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1. Introduction

The study of representation rings has attracted extensive attention of mathematicians. Chen et
al. [5] described the structure of the representation rings of the Taft algebra Hn(q). Li and Zhang [12]
determined the representation rings of the generalized Taft Hopf algebras Hn,d(q), and determined
all nilpotent elements in the representation ring of Hn,d(q). In [14], we constructed two classes of
weak Hopf algebras ws

n,d(s = 0, 1) corresponding to generalized Taft algebra Hn,d, and investigate
the representation rings r(ws

n,d) of ws
n,d. More conclusions related to representation rings can be seen

in [4, 15].
Many significant researches focused on studying automorphisms of algebras or rings. van der Kulk

[11], Zhao [18], Yu [17], Vesselin and Yu [16] did some significant contributions on the automorphisms
of polynomial algebras. Alperin [2] investigated the homology of the group of automorphisms of k[x, y]
over a field k. Furthermore, Dicks [7] researched automorphisms of polynomial ring in two variables.
Chen et al. [3,6] considered the coalgebra automorphism groups of the Hopf algebras . Han and Su [8]
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studied automorphism group of Witt algebras. Jia et al. [10] proved that the automorphism group of
representation ring of Sweedler Hopf algebra is isomorphic to the Klein four-group. Motivated by the
above works, in this paper, we investigate the automorphism groups Aut(r(ws

2,2)) of representation
rings r(ws

2,2) of two classes of weak Sweedler Hopf algebra ws
2,2(s = 0, 1). It is shown that

Aut(r(w0
2,2)) is isomorphic to K4, where K4 is the Klein four-group. Through calculation, the structure

of automorphism group Aut(r(w1
2,2)) has been constructed. We prove that Aut(r(w1

2,2)) is isomorphic to
(Z × Z2) o Z2. Its centre is isomorphic to Z2. In addition, Aut(r(w1

2,2)) is a non-commutative infinite
solvable group, but it is not nilpotent.

The paper is organized as follows. In Section 1, we recall some relative background and knowledge
in detail. In Section 2, the structures of automorphism groups Aut(r(ws

2,2))(s = 0, 1) are described. We
obtain that Aut(r(w1

2,2)) is a non-commutative infinite group, and the automorphism group Aut(r(w0
2,2))

is isomorphic to K4. In Section 3, the properties of the automorphism groups Aut(r(ws
2,2)) are discussed.

It is shown that Aut(r(w1
2,2)) is isomorphic to (Z × Z2) o Z2, and its centre is isomorphic to Z2. Finally,

we prove that Aut(r(w1
2,2)) is a solvable and non-nilpotent group. It is interesting that although both

w0
2,2 and w1

2,2 are weak Hopf algebras of Sweedler Hopf algebra, the automorphism groups of their
representation rings are strongly different.

2. Preliminaries

Throughout, we work over an algebraically closed fieldK of characteristic 0 unless otherwise stated.
All algebras, Hopf algebras and weak Hopf algebras are defined over K.

In the sequel, we fix two integers n, d ≥ 2 such that d | n, and assume that q ∈ K is a primitive
d-th root of unity. In [14], we constructed the weak Hopf algebras ws

n,d(s = 0, 1) corresponding to
generalized Taft algebra [13], and investigated the representation rings r(ws

n,d)(s = 0, 1) of ws
n,d(s =

0, 1). As an algebra ws
n,d(s = 0, 1) is generated by g, x subject to the relations

gn+1 = g, xg = qgx, xd = 0.

The comultiplication, counit and weak antipode T are given by

∆(g) = g ⊗ g, ∆(x) = gr ⊗ x + x ⊗ g, ε(g) = 1, ε(x) = 0,

T (1) = 1, T (g) = gn−1, T (x) = −q−1gn−1x.

