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Abstract: In this paper, we derive the explicit analytical solution of incommensurate fractional
differential equation systems with fractional order 1 < α, β < 2. The derivation is extended
from a recently published paper by Huseynov et al. in [1], which is limited for incommensurate
fractional order 0 < α, β < 1. The incommensurate fractional differential equation systems were
first converted to Volterra integral equations. Then, the Mittag-Leffler function and Picard’s successive
approximations were used to obtain the analytical solution of incommensurate fractional order systems
with 1 < α, β < 2. The solution will be simplified via some combinatorial concepts and bivariate
Mittag-Leffler function. Some special cases will be discussed, while some examples will be given at
the end of this paper.
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1. Introduction

System of fractional differential equations with incommensurate order derivatives have received
increasing attention recently as this incommensurate order derivative is better in describing the real
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phenomena, such as financial system [2, 3], circuit simulation [4], eco-epidemiological model [5],
HIV model [6] and modeling glucose-insulin regulatory system [7]. In this research direction, many
works had been done to study stability analysis [8–11], synchronization [12] and other rich dynamical
behaviour [13, 14].

Due to the emerging of cross-discipline research in this incommensurate fractional order system,
finding the solution of the incommensurate fractional order system is becoming more and more
important. In this case, numerical methods, such as the predictor-corrector scheme [15, 16], are
always used to obtain the solution for the incommensurate fractional order system. Apart from this,
some algorithms are developed to obtain the approximation solution for incommensurate fractional
order systems, such as the Adomian decomposition algorithm [17], reduced-order model
approximation via genetic algorithm [18]. However, not much research was done to find the analytical
solution or exact solution for this incommensurate fractional order system. Until recently, Huseynov
et al. in [1] successfully derive the analytical solution for the incommensurate fractional order
0 < α, β < 1 by converting the system into a corresponding Volterra integral equation. Besides that,
Ahmadova et al. [19] found the analytical solution for this incommensurate fractional order system
via trivariate Mittag-Leffer functions. However, their proposed methods are only limited to
incommensurate fractional order 0 < α, β < 1. Hence, this motivates us to derive the analytical
solution for a higher order of incommensurate fractional order system.

In this paper, we extend the work by Huseynov et al. in [1], which is limited for incommensurate
fractional order system for 0 < α, β < 1. We intend to derive the analytical solution of higher order
incommensurate fractional order system. Specifically, for α, β ∈ (1, 2), we consider the
incommensurate fractional order system as follows:

CDαx1(t) = a11x1(t) + a12x2(t) + g1(t),
CDβx2(t) = a21x1(t) + a22x2(t) + g2(t),

(1.1)

with initial condition x1(0) = x0
1, x2(0) = x0

2, x′1(0) = x1
1 and x′2(0) = x1

2. The physical meaning of
such an incommensurate fractional order system as well as the advantages of using incommensurate
models over the classical one (compare to commensurate models) are shown in [2–14]. The fractional
derivatives are defined with Caputo sense and the initial value problems to be solved for x1, x2 ∈

C1[0,∞). Similar to the works in [1], we convert the system in (1.1) to Volterra integral equations
and Picard’s successive approximations were used to derive the analytical expression of the solution
for an incommensurate fractional order system for 1 < α, β < 2. Similar to [1], we use Picard’s
successive approximations to solve the Volterra integral equations arise because this method is based on
the Banach fixed point theorem. In order to obtain the fixed point of a functional operator, start with an
arbitrary function (i.e. the zeroth approximation) and apply the operator repeatedly to obtain a sequence
of successive approximations which should converge towards the fixed point. This method has been
applied to derive the explicit analytical solution of incommensurate fractional differential equation
systems with fractional order 0 < α, β < 1 [1]. The solution will be simplified via some combinatorial
concepts and bivariate Mittag-Leffler function. In short, this paper aims to contribute to analytical
method that gives new explicit solutions to a certain class of fractional differential systems. These kind
of explicit solutions for solving fractional differential equations or systems have been increasingly
investigated by researchers in these research areas, such as in [20–24]. In short, we hope to contribute
in obtaining an explicit analytical solution for fractional calculus problems, which is relatively less
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investigated compared to numerical solution, such as in [25–32].
The rest of this paper is structured as follows. Section 2 is devoted to some preliminaries regarding

some important definitions, concepts and notations in fractional calculus and special functions.
Section 3 is devoted to presenting the derivation of analytical solutions for the incommensurate
fractional order system in higher order. Moreover, some special cases will be discussed in Section 4.
Sections 5 and 6 are devoted to presenting some examples and conclusion of this paper, respectively.

2. Preliminaries

In this section, we briefly explain some important definitions, concepts and notations in fractional
calculus and special functions, which is important for obtaining the analytical solution for this
incommensurate fractional order system.

2.1. Caputo fractional derivative

Definition 1. Let α > 0, n = [α] + 1 if α < N, n = α if α ∈ N and x > 0. The left Caputo fractional
derivative of a function of order α, denoted by CDαx f (x) is

CDαx f (x) =
1

Γ(n − α)

∫ x

0

f (n)(τ)
(x − τ)α−n+1 dτ, (2.1)

with n − 1 ≤ α < n.

For Caputo fractional derivative, we have this important expression:

CDαx xβ =
Γ(β + 1)
Γ(β + 1 − α)

xβ−α, for β > α. (2.2)

2.2. Mittag-Leffler function

Definition 2. For Re(α),Re(β) > 0, the classical Mittag-Leffler function (i.e. one parameter) and
two-parameter Mittag-Leffler function are defined as

Eα(t) =
∞∑

k=0

tk

Γ(αk + 1)
, Eα,β(t) =

∞∑
k=0

tk

Γ(αk + β)
. (2.3)

Definition 3. [33] For Re(α),Re(β),Re(γ) > 0, the three-parameter version of bivariate Mittag-Leffler
function can be defined as:

Eα,β,γ(x, y) =
∞∑

k=0

∞∑
l=0

(k + l)!xkyl

Γ(αk + βl + γ)k!l!
. (2.4)

The convergence of this bivariate Mittag-Leffler function was shown in Section 2, the new
bivariate Mittag-Leffler function in [33]. The Mittag-Leffler function is used as the solution of system
of fractional differential equations as this Mittag-Leffler function is the generalization of the
exponential function, which exponential function is widely used to express the solution of integer
order system of differential equations. The Mittag-Leffler function is a series which the terms are up
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to infinity. Hence, to calculate these Mittag-Leffler functions, ones can refer the numerical algorithm
such as in [34–36]. With Caputo fractional derivative, we have this important expression for the
fractional derivative involving Mittag-Leffler function:

CDαx (Eα(λxα)) = λ(Eα(λxα)). (2.5)

In this paper, we will use some important integration with was introduced in [1] as follows:∫ t

0
(t − τ)a−1τb−1 dτ =

Γ(a)Γ(b)
Γ(a + b)

ta+b−1, for a > 0, b > 0. (2.6)

∫ t

u
(t − τ)a−1(τ − u)b−1 dτ =

Γ(a)Γ(b)
Γ(a + b)

(t − u)a+b−1, for a > 0, b > 0. (2.7)∫ t

0

∫ τ

0
(t − τ)a−1(τ − u)b−1 f (u) dudτ =

Γ(a)Γ(b)
Γ(a + b)

∫ t

0
(t − u)a+b−1 f (u) du, for a > 0, b > 0. (2.8)

Remarks: We can also write Γ(a)Γ(b)
Γ(a+b) = B(a, b), where B(a, b) is the Beta function.

For the f (τ) = τv, where v > 0, using Eq (2.6), we have the following integration involving Mittag-
Leffler function.∫ t

0
(t − τ)aEα,β(λ(t − τ)b)τv dτ =

∞∑
k=0

∫ t

0
λk(t − τ)bk+aτv dτ

Γ(αk + β)

=

∞∑
k=0

λkΓ(bk + a + 1)Γ(v + 1)tbk+a+v+1

Γ(αk + β)Γ(bk + a + v + 2)
.

(2.9)

If a = β − 1 and b = α, from Eq (2.9), we obtain∫ t

0
(t − τ)β−1τvEα,β(λ(t − τ)α) dτ = Γ(v + 1)tβ+vEα,β+v+1(λtα).

