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1. Introduction

System of fractional differential equations with incommensurate order derivatives have received
increasing attention recently as this incommensurate order derivative is better in describing the real


http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2022130

2282

phenomena, such as financial system [2, 3], circuit simulation [4], eco-epidemiological model [5],
HIV model [6] and modeling glucose-insulin regulatory system [7]. In this research direction, many
works had been done to study stability analysis [8—11], synchronization [12] and other rich dynamical
behaviour [13, 14].

Due to the emerging of cross-discipline research in this incommensurate fractional order system,
finding the solution of the incommensurate fractional order system is becoming more and more
important. In this case, numerical methods, such as the predictor-corrector scheme [15, 16], are
always used to obtain the solution for the incommensurate fractional order system. Apart from this,
some algorithms are developed to obtain the approximation solution for incommensurate fractional
order systems, such as the Adomian decomposition algorithm [17], reduced-order model
approximation via genetic algorithm [18]. However, not much research was done to find the analytical
solution or exact solution for this incommensurate fractional order system. Until recently, Huseynov
et al. in [1] successfully derive the analytical solution for the incommensurate fractional order
0 < a,B < 1 by converting the system into a corresponding Volterra integral equation. Besides that,
Ahmadova et al. [19] found the analytical solution for this incommensurate fractional order system
via trivariate Mittag-Leffer functions. However, their proposed methods are only limited to
incommensurate fractional order 0 < a,8 < 1. Hence, this motivates us to derive the analytical
solution for a higher order of incommensurate fractional order system.

In this paper, we extend the work by Huseynov et al. in [1], which is limited for incommensurate
fractional order system for 0 < @, < 1. We intend to derive the analytical solution of higher order
incommensurate fractional order system.  Specifically, for o, € (1,2), we consider the
incommensurate fractional order system as follows:

“Dxy (1) = ax1(6) + apx(t) + g1 (1),

1.1
“DPxy(t) = anxi(t) + anxa(t) + g2(0), (D

with initial condition x;(0) = xY, x,(0) = x5, x/(0) = x| and x,(0) = x}. The physical meaning of
such an incommensurate fractional order system as well as the advantages of using incommensurate
models over the classical one (compare to commensurate models) are shown in [2—14]. The fractional
derivatives are defined with Caputo sense and the initial value problems to be solved for x;,x; €
C'[0, o). Similar to the works in [1], we convert the system in (1.1) to Volterra integral equations
and Picard’s successive approximations were used to derive the analytical expression of the solution
for an incommensurate fractional order system for 1 < «,8 < 2. Similar to [1], we use Picard’s
successive approximations to solve the Volterra integral equations arise because this method is based on
the Banach fixed point theorem. In order to obtain the fixed point of a functional operator, start with an
arbitrary function (i.e. the zeroth approximation) and apply the operator repeatedly to obtain a sequence
of successive approximations which should converge towards the fixed point. This method has been
applied to derive the explicit analytical solution of incommensurate fractional differential equation
systems with fractional order 0 < @, < 1 [1]. The solution will be simplified via some combinatorial
concepts and bivariate Mittag-Lefller function. In short, this paper aims to contribute to analytical
method that gives new explicit solutions to a certain class of fractional differential systems. These kind
of explicit solutions for solving fractional differential equations or systems have been increasingly
investigated by researchers in these research areas, such as in [20-24]. In short, we hope to contribute
in obtaining an explicit analytical solution for fractional calculus problems, which is relatively less
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investigated compared to numerical solution, such as in [25-32].

The rest of this paper is structured as follows. Section 2 is devoted to some preliminaries regarding
some important definitions, concepts and notations in fractional calculus and special functions.
Section 3 is devoted to presenting the derivation of analytical solutions for the incommensurate
fractional order system in higher order. Moreover, some special cases will be discussed in Section 4.
Sections 5 and 6 are devoted to presenting some examples and conclusion of this paper, respectively.

2. Preliminaries

In this section, we briefly explain some important definitions, concepts and notations in fractional
calculus and special functions, which is important for obtaining the analytical solution for this
incommensurate fractional order system.

2.1. Caputo fractional derivative

Definition 1. Letra > 0, n =[a]l+ 1 ifa ¢ N, n = aif @ € N and x > 0. The left Caputo fractional
derivative of a function of order a, denoted by *D? f(x) is

G
'n-a)Jy) (x—1)rn+l

‘D? f(x) = dr, (2.1)
withn—1<a<n.

For Caputo fractional derivative, we have this important expression:

F@E+1) 4

CD;.X,B_
rg+1-a

¢ forB > a. 2.2)

2.2. Mittag-Leffler function

Definition 2. For Re(@),Re(B) > 0, the classical Mittag-Leffler function (i.e. one parameter) and
two-parameter Mittag-Leffler function are defined as

o &
E. (1) = kZ:(; Tk D)’ E.p5(1) = Z F(a/k s (2.3)

Definition 3. [33] For Re(a@), Re(8), Re(y) > 0, the three-parameter version of bivariate Mittag-Leffler
function can be defined as:

N — (k + D) xky!
E - . 2.4
apr(%.) ; ; T(ak + Bl + pk!l! 24)

The convergence of this bivariate Mittag-Leffler function was shown in Section 2, the new
bivariate Mittag-Leffler function in [33]. The Mittag-Lefller function is used as the solution of system
of fractional differential equations as this Mittag-Leffler function is the generalization of the
exponential function, which exponential function is widely used to express the solution of integer
order system of differential equations. The Mittag-Leffler function is a series which the terms are up
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to infinity. Hence, to calculate these Mittag-Leffler functions, ones can refer the numerical algorithm
such as in [34-36]. With Caputo fractional derivative, we have this important expression for the
fractional derivative involving Mittag-Leffler function:

DYEq(Ax")) = AELAXY)). (2.5)

In this paper, we will use some important integration with was introduced in [1] as follows:

f(t 7)1z b=1 41 = 11:((2)—2(5))“*“1, fora > 0,b > 0. (2.6)

1 g, - L@E®)
I'(a+b)

f f T(Z—T)a_l(T—u)b_l f(u) dudr = F(“)m’) f (t =)™ f(u) du, fora>0,b>0. (2.8)
0 0

Remarks: We can also write rr(;’ig;) = B(a, b), where B(a, b) is the Beta function.

(r )N = u) (t—uw)*!, fora > 0,b>0. 2.7)

For the f(r) = 7", where v > 0, using Eq (2.6), we have the following integration involving Mittag-
LefHler function.

t/lk(t — )Pkt dr

f (t = 1) Eq At = 7)) dr = b
’ k=0

I'(ak +B)
- (2.9
_ Z AT(bk + a + DI(v + 1)fPkrarv+l
B T(ak + BT bk +a+v+2)
Ifa=p6-1and b = a, from Eq (2.9), we obtain
!
f (t— T)B_ITVEa,ﬁ(/l(t - dr=T(v+ 1)t’8+VEaﬁ+v+1(/lt").
0
The lower incomplete gamma function is defined for Re(a) > 0, Re(z) > 0 as follows:
Y4
Ya,2) = f et dt. (2.10)
0

Definition 4. Hypergeometric functions ,F(ay, ay; b; z) and 1 F,(a; by, by; ) are defined by the series

2Fi(ay,ax; by z) = MZ— Szl <

(D)
k=0 o ) (2.11)
a)g Z
Fs(a; by, by;
1Fala b1, b2 = Z BB k!
where the pochhammer symbol, (a); = r(rcz;)k !

For the sake of simplicity, throughout the writing, we use ).

ny,n,,
an Oznz =0 an =0

o tO represent multiple series
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3. Main result

In order to derive the analytical solutions for the incommensurate fractional differential equation
systems with order 1 < @, < 2 as in Eq (1.1), basically one can follow the following steps:
Step 1: Write the system in Volterra integral equations of second kind.

Step 2: Perform the Picard’s successive approximations.
Step 3: Simplify the solution by using some combinatorial formulae.
Step 4: Verify the solution by using substitution.

Here, we will derive the inhomogeneous case. By setting g;(#) = 0 and g,(¢7), the Eq (1.1) will
reduce to the homogeneous case. Similarly, if we take the value of @ = S, the incommensurate
fractional differential equation systems with fractional order 1 < «@,8 < 2 will be reduced to
commensurate fractional differential equation systems with fractional order 1 to 2.

Step 1: Write the system in Volterra integral equations of second kind.
Using the result from Theorem 5.15 in [37], we obtain the single fractional differential equation for
o € (1,2) in Caputo sense as follows:

“D7y(1) = Ay(1) + h(®), Y(0) = yo, ¥'(0) = y1. (3.1
We have the following solution:
t
Y(O) = YoEo (A7) + y11Es(A17) + f (t = 1) (D) Eqs o (A1 = 7)7) dr. (3.2)
0

Using Eq (3.2), the Volterra integral equation of second kind for the equation in (1.1) can be
written as

x1(1) = NEq(ant®) + xjtEq2(ant®) + f (t — 1) apxa () + g1(D)]Esolant — 7)) dr,
0
(3.3)

x2(t) = XEg(ant®) + x3tEga(ant’) + ﬁ (t — ¥ anx1 (1) + g2(0)]Egplaxn(t — 7)) dr.

Substituting x, () into the first equation in (3.3) and x;(¢) into the second equation in (3.3), we obtain
the following:

!
x1(t) = X\ Eq(ant™) + x{tEq2(ant®) + f (t = 7)" ' Epolan( —1)%) Cllz(xgEﬁ(azzTﬂ)
0

+ x37Ega(ant’) + f (t — uf’ ' Egglan(t — u)f)ax xi(u) + g2(u)) du) + gl(T)] dr
0

np _ na+a—1 n2 __nyf
a,(t—1) ayT

Tmata) ToprD T (3.4)

! [ee]
= x(l)Ea(ant") + x%l‘EQ,z(Clnlﬂ) + alzng Z
0

ny,np=0

1 t a’;; (l _ T)n1a+a—l agéTnzﬁH t al]ﬂl (l‘ _ T)n1a+a—1
+ apnx, E dr + gi(r)dr
0 0 n1=0

Ima+a) T(mp+2) I'lnja + @)

ny,ny=0

1 T X am (l _ T)nlar+a—1 Cln2 (T _ I/t)nzﬁ"'ﬁ_l
1 2
T ar xi(u) + g>(u)) du dr.
12fofo Z I'na+ @) T(n:f + ) (az1x1(u) + g2(u))

ny,n2=0
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Using identity as in Eq (2.6) to Eq (2.8) , we obtain

0 . 0 s a”l anz tn 1@+ f+a
x1(0) = x2E (at%) + xtE at“+axz
1(0) = 5 Eo(ant®) + xtEq2(ant®) + ap znn Tmatnfratl
1
G ny 2 nja+nyfra+l 0
+a12x% Z auazt Z—f( T)nla+(t lg (T) dr (35)
= 0F(ma+n2,8+a+2) I'(ma + @)
1,/12=
00 anlanz
11722 nja+nyf+a+p-1
+a t—7 ar1 x1(7) + g,(7)) dr.
, r<n1a+n2ﬁ+a+ﬁ>fo( ) (@301(7) + ga(7)

ny,np=

By using a similar approach, we obtain the expression for x,(f) as follows:

0 . 0 0 aglzanz tn1,3+nza+,3
X (1) = szﬁ(azzlﬁ) + XZtEIB,z(azzl’B) + ax x;
Wi I'mB+ma+p+1)
ey x1 i a22an2 tn1,8+n2a+ﬁ+l
S I'mB+ma+pL+2)
ny,np=0 (3 6)
© ny ny ¢ :
a,,a
227711 n+ma+a+f-1
+aZ t—1)" apx(t) + g1(1)) dr
21 F(n1B+n2a+a+ﬁ)L( ) (anx(7) + £1(7))

ny,ny=0

N nB+p-1
F(n1ﬁ+ﬁ)f (o e

Step 2: Perform the Picard’s successive approximation.
Using Picard’s successive approximation, the solution of the Volterra integral equations as in
Eqgs (3.5) and (3.6) can be obtained via setting
afllllagétn|a+n2ﬁ+a
ma+mB+a+l)

x1.0(0) = XEo(ant®) + X tEq(ant®) + anx) Z By

ny,np=
n2 nja+nyf+a+l ®
a’ g et
11722 na+a—1
+ appx! Z —f T 7)dr
Zmn_ F(n1a+n2,8+a'+2) L Tma +a) -7 81(®)
a,a
E 11722 nia+nyB+a+p-1
+ap r—7 2T dT’
! I‘(nla+n2ﬁ+a+,8)f0( ) §:(7)
ni,np=0 (3 7)
00 am anz tn|a+n2ﬂ+a ’
0 a 1 @ 0 11722
X1t = x: E(ayt?) + x tE at+ax§
1m() 1 o(ant®) 1 0,2( 1t%) 12 2n a 0F(ma+n2,3+a/+ 1)
1,12=
nl ”21‘”|C¥+’lzﬁ+a+1 hd f( )n](y+(z 1 (1) d
+a12x Z T T)dr
2 F(n101+n2,8+01+2) F(n101+01) 81
(o] ni ny
ata
11%22 nia+nyf+a+p-1
+ apn l—T) a1 X1 ;m—1(7) + 27 ) dT,
r(n1a+nzﬁ+a+ﬁ)f0( (@ in-1(7) + £2(7)

ny,np=0
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and

ny N2 .nif+nya+f
6122(1 t

n1ﬁ+n2a/+,8+1)

Xo O(l) = szﬁ(azzlﬁ) + )CQIE[; z(azglﬁ) + azlxl Z I

ny,ny=0
ny _n2 i B+nya+f+1 00
a,.a, "
2211 nip+p-1
+ ay) X| Z f (t—1) (r)dr
' L Tp+matpr2) r(nlﬁ+,8) £
" . Z aglzarllzl ft(t _ T)n1ﬁ+n20z+(r+,8—1g1(7_) dT
C(niB+ma+a+pB) J, ’
ny,ny=0
0 aglz aﬂz tn1ﬂ+n2a+ﬂ

x2n(t) = X3Eplant’) + XytEgo(ant’) +anx) ) T(m B+ ma +4+ 1)
1 2

ny,ny=0
n + +6+1 0 n
1
ny,ny F(I’l]ﬂ T ma +ﬂ + 2) =0 F(I’llﬁ -I-ﬁ) 0
o ala™
22711 nif+naa+a+f-1
ra =7 ay X2 ;m-1(7) + g1(7)) dr.
B F(nlﬁ+nza/+a+,3)f0( ) (@21 m-1(7) + g1(7))

ny,np=0

For m = 1, using the identities (2.6)—(2.8), we have

0 al’l]+n'g nz t(n1+n3)a+n2ﬂ+a+ﬂ
x1.1(1) = x10(f) + apay x| Z T - 1
i ((ny + n3)a +mB+a+L+1)
o0 an1+nz nz t(n1+n;)a+n2,8+a+,8+l
11

1
+
andarty [((n; + n3)a +mB+a+p+2)

ny,ng,n3=0
00 ny+ns n2+n4 (ny+n3)a+(na+na)B+2a+p
+ 612 a XO Z all a !
21
12 znnnn OF((nl+n3)a+(n2+n4),8+2a/+ﬁ+1)
1,12,13,114=
00 ni+n3 no+n4 (ny+nz)a+(ny+ng)B+2a+p+1
e 1 ay ay 1
apa21%;

I'((ny +n3)a + (ny + ny)B+2a+L+2)

ny,n2,13,14=0

. i a11111+n3 ;é A (l‘ T)(n1+n3)a+n2ﬁ+2a+ﬁ—1gl(T) dr
12421
mi I'((ny + n3)a + nyB + 2a + )

t
0 a711+n3 no+ny j(‘)(t _ T)(n.+n3)a+(n2+n4)ﬁ+2<y+2,3—1gz(T) dr

) ay

ny,n2,n3,n4=0 F((I’l] + I’l3)d + (n2 + n4),8 +2a + 2,8)

Meanwhile, for m = 2, we have

ni+n3+ns _no+n4 (ng+n3+ns)a+mny+ng)f+2a+2p
apy »n 1

1 +n3+ns)a+ (my+n)B+2a+28+1)

x12(8) = x11(t) + al,az,x" Z T

a”l +n3+ns anz +ng t("' +n3+ns)a+(na+ng)B+2a+26+1
11

2 2 1 E
+
dipdnt . I'((n) +n3 +ns)a + (n, + ny)B+ 2+ 26+ 2)

Ny, ,ns=

o ni+n3+ns anz +ngtne t(n' +n3+ns)a+(ny+ng+ne)f+3a+23

3 2 0 ap 2
+
SUEDY T((1y + 13 + 115) + (13 + 11a + ng)B + 3a + 28+ 1)

ny,,neg=0

(3.8)

(3.9)
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ny+n3+ns aﬂ2+n4+n6 l‘(nl +n3+ns)a+(ny+ny+ne)f+3a+28+1

(o]
a
3 2 .1 11 22
T apa X, § T 3 )
i (ny +n3+ns)a+ (ny +ng +ng)B+3a+26+2)

n

t
) 0 ar1111+n3+n5a;§+n4 fo (t T)(nl+n3+n5)a+(n2+n4),8+3&+2,8—lg] (T) dr
2 " Zn 0 L((ny +n3 + ns)a + (ny + ny)B + 3a + 20)
1,5 5=

+n3+ +ng+ 4 _
oo anl n3+ns np+nstne j(;(t_ T)(nl+n3+n5)a+(n2+n4+n6)ﬂ+3a+3ﬂ lgz(T) dr

P Z 1 ay
12721 L((ny + n3 + ns)a + (ny + ny + ne)B + 3a + 35)

ny,ne=0

(3.10)

In general, after some algebraic manipulation, we obtain

xl,m(t) = xl,m—l(t)
*® n+n3+-+nom+ 1 an2+n4+"'+2mt(m+n3+-~~+n2m+1)oz+(n2+n4+--~+n2m)ﬁ+ma+mﬁ
22

m m 0 al]
+ apnay X
.= 0l“((nl +ny+ -t )+ My +ng++ny)B+ma+mB+1)
1575 M2m+ 1=
© n+n3+e+tnom an2+n4+~~+2mt(n1 13+ +Nme1 ) +H(N2 N4+ N2 )B+ma+mpB+1
22

am gy Z 11
1272171 I'((ny +n35+ - +nype)a+ (ny +ng+ -+ + n,)B + ma+mB + 2)

ny, s 2m+1=0
© N3+ nom anz tngt-tnome2 l(nl +n3+ Nt 1 )@+ (Na+ng+ N2 40 )B+(m+ ) a+mgB

+ m+l _m 0 11 22
Ay dy Xy T 1 1
i ((ny+n3+--+ny)a+ o +ng+-+nyu)f+(m+ Da+mpB + 1)

00 ny+n3te+nomel 204t N2me2 t("' +1n3+- 1)@+ (n2+ng++noy 0 )B+Hm+Da+mpB+1

a a
m+l _m _1 11 22
+aj, axx; §
I'((ny+n3+- - +nye)a+my+ng+ - +no2)B+ (m+ Da+mpB +2)

ny, Mom+2=0

t

o 0o a711+ +n2m+|a121§+ +noy fo (l _ T)(nl+...+n2m+1)a+(n2+...+n2m)/3+(m+1)a+m,B—lgl(T) dr
vy Y

A T+ )@+ (4 -+ )+ (m o+ Da+ mpB)

00 Ryt il bt ams [Tl N (g e (ma 4o 0)B+Hm+ 1) (a+B)—1

raplay Y — “22 b= ) ) 8:(0) 7 G.11)

12 421 , (0.

[((ny + -+ nype)a + (ny + -+ + nypp)B + (m + 1)(a + B))

ni, Mom+2=0

where ny + - - - +ny,41 and ny + - - - + 1y, denote ny +n3 + - - - + 1,4 and ny + 1y + - - - + Ny, respectively.
When m — oo, we can rewrite the solution of x;(¢) as follows:

o © npAn3te gl gt 42k (ng +ng e tngpe ) JaH(ng g +etng )B+ka+kB

2 : k k0 2 : ayy ) !

— A T +ns+ -4+ (o +ng + -+ mp)B+ ka + kB + 1)

= Lo M2kt 1=

00 o0 nl+’13+‘“+n2k+1an2+"l4+"'+2kt(n1+n3+~~-+n2k+1)a+(n2+n4+~-~+n2k),8+ka+k,3+l

" Z ddk X! Z 11 22
1272141
= ol [((ny +n3+ -+ nyg)a+ My +ng+---+ny)f+ka+ kB +2)
o np+n3+e gy a"2+”4+"'+”2k+2 t(nl 13+ N Ja+H(np+ng++nog2 )B+(k+ Da+kp
2

[
n Zak+1ak %0 Z a4y 2
12 #21%2
— i I'((ny +n3+--+nyp)a+ o +ng + -+ ngy)B+(k+ Da+kB+1)
© nptn3+e+tnogg an2+n4+'"+n2k+2 t(nl+n3+~~-+n2k+1)a+(n2+n4+--~+n2k+2),3+(k+1)a+kﬁ+l

2

" Zalmak 5! Z 1 2
£z TR L((ny + 13+ +ngg))a@+ (ny +ng + -+ + nyy2)B + (k+ Da + kB + 2)

ny, 242 =0

t
o0 . o0 ar1111+ +nzk+1a;§+ +nok J(; (r— T)(m+--~+nzk+1)a+(nz+-~~+nzk),3+(k+1)a+kﬁ—1g1(-,—) dr
+ Z Apray,
= LA I'((ny +---+nye)a+ (o + -+ +ny)B + (k+ Da + kB)
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00 ol k 00 a711+-"+n2k+1a;§+-"+ﬂ2k+2 J(;t(l‘ _ T)(nl+---+n2k+1)a+(n2+---+n2k+2)ﬂ+(k+1)(a+ﬂ)—1g2(T) dr
DILEDY
= pd 0 [((ny + -+ noy)a + (np + -+ + nygo)B + (K + (@ + )
(3.12)