If r = 0, we get the weak Hopf algebra w1
n,d, where g0 = 1. If r = n and x = gnx, we get the weak Hopf

algebra w0
n,d. Let E = gn, it is easy to see that the dimension of ws

n,d is nd + (d − 1)s + 1, and the set

{gιxκE | 0 ≤ ι ≤ n − 1, 0 ≤ κ ≤ d − 1} ∪ {xκ(1 − E)|κ = 0, 1, · · · , (d − 1)s}

forms a PBW basis for ws
n,d.

In particular, when n = d = 2, ws
2,2(s = 0, 1) are exactly two classes of weak Hopf algebras

corresponding to the Sweedler Hopf algebra (see also [1]).
Let H be a weak Hopf algebra, the representation ring r(H) of H is defined as follows. Assume that

F(H) is a free abelian group generated by isomorphism classes [V] of finite dimensional H-modules
V . Let r(H) be the quotient group F(H) modulo the relations [M⊕V] = [M]+ [V], We equip r(H) with
the multiplication [M][V] = [M ⊗ V]. It is well known that r(H) is an associative ring with Z-basis
{[V] | V ∈ ind-H}.
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Theorem 2.1. [14] The representation ring r(ws
n,d) � Z〈 x1, x2, x3 〉/I as ring isomorphisms, and the

ideal I is generated by the relations

xn
1 − 1, (x2 − xm

1 − 1)Fd(xm
1 , x2), x1x2 − x2x1, x1x3 − x3, x3x1 − x3,

(1 − s)x3x2 − (1 − s)x2x3, x2x3 − 2x3, x2
3 − x3,

where m = n
d and Ft(y, z) are the generalized Fibonacci polynomials defined by Ft+2(y, z) = zFt+1(y, z)−

yFt(y, z), t > 1, F0(y, z) = 0, F1(y, z) = 1, F2(y, z) = z.

Corollary 2.2. The representation ring r(ws
2,2) � Z〈 x, y, z 〉/I as ring isomorphisms, and the ideal I is

generated by the relations

x2
1 − 1, (x2 − x1 − 1)x2, x1x2 − x2x1, x1x3 − x3, x3x1 − x3,

(1 − s)x3x2 − (1 − s)x2x3, x2x3 − 2x3, x2
3 − x3.

Notice that
{1, x1, x2, x3, x1x2} and {1, x1, x2, x3, x1x2, x3x2}

are Z−basis of r(w0
2,2) and r(w1

2,2), respectively.
Let A f denote the corresponding coefficient matrix of Z−linear map

f : r(ws
n,d)→ r(ws

n,d),

where s = 0, 1. And let |A f | denote the determinant of A f .

3. Automorphism groups of representation rings r(ws
2,2)

In this section, we will discuss the automorphism groups of representation rings of weak Sweedler
Hopf algebras. By Corollary 2.2, one see that r(w0

2,2) is a commutative ring, but r(w1
2,2) is a non-

commutative ring. We mainly consider the automorphism group of r(w1
2,2), the automorphism group

of r(w0
2,2) will be stated directly.

For any i, j, k, z ∈ Z, let ωi, δ j, τk, ϕz be Z−linear maps of r(w1
2,2). They are determined by the

following maps:

ωi : 1→ 1 x1 → x1,

x2 → x2 − 4ix3 + 2ix3x2, x3 → (1 − 2i)x3 + ix3x2,

x1x2 → −4ix3 + x1x2 + 2ix3x2, x3x2 → −4ix3 + (1 + 2i)x3x2;

δ j : 1→ 1 x1 → x1,

x2 → (4 − 4 j)x3 + x1x2 + (2 j − 2)x3x2, x3 → (1 − 2 j)x3 + jx3x2,

x1x2 → x2 + (4 − 4 j)x3 + (2 j − 2)x3x2, x3x2 → (4 − 4 j)x3 + (2 j − 1)x3x2;

τk : 1→ 1 x1 → x1,

x2 → x2 + (4 − 4k)x3 + (2k − 2)x3x2, x3 → (1 − 2k)x3 + kx3x2,

x1x2 → (4 − 4k)x3 + x1x2 + (2k − 2)x3x2, x3x2 → (4 − 4k)x3 + (2k − 1)x3x2;