The lower incomplete gamma function is defined for Re(α) > 0,Re(z) > 0 as follows:

γ(α, z) =
∫ z

0
e−ttα−1 dt. (2.10)

Definition 4. Hypergeometric functions 2F1(a1, a2; b; z) and 1F2(a; b1, b2; z) are defined by the series

2F1(a1, a2; b; z) =
∞∑

k=0

(a1)k(a2)k

(b)k

zk

k!
, |z| < 1,

1F2(a; b1, b2; z) =
∞∑

k=0

(a)k

(b1)k(b2)k

zk

k!
,

(2.11)

where the pochhammer symbol, (a)k =
Γ(a+k)
Γ(a) .

For the sake of simplicity, throughout the writing, we use
∑∞

n1,n2,··· ,nk=0 to represent multiple series∑∞
n1=0

∑∞
n2=0 · · ·

∑∞
nk=0.
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3. Main result

In order to derive the analytical solutions for the incommensurate fractional differential equation
systems with order 1 < α, β < 2 as in Eq (1.1), basically one can follow the following steps:
Step 1: Write the system in Volterra integral equations of second kind.
Step 2: Perform the Picard’s successive approximations.
Step 3: Simplify the solution by using some combinatorial formulae.
Step 4: Verify the solution by using substitution.

Here, we will derive the inhomogeneous case. By setting g1(t) = 0 and g2(t), the Eq (1.1) will
reduce to the homogeneous case. Similarly, if we take the value of α = β, the incommensurate
fractional differential equation systems with fractional order 1 < α, β < 2 will be reduced to
commensurate fractional differential equation systems with fractional order 1 to 2.

Step 1: Write the system in Volterra integral equations of second kind.
Using the result from Theorem 5.15 in [37], we obtain the single fractional differential equation for

σ ∈ (1, 2) in Caputo sense as follows:

CDσy(t) = λy(t) + h(t), y(0) = y0, y′(0) = y1. (3.1)

We have the following solution:

y(t) = y0Eσ(λtσ) + y1tEσ,2(λtσ) +
∫ t

0
(t − τ)σ−1h(τ)Eσ,σ(λ(t − τ)σ) dτ. (3.2)

Using Eq (3.2), the Volterra integral equation of second kind for the equation in (1.1) can be
written as

x1(t) = x0
1Eα(a11tα) + x1

1tEα,2(a11tα) +
∫ t

0
(t − τ)α−1[a12x2(τ) + g1(τ)]Eα,α(a11(t − τ)α) dτ,

x2(t) = x0
2Eβ(a22tβ) + x1

2tEβ,2(a22tβ) +
∫ t

0
(t − τ)β−1[a21x1(τ) + g2(τ)]Eβ,β(a22(t − τ)β) dτ.

(3.3)

Substituting x2(t) into the first equation in (3.3) and x1(t) into the second equation in (3.3), we obtain
the following:

x1(t) = x0
1Eα(a11tα) + x1

1tEα,2(a11tα) +
∫ t

0
(t − τ)α−1Eα,α(a11(t − τ)α)

[
a12

(
x0

2Eβ(a22τ
β)

+ x1
2τEβ,2(a22τ

β) +
∫ τ

0
(τ − u)β−1Eβ,β(a22(τ − u)β)(a21x1(u) + g2(u)) du

)
+ g1(τ)

]
dτ

= x0
1Eα(a11tα) + x1

1tEα,2(a11tα) + a12x0
2

∫ t

0

∞∑
n1,n2=0

an1
11(t − τ)n1α+α−1

Γ(n1α + α)
an2

22τ
n2β

Γ(n2β + 1)
dτ

+ a12x1
2

∫ t

0

∞∑
n1,n2=0

an1
11(t − τ)n1α+α−1

Γ(n1α + α)
an2

22τ
n2β+1

Γ(n2β + 2)
dτ +

∫ t

0

∞∑
n1=0

an1
11(t − τ)n1α+α−1

Γ(n1α + α)
g1(τ) dτ

+ a12

∫ t

0

∫ τ

0

∞∑
n1,n2=0

an1
11(t − τ)n1α+α−1

Γ(n1α + α)
an2

22(τ − u)n2β+β−1

Γ(n2β + β)
(a21x1(u) + g2(u)) du dτ.

(3.4)
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Using identity as in Eq (2.6) to Eq (2.8) , we obtain

x1(t) = x0
1Eα(a11tα) + x1

1tEα,2(a11tα) + a12x0
2

∞∑
n1,n2=0

an1
11an2

22tn1α+n2β+α

Γ(n1α + n2β + α + 1)

+ a12x1
2

∞∑
n1,n2=0

an1
11an2

22tn1α+n2β+α+1

Γ(n1α + n2β + α + 2)
+

∞∑
n1=0

an1
11

Γ(n1α + α)

∫ t

0
(t − τ)n1α+α−1g1(τ) dτ

+ a12

∞∑
n1,n2=0

an1
11an2

22

Γ(n1α + n2β + α + β)

∫ t

0
(t − τ)n1α+n2β+α+β−1(a21x1(τ) + g2(τ)) dτ.

(3.5)

By using a similar approach, we obtain the expression for x2(t) as follows:

x2(t) = x0
2Eβ(a22tβ) + x1

2tEβ,2(a22tβ) + a21x0
1

∞∑
n1,n2=0

an1
22an2

11tn1β+n2α+β

Γ(n1β + n2α + β + 1)

+ a21x1
1

∞∑
n1,n2=0

an1
22an2

11tn1β+n2α+β+1

Γ(n1β + n2α + β + 2)

+ a21

∞∑
n1,n2=0

an1
22an2

11

Γ(n1β + n2α + α + β)

∫ t

0
(t − τ)n1β+n2α+α+β−1(a12x2(τ) + g1(τ)) dτ

+

∞∑
n1=0

an1
22

Γ(n1β + β)

∫ t

0
(t − τ)n1β+β−1g2(τ) dτ.

(3.6)

Step 2: Perform the Picard’s successive approximation.
Using Picard’s successive approximation, the solution of the Volterra integral equations as in

Eqs (3.5) and (3.6) can be obtained via setting

x1,0(t) = x0
1Eα(a11tα) + x1

1tEα,2(a11tα) + a12x0
2

∞∑
n1,n2=0

an1
11an2

22tn1α+n2β+α

Γ(n1α + n2β + α + 1)

+ a12x1
2

∞∑
n1,n2=0

an1
11an2

22tn1α+n2β+α+1

Γ(n1α + n2β + α + 2)
+

∞∑
n1=0

an1
11

Γ(n1α + α)

∫ t

0
(t − τ)n1α+α−1g1(τ) dτ

+ a12

∞∑
n1,n2=0

an1
11an2

22

Γ(n1α + n2β + α + β)

∫ t

0
(t − τ)n1α+n2β+α+β−1g2(τ) dτ,

x1,m(t) = x0
1Eα(a11tα) + x1

1tEα,2(a11tα) + a12x0
2

∞∑
n1,n2=0

an1
11an2

22tn1α+n2β+α

Γ(n1α + n2β + α + 1)

+ a12x1
2

∞∑
n1,n2=0

an1
11an2

22tn1α+n2β+α+1

Γ(n1α + n2β + α + 2)
+

∞∑
n1=0

an1
11

Γ(n1α + α)

∫ t

0
(t − τ)n1α+α−1g1(τ) dτ

+ a12

∞∑
n1,n2=0

an1
11an2

22

Γ(n1α + n2β + α + β)

∫ t

0
(t − τ)n1α+n2β+α+β−1(a21x1,m−1(τ) + g2(τ)) dτ,

(3.7)
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and

x2,0(t) = x0
2Eβ(a22tβ) + x1

2tEβ,2(a22tβ) + a21x0
1

∞∑
n1,n2=0

an1
22an2

11tn1β+n2α+β

Γ(n1β + n2α + β + 1)

+ a21x1
1

∞∑
n1,n2=0

an1
22an2

11tn1β+n2α+β+1

Γ(n1β + n2α + β + 2)
+

∞∑
n1=0

an1
22

Γ(n1β + β)

∫ t

0
(t − τ)n1β+β−1g2(τ) dτ

+ a21

∞∑
n1,n2=0

an1
22an2

11

Γ(n1β + n2α + α + β)

∫ t

0
(t − τ)n1β+n2α+α+β−1g1(τ) dτ,

x2,m(t) = x0
2Eβ(a22tβ) + x1

2tEβ,2(a22tβ) + a21x0
1

∞∑
n1,n2=0

an1
22an2

11tn1β+n2α+β

Γ(n1β + n2α + β + 1)

+ a21x1
1

∞∑
n1,n2=0

an1
22an2

11tn1β+n2α+β+1

Γ(n1β + n2α + β + 2)
+

∞∑
n1=0

an1
22

Γ(n1β + β)