Similarly, by symmetry, we have successive approximations for x,(f) = lim,,_, x,,(f) as follows:

o © an1+n3+“'+nzk+1an2+n4+-"+2kt(n1+n3+~-~+n2k+1),B+(n2+n4+~~-+n2k)a+ka+kﬁ
x(f) = Zak X0 Z 22 11
- 1272142
k:O = I((ny+n3+---+ny)f+m+ns+---+ny)a+ka+kB+1)
o o0 ny+n3 okl a”2+”4+”'+2kt(n1+n3+"'+ﬂ2k+1)ﬁ+(ﬂ2+n4+“'+n2k)tl+k(l+k/3+1
k k1 22 11
T ) apdnX; T o+ kB 10
k:O o (mp+ns+---+ny)B+m+ng+---+ny)a+ka+kB+2)
o0 x anl+n3+~"+n2k+1aﬂ2+n4+'"+nzk+2 l.(n1+n3+~~-+n2k+|)ﬁ+(n2+n4+-~-+n2k+2)a+ka+(k+1)ﬁ
" Zak 0 Z 22 11
12721 *1
= = (g +ns+ -+ ny )+ (ma+ng + -+ ny)a+ka+ (k+ 1)+ 1)
® o nptn3+e+tnogg an2+n4+'"+"2k+2 t(n1+n3+~~-+n2k+|)ﬁ+(n2+n4+-~+n2k+2)a+ka+(k+1)ﬂ+l
k _k+1 1 22 11
T ) apdy X
=y i [y +n3+--+ny)p+my+ng+--+nyp)a+ka+k+1)5+2)
0 o0 nibetnggey mote oy (T Ny e B+t nope )+ (k+1)(a+B)-1
N Zak g Z ) a fo(t 7) v * gi(r) dr
12%21
g o L+ -+ ny))B+ (o + - + nyn)a + (kK + D@ + B))
00 00 Ry ey et (T _ S\ A nog )B4 +ngp)a+ka+(k+1)8-1
+ Z ak.dk Z dy an fo (t—1) " &) dr
1272 T((ny + -+ nogs)B + (o + -+ - + nop)a + ka + (k + 1)B)

T
=

ny, ok 1=0

(3.13)

Step 3: Simplify the solution by using some combinatorial formulae.
We write j as all the odd-indexed terms together and m as all the even-indexed appear together, i.e.
j:n1 +n3+~~-+n2k+1,m:n2+n4+--~+n2k0rm:n2+n4+~--+n2k+2,weobtain,

) ni nja 0 0 k ok 0 m (j+k)a+m+k)s
X, () = x° a " + o Z Z Z Z d1,a,,d1,0)!
=X TN ;
o I'ma+1) HDBE i I'(j+ka+m+kp+1)

ny+n3+e o1 =,
np+n4+---+ng=m

| 0 a;ul e+l ] G a11<2 al§1 a{1 ar2n2t( JHk)a+(m+k)B+1
R DN v R DI D IRD IR 7
= I'(nja+2) SR I'(j+ka+m+k)p+2)
np+n3+e+noe1 =,
ny+ng+--+ny=m

0 0 k+1 k. J m (jrk+Da+@m+k)s
DD IV vee v
: _
k=0 j=0 m=0 nyn, nogs2: r((J Tt l)a - (m - k)ﬁ " 1)

ny+nz+nge1=j,
ny+ng+-+ngp2=m

i . !
| o o x al]c;lagla{laanzt(]+k+1)a+(m+k)ﬁ+l o a’1111 b (t _ T)n1a+a—1gl(7.) dr
) IDIDINED I )
k=0 j=0 m=0 nj,np, nps2: r((J +k+ 1)& + (m + k)ﬁ + 2) n1=0 r(nla + Q)
ny+n3+etnge =,
ny+ng+-+nyg2=m
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k k J 4 i+k+1 k-1
at,ah al a5y fo(t — r)UtktDatm+bp=-lg () dr

+ZZZ Z I((j+k+ Da+ (m+k)B)

k=1 j=0 m=0 nynp, nyr:
np+nz+e g =,
np+ng+-+no=m

k+1  k 4 i+k+1 k+1)8-1
a\} azla“a22 fo(t — r)UtkDasimik+ D=1 g, (1) dr

DI MG+ kT Do kv 1B)

k=0 j=0 m=0 ny,no, noks2:
ny+n3+ o1 =J,
ny+ng+--+np2=m

Then, we have the simple combinatorial identity as follows for any k, j and m:

> W= lfonms s Y= e 0 Y = m)

NN, okt
ni+nz+e g =j,
np+ng+-+no=m

kP k+m—-D!  (k+ j\(k+m—1
kG k-Dim! &k k-1

Yo W=l Y= e naa s = m

NN, k421
ni+nz+e g =j,
ny+ng+-+nggo=m

_k+ Ptk+m)!  (k+ j\[k+m
kY km & k

Applying Egs (3.15) and (3.16) to Eq (3.14) yields

0 0 oo oo gk k (+k) +(m+k)B(k+7\ [ k+m—1
URN) R S) 3 IR e e SR TS
W) =4 1

= Tma+1) H e F((]+k)a+(m+k),8+l)

k ko J t(}+k)a+(m+k)ﬂ+1(k+J)(k+m 1)

Rt Rkt ayyay,ay,ay, e e
+xlzr(n1a+2)+xlzzz T+ k)a+ (m+ kB +2)

k=1 j=0 m=0
k+1 k (j+k+Da+(m+k)B (k+j\ [ k+m
ai azla“a nt K\ K

I'(G+k+Da+(m+k)p+1)

k+1 k (jrk+Da+m+k)p+1 [ k+j\ [ k+m
aj, azlanazzt

(3.14)

(3.15)

(3.16)

)n1a+rz—1gl(,[.) dT

! 3 k J\ k ) 11 0 (t
+
ng mZ=O L((j+k+Da+m+k)B+2) r;) [(nja + @)
+ i i i aIICZagla{]ang fot(t — )tk batmbi-le, (1) dr (kzj)(k;rfl_l)
=1 j=0 m=0 [((j+k+ Da+ (m+k)pB)
N i i i a’féla’élauazzfo(f T)(l+k+1)a+(m+k+1)ﬁ 1 5(1) dr (k+j)(k-%];m)
k=0 j=0 m=0 F((]+k+ 1)a+(m+k+ 1)ﬁ)

(3.17)
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By writing some of the terms in Mittag-Leffler function and let all the summations start from 0,
we have

N Ay, Ay ay,dy) 1 Nk
I'G+k+Da+(m+k+1)B+1)

k+1  k+1,,J £ j+k+1)a+(m+k+1)ﬁ(k+j+1)(k+m)

x1(t) = x(l)Ea(a”t") + x(l) Z Z

k=0 j=0 m=0

k+1 k+1 ] m ((jrktDa+(mk+1)B+1 (k+1+1)(k+m)
k+1 k

ATl 3 P P -
14 2\U11 1
prry e oy I((j+k+Da+m+k+1)5+2)
k+1 k j+k+1 B[ k+j\[(k+m
2y dys a21a11a22t(j+ Hhams )ﬁ( k )( k )

I'(+k+Da+(m+k)p+1)

k=0 j=0 m=0
0 o0 k+1 k (j+k+Da+m+k)B+1 (k+j\ [ k+m
Lyl ZZ > 41 a21a11a22t1 artmelp (k )( k )
2
oy e o I'((j+k+Da+(m+k)B+2)
!

+ f (r - T)a_lEa,a(all(t - 7)%)gi(r) dr
0
als'ab'ajyag, [t = o g @ dr () ()
I'((j+k+2)a+m+k+1)p6)
! 7 _ j m
a’glaéla“azz fo (1 = )i Destmde izl (7) de (k;;])(“ )

k
I'(j+k+Da+(m+k+1)6)

(3.18)

In the same manner, for x,(¢), we obtain the following expression

oo ktl k+1 ] (m+k+Da+(j+k+ D) (k+m+1\(k+j
ay, dyy @y, dyt kel )\ k

I'm+k+Da+(G+k+1)B+1)

x(1) = xgEﬁ(azztﬁ) + x(z) Z Z

k=0 j=0 m=0

+ x5t Ep(ant’) + X3 Z Z Z

k=0 j=0 m=0

k k+1 J (m+k+Da+(j+k)B [ k+m\(k+]
o Aty Ay ayt AW

I'(m+k+Da+(G+kp+1)

k+1 k+1 7 (m+k+1Da+(j+k+1)g+1 (k+m+1\[(k+j
ay, ayy ayapnt 1 N\ k

I'(m+k+Da+(G+k+1)8+2)

ko k+1,J (m+k+Da+(j+k)B+1 (k+m\(k+j
4 k k

O as,aa; as '
1 12%21 91192 ) -
t— E t— d
#x ) Z T(m+k+Da+(rhp+2) fo( 7 Epplan(t = 1 )ga(m) dr
algl algl ailazz fot (t - T)(m+k+2)a/+( jrk+1)B-1 22(7) dr (k;ﬁl)(kz j)
I'(m+k+2)a+(G+k+1)6)

k k+1 ] 4 _ A\(mt+k+Da+(j+k+1)5-1 k+m\(k+j
PN auazzfo(t )t Der U Dle, () de (M)

I'(m+k+Da+(G+k+1)B)

(3.19)

and assuming p = j+kand g =m+ k

(k]
Using ( o

SN—"
—
=
=~ T

m) _ (k+j+1D)! (k+m)! nd (k+j)(k+m) _ (kD! (k+m)!
kD)1 kim! k k) =kl kim!
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and a;, a, # 0, we obtain

t
x1(t) = X\ Eq(ant™) + x|tE,2(ant®) + f (t— 1) Egqlan(t—1)"gi(r) dr

N x dod ii tpd+q,3+a+/3 min(p,q) . k (p+1)! 4/
12021 L L F(pa + qﬁ +ta+p+1) anaxn) (k+DWp—-k)'kl(g-k)!

o oo tpa/+q,6+a+ﬁ+] min(p,q)
o 33
17125 F(poz+qﬂ+a/+,8+2) (

p=0 g=

andy )k (p+ 1! q!

 \anaxn) (k+Dp-Klkl(g-k)!

q tpa+q,3+a min(p.q) (

(o) [e9) k
11“22 ajpas) p! q!
+
xzalzzzr(pa/+q,8+a+l) )

K(p— k) kl(g - k)!

apan

p=0 g= k=0

ey ii q tpa/+qﬂ+a+l min(p,q) 1201 k ! q!

2 12p 4L F(poz+q,8+oz+2) £ \anan) K(p-kklg-h)!

00 61116122 O(t_T)poz+q/3+2a+,B 1g (T) dr min(p,q) Aan, k (p+ 1)' q'

+

a”““;;; T(pa + B +2a +P) kz(; (anazz) k+ DI(p - k(g - 0!
ta iiauazz o(t_T)quﬁﬂHﬂ 'gx(7) dr mmﬁQ) apna) ‘ p! q! (3.20)

i er T(pa +qB+a +f) i \apan) Kp-bklg-H"

The above equation can also be rewritten as follows:

!
x1(8) = X0 Eq(an t™) + xtEq2(at*) + f (t — 1) " Egolan(t—1)"gi(r) dr
0

q tpa+qﬁ+(z min(p,g—1) (

0a12a21 Z Z F(pclyljzilﬁ +a+1) Z

apay| ¢ (p+ D! (g-D!
anan) k+ DI (p-k'kl(g—k-1)!