ϕz : 1→ 1 x1 → x1,

x2 → −4zx3 + x1x2 + 2zx3x2, x3 → (1 − 2z)x3 + zx3x2,

x1x2 → x2 − 4zx3 + 2zx3x2, x3x2 → −4zx3 + (1 + 2z)x3x2.
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It is easy to check that ωi, δ j, τk, ϕz are four classes of automorphisms of r(w1
2,2). For any i, j, k, z ∈

Z (i = 1, 2, 3, 4), we have

ω0 = id, ω−1
i = ω−i, δ−1

j = δ j, τ−1
k = τk, ϕ−1

z = ϕ−z.

Let
G =

{
ωi, δ j, τk, ϕz | i, j, k, z ∈ Z

}
,

then G is a group under the composition of functions. For any i, j, k, z, i′, j′, k′, z′ ∈ Z the multiplication
is described as follows

◦ ωi δ j τk ϕz

ωi′ ωi′+i δi′+ j τi′+k ϕi′+z

δ j′ δ j′−i ω j′− j ϕ j′−k τ j′−z

τk′ τk′−i ϕk′− j ωk′−k δk′−z

ϕz′ ϕz′+i τz′+ j δz′+k ωz′+z

It follow that G is a non-commutative infinite group.
In the sequel, we shall show the automorphism group Aut(r(w1

2,2)) is just the group G.

Lemma 3.1. Let g be an automorphism of r(w1
2,2), then

g(x1) = x1 or g(x1) = x1 − (2 + 2a)x3 + ax3x2 or

g(x1) = −x1 or g(x1) = −x1 + (2 − 2a)x3 + ax3x2 or

g(x1) = 1 − (2 + 2a)x3 + ax3x2 or g(x1) = −1 + (2 − 2a)x3 + ax3x2,

where a ∈ Z.

Proof. Indeed, we have (g(x1))2 = 1 since g is an automorphism of r(w1
2,2) and x2

1 = 1.
Assume that

g(x1) = a0 + a1x1 + a2x2 + a3x3 + a4x1x2 + a5x3x2, ai ∈ Z (i = 0, 1, 2, 3, 4, 5).

Then we get
(a0 + a1x1 + a2x2 + a3x3 + a4x1x2 + a5x3x2)2 = 1,

and 

a2
0 + a2

1 = 1,
2a0a1 = 0,
2a0a2 + 2a1a4 + a2

2 + a2
4 + 2a2a4 = 0,

2a0a3 + 2a1a3 + 2a2a3 + 2a3a4 + 2a3a5 + a2
3 = 0,

2a0a4 + 2a1a2 + a2
2 + 2a2a4 + a2

4 = 0,
2a0a5 + 2a1a5 + 4a2a5 + a2a3 + a3a4 + a3a5 + 4a4a5 + 2a2

5 = 0.

Thanks to a0, a1, a2, a3, a4, a5 ∈ Z, we obtain that the system of equations has eight distinct solutions
(a0, a1, a2, a3, a4, a5) as follows:

(0, 1, 0, 0, 0, 0), (0, 1, 0,−2 − 2a, 0, a), (0,−1, 0, 0, 0, 0), (0,−1, 0, 2 − 2a, 0, a),
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(1, 0, 0, 0, 0, 0), (1, 0, 0,−2 − 2a, 0, a), (−1, 0, 0, 0, 0, 0), (−1, 0, 0, 2 − 2a, 0, a),

where a ∈ Z. Therefore, we get that only the fifth and seventh solutions are unreasonable, and

g(x1) = x1 or g(x1) = x1 − (2 + 2a)x3 + ax3x2 or

g(x1) = −x1 or g(x1) = −x1 + (2 − 2a)x3 + ax3x2 or

g(x1) = 1 − (2 + 2a)x3 + ax3x2 or g(x1) = −1 + (2 − 2a)x3 + ax3x2.

The proof is finished. �

Lemma 3.2. Let g be an automorphism of r(w1
2,2) , then

g(x3) = (1 − 2c)x3 + cx3x2 or g(x3) = 1 − (1 + 2c)x3 + cx3x2,

where c ∈ Z.