∫ t

0
(t − τ)n1β+β−1g2(τ) dτ

+ a21

∞∑
n1,n2=0

an1
22an2

11

Γ(n1β + n2α + α + β)

∫ t

0
(t − τ)n1β+n2α+α+β−1(a21x2,m−1(τ) + g1(τ)) dτ. (3.8)

For m = 1, using the identities (2.6)–(2.8), we have

x1,1(t) = x1,0(t) + a12a21x0
1

∞∑
n1,n2,n3=0

an1+n3
11 an2

22t(n1+n3)α+n2β+α+β

Γ((n1 + n3)α + n2β + α + β + 1)

+ a12a21x1
1

∞∑
n1,n2,n3=0

an1+n3
11 an2

22t(n1+n3)α+n2β+α+β+1

Γ((n1 + n3)α + n2β + α + β + 2)

+ a2
12a21x0

2

∞∑
n1,n2,n3,n4=0

an1+n3
11 an2+n4

22 t(n1+n3)α+(n2+n4)β+2α+β

Γ((n1 + n3)α + (n2 + n4)β + 2α + β + 1)

+ a2
12a21x1

2

∞∑
n1,n2,n3,n4=0

an1+n3
11 an2+n4

22 t(n1+n3)α+(n2+n4)β+2α+β+1

Γ((n1 + n3)α + (n2 + n4)β + 2α + β + 2)

+ a12a21

∞∑
n1,n2,n3=0

an1+n3
11 an2

22

∫ t

0
(t − τ)(n1+n3)α+n2β+2α+β−1g1(τ) dτ

Γ((n1 + n3)α + n2β + 2α + β)

+ a2
12a21

∞∑
n1,n2,n3,n4=0

an1+n3
11 an2+n4

22

∫ t

0
(t − τ)(n1+n3)α+(n2+n4)β+2α+2β−1g2(τ) dτ

Γ((n1 + n3)α + (n2 + n4)β + 2α + 2β)
. (3.9)

Meanwhile, for m = 2, we have

x1,2(t) = x1,1(t) + a2
12a2

21x0
1

∞∑
n1,··· ,n5=0

an1+n3+n5
11 an2+n4

22 t(n1+n3+n5)α+(n2+n4)β+2α+2β

Γ((n1 + n3 + n5)α + (n2 + n4)β + 2α + 2β + 1)

+ a2
12a2

21x1
1

∞∑
n1,··· ,n5=0

an1+n3+n5
11 an2+n4

22 t(n1+n3+n5)α+(n2+n4)β+2α+2β+1

Γ((n1 + n3 + n5)α + (n2 + n4)β + 2α + 2β + 2)

+ a3
12a2

21x0
2

∞∑
n1,··· ,n6=0

an1+n3+n5
11 an2+n4+n6

22 t(n1+n3+n5)α+(n2+n4+n6)β+3α+2β

Γ((n1 + n3 + n5)α + (n2 + n4 + n6)β + 3α + 2β + 1)
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+ a3
12a2

21x1
2

∞∑
n1,··· ,n6=0

an1+n3+n5
11 an2+n4+n6

22 t(n1+n3+n5)α+(n2+n4+n6)β+3α+2β+1

Γ((n1 + n3 + n5)α + (n2 + n4 + n6)β + 3α + 2β + 2)

+ a2
12a2

21

∞∑
n1,··· ,n5=0

an1+n3+n5
11 an2+n4

22

∫ t

0
(t − τ)(n1+n3+n5)α+(n2+n4)β+3α+2β−1g1(τ) dτ

Γ((n1 + n3 + n5)α + (n2 + n4)β + 3α + 2β)

+ a3
12a2

21

∞∑
n1,··· ,n6=0

an1+n3+n5
11 an2+n4+n6

22

∫ t

0
(t − τ)(n1+n3+n5)α+(n2+n4+n6)β+3α+3β−1g2(τ) dτ

Γ((n1 + n3 + n5)α + (n2 + n4 + n6)β + 3α + 3β)
. (3.10)

In general, after some algebraic manipulation, we obtain

x1,m(t) = x1,m−1(t)

+ am
12am

21x0
1

∞∑
n1,··· ,n2m+1=0

an1+n3+···+n2m+1
11 an2+n4+···+2m

22 t(n1+n3+···+n2m+1)α+(n2+n4+···+n2m)β+mα+mβ

Γ((n1 + n3 + · · · + n2m+1)α + (n2 + n4 + · · · + n2m)β + mα + mβ + 1)

+ am
12am

21x1
1

∞∑
n1,··· ,n2m+1=0

an1+n3+···+n2m+1
11 an2+n4+···+2m

22 t(n1+n3+···+n2m+1)α+(n2+n4+···+n2m)β+mα+mβ+1

Γ((n1 + n3 + · · · + n2m+1)α + (n2 + n4 + · · · + n2m)β + mα + mβ + 2)

+ am+1
12 am

21x0
2

∞∑
n1,··· ,n2m+2=0

an1+n3+···+n2m+1
11 an2+n4+···+n2m+2

22 t(n1+n3+···+n2m+1)α+(n2+n4+···+n2m+2)β+(m+1)α+mβ

Γ((n1 + n3 + · · · + n2m+1)α + (n2 + n4 + · · · + n2m+2)β + (m + 1)α + mβ + 1)

+ am+1
12 am

21x1
2

∞∑
n1,··· ,n2m+2=0

an1+n3+···+n2m+1
11 an2+n4+···+n2m+2

22 t(n1+n3+···+n2m+1)α+(n2+n4+···+n2m+2)β+(m+1)α+mβ+1

Γ((n1 + n3 + · · · + n2m+1)α + (n2 + n4 + · · · + n2m+2)β + (m + 1)α + mβ + 2)

+ am
12am

21

∞∑
n1,··· ,n2m+1=0

an1+···+n2m+1
11 an2+···+n2m

22

∫ t

0
(t − τ)(n1+···+n2m+1)α+(n2+···+n2m)β+(m+1)α+mβ−1g1(τ) dτ

Γ((n1 + · · · + n2m+1)α + (n2 + · · · + n2m)β + (m + 1)α + mβ)

+ am+1
12 am

21

∞∑
n1,··· ,n2m+2=0

an1+···+n2m+1
11 an2+···+n2m+2

22

∫ t

0
(t − τ)(n1+···+n2m+1)α+(n2+···+n2m+2)β+(m+1)(α+β)−1g2(τ) dτ

Γ((n1 + · · · + n2m+1)α + (n2 + · · · + n2m+2)β + (m + 1)(α + β))
, (3.11)

where n1+ · · ·+n2m+1 and n2+ · · ·+n2m denote n1+n3+ · · ·+n2m+1 and n2+n4+ · · ·+n2m, respectively.
When m→ ∞, we can rewrite the solution of x1(t) as follows:

x1(t) =
∞∑

k=0

ak
12ak

21x0
1

∞∑
n1,··· ,n2k+1=0

an1+n3+···+n2k+1
11 an2+n4+···+2k

22 t(n1+n3+···+n2k+1)α+(n2+n4+···+n2k)β+kα+kβ

Γ((n1 + n3 + · · · + n2k+1)α + (n2 + n4 + · · · + n2k)β + kα + kβ + 1)

+

∞∑
k=0

ak
12ak

21x1
1

∞∑
n1,··· ,n2k+1=0

an1+n3+···+n2k+1
11 an2+n4+···+2k

22 t(n1+n3+···+n2k+1)α+(n2+n4+···+n2k)β+kα+kβ+1

Γ((n1 + n3 + · · · + n2k+1)α + (n2 + n4 + · · · + n2k)β + kα + kβ + 2)

+

∞∑
k=0

ak+1
12 ak

21x0
2

∞∑
n1,··· ,n2k+2=0

an1+n3+···+n2k+1
11 an2+n4+···+n2k+2

22 t(n1+n3+···+n2k+1)α+(n2+n4+···+n2k+2)β+(k+1)α+kβ

Γ((n1 + n3 + · · · + n2k+1)α + (n2 + n4 + · · · + n2k+2)β + (k + 1)α + kβ + 1)

+

∞∑
k=0

ak+1
12 ak

21x1
2

∞∑
n1,··· ,n2k+2=0

an1+n3+···+n2k+1
11 an2+n4+···+n2k+2

22 t(n1+n3+···+n2k+1)α+(n2+n4+···+n2k+2)β+(k+1)α+kβ+1

Γ((n1 + n3 + · · · + n2k+1)α + (n2 + n4 + · · · + n2k+2)β + (k + 1)α + kβ + 2)

+

∞∑
k=0

ak
12ak

21

∞∑
n1,··· ,n2k+1=0

an1+···+n2k+1
11 an2+···+n2k

22

∫ t

0
(t − τ)(n1+···+n2k+1)α+(n2+···+n2k)β+(k+1)α+kβ−1g1(τ) dτ

Γ((n1 + · · · + n2k+1)α + (n2 + · · · + n2k)β + (k + 1)α + kβ)
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+

∞∑
k=0

ak+1
12 ak

21

∞∑
n1,··· ,n2k+2=0

an1+···+n2k+1
11 an2+···+n2k+2

22

∫ t

0
(t − τ)(n1+···+n2k+1)α+(n2+···+n2k+2)β+(k+1)(α+β)−1g2(τ) dτ

Γ((n1 + · · · + n2k+1)α + (n2 + · · · + n2k+2)β + (k + 1)(α + β))
.