<

g=1 k=0

=0
00 @ @ in(p,g—1)
14124 Z Z ay ag,reraprert Y (auazl)k (p+1)! (- 1!
LiLiT(pa+qB+a+2) & \anan/ (k+Dip-0!klig—k-D!
SR @ @ min(p,q)
+ x°a ZZ af a, i 57 (apaz, ¢ p! q!
PP L LT (pa g +a+ ) L \anax) ki(p—k)'klg- k)
© o o a in(p,q)
+x1a ZZ all t" +gB+a+1  Mnp.g Ao k p! 6]!
2 LI L T(pa+gf+a+2) & \anan] k(p-k'klg -5
4 Gda i i ayal, O(t T)Patabe=le (1) dr
an 4 poy I'(pa + gB + 2a)
X‘““‘(""]‘” apan\’ (p+1)! (q-1)!
anan) k+DW(p—k'kl(g—k—1)!

k=0
[}

' Z Z’O: ay,as, |, (1 — T)paraBratB-lo, (1) dr
2 prfpery I'(pa +qB + a +pP)
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Xmin(zp’q) ajpdsg g p! q! (3.21)
 \anaxn k!(p—k)!k!(q—k)!' '

Similarly, by symmetric, we obtain

x(t) = Xy Eg(ant®) + xytEgy(ant’) + f (t — 1 ' Egplan(t — 7))g2(7) dr

00 o0 @ min(p—1,q)
061126121 Z Z af,ag, 1P (i“ ! (61126121 )k (p—D! (g+ D!
pom ey I'pa+qgB+p+1)  \ajaxn K\(p—k—-D!(k+ 1)!(g—k)!
0 @ min(p—1,q)
1%z “wss aydypt" P T (a12a21 )" (p=D! _ (q+D)!
poripry F(pa+qgB+B+2) 4 \anax) kl(p—-k—-D!(k+1Dlg-k)!
i i all tpwqﬂw & ajpdyg ¢ p! q!
+
Xjaai LI LiT(pa+gB+p+1) &4 \anan) K(p-k!kig=k)!
1421 L L F(pa + qﬁ +B+2) & \anaxn) kKi(p—k'kl(g—k)!
N i i ay,a, fo (t = pypreraPrasitle (r) dr mmz(:[w) andasy ¢ p! q'
a
2 L4 L T(pa + qB + a + B) i \ayan) kKi(p-K)!kl(g—h)!

s, [t = )P g (7) dr

61126121 ay,
Z Z ['(pa +gB +2B)

p=1 gq=0

X‘“i““’z‘"q) apay\  (p-1)! g+ 1)
apan k!(p—k—l)!(k+1)!(q—k)!'

(3.22)
k=0

Letting A = Z”“;‘ with ayy, axp # 0, we can simplify the inner series in (3.21) into hypergeometric
function expression using the following identities.

min(p,q) Q1201 k ]9' q'
! . = F(— - ;I;A ,
kZ:;‘ (0116122) k'(p—k)!k!(g —k)! 2Fi(=p,—q )

min(p.g-1) k
1! - D!
Z (alzazl) (r+1) g-Dt _ (p + 1)aF1(=p, 1 — q;2; A). (3.23)

anaxn | (k+ DI(p -k kli(g—k - 1!

k=0

Hence, we have x;(¢) as follows:

!
x1(8) = XV Eq(ant™) + xtEy2(at*) + f(l — D) Egalant —1)"gi(r) dr
0

0 NhN aflagztpwqma
+ A E E +1),Fi(-p,1-¢g;2;A
X1ai1 L4 L T(pa+qB+a+ 1)(19 )2 Fi(=p q )

AIMS Mathematics Volume 7, Issue 2, 2281-2317.



2294

Ya A 1),F(-p,1—q;2:A
+ x4 ZZF(pa+qﬁ+a+2)(p+ 1 Fi(=p, q;2;A)

© allaz tpa+qﬁ+a
+ ,—q; 1; A
xzalz;;f‘(pa+q,8+a+l)2 1(=p,—q )

‘] tpa+q,8+a+l

+x -p,—q;1;A
xzalzzzf(pa+q,8+a+2)2 1(=p,—q )

) @ 2a-1
a”a22 0 — yparaptie=le (1) dr
+a; A + 1) Fi(-p,1-¢q;2;A
an Z; F(pa+qﬁ+20z) (p )2 Fi(=p, q )
) q pa+qpf+a+p-1
ay,a, fo (t—1) g&(r)dr
+ Fi(-p,—q;1;A). 3.24
aung;() T — 2Fi(=p.—q: 1;A) (3.24)

The same is applied for x,(¢), where we can simplify the inner series in (3.22) into a hypergeometric
function expression using the following identities.

2,

k=0

min(p,q)
( = 2Fl(_pa_q;1;A)’

ajdng ¢ p! q!
anaxn) k'(p—-K!kl(g-k)!

min(pz—l,q)(alza21 )k (p—1)! (g + D!
K(p =k = D! (k+ D(g — k)!

=(g+ 2Fi(1 = p,—q;2; A). (3.25)

=0 apan

Hence, we obtain x,(¢) as follows:

x(t) = XIEg(ant®) + x,tEga(ant’) + f (t =V Epplan(t — 1/)ga(7) dr

) a+gB+p
0 a1 a N +4

+ A +1)»Fi(1-p,—qg;2;A
X502 ;:1 ;:0 F(pa+qﬁ+,8+1)(q nFi(l1-p,—q )

© a+gf+p+1

| a a Nis +4q

+ AE E +1),Fi(1-p,—qg;2;A
X,022 P F(poz+q,8+,8+2)(q )1 Fi( pP—q )

i a a l’pa+qﬂ+ﬂ

0
E E Fi(-p,—q;1;A
+ X;d1 F(pa/+q,8+,8+l)2 1(=p,—q )

p: q:O

tpa/+qﬁ+ﬁ+ 1

(o) (o) a
+ x! E E Fi(-p,—q;1;A
Xlazlp F(pa+q,8+,8+2)2 1(=p,—q )

ay,ay, o(l T)Peral gy (1) dr
+anA + 1),F (1= p,—q:2; A
an pz:; qzz(; T(pa + B+ 2B) (q »Fi(1-p,—q;2;A)
0 Cl a ([ )p(t+qﬂ+<x+ﬁ—lgl(7_) dT
T Z Z T 2F1(=p, —q; 1; A). (3.26)
gy I'(pa+qgB+a+p)
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Substituting g = 0 in the double series with ¢ = 1 in Eq (3.24) (i.e. the 4th, 5th and 8th terms in the

RHS of Eq (3.24)), and using ,Fi(=p, 1;2;A) = 1—/§tx;§+l , we obtain the following new expression for

the 4th, 5th and 8th terms in the RHS of Eq (3.24).

0 Da
xay A Z a" (p+ 1)a2F1(=p, 1;2; A) = XVE(a 1) — XV Eq(a (1 — A)™),
! T((p+ Da+1) ! !

Cl t(p+1)a+l
9. —_ o ay _ Ll _ a
xjap A Z T(p+ Dax 2)(17 + 1) Fi(=p,1;2;A) = xjtE,0(an 1) — x;tE, 2 (a (1 — A)t?),

(3.27)
al, it = rherasle (tydr

a“AZ T(p+ Da +a)

(p+ 1)Fi(=p,1,2;A)

= f (t = 1) [Eaal@i(t = 7)) = Egolan(l = A)(t = 1)) g1(7) dr.
0

Hence, we have the final solutions for the x(f) to the system (1.1) as follows:

x1(0) = XV Eq(an (1 = A)®) + xjtE,p(an (1 = A)®) + f (t = 1) Egolan(l = A)t = 1)")g (1) dr
0

SE% 11“22tm+qﬁ+a
+ xlanApZ qZ Foas gty A =a2
+ xja;1A i g r(‘;;"%;‘;jﬁ;ilz) (p+ 1nFi(=p, 1 —q;2;A)
+ xXJar, g qi: F(;;lj%;jiqji 5 2Fi(=p,—q; 1;A)
+ xéau g qi r(cjclya_%:;fﬂ;tlz) 2Fi(=p,—q; 1;A)
+apA Z:; qz:; a11a22 O;Z};g?_t;ij@; $1t0 ClT(p + 1), Fi(-p,1 —q;2;A)
+ap ; ; e ;E;; :;;qui ;‘fZ(T) & 2Fi(=p,—q; 1; A). (3.28)

Using similar approach, the final solutions for the x;(¢) to the system (1.1) is given as follows:

x(1) = X3 Eg(an(l — A)P) + x3tEgs(an(l — A)F) + f(f — 1V Egplan(l — A)(t — 7/)gx(7) dr
0

o X tpw+qﬁ+ﬁ
+ A +1),Fi(1-p,—qg;2;A
Xa ;;F(pa+q,8+,8+l)(q 2Fi(1 = p.—q:2: A)
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©  ® a+gf+p+1
| ana et
+ Ag E + 1)L Fi(l-p,—q;2;A
a2 F(pa+q,8+,8+2)(q )2F( p.—q )

al a l‘pa+qﬁ+ﬁ

I'pa+qgB+B+1)

a tpa+qﬁ+ﬁ+l

F(pa/+qﬁ+ﬂ+2)

2Fi(=p,—q; 1;A)

2Fi(=p,—q; 1;A)

00 aq)] 6212 O(t _ T)pa+q,8+a+ﬁ lg (T) dr

+a21ZZ r(pa+qﬁ+a+ﬁ) 2Fi(=p,—q; 1, A)

p=0 ¢=0
a+qB+26-1
ay,d, , (1 — TP &(r)dr
+ anA +1),F(1-p,—qg;2;A).
an ;qz(; F(pa/+q,8+2,8) (q )2 F1( pP>—q )

Step 4: Verify the solution by using substitution.

(3.29)

Finally, we can verify the solutions by substituting (3.28) (i.e. x;(#)) and (3.29) (i.e. x,(#)) into

c

system (1.1). Hence, the right-hand-side of the first equation of (1.1) is given by

ay1x1(f) + apnxy (1) + g1(0)

0 1
= x;a11 Eq (ant”) + x;a11tE,2(ap 1) +

f
+ XyanEg(ant’) + xantEgs(ant®) + ai f (t — 7V Epglan(t — 7))ga(7) dr
0

+ A i > 5 W 1= 1 = g2 )+ Fi ]~ 1)
=5 I'pa+gB+1)

+ xlay A ; qi ;?;ng:;ﬂ) (p2F1(1=p, 1= g;2:A) + 2Fy(=p, 1 — ¢; 15 A))

+ an, pf; g rg;af;jﬁl) GFI(1 - p,=¢; 1A) + Ag 2Py (1 = p, 1 = 45 2: )

+X5an pi qi; ;z;zgf;;qi) GFi1(1 = p,—q; 1;A) + Ag 2 F\ (1 — p, 1 — ¢;2; A))

+anA ,,2 i e OF(pan(;:ﬁ:;g O Fi(1 = pol = g2 A) 4 2Fy(p

while the left-hand-side of the equation is given by

an f (t = Enalan(t - 1)) dr + g1(0)
0

D%x (1) = ay1x1(t) + apx,(t) + g1(¢), which is the first equation of incommensurate fractional order

-q:1;A))

-q;2;A)),

(3.30)
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!
CDwxl(f) = allx(l)Ea(allta) + a“x}tE(,,z(aut") + ‘D" (f (t - T)a_le,w(all(t -1)")gi(r) dr
0