Proof. Noting that x2
3 = x3, we have

(g(x3))2 = g(x3).

Assume that

g(x3) = b0 + b1x1 + b2x2 + b3x3 + b4x1x2 + b5x3x2, bi ∈ Z (i = 0, 1, 2, 3, 4, 5).

Then we have 

b2
0 + b2

1 = b0,

2b0b1 = b1,

2b0b2 + 2b1b4 + b2
2 + b2

4 + 2b2b4 = b2,

2b0b3 + 2b1b3 + 2b2b3 + 2b3b4 + 2b3b5 + b2
3 = b3,

2b0b4 + 2b1b2 + b2
2 + 2b2b4 + b2

4 = b4,

2b0b5 + 2b1b5 + 4b2a5 + b2b3 + b3b4 + b3b5 + 4b4b5 + 2b2
5 = b5.

It is easy to get that the system of equations has four distinct solutions (b0, b1, b2, b3, b4, b5) as follows:

(0, 0, 0, 0, 0, 0), (0, 0, 0, 1 − 2c, 0, c), (1, 0, 0, 0, 0, 0), (1, 0, 0,−1 − 2c, 0, c),

where c ∈ Z. Only the first and third solutions are unreasonable. Therefore
g(x3) = (1 − 2c)x3 + cx3x2 or g(x3) = 1 − (1 + 2c)x3 + cx3x2. �

Lemma 3.3. Let g be an automorphism of r(w1
2,2) , we have

1. if g(x3) = (1 − 2c)x3 + cx3x2, then g(x1) = x1 or g(x1) = −x1 + (2 − 4c)x3 + 2cx3x2 or g(x1) =

−1 + (2 − 4c)x3 + 2cx3x2;
2. if g(x3) = 1 − (1 + 2c)x3 + cx3x2, then g(x1) = 1 − (2 + 4c)x3 + 2cx3x2;

where c ∈ Z.

Proof. Noting that x1x3 = x3x1 = x3, then we have

g(x1)g(x3) = g(x3)g(x1) = g(x3).
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1. Since g(x3) = (1 − 2c)x3 + cx3x2, and by the Lemma 3.1, then

(a) if g(x1) = x1, we have

g(x1)g(x3) = g(x1)g(x3) = x1((1 − 2c)x3 + cx3x2)
= ((1 − 2c)x3 + cx3x2)x1 = (1 − 2c)x3 + cx3x2 = g(x3);

(b) if g(x1) = x1 − (2 + 2a)x3 + ax2x3, we have

g(x1)g(x3) = (x1 − (2 + 2a)x3 + ax2x3)((1 − 2c)x3 + cx3x2)
= −(1 − 2c)x3 − cx3x2 , g(x3);

(c) if g(x1) = −x1, we have

g(x1)g(x3) = −x1((1 − 2c)x3 + cx3x2)
= −(1 − 2c)x3 − cx3x2 , g(x3);

(d) if g(x1) = −x1 + (2 − 2a)x3 + ax3x2, we have

g(x1)g(x3) = (−x1 + (2 − 2a)x3 + ax3x2)((1 − 2c)x3 + cx3x2)
= (1 − 2c)x3 + cx3x2 = g(x3),

g(x3)g(x1) = ((1 − 2c)x3 + cx3x2)(−x1 + (2 − 2a)x3 + ax3x2)
= (2c − 2a + 1)x3 + (a − c)x3x2.

Let a = 2c, then g(x1) = −x1 + (2 − 4c)x3 + 2cx3x2 and g(x3)g(x1) = g(x3);
(e) if g(x1) = 1 − (2 + 2a)x3 + ax2x3, we have

g(x1)g(x3) = (1 − (2 + 2a)x3 + ax2x3)((1 − 2c)x3 + cx3x2)
= −(1 − 2c)x3 − cx3x2 , g(x3);

(f) if g(x1) = −1 + (2 − 2a)x3 + ax3x2, we have

g(x1)g(x3) = (−1 + (2 − 2a)x3 + ax3x2)((1 − 2c)x3 + cx3x2)
= (1 − 2c)x3 + cx3x2 = g(x3),

g(x3)g(x1) = ((1 − 2c)x3 + cx3x2)(−1 + (2 − 2a)x3 + ax3x2)
= (2c − 2a + 1)x3 + (a − c)x3x2.