(3.12)

Similarly, by symmetry, we have successive approximations for x2(t) = limm→∞ x2,m(t) as follows:

x2(t) =
∞∑

k=0

ak
12ak

21x0
2

∞∑
n1,··· ,n2k+1=0

an1+n3+···+n2k+1
22 an2+n4+···+2k

11 t(n1+n3+···+n2k+1)β+(n2+n4+···+n2k)α+kα+kβ

Γ((n1 + n3 + · · · + n2k+1)β + (n2 + n4 + · · · + n2k)α + kα + kβ + 1)

+

∞∑
k=0

ak
12ak

21x1
2

∞∑
n1,··· ,n2k+1=0

an1+n3+···+n2k+1
22 an2+n4+···+2k

11 t(n1+n3+···+n2k+1)β+(n2+n4+···+n2k)α+kα+kβ+1

Γ((n1 + n3 + · · · + n2k+1)β + (n2 + n4 + · · · + n2k)α + kα + kβ + 2)

+

∞∑
k=0

ak
12ak+1

21 x0
1

∞∑
n1,··· ,n2k+2=0

an1+n3+···+n2k+1
22 an2+n4+···+n2k+2

11 t(n1+n3+···+n2k+1)β+(n2+n4+···+n2k+2)α+kα+(k+1)β

Γ((n1 + n3 + · · · + n2k+1)β + (n2 + n4 + · · · + n2k+2)α + kα + (k + 1)β + 1)

+

∞∑
k=0

ak
12ak+1

21 x1
1

∞∑
n1,··· ,n2k+2=0

an1+n3+···+n2k+1
22 an2+n4+···+n2k+2

11 t(n1+n3+···+n2k+1)β+(n2+n4+···+n2k+2)α+kα+(k+1)β+1

Γ((n1 + n3 + · · · + n2k+1)β + (n2 + n4 + · · · + n2k+2)α + kα + (k + 1)β + 2)

+

∞∑
k=0

ak
12ak+1

21

∞∑
n1,··· ,n2k+2=0

an1+···+n2k+1
22 an2+···+n2k+2

11

∫ t

0
(t − τ)(n1+···+n2k+1)β+(n2+···+n2k+2)α+(k+1)(α+β)−1g1(τ) dτ

Γ((n1 + · · · + n2k+1)β + (n2 + · · · + n2k+2)α + (k + 1)(α + β))

+

∞∑
k=0

ak
12ak

21

∞∑
n1,··· ,n2k+1=0

an1+···+n2k+1
22 an2+···+n2k

11

∫ t

0
(t − τ)(n1+···+n2k+1)β+(n2+···+n2k)α+kα+(k+1)β−1g2(τ) dτ

Γ((n1 + · · · + n2k+1)β + (n2 + · · · + n2k)α + kα + (k + 1)β)
.

(3.13)

Step 3: Simplify the solution by using some combinatorial formulae.
We write j as all the odd-indexed terms together and m as all the even-indexed appear together, i.e.

j = n1 + n3 + · · · + n2k+1, m = n2 + n4 + · · · + n2k or m = n2 + n4 + · · · + n2k+2, we obtain,

x1(t) = x0
1

∞∑
n1=0

an1
11tn1α

Γ(n1α + 1)
+ x0

1

∞∑
k=1

∞∑
j=0

∞∑
m=0

∑
n1,n2,··· ,n2k+1:

n1+n3+···+n2k+1= j,
n2+n4+···+n2k=m

ak
12ak

21a j
11am

22t( j+k)α+(m+k)β

Γ(( j + k)α + (m + k)β + 1)

+ x1
1

∞∑
n1=0

an1
11tn1α+1

Γ(n1α + 2)
+ x1

1

∞∑
k=1

∞∑
j=0

∞∑
m=0

∑
n1,n2,··· ,n2k+1:

n1+n3+···+n2k+1= j,
n2+n4+···+n2k=m

ak
12ak

21a j
11am

22t( j+k)α+(m+k)β+1

Γ(( j + k)α + (m + k)β + 2)

+ x0
2

∞∑
k=0

∞∑
j=0

∞∑
m=0

∑
n1,n2,··· ,n2k+2:

n1+n3+···+n2k+1= j,
n2+n4+···+n2k+2=m

ak+1
12 ak

21a j
11am

22t( j+k+1)α+(m+k)β

Γ(( j + k + 1)α + (m + k)β + 1)

+ x1
2

∞∑
k=0

∞∑
j=0

∞∑
m=0

∑
n1,n2,··· ,n2k+2:

n1+n3+···+n2k+1= j,
n2+n4+···+n2k+2=m

ak+1
12 ak

21a j
11am

22t( j+k+1)α+(m+k)β+1

Γ(( j + k + 1)α + (m + k)β + 2)
+

∞∑
n1=0

an1
11

∫ t

0
(t − τ)n1α+α−1g1(τ) dτ

Γ(n1α + α)
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+

∞∑
k=1

∞∑
j=0

∞∑
m=0

∑
n1,n2,··· ,n2k+1:

n1+n3+···+n2k+1= j,
n2+n4+···+n2k=m

ak
12ak

21a j
11am

22

∫ t

0
(t − τ)( j+k+1)α+(m+k)β−1g1(τ) dτ

Γ(( j + k + 1)α + (m + k)β)

+

∞∑
k=0

∞∑
j=0

∞∑
m=0

∑
n1,n2,··· ,n2k+2:

n1+n3+···+n2k+1= j,
n2+n4+···+n2k+2=m

ak+1
12 ak

21a j
11am

22

∫ t

0
(t − τ)( j+k+1)α+(m+k+1)β−1g2(τ) dτ

Γ(( j + k + 1)α + (m + k + 1)β)
. (3.14)

Then, we have the simple combinatorial identity as follows for any k, j and m:∑
n1,n2,··· ,n2k+1:

n1+n3+···+n2k+1= j,
n2+n4+···+n2k=m

(1) =
∣∣∣∣{(n1, n3, · · · , n2k+1) :

∑
= j

}∣∣∣∣∣∣∣∣{n2, n4, · · · , n2k) :
∑
= m

}∣∣∣∣
=

(k + j)!
k! j!

(k + m − 1)!
(k − 1)!m!

=

(
k + j

k

)(
k + m − 1

k − 1

)
(3.15)

∑
n1,n2,··· ,n2k+2:

n1+n3+···+n2k+1= j,
n2+n4+···+n2k+2=m

(1) =
∣∣∣∣{(n1, n3, · · · , n2k+1) :

∑
= j

}∣∣∣∣∣∣∣∣{n2, n4, · · · , n2k+2) :
∑
= m

}∣∣∣∣
=

(k + j)!
k! j!

(k + m)!
k!m!