A awﬂww( 1),Fi(=p, 1 2:A)
+ § E + -p.1-q;2;
xlall oy T(pa + B+ 1) p 21 (—=p q

©  x P 4 ipa+qB+1
1 ay Ayt
+ AE + 1) Fi(=p,1 -q;2;A
fidn F(pa+q,8+2)(p oFi(=p 9 )

p=0 g=1
aq tpa+q,8
+ Eg(ant®) + D -p,—q;1;A
xzalz s(ant”) xzalzpz;; T(pa + B+ 1) 2Fi(=p,—q )
a+qS+1
1 1 an L
+ xa1tEga(ant’) + xyar, 2Fi(=p,—q; 1;A)
2 b 2 ;;F(pa+qﬁ+2)
0 allazz ([ _ T)pa+qﬂ+rx—1g1(7_) dT
+6111AZZ e (p+ DaFi(=p, 1 = g;2; A)

p=0 ¢=1

+ ap f (t — 7V Epglan(t — 7))ga(r) dr
0

a5, fot(t — r)yParabth-lo (1) dr

. a
+alzZZ 1 2Fi(=p,—q; 1; A). (3.31)
Pl L(pa +qB + B)

Using the Lemma 2.1 in [1], all the terms in Eqs (3.31) and (3.30) are equivalent, except for the
third term of Eqs (3.31) and (3.30). Hence, we show here using some algebraic manipulation that the
third term of Eq (3.31) is indeed equivalent to the third term in Eq (3.30). We have

‘D* ( f (t = 1) Eqalan(t = 1)M)g1(7) dT)
0

(t_ )a 1 d )ka+a—l ( )d
. T(@ ———&1(7) T+Zf Tka + @) gi(r)dr
ka+a—1
pe (1%, (t))+CDa [Z f F(kom)ha) g1(7) dr)

(t _ T)(k Da+a-1

ay,
g1<r)+2f T ey &M

C Daf

T)ka+(y—1
= g0 +an Z f s dr
=gi(D)+ay f(f — 1) Eyolan(t — 7))gi1(7) dr. (3.32)
0

By applying Lemma 2.1 in [1] and Eq (3.32), the first equation in (1.1) holds true, while the second
equation in (1.1) can be verified using a similar approach. Hence, we have the theorem as follows:
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Theorem 1. The incommensurate fractional differential equation systems with fractional order 1 <
a,f3 < 2 are given by:

“Dx, (1) = anxi(t) + anx(t) + g1 (1),

3.33
“DPxy(t) = azxi(t) + anxa(t) + g2(0), G-33)

with initial conditions x,(0) = x¥, x,(0) = xJ, x[(0) = x|, x,(0) = x; and constant A = AL 1),
a1, ax # 0 have the solutions as follows:

x1(1) = X)Eq(an (1 = A)t®) + x,tEq2(ar (1 — A)™) + f (t = 7)" ' Equlan(1 = A)t — 7)")gi(7) dr
0

®© al;l agztpa+qﬁ+a
+ A + 1) Fi(-p,1 —q;2; A
xall ZZF(pa+qﬁ+a/+ 1)(17 )2 F(=p, q )

p=0 ¢=0
o oo 102 a+1
1 anazz graapra
+ Ag E + 1) Fi(-p,1-¢q;2;A
X411 4 24 F(pa/+qﬁ+a+2)(p »Fi(=p q )

P 4 (pa+qB+a
ap ayt

I'pa+gB+a+1)

2Fi(=p,—q; 1;A)

p
o % a+1
1 ay,a,t’ raprar
+ -p.—q; ;A
xzau; Tpatgfratd)’ Fi(-p,—q )
o o0 (l 22 X (l T)pa+q,6’+2<1—1g1(,[.) dr
+apA (p+ 1Fi(=p,1-¢q;2;A)
pzz(; ; I'(pa + gB + 2a)
c© o P 4 i _ \pa+gf+a+p-1
auazzfo(f 7) g(r)dr
+ ap 2Fi(=p,—q; 1; A), (3.34)
pzz(;qzz(; I'(pa +gB+a+p)

x(t) = X5 Eglan(l — A)P) + x3tEgs(an(l — A)F) + f (t — 7V " Egglan(l — A)t — 1/)ga(7) dr
0

©  ® P 4 (pa+qB+p
aydyt
0

+ xJanA +1),F(1-p,—q;2;A
X022 Z F(pa+q,8+,8+1)(q nFi(l-p,—q )

p=0 ¢=
+ xlanA ; qZ . (c;m i :;jﬂ;r 5@+ D211~ p.=g:2:)
e ,,2 qi;‘ F(j;iz;;tqgj pep e bA
e
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o o P 4 (T \pa+qB+2p-1

aydy fo (t—1) & (1) dr
+ anA + 1),F (1 -p,—qg;2;A).
an pzz(;qz:(; T(pa + gB + 2B) (g 2 Fi( pP>—q )

(3.35)
4. Some special cases

In this section, we will present some special cases of Theorem 1, which including the case when

A =1,a; =0, or ay = 0, respectively. In order to achieve these, we need the following lemmas
involving bivariate Mittag-Leffler function

Lemmal. [/] Fora,B>0andy—1 > |al, we have
T |77 Eapy (i1, 1) | = 77 Eq gy o011, At (4.1)
for any f, Q,B, Y /ll’ /12 eR

Proof: See Lemma 2.2 in [1].

Lemma 2. [/] For a,B > 0, we have

1+ ant*Egpari(@nt®, ant’) + ant’E, ppii(ant®, ant’) = Eqg1(ant®, ant®),

t(l—l 2

+ a7 'E a1, ant®) + ant®*'E ant®, ant®) =t 'E a1, ant®),
T T wp2e(@nt’, ant’) + axn aBaspl@nt’, ant”) wpalant’,ant”) 4.2)
7! 251

a+p-1 a B—

+ant™ P Eq g asplant®, ant®) + axnt

')

.
Eqpaplant®,ant’) = ' E, g glant®, ant),
foranyt,a,pB € R.

Proof: See [1].

4.1. The A =1 case

In this case, we have the hypergeometric function with A = 1, i.e. aj1a» = ajxaz;. The following
identities are important for finding the explicit analytical solution of system (1.1)

o _Tr(p+g+)  Tlp+g+l) (p+gq
hep )_F(P+1)F(C]+1)_F(p+1)F(q+1)_( g )

4.3)
(P+1)2F1(—p,1—q;2;1):(p+1)F(2)r(p+q+1) I'(p+g+1) (p+q)

I'(p+2li(g+1) T(p+DI(g+1) q
Using Eqgs (3.24), (3.26), A = 1 and the identities in Eq (4.3), we can express x;(¢) as follows

x1(t) = XVEy(ant®) + x{tEq2(ant*) + f(l ) Eyolan(t — 1)%)gi(7) dr

®©  ® +gB+ © 00 +gB+a+1
0 ay, ap, P ptq ay, ap, P ptq
+ Xxya11 T + xla“ T
q 1L

=25 (pa+gB+a+1) (pa+gB+a+2)\ ¢

p=
AIMS Mathematics
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q tp(t+q,8+a/ (

S D © P 4 (pat+qB+a+l
ay dy pP+q 1 ay Ayt pP+q
+ E E + E E
X26112 I'pa+gb+a+1) q ) a2 I'pa+qgB+a+?2) q

p=0 ¢=0 p=0 ¢=0
o] (o] 4 (04 a—
tan ), ) i b0 9@ g (4.4)
1 =5 I'(pa + gB + 2a) q ’

0o 00 a1]71 6122 A (t _ T)pa+q,b’+a+,8 ng(T) dr p+q
+ apn Z Z .

S I'(pa +gB+a+p) q

Expanding the Mittag-Lefller function and bivariate Mittag-Leffler function in the first three terms
of Eq (4.4) and rearranging the terms in RHS of (4.4) yields

P+1tp0z+a

00 q pa+qf+a
aj, a4, t ptq
t) = +
x(0) =3 xlzl“(pa+a+1) K ;;F(Pa+q,3+0!+1)( q
00 Cl”a tpa+q,3+a/ p+q
+
xza‘2;Zr(pa+q,8+a+l) q

»Q

0 P+1 a+a 0 P 4 ipa+qB+a+l
1 ay ayt" ™ pPtq
+Xjt+ Xt Y ————— + Xjay
1 Zr(pa/+a+2) fidu ZO;F(pa+q,8+a+2) q

tp(t+qﬂ+(z+1

O N 4,4y, pt+q
+
xzal2ZZF(pa+q,8+a+2)(

p=0 ¢=0

o P+1 _ A\pat+2a-1
(t-1)

1 a—1 11
+E£(t 7) g(T)dT+Z [(pa + 2a)

0 0 Cl Cl (Z _ T)pa+qﬁ+2(t lg (T) dr
+a11zz 220 : prq (4.5)
I'(pa + gB + 2a) q

gi(r)dr

p=0 g=1

i a ZZ a,al, o(f—T)quﬁerﬁ lgr(1) dr (p+q)
12
p gy I(pa+gB+a+p) q

+(xa + x%a ii ay,\a, e P tq
1 zlzp I'pa+gB8+a+1)\ g

0 o q ipa+qgf+a+l
a as,t
11%2 pP+tq
+ Xil‘ + (Xian + Xéalz)z Z F( n o 2) ( )
i Tpat+gf+a q

! t
(t _ T)a—lg (T) dr 0o o0 Clp aq (t _ T)p(y+qﬁ+2(y—lg (T) dr
WA Y LI

(@) L4 L4 [(pa + g5+ 2a) g

t
+a i i ajay, J (6 =P gy dr () 4
e L(pa+qB +a +p) q )

Rewriting some terms in the above equation using bivariate Mittag-Leffler function yields
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0 0 0
xi(t) = x, + (xlall + xza]2) 1"Eq g o+ (Clnfa,azzl'g)

+ X%l‘ + (x{au + Xéalg) Z‘QHEQIBQ_'.Z (6111[ azzlﬁ

) f (1= gi(r) dr

!
+a f (t =7V "'Eopoa (a“(t - 1), an(t- T)ﬁ) gi(r)dr
0
!
+ap f (t - T)a+ﬁ_1Ea,ﬂ,a+ﬂ (au(f -7)%, an(t - T)ﬁ) & (1) dr. (4.6)
0

Using the similar approach for x,(¢), we then have the following theorem:

Theorem 2. The incommensurate fractional differential equation systems with fractional order 1 <
a,Bf <2

“Dxy (1) = anxi(0) + apxa(t) + g1(1),
“DPxa(t) = anxi(t) + anx(f) + (1),

with initial conditions x1(0) = x°, x,(0) = x9, x/(0) = x|, x5(0) = x} and constant A = % =1 has
the following solutions given by:

0 0 0
xi (1) = x| + (Xlau + xzaIZ) 1"Eqpari (auta, 0221’8)

+ xit + (x}all + xéalz) 1" Eqpas (Cllﬂ Clzzl’B + ﬁ f (t—-71)"'gi(r) dr
' 2a-1 @ 4.7)
+ay f (-1 Eqpa (Clll(l —7)%, axn(t— T)ﬁ)gl(T) dr
0
!
+ap f (t =7 Eppasp (6111(1 - 1), an(t - T)B) g2(7) dr,
0
_ 0 0 00\ PE « g
X(t) = x, + (X1(121 + Xzazz) a B+l (anf ,an )
1 ! .
+ Xyt + (x{a21 + xéazz) fﬁHEa,ﬁ,ﬁn (a“t", azzfﬁ) + F_(,B) f (t -7/ 'g (1) dr
0
4.8)