Let a = 2c, then g(x1) = −1 + (2 − 4c)x3 + 2cx3x2 and g(x3)g(x1) = g(x3).

2. Similar to the proof of 1. �

Proposition 3.4. Let g be an automorphism of r(w1
2,2), if g(x1) = x1 and g(x3) = (1− 2c)x3 + cx3x2 (c ∈

Z), then g ∈ G.

Proof. Since g is an automorphism of r(w1
2,2) and
x2

2 = x2 + x1x2,

x1x2 = x2x1,

x2x3 = 2x3.
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Then we have 
(g(x2))2 = g(x2) + g(x1)g(x2),
g(x1)g(x2) = g(x2)g(x1),
g(x2) f (x3) = 2g(x3).

(3.1)

Assume

g(x2) = c0 + c1x1 + c2x2 + c3x3 + c4x1x2 + c5x3x2, ci ∈ Z (i = 0, 1, 2, 3, 4, 5).

Then we have 

c0 + c1 + 2c2 + c3 + 2c4 + 2c5 = 2,
c2

0 + c2
1 = c0 + c1,

2c0c1 = c0 + c1,

2c0c2 + 2c1c4 + c2
2 + c2

4 + 2c2c4 = c2 + c4,

2c0c3 + 2c1c3 + 2c2c3 + 2c3c4 + 2c3c5 + c2
3 = 2c3,

2c0c4 + 2c1c2 + c2
2 + 2c2c4 + c2

4 = c2 + c4,

2c0c5 + 2c1c5 + 4c2c5 + c2c3 + c3c4 + c3c5 + 4c4c5 + 2c2
5 = 2c5,

Since c2
0 + c2

1 = c0 + c1 and 2c0c1 = c0 + c1, then

c0 = c1 = 0 or c0 = c1 = 1.

Therefore, we have following cases.
Case 1 c0 = c1 = 0. 

2c2 + c3 + 2c4 + 2c5 = 2,
c2

2 + c2
4 + 2c2c4 = c2 + c4,

2c2c3 + 2c3c4 + 2c3c5 + c2
3 = 2c3,

4c2c5 + c2c3 + c3c4 + c3c5 + 4c4c5 + 2c2
5 = 2c5.

Since c2
2 + c2

4 + 2c2c4 = c2 + c4, then we have

c2 + c4 = 0 or c2 + c4 = 1.

1. c2 + c4 = 0.
Since c0 = c1 = 0 and c2 + c4 = 0, then c3 = 2 − 2c5, c2 = −c4. We let c4 = d, c5 = b, then

g(1) = 1,
g(x1) = x1,

g(x2) = −dx2 + (2 − 2b)x3 + dx1x2 + bx3x2,

g(x3) = (1 − 2c)x3 + cx3x2,

g(x1x2) = −dx1x2 + (2 − 2b)x3 + dx2 + bx3x2,

g(x3x2) = (2 − 2b)x3 + bx3x2.
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And

Ag =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 −d 0 d 0
0 0 2 − 2b 1 − 2c 2 − 2b 2 − 2b
0 0 d 0 −d 0
0 0 b c b b


,

so | Ag |= 0, and hence, Ag is not invertible.
2. c2 + c4 = 1.

Since c0 = c1 = 0 and c2 + c4 = 1, then c3 = −2c5, c2 = 1 − c4. We let c4 = d, c3 = b then

g(1) = 1,
g(x1) = x1,

g(x2) = (1 − d)x2 − 2bx3 + dx1x2 + bx3x2,

g(x3) = (1 − 2c)x3 + cx3x2,

g(x1x2) = (1 − d)x1x2 − 2bx3 + dx2 + bx3x2,

g(x3x2) = −2bx3 + (1 + b)x3x2.