=

(
k + j

k

)(
k + m

k

)
(3.16)

Applying Eqs (3.15) and (3.16) to Eq (3.14) yields

x1(t) = x0
1

∞∑
n1=0

an1
11tn1α

Γ(n1α + 1)
+ x0

1

∞∑
k=1

∞∑
j=0

∞∑
m=0

ak
12ak

21a j
11am

22t( j+k)α+(m+k)β
(

k+ j
k

)(
k+m−1

k−1

)
Γ(( j + k)α + (m + k)β + 1)

+ x1
1

∞∑
n1=0

an1
11tn1α+1

Γ(n1α + 2)
+ x1

1

∞∑
k=1

∞∑
j=0

∞∑
m=0

ak
12ak

21a j
11am

22t( j+k)α+(m+k)β+1
(

k+ j
k

)(
k+m−1

k−1

)
Γ(( j + k)α + (m + k)β + 2)

+ x0
2

∞∑
k=0

∞∑
j=0

∞∑
m=0

ak+1
12 ak

21a j
11am

22t( j+k+1)α+(m+k)β
(

k+ j
k

)(
k+m

k

)
Γ(( j + k + 1)α + (m + k)β + 1)

+ x1
2

∞∑
k=0

∞∑
j=0

∞∑
m=0

ak+1
12 ak

21a j
11am

22t( j+k+1)α+(m+k)β+1
(

k+ j
k

)(
k+m

k

)
Γ(( j + k + 1)α + (m + k)β + 2)

+

∞∑
n1=0

an1
11

∫ t

0
(t − τ)n1α+α−1g1(τ) dτ

Γ(n1α + α)

+

∞∑
k=1

∞∑
j=0

∞∑
m=0

ak
12ak

21a j
11am

22

∫ t

0
(t − τ)( j+k+1)α+(m+k)β−1g1(τ) dτ

(
k+ j

k

)(
k+m−1

k−1

)
Γ(( j + k + 1)α + (m + k)β)

+

∞∑
k=0

∞∑
j=0

∞∑
m=0

ak+1
12 ak

21a j
11am

22

∫ t

0
(t − τ)( j+k+1)α+(m+k+1)β−1g2(τ) dτ

(
k+ j

k

)(
k+m

k

)
Γ(( j + k + 1)α + (m + k + 1)β)

. (3.17)
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By writing some of the terms in Mittag-Leffler function and let all the summations start from 0,
we have

x1(t) = x0
1Eα(a11tα) + x0

1

∞∑
k=0

∞∑
j=0

∞∑
m=0

ak+1
12 ak+1

21 a j
11am

22t( j+k+1)α+(m+k+1)β
(

k+ j+1
k+1

)(
k+m

k

)
Γ(( j + k + 1)α + (m + k + 1)β + 1)

+ x1
1tEα,2(a11tα) + x1

1

∞∑
k=0

∞∑
j=0

∞∑
m=0

ak+1
12 ak+1

21 a j
11am

22t( j+k+1)α+(m+k+1)β+1
(

k+ j+1
k+1

)(
k+m

k

)
Γ(( j + k + 1)α + (m + k + 1)β + 2)

+ x0
2

∞∑
k=0

∞∑
j=0

∞∑
m=0

ak+1
12 ak

21a j
11am

22t( j+k+1)α+(m+k)β
(

k+ j
k

)(
k+m

k

)
Γ(( j + k + 1)α + (m + k)β + 1)

+ x1
2

∞∑
k=0

∞∑
j=0

∞∑
m=0

ak+1
12 ak

21a j
11am

22t( j+k+1)α+(m+k)β+1
(

k+ j
k

)(
k+m

k

)
Γ(( j + k + 1)α + (m + k)β + 2)

+

∫ t

0
(t − τ)α−1Eα,α(a11(t − τ)α)g1(τ) dτ

+

∞∑
k=0

∞∑
j=0

∞∑
m=0

ak+1
12 ak+1

21 a j
11am

22

∫ t

0
(t − τ)( j+k+2)α+(m+k+1)β−1g1(τ) dτ

(
k+ j+1

k+1

)(
k+m

k

)
Γ(( j + k + 2)α + (m + k + 1)β)

+

∞∑
k=0

∞∑
j=0

∞∑
m=0

ak+1
12 ak

21a j
11am

22

∫ t

0
(t − τ)( j+k+1)α+(m+k+1)β−1g2(τ) dτ

(
k+ j

k

)(
k+m

k

)
Γ(( j + k + 1)α + (m + k + 1)β)

. (3.18)

In the same manner, for x2(t), we obtain the following expression

x2(t) = x0
2Eβ(a22tβ) + x0

2

∞∑
k=0

∞∑
j=0

∞∑
m=0

ak+1
12 ak+1

21 a j
11am

22t(m+k+1)α+( j+k+1)β
(

k+m+1
k+1

)(
k+ j

k

)
Γ((m + k + 1)α + ( j + k + 1)β + 1)

+ x1
2tEβ,2(a22tβ) + x1

2

∞∑
k=0

∞∑
j=0

∞∑
m=0

ak+1
12 ak+1

21 a j
11am

22t(m+k+1)α+( j+k+1)β+1
(

k+m+1
k+1

)(
k+ j

k

)
Γ((m + k + 1)α + ( j + k + 1)β + 2)

+ x0
1

∞∑
k=0

∞∑
j=0

∞∑
m=0

ak
12ak+1

21 a j
11am

22t(m+k+1)α+( j+k)β
(

k+m
k

)(
k+ j

k

)
Γ((m + k + 1)α + ( j + k)β + 1)

+ x1
1

∞∑
k=0

∞∑
j=0

∞∑
m=0

ak
12ak+1

21 a j
11am

22t(m+k+1)α+( j+k)β+1
(

k+m
k

)(
k+ j

k

)
Γ((m + k + 1)α + ( j + k)β + 2)

+

∫ t

0
(t − τ)β−1Eβ,β(a22(t − τ)β)g2(τ) dτ

+

∞∑
k=0

∞∑
j=0

∞∑
m=0

ak+1
12 ak+1

21 a j
11am

22

∫ t

0
(t − τ)(m+k+2)α+( j+k+1)β−1g2(τ) dτ

(
k+m+1

k+1

)(
k+ j

k

)
Γ((m + k + 2)α + ( j + k + 1)β)

+

∞∑
k=0

∞∑
j=0

∞∑
m=0

ak
12ak+1

21 a j
11am

22

∫ t

0
(t − τ)(m+k+1)α+( j+k+1)β−1g1(τ) dτ

(
k+m

k

)(
k+ j

k

)
Γ((m + k + 1)α + ( j + k + 1)β)

. (3.19)

Using
(

k+ j+1
k+1

)(
k+m

k

)
=

(k+ j+1)!
(k+1)! j!

(k+m)!
k!m! and

(
k+ j

k

)(
k+m

k

)
=

(k+ j)!
k! j!

(k+m)!
k!m! and assuming p = j + k and q = m + k
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and a11, a22 , 0, we obtain

x1(t) = x0
1Eα(a11tα) + x1

1tEα,2(a11tα) +
∫ t

0
(t − τ)α−1Eα,α(a11(t − τ)α)g1(τ) dτ

+ x0
1a12a21

∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+α+β

Γ(pα + qβ + α + β + 1)

min(p,q)∑
k=0

(
a12a21

a11a22

)k (p + 1)!
(k + 1)!(p − k)!

q!
k!(q − k)!

+ x1
1a12a21

∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+α+β+1

Γ(pα + qβ + α + β + 2)

min(p,q)∑
k=0

(
a12a21

a11a22

)k (p + 1)!
(k + 1)!(p − k)!

q!
k!(q − k)!

+ x0
2a12

∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+α

Γ(pα + qβ + α + 1)

min(p,q)∑
k=0

(
a12a21

a11a22

)k p!
k!(p − k)!

q!
k!(q − k)!

+ x1
2a12

∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+α+1

Γ(pα + qβ + α + 2)

min(p,q)∑
k=0

(
a12a21

a11a22

)k p!
k!(p − k)!

q!
k!(q − k)!

+ a12a21

∞∑
p=0

∞∑
q=0

ap
11aq

22

∫ t

0
(t − τ)pα+qβ+2α+β−1g1(τ) dτ

Γ(pα + qβ + 2α + β)

min(p,q)∑
k=0

(
a12a21

a11a22

)k (p + 1)!
(k + 1)!(p − k)!

q!
k!(q − k)!

+ a12

∞∑
p=0

∞∑
q=0

ap
11aq

22

∫ t

0
(t − τ)pα+qβ+α+β−1g2(τ) dτ

Γ(pα + qβ + α + β)

min(p,q)∑
k=0

(
a12a21

a11a22

)k p!
k!(p − k)!

q!
k!(q − k)!

. (3.20)

The above equation can also be rewritten as follows:

x1(t) = x0
1Eα(a11tα) + x1

1tEα,2(a11tα) +
∫ t

0
(t − τ)α−1Eα,α(a11(t − τ)α)g1(τ) dτ

+ x0
1
a12a21

a22

∞∑
p=0

∞∑
q=1

ap
11aq

22tpα+qβ+α

Γ(pα + qβ + α + 1)

min(p,q−1)∑
k=0

(
a12a21

a11a22

)k (p + 1)!
(k + 1)!(p − k)!

(q − 1)!
k!(q − k − 1)!