!
+ as; f (t =D P I E gaip (all(l = 7)", an(t - T)B) gi(n)dr
0
!
+ axn f (t—) P Eypop (all(f - 1), apn(t— T)ﬁ) g (1) dr.
0

Proof: The solution is proved when the first equation of (1.1) is satisfied. Hence, using Eqs (4.7) and
(4.8), the LHS of (1.1) (after taking the fractional derivative for Eq (4.7) with Lemma 1) and RHS of
(1.1) are shown as follows:
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“Dx, (1) = (X(l)an + Xgalz) Eopi (alltw’ azzlﬂ) + (x}all + X%dlz) tE, > (allfa,azzl’g)

+g1(0) + ayy f (t—7)" "'Eopa (Cln(l — 1), an(t - T)E)gl(T) dr
0

+ap fo (t =7V ' Eopp (all(l — 1), an(t - T)ﬁ) &2(7) dr, 4.9)

_ 0 0 0 @ @
ayx) +apx; + g1(t) = anx| +an (xlan + xzalz)l Eqpa+i (Clllf ,azzl’g)

1 1 1 a+1 o1
+xant+ap (xlan + xzalz)l Eopos2 (Clnf ,61221’6)

F( )f(t " lg (r)dr

+anan f (t =7 'Eopoa (all(f — 1), an(t - T)ﬁ)gl(T) dr
0

!
+anap f (t =) P Eypasp (all(f - 1), an(t- T)ﬁ) g (1) dr
0

0 0 0
+apx, +ap (x1a21 + x2a22) Z’BEQ’ﬁ’ﬁH (ant“, azzlﬁ)

1 1 1 +1
+ x,apt+ap (x1a21 + Xzazz) Z’B EQ”B’B_,.Q (Clllta, azzlﬂ)

!
+ apan f (t - T)(H'B_lEa,ﬁ,aﬂ? (all(t - 1), an(t- T)ﬁ) gi(r)dr

If’(‘[j) f (t -1V go(r) dr

+ ajpaxn f (t—1) P "Eopop (all(f - 1), an(t - T)ﬁ) g () dr +gi(2). (4.10)
0

In order to verify the LHS (i.e. Eq (4.9)) is equal to RHS (i.e. Eq (4.10)) for the first equation
in (1.1), we will compare the terms containing x9, x), x|, x3, g1(7) and g(r). First, we take part of
(4.10) involving x! to prove its equivalence with the corresponding x? term in (4.9). Since A = 1, then
apayy = dppdsg which y1€1dS

0 2
xl(all + a1 1"Eq ga+ (aula, 0221’8) + a12a2llﬁEa,ﬂ,ﬂ+l (allta, 0221'8))

= X(l)an(l +ant"Eqgo+ (Clllla,azzfﬁ) + ant’Eqppi (aula 61221’8))

1 pa
p+q) ZZ ay,agy trerEE (p+q))
q F(pa+qﬁ+,6'+1) q

p=0 ¢=0

p+l g tpoz+qﬂ+a (

0 ay Ay
=xa;ll+

! ;;F(pa+qﬁ+a+l)
'y 1+ii a’ al, b p+q—1 . o i al a4 g—1

e T(pa +qB + 1) AL T(pa+gB+ 1\ q-1

ay i al > PP +g-1 +g-1
— 0 1+ 11 22 + pPTq +(PTd
e ;mm D Zr<qﬁ+ D Z g g-1
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= xoan AN aflagltpwqﬁ ptq
: L(pa+gB+ 1)\ ¢

= x(l)a“Ea,ﬁ,l (Cl]lta, 0221’8) . (411)

p=0 ¢=0

Indeed, the above expression can be obtained via Lemma 2. Hence, using a similar approach, we
have the proof for the terms with x) as follows:

xSalz(l +ant"Eqga+ (aufa, 61221’8) +ant’Eqppii (anfa, azzlﬁ))

o 4.12)
= xya1E.p1 (Clula, azzfﬁ)-
Similarity, for the terms with x] and x}, the LHS is equal to the RHS since we have
1 1 1 a/+lE @ l'B 1
Xiant +an\xan + xan)t apa+2 \ A1, ant” ) + X,ant
1 1 1
+ap (xlaﬂ + XZClzz) I’B+ Ea»g"g_,.z (allt“, Clzzl'g) (413)

1 1
= (xlall + XZCllz) Z‘Emﬁ’z (dllla, agzlﬁ) .

For the terms containing g;(7) and g,(7), using Lemma 2 and A = 1, we show that it is equivalent via
the following equations.

apy
I'(a) Jo

!
+aj, f (t— 1 'Eypoa (Cln(t - 1), an(t— T)E) gi(rn)dr
0

(r—1)gi(r) dr

. 4.14)
+ apay) f (t— 1) P Eppasp (a1l(l - 1), an(t- T)ﬂ) gi(r)dr
0
= any f (t = 1) Eapa (@01t = 7%, an(t = 1) 1(7) d,
0
and
1 L
apn F_(ﬂ) f(; (t -7/ " g(n) dr
+ap f (r - T)a+'8_lEa,ﬁ,a+ﬁ (all(l‘ - 1), an(t- T)ﬁ) & (1) dr
0 (4.15)

+ an f (t—1) " Eupop (all(f - 1), an(t- T)ﬂ) 82(7) dT)
0

=ap f (t =7V "Eopp (all(f - 1), an(t - T)ﬁ) & (1) dr.
0

Theorem 2 is verified since the Eq (4.9) is equivalent to Eq (4.10) for each of the terms containing

0 ,0

X9, X3, x1, x5, g1(7) and (7).
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4.2. The a;; = 0 case

We have emphasized that a;; and ay; are not equal to zero in Theorem 1. However, we can still make
assumption for these special cases. For the case a;; = 0, we consider @, 8 € (1,2). The incommensurate
fractional differential equation system (1.1) is now given by

“Dxi(t) = apxa(t) + gi(t),
CDﬁxz(l) = a1 x1(1) + axnxs(1) + g2(1), (4.16)

with the same initial conditions as (1.1).
Since a;; = 0, we use Eq (3.18) which makes it double series when j = 0, yielding

N akrlghtlgm ks Dak(mks DB 4 vy
xl(t) = x(l) + x(l) Z Z 12 721 722 ( m)
L AT((k+Da+(m+k+1DB+1) kim!

k+1 k+1 k+1)a+(m+k+1 1
+x{t+x{ZZ ak3takt a gk Dk DB
LI LIT((k+ Da+(m+k+1DB+2) klm!

+23 Y A R ey
2 = I'(k+Da+m+k)p+1) kim!

00 k+1 k (k+1Da+(m+k)B+1
1 Z ay, ay syt (k + m)!
2

+
* e £ ['(k+Da+m+kpB+2) k'm!
1 f ! 1
+— | -1 'g(r)dr
(@) Jo
1
N i i ak;lalﬁrlazz f() (t _ T)(k+2)a+(m+k+l)ﬁ—1gl(T) dT (k + m)‘
e I'((k+2)a+m+k+1)B) k'm!
i i alglagl‘bz A ([ T)(k+1)a+(m+k+l)ﬁ lgz(T) dT (k + m)' (4 17)
predeer I'(k+ Da+@m+k+1)8) k'm! )
Rewriting the above equation using bivariate Mittag-Leffler function yields
x(8) = X(l) + x(l)a12021ta+ﬁEa+ﬁﬁa+ﬁ+l (a12a21ta+ﬁ,a22tﬁ)
+ Xil + xia12a21ta+ﬁ+ Eoippatpe2 (alzazll Clzzfﬁ)
+ x(z)althEa+ﬁ,ﬁ,a+] (alzazll ﬁ,azzl‘ﬁ) + Xzalzl ol Eqippa+2 (Cllzazlfaw,dzzl'g)
1 f ! 1
+— | -1 'gi(r)dr
(@) Jo
!
+ apdy) f (t =7 P Eqippoas (alzazl(f — )" an(t - T)ﬁ) gi(r)dr
0
!
+dp f (t - T)a+ﬂ_1Ea+ﬁ,,8,a+,8 (0120210 — 1) an(t - T)ﬂ) & (1) dr. (4.18)
0

Since a;; = 0, the x,(7) solution can be obtained directly from the first equation of (4.16). By
rearranging the first equation of (4.16), we obtain
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Dxi() &)
apn apn

X (1)

L{, 1 1
a_(x1a12a21lﬁEa+,B,ﬂ,ﬂ+l (alza2lta+'8’ azzfﬂ) + X1a12a01 P Eqipppin (a12a2lta+ﬂ’ azzlﬁ)
12

+ x2a12Ea+ﬁﬁl (Cllzazlf # azzfﬁ) + xzal2tEa+ﬁ,82 (alzazlf 0221’8) + 81(0)

+ apnas f (t - T)a+'6_]Ea/+,B,ﬁ,a+ﬁ (alzazl(l - )" an(t - T)ﬁ) gi(r)dr
0

!
t
by [ (0= 0P B (anan = 0", - 1) 20 dr) - a8 (4.19)
0

12
Using Lemma 1, and since our «, 8 > 1, we obtain the x,(7) as follows:
x(1) = x102]tﬁEa+ﬁﬁﬁ+l (61126121f Clzzlﬁ) + Xlazllﬂ Eoipppio (Cllzazlf azzlﬁ)
+ sza+,B,ﬁ,1 (a12021ta+ﬁ’ Clzzlﬁ) + xztEa+,B,ﬂ,2 (a12021ta+'6’ Clzzfﬁ)

f
+ as f (t =) P Epippass (61126121(1 — 1) an(t - T)ﬁ) gi(n)dr
0

!
+ f (t = TP Equppp (annan (t = 1%, an(t - 7F) ga(7) dr. (4.20)
0

Hence, we can obtain the following theorem.

Theorem 3. For special case a\, = 0, the system (1.1) can be written as

“Dxi(t) = apx (1) + g1(0),

c

DX xa(1) = azxi(t) + anxy (1) + g2(0),
and the explicit analytical solution of the above system with initial conditions x;(0) = x(l), x(0) = xg,
X (0) = x1, x,(0) = x} is given by:
0, .0
xi(H) =x) + x1a12a21ta+'BEa+,8,ﬁ,a+ﬁ+l <a12a21t“+ﬁ,a22tﬁ)
1
+ X\t + X110 1" P E g g aspin (012a21ta+ﬁ7 azzfﬁ)

0 +
+ X010t Eq s 8.+ (a12a21ta ﬁ,azztﬁ)

+ xéalzl‘aHEmﬂ,ﬁmz (alzazlf + 0221’8 + ﬁ f (t—1)"'gi(r) dr 4.21)
!
+ appan f (t - T)Z(Hﬂ _1Ea+ﬁ,ﬁ,2(y+ﬁ (alzazl(l‘ - T)(H'B ,an(t — T)ﬂ) gi(m)dr
0
!
+ap f (t =D P Eqippass (alzazl(f — 1) an(t - T)ﬁ) g (7) dr,
0
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1
xo(1) = X?QZIZﬁEa+ﬂﬁﬁ+l (Cllzazlfwﬁ,azzl‘ﬁ) + Xiazll‘m Eq.pppe2 (a12a21ta+ﬁ,a22tﬁ)
+ sza+ﬁ,Bl (Cllzazlf Clzzl'g) + xztEa+,6',B2 (Cllzazll azzlﬁ)
1 4.22
+ as f (t— D" Epippass (a12a21(t — 1) an(t - T)B) gi(n)dr (4.22)
0

!
+ f (t =7V Equppp (alzazl(f — )", an(t - T)ﬁ) &(7) dr.