And

Ag =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 − d 0 d 0
0 0 −2b 1 − 2c −2b −2b
0 0 d 0 1 − d 0
0 0 b c b 1 + b


,

so | Ag |= (1 − 2d)(1 + b − 2c). Note that Ag is invertible if only if | Ag |= ±1, thus, we get that{
d = 0,
b = 2c,

or
{

d = 1,
b = 2c − 2,

or
{

d = 0,
b = 2c − 2,

or
{

d = 1,
b = 2c.

For any c ∈ Z, we have

(a) If d = 0 and b = 2c, then g(x2) = x2−4cx3 +2cx3x2, g(x1x2) = x1x2−4cx3 +2cx3x2, g(x3x2) =

−4cx3 + (1 + 2c)x3x2, thus g = ωi.
(b) If d = 1 and b = 2c − 2, then g(x2) = (4 − 4c)x3 + x1x2 + (2c − 2)x3x2, g(x1x2) = (4 − 4c)x3 +

x2 + (2c − 2)x3x2, g(x3x2) = (4 − 4c)x3 + (2c − 1)x3x2, thus g = δ j.
(c) If d = 0 and b = 2c − 2, then g(x2) = x2 + (4 − 4c)x3 + (2c − 2)x3x2, g(x1x2) = x1x2 + (4 −

4c)x3 + (2c − 2)x3x2, g(x3x2) = (4 − 4c)x3 + (2c − 1)x3x2, thus g = τk.
(d) If d = 1 and b = 2c, then g(x2) = −4cx3 + x1x2 + 2cx3x2, g(x1x2) = −4cx3 + x2 +

2cx3x2, g(x3x2) = −4cx3 + (2c + 1)x3x2, thus g = ϕz.

Case 2 c0 = c1 = 1.
2 + 2c2 + c3 + 2c4 + 2c5 = 2,
2c2 + 2c4 + c2

2 + c2
4 + 2c2c4 = c2 + c4,

4c3 + 2c2c3 + 2c3c4 + 2c3c5 + c2
3 = 2c3,

4c5 + 4c2c5 + c2c3 + c3c4 + c3c5 + 4c4c5 + 2c2
5 = 2c5.
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Since 2c2 + 2c4 + c2
2 + c2

4 + 2c2c4 = c2 + c4, then we have

c2 + c4 = 0 or c2 + c4 = −1.

1. c2 + c4 = 0.
Since c0 = c1 = 1 and c2 + c4 = 0, then c3 = c5 = 0, c2 = −c4. We let c4 = e, then

g(1) = 1,
g(x1) = x1,

g(x2) = 1 + x1 − ex2 + ex1x2,

g(x3) = (1 − 2c)x3 + cx3x2,

g(x1x2) = 1 + x1 + ex2 − ex1x2,

g(x3x2) = 2(1 − 2c)x3 + 2cx3x2.

And

Ag =



1 0 1 0 1 0
0 1 1 0 1 0
0 0 −e 0 e 0
0 0 0 1 − 2c 0 2 − 4c
0 0 e 0 −e 0
0 0 0 c 0 2c


,

so | Ag |= 0, and hence, Ag is not invertible.
2. c2 + c4 = −1.

Since c0 = c1 = 1 and c2 + c4 = −1, then c3 = 0, c5 = 1, c2 = −1 − c4. We let c4 = e, then

g(1) = 1,
g(x1) = x1,

g(x2) = 1 + x1 − (1 + e)x2 + ex1x2 + x3x2,

g(x3) = (1 − 2c)x3 + cx3x2,

g(x1x2) = 1 + x1 + ex2 − (1 + e)x1x2 + x3x2,

g(x3x2) = 2(1 − 2c)x3 + 2cx3x2.

And

Ag =



1 0 1 0 1 0
0 1 1 0 1 0
0 0 −1 − e 0 e 0
0 0 0 1 − 2c 0 2 − 4c
0 0 e 0 −1 − e 0
0 0 1 c 0 2c


,

so | Ag |= 0, and hence, Ag is not invertible.