+ x1
1
a12a21

a22

∞∑
p=0

∞∑
q=1

ap
11aq

22tpα+qβ+α+1

Γ(pα + qβ + α + 2)

min(p,q−1)∑
k=0

(
a12a21

a11a22

)k (p + 1)!
(k + 1)!(p − k)!

(q − 1)!
k!(q − k − 1)!

+ x0
2a12

∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+α

Γ(pα + qβ + α + 1)

min(p,q)∑
k=0

(
a12a21

a11a22

)k p!
k!(p − k)!

q!
k!(q − k)!

+ x1
2a12

∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+α+1

Γ(pα + qβ + α + 2)

min(p,q)∑
k=0

(
a12a21

a11a22

)k p!
k!(p − k)!

q!
k!(q − k)!

+
a12a21

a22

∞∑
p=0

∞∑
q=1

ap
11aq

22

∫ t

0
(t − τ)pα+qβ+2α−1g1(τ) dτ

Γ(pα + qβ + 2α)

×

min(p,q−1)∑
k=0

(
a12a21

a11a22

)k (p + 1)!
(k + 1)!(p − k)!

(q − 1)!
k!(q − k − 1)!

+ a12

∞∑
p=0

∞∑
q=0

ap
11aq

22

∫ t

0
(t − τ)pα+qβ+α+β−1g2(τ) dτ

Γ(pα + qβ + α + β)
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×

min(p,q)∑
k=0

(
a12a21

a11a22

)k p!
k!(p − k)!

q!
k!(q − k)!

. (3.21)

Similarly, by symmetric, we obtain

x2(t) = x0
2Eβ(a22tβ) + x1

2tEβ,2(a22tβ) +
∫ t

0
(t − τ)β−1Eβ,β(a22(t − τ)β)g2(τ) dτ

+ x0
2
a12a21

a11

∞∑
p=1

∞∑
q=0

ap
11aq

22tpα+qβ+β

Γ(pα + qβ + β + 1)

min(p−1,q)∑
k=0

(
a12a21

a11a22

)k (p − 1)!
k!(p − k − 1)!

(q + 1)!
(k + 1)!(q − k)!

+ x1
2
a12a21

a11

∞∑
p=1

∞∑
q=0

ap
11aq

22tpα+qβ+β+1

Γ(pα + qβ + β + 2)

min(p−1,q)∑
k=0

(
a12a21

a11a22

)k (p − 1)!
k!(p − k − 1)!

(q + 1)!
(k + 1)!(q − k)!

+ x0
1a21

∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+β

Γ(pα + qβ + β + 1)

min(p,q)∑
k=0

(
a12a21

a11a22

)k p!
k!(p − k)!

q!
k!(q − k)!

+ x1
1a21

∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+β+1

Γ(pα + qβ + β + 2)

min(p,q)∑
k=0

(
a12a21

a11a22

)k p!
k!(p − k)!

q!
k!(q − k)!

+ a21

∞∑
p=0

∞∑
q=0

ap
11aq

22

∫ t

0
(t − τ)pα+qβ+α+β−1g1(τ) dτ

Γ(pα + qβ + α + β)

min(p,q)∑
k=0

(
a12a21

a11a22

)k p!
k!(p − k)!

q!
k!(q − k)!

+
a12a21

a11

∞∑
p=1

∞∑
q=0

ap
11aq

22

∫ t

0
(t − τ)pα+qβ+2β−1g2(τ) dτ

Γ(pα + qβ + 2β)

×

min(p−1,q)∑
k=0

(
a12a21

a11a22

)k (p − 1)!
k!(p − k − 1)!

(q + 1)!
(k + 1)!(q − k)!

. (3.22)

Letting A = a12a21
a11a22

with a11, a22 , 0, we can simplify the inner series in (3.21) into hypergeometric
function expression using the following identities.

min(p,q)∑
k=0

(
a12a21

a11a22

)k p!
k!(p − k)!

q!
k!(q − k)!

= 2F1(−p,−q; 1; A),

min(p,q−1)∑
k=0

(
a12a21

a11a22

)k (p + 1)!
(k + 1)!(p − k)!

(q − 1)!
k!(q − k − 1)!

= (p + 1)2F1(−p, 1 − q; 2; A). (3.23)

Hence, we have x1(t) as follows:

x1(t) = x0
1Eα(a11tα) + x1

1tEα,2(a11tα) +
∫ t

0
(t − τ)α−1Eα,α(a11(t − τ)α)g1(τ) dτ

+ x0
1a11A

∞∑
p=0

∞∑
q=1

ap
11aq

22tpα+qβ+α

Γ(pα + qβ + α + 1)
(p + 1)2F1(−p, 1 − q; 2; A)
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+ x1
1a11A

∞∑
p=0

∞∑
q=1

ap
11aq

22tpα+qβ+α+1

Γ(pα + qβ + α + 2)
(p + 1)2F1(−p, 1 − q; 2; A)

+ x0
2a12

∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+α

Γ(pα + qβ + α + 1) 2F1(−p,−q; 1; A)

+ x1
2a12

∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+α+1

Γ(pα + qβ + α + 2) 2F1(−p,−q; 1; A)

+ a11A
∞∑

p=0

∞∑
q=1

ap
11aq

22

∫ t

0
(t − τ)pα+qβ+2α−1g1(τ) dτ

Γ(pα + qβ + 2α)
(p + 1)2F1(−p, 1 − q; 2; A)

+ a12

∞∑
p=0

∞∑
q=0

ap
11aq

22

∫ t

0
(t − τ)pα+qβ+α+β−1g2(τ) dτ

Γ(pα + qβ + α + β) 2F1(−p,−q; 1; A). (3.24)

The same is applied for x2(t), where we can simplify the inner series in (3.22) into a hypergeometric
function expression using the following identities.

min(p,q)∑
k=0

(
a12a21

a11a22

)k p!
k!(p − k)!

q!
k!(q − k)!

= 2F1(−p,−q; 1; A),

min(p−1,q)∑
k=0

(
a12a21

a11a22

)k (p − 1)!
k!(p − k − 1)!

(q + 1)!
(k + 1)!(q − k)!

= (q + 1)2F1(1 − p,−q; 2; A). (3.25)

Hence, we obtain x2(t) as follows:

x2(t) = x0
2Eβ(a22tβ) + x1

2tEβ,2(a22tβ) +
∫ t

0
(t − τ)β−1Eβ,β(a22(t − τ)β)g2(τ) dτ

+ x0
2a22A

∞∑
p=1

∞∑
q=0

ap
11aq

22tpα+qβ+β

Γ(pα + qβ + β + 1)
(q + 1)2F1(1 − p,−q; 2; A)

+ x1
2a22A

∞∑
p=1

∞∑
q=0

ap
11aq

22tpα+qβ+β+1

Γ(pα + qβ + β + 2)
(q + 1)2F1(1 − p,−q; 2; A)

+ x0
1a21

∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+β

Γ(pα + qβ + β + 1) 2F1(−p,−q; 1; A)

+ x1
1a21

∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+β+1

Γ(pα + qβ + β + 2) 2F1(−p,−q; 1; A)

+ a22A
∞∑

p=1

∞∑
q=0

ap
11aq

22

∫ t

0
(t − τ)pα+qβ+2β−1g2(τ) dτ

Γ(pα + qβ + 2β)
(q + 1)2F1(1 − p,−q; 2; A)

+ a21

∞∑
p=0

∞∑
q=0

ap
11aq

22

∫ t

0
(t − τ)pα+qβ+α+β−1g1(τ) dτ

Γ(pα + qβ + α + β) 2F1(−p,−q; 1; A). (3.26)
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Substituting q = 0 in the double series with q = 1 in Eq (3.24) (i.e. the 4th, 5th and 8th terms in the
RHS of Eq (3.24)), and using 2F1(−p, 1; 2; A) = 1−(1−A)p+1

A(p+1) , we obtain the following new expression for
the 4th, 5th and 8th terms in the RHS of Eq (3.24).

x0
1a11A

∞∑
p=0

ap
11t(p+1)α

Γ((p + 1)α + 1)
(p + 1)2F1(−p, 1; 2; A) = x0

1Eα(a11tα) − x0
1Eα(a11(1 − A)tα),

x1
1a11A

∞∑
p=0

ap
11t(p+1)α+1

Γ((p + 1)α + 2)
(p + 1)2F1(−p, 1; 2; A) = x1

1tEα,2(a11tα) − x1
1tEα,2(a11(1 − A)tα),

a11A
∞∑

p=0

ap
11

∫ t

0
(t − τ)(p+1)α+α−1g1(τ)dτ

Γ((p + 1)α + α)
(p + 1)2F1(−p, 1; 2; A)

=

∫ t

0
(t − τ)α−1 [

Eα,α(a11(t − τ)α) − Eα,α(a11(1 − A)(t − τ)α)
]
g1(τ) dτ.