0

Proof: The theorem can be checked by substituting the solutions into the second equation of (4.16).
For the LHS, take the fractional derivative for Eq (4.22) and use Lemma 1, which yields

“DPxy(t) = x)az Enipp (alzazlf 61221/3) + xjantEqipp2 (alzazﬂ 61221’6)
+ x2 DB[ BBl (alza2lta 'Baazztﬁ)] + x2 ‘D [tEa+B,ﬂ,2 (alzazﬂﬁﬁ,azzf’g)]

' (4.23)
+ dn f (t - T)a_lEzHﬁ,,B,a (0120210 — 1) an(t - T)ﬂ) gi(r)dr )
0
!
+ D [f (t - T)ﬂ_le+ﬁ,/5,,6’ (alzazl(l — 1) ay(t - T)B) &:(7) dT] .
0
For the RHS, substitute Eqs (4.21) and (4.22) into the second equation of (4.16) yields
a x1(t) + anxy(t) + g2(2)
= X(l)azl (1 + al2a21ta+ﬂEa+ﬁ,ﬁ,a+ﬁ+l (alzaﬂt“ﬁ,azztﬁ))
+ X}azlf(l + a12a21ta+ﬁEa+,6ﬁa+ﬁ+2 (Cllzazll Clzzlﬁ))
+ Xzalzazlf “Eqippa+i (Cllzazﬂ Clzzl‘ﬁ)
+ x5a12a01 1" Eqippas (alzazﬂ # Clzzlﬁ F( ) f -1 'gi(r)dr
!
+ anay, f (t =7V P Epippoas (alzazl(f — )", an(t - T)ﬂ) gi(r)dr
0 (4.24)

!
+ apdy f (t =) P Eqipparp (012021(1 — 1), an(t - T)ﬂ) & (1) dr
0
+ XVanant’Eqipppn (a12a21ta+ﬁa azzfﬁ) + X1a21a00" Eqipppin (a12a21ta+ﬁa 61221’8>

0 1
+ X302 E 41881 (a12a21ta+ﬁa 61221’6) + Xya01E 188 (a12a21ta+ﬁ, 61221’8)

!
+ ariaxn f (t— T)(Hﬁ _1E11+ﬁ,ﬁ,a/+ﬁ (alzazl(l - T)(Hﬂ ,an(t — T)ﬁ) gi(r)dr
0
!
+ an f (= T)ﬂ_lEa+ﬁ,ﬁ,,6' (Cllzazl(l - T)(HB, an(t— T)ﬂ) g (1) dr.
0

Similar approach will be employed in proving Theorem 2, where we will be comparing one by one
of the terms containing xY, x), x|, x}, g1(7) and g»(7). First, for the parts involving x!, x; and g;(2),
by using Lemma 2, we prove Eq (4.24) to be equivalent as those corresponding parts in Eq (4.23) as

follows:
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0
X, dy; (1 + a1at" PEqgipporpe (611261211‘ # 61221’6) + ant’Eqipppi (dl2azlf 61221’8))

00 00 m+n— 1 o) 00 m+n—1
x ) Z Z ar a21 a22 tma+mﬁ+nﬂ( + Z Z rln2 agll agztma+mﬁ+n,8( s )
2 — I'(ma +mB+nB+1) e I'ma +mB+nB+1)
= xX)a21Eqpp (611261211‘ # azsz) (4.25)

1
x1a21t(1 + anat™PEyippaipia (Cllzazlfwﬁ 61221’8) + ant’Eqipppe (012021ta+ﬁ,6122fﬁ))

0 00 M M mamnmnl o 00 m M ma+mB+nB(m+n—1
I Z aydy ot '8( ! + Z aydy ot ﬂ( o )
1721 — I'(ma + mB +nB +2) o oo I'(ma + mB +nB +2)
—x1a21tEoz+ﬁ (61126!21f P (1221’8) (4.26)
a—1
t— d
|y [ 0= ar

+ apday f (t =7 P Eqippoas (alzazl(f - )", an(t - T)ﬁ) gi(r)dr
0

t
+ an f (t = 1) P Epippars (61126121(1 — )", an(t - T)ﬁ) g1(7) dT]
0

=ay|— | (t-17)* d
am[r(a) f (1= "gi() dr
o & allagtal, [ pynemiiedle, (o) dr (M)
+ Z

oy I'(ma + mB + nB + 2a + B)
. i ar]nzagzl ai—l f() (l’ )ma+m,8+nﬁ+(r+,3—1g1(_r) dr (m;—n)
['(ma + mB +nB + a + )

m=0 n=
t—1)*! d
[r( ) f (=" gi(r) dr

i ayyas, ay, fo (t — gyrermbrbro-le, (1) dr (mm 1)
+

== I'(ma + mB + nB + @)

i i aTza?lagz fot(t _ T)ma+mﬁ+nﬂ+a—1g](T) dr (m::zl—l)
+

— = I'(ma + mB + nB + @)

1 A
= aZI[@ [) (t-7)"'gi(r)dr

. i apay - o lg (@ dr i @, ot =Tyl () dr
I'(ma + mB + @) I'(nB + a)

m=1 n=1
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00 oo aTza?lagz ft(t _ T)ma+mﬁ+nﬂ+a—1gl(7_) dr [(m+}111—1) " (m;:—l)]
+;Z : I'(ma + mB + nB + @) ]

=ay (f — 1) Epippa (alzazl(l — )" an(t - T)B) gi(7) dr. 4.27)
0

Meanwhile, for xg, x; and g,(¢) parts, we proceed the proving from (4.23) as follows:

xg CDB[ atB Bl (Cllzazlf azzlﬂ)]
n tma+m,6’+nﬁ—ﬁ(m+n)

n

(&9

_ 0 Z OPLITL))
2 I'ma+mB+nB-L+1)

m,n=0
(m,n)#(0,0)
+mB+ m+n— 1 0 o +mB+ m+n—1
3 x Z Z aryay, " ﬂ( + Z ayyay, ah, " '6( n-1 )
L d Tma+mB+nB—-p+1) o T(ma+mB+nB—-+1)
=0 Z Z aly'ayy 1“§zt(m+1)w+mﬁ+nﬁ(m+n Z Z aTza?lag;ltm(1+mﬁ+"ﬁ(m: n)
i I'((m+Da+mB+nB+1) I'(ma +mB +nB+1)
0
=X, (a12a21taEa+ﬁ,ﬁ,a+l (CZIZCZZII(H'B, 61221’8) + anEq.ppi (611261211“+ﬁ, azzl’g)) ) (4.28)

xi Dk [tEa+ﬁ,,B,2 (a12a21t‘”'3, azztﬂ)]
n tma+m,8+nﬁ—ﬁ+l(m+n)

n

(o)

_ Z d1p47197)
-2 I'(ma +mB+nB—-L+2)

m,n=0
(m,n)#(0,0)
) Z Z a12a21a221"m+m'8+nﬁ ﬁ+1(m+n 1) . i allnzagnl tma+mﬁ+n,6’ ﬁ+1(m:l'}’l] 1)
i T(ma+mB+nf—pf+2) i T(ma+mB+nB—pf+2)
+1 m+1 (m+1)a+mB+np+1[(m+n +1 +mB+nf+1[m+n
_XI[ZZ ayy ay ay, treTe ( ZZ ay,ay ay, 1" ( n )]
=X
g oy I'((m+ a+mB+nB+2) i I'(ma + mB +nB +2)
1 1
=X, (Cl126121taJr Eoippa+2 (Cllzazlfﬁﬁ, 61221’8) + antEqipp2 (a12021ta+'8a 61221’8)) ) (4.29)

‘D’ [f (t =7V Eqippp (0126121 (t — 1), an(t - T)ﬂ) 22(7) dT]
0

t — m+n
) i anandy, [t — oy mEE-lgy (o) dr (")
B e I'(ma + mB + np)

(m,n)#(0,0)
t _ -1
a11n2at2nl agz j(; (l T)moz+mﬁ+n/5’ lgz(T) dr (m+: )

=22 T(ma + mB + np)

m=1 n=0
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t _ -1
alyh s,y [) =Ty mbeilgy () dr (")

+ZZ I'(ma + mpB + np)

m+1 m+1 n 4

A, Ay Ay, b (l — T)ma+mﬂ+n,3+a+,8—1g2(7_) dr (mr-:—n)

:ZZ I'((ma + mB + nB + a + P)

t —
) arlnzagnlaggl J(‘) (r— T)m(x+mﬁ+nﬁ+ﬁ lgz(‘l') dr (mr-:—n)

+ZZ I'(ma + mB + nB + B)

!
= aday; f (t =) P Eqippars (alzazl(t — 1), an(t - T)B) & (1) dr
0
!
+ an f (t— T)ﬂ_lEa+,B,ﬁ,ﬂ (alzazl(f - )" an(t - T)ﬂ) g2(7) dr. (4.30)
0

Since all the terms in Eqs (4.23) and (4.24) are equivalent, the solution of the system (4.16) is
verified.

4.3. The ay, = 0 case

For the case a;, = 0, we consider @, € (1,2). The incommensurate fractional differential equation
system (1.1) is now given by

“Dx, (1) = ax1(8) + apx(t) + g1 (1),

431
“DPxy(t) = azxi(t) + ga2(2), ( :

with the same initial conditions as in Eq (1.1).
For the case ay, = 0, using similar approach from the previous subsection, we obtain the following
solution

xi(1) = -x(l)Ea+ﬁ,a,l (Cllzazlfwﬁ, allt(l) + x}tEa'+ﬁ,a',2 (0126121la+ﬁ, Clnfw)

0 1% @+ @ 1 a+1 a+ @
+ X010 Eqig oo+ (Cllzazll Flant )+ Xa100"" Eqigaa+r (Cllzazlf Flant )

!
+ f(l -0 ' ei(DEsipaa (61126121(1 — )" ay(t - T)a) dr
0

t
+ap f (t = "7 82D Earpaass (@r2an(t — 1), an(t - 1)) dr, (4.32)
0

0 1 1
x(t) = X)an PE g o pin (alzazlfM’B, auta) + X101 Egigapia (alza2lta+'3, allta)
0, .0
+ X + xzal2321ta+ﬁEa+ﬂ,a,a/+ﬁ+l (a12a21ta+'8, allta)

1 1 +6+1 +
+ Xt + Xpa1a 1" p Eoiga.a+p+2 (a12021ta A aul‘a)

!
+ ap f (= T)(Hﬁ_]gl (T Egip.0,0+8 (Cllzazl(l - T)a+ﬁ, ay (t - T)a) dr
0
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1 !
+— | ¢t g0 dr
@) Jo £
!
+ ajay) f (t = 1) g3V Enipaaiop (alzazl(t -0 ay (1 - T)a) dr. (4.33)
0

4.4. The a;y = 0 and a», = 0 case

For the case a;; = 0 and a;; = 0, we consider @, € (1,2). The incommensurate fractional
differential equation system (1.1) is now given by

“D¥x1(t) = apx(t) + g1(b),

4.34
“DPxy(t) = azxi(t) + g2(2), @39

with the same initial conditions as in Eq (1.1).
For the case a;; = 0 and a,, = 0, using similar approach from the previous subsection, we obtain
the following solution,

0 1 0
xi1(t) = x| Eqip (0126121la+ﬂ) + X tEq82 (alzazﬂdﬂ-ﬁ) + X012t Eqip 41 (012a21tw+ﬁ)

t
+ 3010 Eqipas (a1zazlfa+ﬁ) + f(f — 1) 'g1(1)Eqspa (Glzazl(f - T)MB) dr (435
0

t
+ap f (t — 1) e2(1)Epipasp (alzazl(f - T)Mﬁ) dr,
0

0 1 1 0
x(1) = x16121l’8Ea+ﬁ,ﬁ+1 (CllzazlfaJrﬁ) + x1a21t'3+ Eqippi2 (Cllzazlfﬁﬁ) + X Equp (Cllzazlfﬁﬁ)

!
+ %31 Eqip2 (a12a21ta+'8) + f(l ~ D" 1 (D Easpasp (61126121(1 - T)Mﬁ) dr (4.36)
0

t
+ f (t _ T)ﬁ_lgz(T)E(ﬁﬁ,ﬁ (a12a21(t - T)a+'3) dr.
0

5. Examples

This section illustrates an explicit analytical solution for the incommensurate fractional differential
system for order @, € (1,2) using the theorems that we had derived in previous sections. Four
examples will be presented using Theorems 1-3, respectively, for the case of a;; = 0 and a, = 0.