In summary, if g(x1) = x1 and g(x3) = (1 − 2c)x3 + cx3x2(c ∈ Z), then g ∈ G. �

Theorem 3.5. Let Aut(r(w1
2,2)) denote the automorphism group of r(w1

2,2). Then

Aut(r(w1
2,2)) = G.
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Proof. Let g be an automorphism of r(w1
2,2), by Lemma 3.3, we know that

• if g(x3) = (1 − 2c)x3 + cx3x2, then g(x1) = x1 or g(x1) = −x1 + (2 − 4c)x3 + 2cx3x2 or g(x1) =

−1 + (2 − 4c)x3 + 2cx3x2;
• if g(x3) = 1 − (1 + 2c)x3 + cx3x2, then g(x1) = 1 − (2 + 4c)x3 + 2cx3x2.

By Proposition 3.4, we have that if g(x1) = x1 and g(x3) = (1 − 2c)x3 + cx3x2, then g ∈ G. The similar
arguments of Proposition 3.4 are applied to the remaining possibilities, show that | Ag |= 0, and hence,
Ag is not invertible, in these cases.

Thus
Aut(r(w1

2,2)) = G.

The proof is finished. �

Let f0, f1, f2 and f3 are automorphisms of r(w0
2,2), determined by the following.

f0 : 1→ 1 x1 → x1, x2 → x2, x3 → x3, x1x2 → x1x2,

f1 : 1→ 1 x1 → x1, x2 → x1x2, x3 → x3, x1x2 → x2,

f2 : 1→ 1 x1 → x1, x2 → 1 + x1 + 2x3 − x1x2, x3 → x3, x1x2 → 1 + x1 − x2 + 2x3,

f3 : 1→ 1 x1 → x1, x2 → 1 + x1 − x2 + 2x3, x3 → x3, x1x2 → 1 + x1 + 2x3 − x1x2,

where f0 is the identity map. The set { f0, f1, f2, f3} is a group under the composition of functions. The
multiplication is described as follows.

◦ f0 f1 f2 f3

f0 f0 f1 f2 f3

f1 f1 f0 f3 f2

f2 f2 f3 f0 f1

f3 f3 f2 f1 f0

Remark 3.6. Similar to arguments of the proof of Theorem 3.5 show that

Aut(r(w0
2,2)) = { f0, f1, f2, f3} � K4,

where K4 is the Klein four-group.

4. The properties of Aut(r(ws
2,2))

By Section 3, we have Aut(r(w0
2,2)) � K4 and Aut(r(w1

2,2)) = G.

The infinite group G =
{
ωi, δ j, τk, ϕz | i, j, k, z ∈ Z

}
is not abelian. The elements ϕ0, δ j, τk ( j, k ∈ Z)

of G have order 2, and other elements ωi, ϕz (i, z ∈ Z, z , 0) have infinite order. In the sequel, we
will discuss some properties of G. The definitions of solvable group, nilpotent group, and normal
subgroups, etc. can be found in [9], they are used in the sequel.

Proposition 4.1. Let Z(G) be the centre of G, then Z(G) � Z2.
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Proof. For any i, j, k, z ∈ Z, all subgroups of G, up to isomorphism, as follows

〈ω0 〉 = {id}, 〈ω1 〉 = {ωi | i ∈ Z}, 〈 δ j 〉 = {id, δ j},

〈 τk 〉 = {id, τk}, 〈ϕ0 〉 = {id, ϕ0}, 〈ϕ1 〉 = {ωi, ϕz | i, z ∈ Z},
〈 δ0, δ1 〉 = {ωi, δ j | i, j ∈ Z}, 〈 τ0, τ1 〉 = {ωi, τk | i, k ∈ Z}, 〈 δ0, ϕ1 〉 = G,

and we have

ωi′ωiω−i′ = ωi, δ jωiδ j = ω−i, τkωiτk = ω−i, ϕzωiϕ−z = ωi,

ωiδ jω−i = δ2i+ j, δ j′δ jδ j′ = δ2 j′− j, τkδ jτk = δ2k− j, ϕzδ jϕ−z = δ2z+ j,

ωiτkω−i = τ2i+k, δ jτkδ j = τ2 j−k, τk′τkτk′ = τ2k′−k, ϕzτkϕ−z = τ2z+k,

ωiϕzω−i = ϕz, δ jϕzδ j = ϕ−z, τkϕzτk = ϕ−z, ϕzϕzϕ−z = ϕz.