(3.27)

Hence, we have the final solutions for the x1(t) to the system (1.1) as follows:

x1(t) = x0
1Eα(a11(1 − A)tα) + x1

1tEα,2(a11(1 − A)tα) +
∫ t

0
(t − τ)α−1Eα,α(a11(1 − A)(t − τ)α)g1(τ) dτ

+ x0
1a11A

∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+α

Γ(pα + qβ + α + 1)
(p + 1)2F1(−p, 1 − q; 2; A)

+ x1
1a11A

∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+α+1

Γ(pα + qβ + α + 2)
(p + 1)2F1(−p, 1 − q; 2; A)

+ x0
2a12

∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+α

Γ(pα + qβ + α + 1) 2F1(−p,−q; 1; A)

+ x1
2a12

∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+α+1

Γ(pα + qβ + α + 2) 2F1(−p,−q; 1; A)

+ a11A
∞∑

p=0

∞∑
q=0

ap
11aq

22

∫ t

0
(t − τ)pα+qβ+2α−1g1(τ) dτ

Γ(pα + qβ + 2α)
(p + 1)2F1(−p, 1 − q; 2; A)

+ a12

∞∑
p=0

∞∑
q=0

ap
11aq

22

∫ t

0
(t − τ)pα+qβ+α+β−1g2(τ) dτ

Γ(pα + qβ + α + β) 2F1(−p,−q; 1; A). (3.28)

Using similar approach, the final solutions for the x2(t) to the system (1.1) is given as follows:

x2(t) = x0
2Eβ(a22(1 − A)tβ) + x1

2tEβ,2(a22(1 − A)tβ) +
∫ t

0
(t − τ)β−1Eβ,β(a22(1 − A)(t − τ)β)g2(τ) dτ

+ x0
2a22A

∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+β

Γ(pα + qβ + β + 1)
(q + 1)2F1(1 − p,−q; 2; A)
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+ x1
2a22A

∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+β+1

Γ(pα + qβ + β + 2)
(q + 1)2F1(1 − p,−q; 2; A)

+ x0
1a21

∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+β

Γ(pα + qβ + β + 1) 2F1(−p,−q; 1; A)

+ x1
1a21

∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+β+1

Γ(pα + qβ + β + 2) 2F1(−p,−q; 1; A)

+ a21

∞∑
p=0

∞∑
q=0

ap
11aq

22

∫ t

0
(t − τ)pα+qβ+α+β−1g1(τ) dτ

Γ(pα + qβ + α + β) 2F1(−p,−q; 1; A)

+ a22A
∞∑

p=0

∞∑
q=0

ap
11aq

22

∫ t

0
(t − τ)pα+qβ+2β−1g2(τ) dτ

Γ(pα + qβ + 2β)
(q + 1)2F1(1 − p,−q; 2; A). (3.29)

Step 4: Verify the solution by using substitution.
Finally, we can verify the solutions by substituting (3.28) (i.e. x1(t)) and (3.29) (i.e. x2(t)) into

CDαx1(t) = a11x1(t) + a12x2(t) + g1(t), which is the first equation of incommensurate fractional order
system (1.1). Hence, the right-hand-side of the first equation of (1.1) is given by

a11x1(t) + a12x2(t) + g1(t)

= x0
1a11Eα(a11tα) + x1

1a11tEα,2(a11tα) +
[
a11

∫ t

0
(t − τ)α−1Eα,α(a11(t − τ)α)g1(τ) dτ + g1(t)

]
+ x0

2a12Eβ(a22tβ) + x1
2a12tEβ,2(a22tβ) + a12

∫ t

0
(t − τ)β−1Eβ,β(a22(t − τ)β)g2(τ) dτ

+ x0
1a11A

∞∑
p=0

∞∑
q=1

ap
11aq

22tpα+qβ

Γ(pα + qβ + 1)
(p 2F1(1 − p, 1 − q; 2; A) + 2F1(−p, 1 − q; 1; A))

+ x1
1a11A

∞∑
p=0

∞∑
q=1

ap
11aq

22tpα+qβ+1

Γ(pα + qβ + 2)
(p 2F1(1 − p, 1 − q; 2; A) + 2F1(−p, 1 − q; 1; A))

+ x0
2a12

∞∑
p=1

∞∑
q=0

ap
11aq

22tpα+qβ

Γ(pα + qβ + 1)
(2F1(1 − p,−q; 1; A) + Aq 2F1(1 − p, 1 − q; 2; A))

+ x1
2a12

∞∑
p=1

∞∑
q=0

ap
11aq

22tpα+qβ+1

Γ(pα + qβ + 2)
(2F1(1 − p,−q; 1; A) + Aq 2F1(1 − p, 1 − q; 2; A))

+ a11A
∞∑

p=0

∞∑
q=1

ap
11aq

22

∫ t

0
(t − τ)pα+qβ+α−1g1(τ) dτ

Γ(pα + qβ + α)
(p 2F1(1 − p, 1 − q; 2; A) + 2F1(−p, 1 − q; 1; A))

+ a12

∞∑
p=1

∞∑
q=0

ap
11aq

22

∫ t

0
(t − τ)pα+qβ+β−1g2(τ) dτ

Γ(pα + qβ + β)
(2F1(1 − p,−q; 1; A) + Aq 2F1(1 − p, 1 − q; 2; A)) ,

(3.30)

while the left-hand-side of the equation is given by

AIMS Mathematics Volume 7, Issue 2, 2281–2317.



2297

CDαx1(t) = a11x0
1Eα(a11tα) + a11x1

1tEα,2(a11tα) + CDα
(∫ t

0
(t − τ)α−1Eα,α(a11(t − τ)α)g1(τ) dτ

)
+ x0

1a11A
∞∑

p=0

∞∑
q=1

ap
11aq

22tpα+qβ

Γ(pα + qβ + 1)
(p + 1)2F1(−p, 1 − q; 2; A)

+ x1
1a11A

∞∑
p=0

∞∑
q=1

ap
11aq

22tpα+qβ+1

Γ(pα + qβ + 2)
(p + 1)2F1(−p, 1 − q; 2; A)

+ x0
2a12Eβ(a22tβ) + x0

2a12

∞∑
p=1

∞∑
q=0

ap
11aq

22tpα+qβ

Γ(pα + qβ + 1) 2F1(−p,−q; 1; A)

+ x1
2a12tEβ,2(a22tβ) + x1

2a12

∞∑
p=1

∞∑
q=0

ap
11aq

22tpα+qβ+1

Γ(pα + qβ + 2) 2F1(−p,−q; 1; A)

+ a11A
∞∑

p=0

∞∑
q=1

ap
11aq

22

∫ t

0
(t − τ)pα+qβ+α−1g1(τ) dτ

Γ(pα + qβ + α)
(p + 1)2F1(−p, 1 − q; 2; A)

+ a12

∫ t

0
(t − τ)β−1Eβ,β(a22(t − τ)β)g2(τ) dτ

+ a12

∞∑
p=1

∞∑
q=0

ap
11aq

22

∫ t

0
(t − τ)pα+qβ+β−1g2(τ) dτ

Γ(pα + qβ + β) 2F1(−p,−q; 1; A). (3.31)

Using the Lemma 2.1 in [1], all the terms in Eqs (3.31) and (3.30) are equivalent, except for the
third term of Eqs (3.31) and (3.30). Hence, we show here using some algebraic manipulation that the
third term of Eq (3.31) is indeed equivalent to the third term in Eq (3.30). We have

CDα
(∫ t

0
(t − τ)α−1Eα,α(a11(t − τ)α)g1(τ) dτ

)
= CDα

∫ t

0

(t − τ)α−1

Γ(α)
g1(τ) dτ +

∞∑
k=1

∫ t

0

ak
11(t − τ)kα+α−1

Γ(kα + α)
g1(τ) dτ


= CDα (Iαg1(t)) + CDα

 ∞∑
k=1

∫ t

0

ak
11(t − τ)kα+α−1

Γ(kα + α)
g1(τ) dτ


= g1(t) +

∞∑
k=1

∫ t

0

ak
11(t − τ)(k−1)α+α−1

Γ((k − 1)α + α)
g1(τ) dτ

= g1(t) + a11

∞∑
k=0

∫ t

0

ak
11(t − τ)kα+α−1

Γ(kα + α)
g1(τ) dτ

= g1(t) + a11

∫ t

0
(t − τ)α−1Eα,α(a11(t − τ)α)g1(τ) dτ. (3.32)

