l∑
i=1

µ̄i
[
fi(x̄, ūi) − r̄igi(x̄, v̄i)

]
+

m∑
j=1

λ jh j(x̄,w j)

=

l∑
i=1

µ̄i
[
max
ui∈Ui

fi(x̄, ui) − r̄i min
vi∈Vi

gi(x̄, vi)
]
+

m∑
j=1

λ jh j(x̄,w j)
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≥

l∑
i=1

µ̄i
[
fi(x̄, ui) − r̄igi(x̄, vi)

]
+

m∑
j=1

λ jh j(x̄,w j),

therefore,

Lµ̄,r̄(x̄, λ̄, ū, v̄, w̄) +

l∑
i=1

εiµ̄i min
vi∈Vi

gi(x̄, vi) ≥ Lµ̄,r̄(x̄, λ, u, v,w).

This means that (x̄, λ̄, ū, v̄, w̄) is a robust ε∗-saddle point for UMFP problem with respect to (µ̄, r̄) ∈
∆l × Rl

+. �

Corollary 4.3. Suppose that x̄ ∈ F is a weakly robust ε-efficient solution for UMFP problem and
the assumptions of Theorem 3.6 hold; then there is (λ̄, µ̄, ū, v̄, w̄) ∈ Rm

+ × ∆l × U × V × W, with
maxui∈Ui fi(x̄,ui)
minvi∈Vi gi(x̄,vi)

=
fi(x̄,ūi)
gi(x̄,v̄i)

such that (x̄, λ̄, ū, v̄, w̄) is a robust ε∗-saddle point for UMFP problem with respect

to (µ̄, r̄) ∈ ∆l×Rl
+; in which ε∗ =

∑l
i=1 µ̄iεi minvi∈Vi gi(x̄, vi) and r̄i = max(ui,vi)×Ui×Vi

f (x̄,ui)
g(x̄,vi)
−εi, i = 1, . . . , l.

Example 4.4. Consider the following uncertain multi-objective fractional programming problem

min
(
u1x1,

u2x2

x1 + v2

)
s.t. − x1 + w1 ≤ 0, (4.2)

− x2 + w2 ≤ 0,
x1, x2 ≥ 0,

where u1, u2, v2,w1,w2 are the uncertain parameters belonging to their uncertainty sets U1 = U2 =

V2 =W1 =W2 = [0, 1].
Suppose that f1(x, u1) = u1x1, f2(x, u2) = u2x2, g1(x, v1) = 1, g2(x, v2) = x1 + v2, h1(x,w1) = −x1 +

w1, h2(x,w2) = −x2 + w2 and C = R2
+. It is easy to show that F = {(x1, x2) ∈ R2

+|x1 ≥ 1, x2 ≥ 1}. Let
x̄ = ( 3

2 ,
15
4 ) and ε = (ε1, ε2) = ( 1

2 ,
3
2 ). It is clear that x̄ is a weakly robust ε-efficient for model (4.2).

Suppose that, (ū1, ū2, v̄2, w̄1, w̄2) = (1, 1, 0, 1, 1), (µ̄1, µ̄2, λ̄1, λ̄2, r̄1, r̄2) = ( 1
2 ,

1
2 , 0,

1
2 , 1, 1) and α1 = α2 =

β1 = β2 = γ1 = γ2 = γ3 = 0; then we can obtain

∂
(
µ̄1 f1(., ū1)

)
(x̄) =

{
(
1
2
, 0)

}
, ∂

(
µ̄2 f2(., ū2)

)
(x̄) =

{
(0,

1
2

)
}
,

∂
(
− r̄2µ̄2g2(., v̄2)

)
(x̄) =

{
(−

1
2
, 0)

}
, ∂

(
λ̄2h2(., w̄2)

)
(x̄) =

{
(0,−

1
2

)
}
.

Hence,

2∑
i=1

∂
(
µ̄i fi(., ūi)

)
(x̄) + ∂

(
− r̄2µ̄2g2(., v̄2)

)
(x̄) +

2∑
j=1

∂
(
λ̄ jh j(., w̄ j)

)
(x̄) =

{
(0, 0)

}
.

On the other hand,

2∑
j=1

(
λ̄ jh j(x̄, w̄ j)

)
= −

11
8
,

2∑
i=1

εiµ̄i min
vi∈Vi

gi(x̄, vi) =
11
8
,
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so we have

2∑
i=1

(αi + βi) +

3∑
k=1

γk −

2∑
i=1

εiµ̄i min
vi∈Vi

gi(x̄, vi) =

2∑
j=1

∂
(
λ̄ jh j(., w̄ j)

)
(x̄).

Thus, (x̄, λ̄, ū, v̄, w̄) is a robust ε-KKT for model (4.2) with respect to (µ̄, r̄).
Now, we verify the ε-saddle point theorem. For any (x, λ, u, v,w) ∈ R2

+ × R
2
+ ×U ×V ×W, we have

Lµ̄,r̄(x, λ, u, v,w) =
1
2

(u1x1 − 1) +
1
2

(u2x2 − x1 − v2) + λ1(−x1 + w1) + λ2(−x2 + w2).

thus,

Lµ̄,r̄(x̄, λ̄, ū, v̄, w̄) = Lµ̄,r̄(x, λ̄, ū, v̄, w̄) = 0,

Lµ̄,r̄(x̄, λ, u, v,w) =
3
4

u1 +
15
8

u2 −
1
2

v2 −
5
4

+ λ1(−
3
4

+ w1) + λ2(−
15
4

+ w2),

Obviously,

Lµ̄,r̄(x̄, λ, u, v,w) ≤ Lµ̄,r̄(x̄, λ̄, ū, v̄, w̄) + ε∗ ∀(λ, u, v,w) ∈ R2
+ ×U ×V ×W,

and

Lµ̄,r̄(x̄, λ̄, ū, v̄, w̄) ≤ Lµ̄,r̄(x, λ̄, ū, v̄, w̄) + ε∗ ∀x ∈ R2
+.

Hence, Theorem 4.2 is applicable.

5. Conclusions

This study has considered the multi-objective fractional programming problem with a geometric
constraint set in the presence of the uncertain parameters in the objective function and the constraint
functions. The necessary and sufficient conditions for optimality of the approximate robust weakly
ε-efficient were proposed by applying the robust optimization techniques. Also, the robust ε-saddle
point theorems for UMFP problems were expressed. In addition, we applied a parametric approach to
establish ε-optimality conditions for robust weakly ε-efficient solution. Furthermore, some theorems
have been presented to obtain a robust ε-saddle point for UMFP problem. The numerical example in the
end was illustrated the efficiency and correctness of our approach. In further research, we will consider
the optimization conditions of the approximated solutions for the various optimization problems along
with their applications for the real-world problems.
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