Hence 〈ω0 〉, 〈ω1 〉, 〈ϕ0 〉, 〈ϕ1 〉, 〈 δ0, δ1 〉, 〈 τ0, τ1 〉, 〈 δ0, ϕ1 〉 are normal subgroups of G. Furthermore

ωiδ j , δ jωi, ωiτk , τkωi, ϕzδ j , δ jϕz, ϕzτk , τkϕz,

δ j′δ j , δ jδ j′ , τk′τk , τkτk′ , τkδ j , δ jτk,

for any i, j, k, z, j′, k′ ∈ Z \ {0}, j , j′, k , k′. Therefore

Z(G) = 〈ϕ0 〉 = {id, ϕ0}.

It is easy to show that Z(G) � Z2, determined by the map id → 0, ϕ0 → 1. �

Theorem 4.2. G � (Z × Z2) o Z2.

Proof. We set
H = 〈ϕ1 〉 = {ωi, ϕz | i, z ∈ Z}, K = 〈 δ0 〉 = {id, δ0}.

It is easy to know that H and K are subgroups, and H CG. Since

ωiδ0 = δi, ϕzδ0 = τz

for any i, z ∈ Z, hence G = HK, and H ∩ K = {id}, thus we have

G = H o K.

Let
H1 = 〈ω1 〉 = {ωi | i ∈ Z},

one can get that H1 C H,Z(G) C H, where Z(G) = 〈ϕ0 〉 = {id, ϕ0} is the centre of G. Furthermore

H1 ∩ Z(G) = {id},

and ωiϕ0 = ϕi for any i ∈ Z. Hence H = H1Z(G), and

H = H1 × Z(G).

H1 is isomorphic to Z, determined by the map ωi → i, for any i ∈ Z. K is isomorphic to Z2, determined
by the map

id → 0, δ0 → 1.

Therefore
G = (H1 × Z(G)) o K = (〈ω1 〉 × 〈ϕ0 〉) o 〈 δ0 〉 � (Z × Z2) o Z2.

The proof is finished. �
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By the Theorem 4.2, the following results are easily to get.

Corollary 4.3. G is a solvable and non-nilpotent group.

Proof. By the Proposition 4.1 and Theorem 4.2, we have

G = (〈ω1 〉 × 〈ϕ0 〉) o 〈 δ0 〉 � (Z × Z2) o Z2, Z(G) = 〈ϕ0 〉 � Z2.

Since Z and Z2 are solvable groups, then Z × Z2 and (Z × Z2) o Z2
/
Z × Z2 are solvable groups, hence

G � (Z × Z2) o Z2 is solvable .
It is easy to see G/Z(G) = 〈ω1 〉 o 〈 δ0 〉 and Z (G/Z(G)) = {id}, hence, G/Z(G) and G are non-

nilpotent groups. �

5. Conclusions

In this paper, we investigate the automorphism groups Aut(r(ws
2,2)) of representation rings r(ws

2,2) of
two classes of weak Sweedler Hopf algebras ws

2,2(s = 0, 1) and discuss some properties of Aut(r(ws
2,2)).

We obtain that Aut(r(w0
2,2)) is isomorphic to the Klein four-group. It is shown that Aut(r(w1

2,2)) is a non-
commutative infinite group, it is solvable and non-nilpotent. In addition, we prove that Aut(r(w1

2,2)) is
isomorphic to (Z × Z2) o Z2, and its centre is isomorphic to Z2.
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