Example 1. Consider the following incommensurate linear fractional differential equation system

&y 3 2\ (x 2t

dr/2 — 1 5
(d4/3x2] (1 2) (X2) (—41) ’ ( 1)

drd/3

with respect to the initial conditions x,(0) = 3/2, x((0) = 2, x,(0) = 2 and x,(0) = 3.
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Solution: Using Theorem 1, the explicit analytical solution is obtained as follows:

3 S e FE 1
+—Z —<p+1)2F1(— 1 q,z;—)
3 5
2p=0q=0r(7p ?q E) 3
S 39T 1
+2ZZ—<p+1)2F1(—p,1—q;2;—)
p=0q=0r(33p+?q+%) 3
S 39T 1
iy > 2 gy
3 5
p=0q=0r(TP+T+E) 3
S 329 T 1
+6 ——————F) (—p, —q; 1; —)
T 3

1
m(ﬂ + 1) F,; (—P, 1-¢q;2; —)

3,4 3
2 3
49 . 23

R 3p2qt2p+ +t% 1
_SZZF(LP 4q+29) Fl(_p’_%l;g),

+

p=0 ¢=0 2 7376
(1) = 2E4 (gﬁ) +3tEs , (gﬁ) —43E4 (gﬁ)
+3 >y %(w DL F, (1 s %)
g0 l|\5t75 t3
l‘; Z" 3p;t32”f4‘1+; |
+ 2;; Ly 13_O)(q+ 1),F, (1 — P —q: 2 §)
- % ; ; 1"3(!3)_31;4?(1?_ Z_) o F (—P, -q; 1; %)
+2 ; ; F?%Z"t32:;4q+:0) oF) (—p, -q; 1; %)
00 3/’ 44 23
o o ,n
_gngz;‘ F?;;fq_i:;:_ 3)(4"‘ 1)sF (1 -D,—q;2; ;)

(5.2)

(5.3)

Example 2. Consider the following incommensurate linear fractional differential equation system

d;/jf;‘ _(3/2 3)(x cos(?)
d4/3)€2 - 1 2 X + t 9
ATeE 2 ¢

(5.4)
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with respect to the initial conditions x,(0) = 3, x}(0) = =1, x(0) = 1 and x,(0) =

Solution: This example is the case when A = 1. Hence, using Theorem 2, we have the following
explicit analytical solution

153
S 1E;

3
2°

35 4\ 9
xi()=3—t+ §§(§t§,2tg)+§t§E

33
41 (§t2,2t~) F(3 f(t—r)z cos(t) dr

+%f(t—r)2E%,g,3 (g(t—r)g,Z(t—‘r)g)cos(‘r) dr

[NT[%

9
r%,zré‘)+ ZPE 47(—t3,2z§)
2 322

2
2 _2
+ Vi [3sm(t)1F2(l l § —t)—tcos(t)1F2(§-§ Z_’)]

4°2°4° 4

0 3\
e ()@ p+a! pu F( 3p 2, 3p 2 5~_t2)

(P P e (VL

2 4T (2 1) pla 473 4737274
= (3) @ 3p 4q 17

+ 3¢ 2 y(—p i —,t), (5.5)
P T L

x(t) =1 +2t+563E

LAJH>
LoJHk

3
2’

N\ua

3
7(_5,2;%) +30E
3\2

3;
30(2t Zt) F()f(t_T)e dr

f(r—r)'e %H(‘ t—T)g,2(t—T)g)COS(T) dr

+2f(l‘— 3;§(

33
’;(Eﬂ 2t: )+3§

w[\-)b-)

J|
-'JHB

(t- T)%, 2(t - T)g)eT dr

SPIY) P
%,5—0 2 ) . r(%)y 3’

=1+2(+56E

Wl

I\)\u

3
25

0 . 9p+8q+35 9p+8q+4l, —f2
+ 3 sy @ (p+9) L Ul et ’Tt)]
’ 9p+84+23 9p+84+35
P,q=0 plq! F( p+6q+ ) F( p+6q+ )
o (2)” (2)4
3p 4 8
+zerzz—y(_+_+_,t). (5.6)
3 4
m=0r(7p+Tq+§) 2 3 3

Example 3. Consider the following incommensurate linear fractional differential equation system

e 0 1)(x t+eé
a2 | — 1 e
)5 )G 1) o

with respect to the initial conditions x;(0) = 1, x{(0) = I'(1.8), x(0) = 1 and x,,(0) = 3.
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Solution: Since a,; = 0, Theorem 3 will be applied. For sake of simplicity, we present this solution
using decimal numbers. This example have the following explicit analytical solution

x1() =1+ a(1.8) + 5l2'7E27 1.5.3.7 (5t2'7, ll's) + 5F(1.8)t3'7E27 1547 (51‘2'7, ll's)

1 !
_— f (t- 7')0'2 (t+e€) dr
0

I(1.2)
+5 f (t =1 Exg1550 (S0 =027, (t = D)) (r + €7) dr
0

1.2 27 1.5 2.2 27 1.5
+ 1 E271522(5[ , 1 )+3t E271532(5t , 1 )+

..........

!
+ f (t-1)""Ey71527 (5(f —)* (1 - T)l's) e dr
0
=1+ T(1.8) + 52" Ey7 537 (5r2-7, rl-s) +5T(1.8)F " Ey 71 547 (5r2-7, t”)

..........

12 27 15 22 27 15
+1 E271522(5t N )+3f Ez71532(5f .t )

(5.8)

..........

t2‘2 t .
N L y(1.2,1)
I'(3.2) I'(1.2)

N 5P y2Ip + 1.5+ 3.9, ¢ - 5/yQ2.Ip + 1.5 +2.7,2t
+5€tz yQ2.7p + 1.5g + )HZIZZZ. Y(2.7p + 1.5g + )
q=0 P-q=0

4.9 27 15
+ 5t E2.7,1.5,5.9(5f , )

T(2.7p + 1.5¢ + 3.9) IS¢ 2T (2. 7p + 1.5 + 2.7)°

XZ(I) = 5l1'5E27 15.25 (5t2'7, ll'S) + 5F(1.8)t2'5E27 1.5.3.5 (5t2'7, tl's)

..........

+Es7.15, (5l2'7, l]'s) +3tEs 7,152 (5l2'7, ll's)

!
+5 f (t =" E27,1507 (50 = 07,0 = 1)) (r +€) dr
0

!
+ f (t -1 Ex7.15.15 (S(f -7t - 7)1'5) e dr (5.9)
0

= 5[1'5E27 1.52.5 <5t2'7, l‘l's) + 5F(1.8)t2'5E27 1.5.3.5 (5t2'7, t1'5>

..........

+ E>715.1 (5t2‘7, tl.S) + 3tE2.7,1.5,2 (51‘2'7, tLS) + 51‘3.7}‘,;2.7’1.5’4'7 (5t2‘7, tl.S)

L 5! i 5P y(2.p + 1.5 +2.7,1) L Z 5Py(2.77p + 1.5g + 1.5,2¢)
e .
et ['2.7p + 1.5g +2.7) 227p+13¢+ 152 Tp + 1.5 + 1.5)

P-q=0
Example 4. Consider the following incommensurate linear fractional differential equation system
a0 (00 3\ (x) |, (2508 -9
a2 | — 1 .
(25 )+ () 510
with respect to the initial conditions x,(0) = 2, x{(0) = 0, x,(0) = -6 and x,(0) = 3.

Solution: Since a;; = ay, = 0, applying the result presented in subsection 4.4 and with the help from
Eq (2.9), we have the following explicit analytical solution

X1 (f) = 2E2.8 (—31‘2'8) - 181‘1'2E2.8’2_2 (—3t2'8) + 91‘2'2E2.8’3_2 (—3t2'8)

(5.11)
+2.5T(1.8) Ezs3 (-3) — 972 Ey 532 (-32%) + 3T(0.8)* Epg 55 (-37F).
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X(t) = — 21‘1‘6E2.g,2.6 (—312'8) —6E,3 (—312'8) + 3tE» 52 (—312'8)

3.6 2.8 3.8 2.8 3.6 2.8 (5.12)
—2.5I'(1.8)t™ E2.8,4.6 (—3t : )+ 9t E2.3’4.g (—3[ : )+ I'0.8)r E2.8,4.6 (—3t ’ )

The solution of this example is shown in Figure 1. For the purpose of validate the solution (i.e.
LHS equal to RHS of the problem), we can find the LHS via fractional derivative of these x;(¢) and
x,(t) for the desired order (i.e. in this example, are 1.2 and 1.6 respectively). Meanwhile for the RHS,
substitute the solution x;(¢) and x,(¢) in the RHS of problem. If the analytical expression is too lengthy,
we suggest to plot the both sides up to desired power. We use Maple to perform all the computation.

801
601
40
201

0 i ;
= 7
t

-201

-401

-601

-801

x, (1) x,(t)

Figure 1. Solution x;(¢) and x,(¢) for Example 4.

6. Conclusions

This paper has successfully derived the explicit analytical solution of linear incommensurate
fractional differential equation systems with fractional order 1 < a,f < 2. Using the new theorems,
analytical solutions are obtained, and we presented them via some examples. This paper serves as an
extension of the similar result recently achieved in [1, 19], which limited to fractional order
0 < a,B < 1. Moreover, the analytical solution obtained in this paper may enable us to investigate
more rigorously the stability analysis and asymptotic stability for incommensurate fractional
differential equation systems with fractional order 1 < a,8 < 2, especially when this kind of
incommensurate system may be more suitable to represent the real-world applications such as
COVID-19 [38], cancer modelling, fluid flows problems. It may also be extended to higher order in
the future. Explicit analytical solution for higher order (i.e. @, > 2) incommensurate fractional
differential equation systems may be obtained using a similar approach.
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