By applying Lemma 2.1 in [1] and Eq (3.32), the first equation in (1.1) holds true, while the second
equation in (1.1) can be verified using a similar approach. Hence, we have the theorem as follows:
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Theorem 1. The incommensurate fractional differential equation systems with fractional order 1 <
α, β < 2 are given by:

CDαx1(t) = a11x1(t) + a12x2(t) + g1(t),
CDβx2(t) = a21x1(t) + a22x2(t) + g2(t),

(3.33)

with initial conditions x1(0) = x0
1, x2(0) = x0

2, x′1(0) = x1
1, x′2(0) = x1

2 and constant A = a12a21
a11a22

(, 1),
a11, a22 , 0 have the solutions as follows:

x1(t) = x0
1Eα(a11(1 − A)tα) + x1

1tEα,2(a11(1 − A)tα) +
∫ t

0
(t − τ)α−1Eα,α(a11(1 − A)(t − τ)α)g1(τ) dτ

+ x0
1a11A

∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+α

Γ(pα + qβ + α + 1)
(p + 1)2F1(−p, 1 − q; 2; A)

+ x1
1a11A

∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+α+1

Γ(pα + qβ + α + 2)
(p + 1)2F1(−p, 1 − q; 2; A)

+ x0
2a12

∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+α

Γ(pα + qβ + α + 1) 2F1(−p,−q; 1; A)

+ x1
2a12

∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+α+1

Γ(pα + qβ + α + 2) 2F1(−p,−q; 1; A)

+ a11A
∞∑

p=0

∞∑
q=0

ap
11aq

22

∫ t

0
(t − τ)pα+qβ+2α−1g1(τ) dτ

Γ(pα + qβ + 2α)
(p + 1)2F1(−p, 1 − q; 2; A)

+ a12

∞∑
p=0

∞∑
q=0

ap
11aq

22

∫ t

0
(t − τ)pα+qβ+α+β−1g2(τ) dτ

Γ(pα + qβ + α + β) 2F1(−p,−q; 1; A), (3.34)

x2(t) = x0
2Eβ(a22(1 − A)tβ) + x1

2tEβ,2(a22(1 − A)tβ) +
∫ t

0
(t − τ)β−1Eβ,β(a22(1 − A)(t − τ)β)g2(τ) dτ

+ x0
2a22A

∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+β

Γ(pα + qβ + β + 1)
(q + 1)2F1(1 − p,−q; 2; A)

+ x1
2a22A

∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+β+1

Γ(pα + qβ + β + 2)
(q + 1)2F1(1 − p,−q; 2; A)

+ x0
1a21

∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+β

Γ(pα + qβ + β + 1) 2F1(−p,−q; 1; A)

+ x1
1a21

∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+β+1

Γ(pα + qβ + β + 2) 2F1(−p,−q; 1; A)

+ a21

∞∑
p=0

∞∑
q=0

ap
11aq

22

∫ t

0
(t − τ)pα+qβ+α+β−1g1(τ) dτ

Γ(pα + qβ + α + β) 2F1(−p,−q; 1; A)
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+ a22A
∞∑

p=0

∞∑
q=0

ap
11aq

22

∫ t

0
(t − τ)pα+qβ+2β−1g2(τ) dτ

Γ(pα + qβ + 2β)
(q + 1)2F1(1 − p,−q; 2; A). (3.35)

4. Some special cases

In this section, we will present some special cases of Theorem 1, which including the case when
A = 1, a11 = 0, or a22 = 0, respectively. In order to achieve these, we need the following lemmas
involving bivariate Mittag-Leffler function:

Lemma 1. [1] For α, β > 0 and γ − 1 > ⌊α⌋, we have

dα

dtα
[
tγ−1Eα,β,γ(λ1tα, λ2tβ)

]
= tγ−α−1Eα,β,γ−α(λ1tα, λ2tβ), (4.1)

for any t, α, β, γ, λ1, λ2 ∈ R.

Proof: See Lemma 2.2 in [1].

Lemma 2. [1] For α, β > 0, we have

1 + a11tαEα,β,α+1(a11tα, a22tβ) + a22tβEα,β,β+1(a11tα, a22tβ) = Eα,β,1(a11tα, a22tβ),

tα−1

Γ(α)
+ a11t2α−1Eα,β,2α(a11tα, a22tβ) + a22tα+β−1Eα,β,α+β(a11tα, a22tβ) = tα−1Eα,β,α(a11tα, a22tβ),

tβ−1

Γ(β)
+ a11tα+β−1Eα,β,α+β(a11tα, a22tβ) + a22t2β−1Eα,β,2β(a11tα, a22tβ) = tβ−1Eα,β,β(a11tα, a22tβ),

(4.2)

for any t, α, β ∈ R.

Proof: See [1].

4.1. The A = 1 case

In this case, we have the hypergeometric function with A = 1, i.e. a11a22 = a12a21. The following
identities are important for finding the explicit analytical solution of system (1.1).

2F1(−p,−q; 1; 1) =
Γ(1)Γ(p + q + 1)
Γ(p + 1)Γ(q + 1)

=
Γ(p + q + 1)
Γ(p + 1)Γ(q + 1)

=

(
p + q

q

)
(p + 1)2F1(−p, 1 − q; 2; 1) = (p + 1)

Γ(2)Γ(p + q + 1)
Γ(p + 2)Γ(q + 1)

=
Γ(p + q + 1)
Γ(p + 1)Γ(q + 1)

=

(
p + q

q

)
.

(4.3)

Using Eqs (3.24), (3.26), A = 1 and the identities in Eq (4.3), we can express x1(t) as follows:

x1(t) = x0
1Eα(a11tα) + x1

1tEα,2(a11tα) +
∫ t

0
(t − τ)α−1Eα,α(a11(t − τ)α)g1(τ) dτ

+ x0
1a11

∞∑
p=0

∞∑
q=1

ap
11aq

22tpα+qβ+α

Γ(pα + qβ + α + 1)

(
p + q

q

)
+ x1

1a11

∞∑
p=0

∞∑
q=1

ap
11aq

22tpα+qβ+α+1

Γ(pα + qβ + α + 2)

(
p + q

q

)
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+ x0
2a12

∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+α

Γ(pα + qβ + α + 1)

(
p + q

q

)
+ x1

2a12

∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+α+1

Γ(pα + qβ + α + 2)

(
p + q

q

)

+ a11

∞∑
p=0

∞∑
q=1

ap
11aq

22

∫ t

0
(t − τ)pα+qβ+2α−1g1(τ) dτ

Γ(pα + qβ + 2α)

(
p + q

q

)
(4.4)

+ a12

∞∑
p=0

∞∑
q=0

ap
11aq

22

∫ t

0
(t − τ)pα+qβ+α+β−1g2(τ) dτ

Γ(pα + qβ + α + β)

(
p + q

q

)
.

Expanding the Mittag-Leffler function and bivariate Mittag-Leffler function in the first three terms
of Eq (4.4) and rearranging the terms in RHS of (4.4) yields

x1(t) = x0
1 + x0

1

∞∑
p=0

ap+1
11 tpα+α

Γ(pα + α + 1)
+ x0

1a11

∞∑
p=0

∞∑
q=1

ap
11aq

22tpα+qβ+α

Γ(pα + qβ + α + 1)

(
p + q

q

)

+ x0
2a12

∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+α

Γ(pα + qβ + α + 1)

(
p + q

q

)

+ x1
1t + x1

1t
∞∑

p=0

ap+1
11 tpα+α

Γ(pα + α + 2)
+ x1

1a11

∞∑
p=0

∞∑
q=1

ap
11aq

22tpα+qβ+α+1

Γ(pα + qβ + α + 2)

(
p + q

q

)

+ x1
2a12

∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+α+1

Γ(pα + qβ + α + 2)

(
p + q

q

)

+
1
Γ(α)

∫ t

0
(t − τ)α−1g1(τ) dτ +

∞∑
p=0

ap+1
11

∫ t

0
(t − τ)pα+2α−1g1(τ) dτ

Γ(pα + 2α)

+ a11

∞∑
p=0

∞∑
q=1

ap
11aq

22

∫ t

0
(t − τ)pα+qβ+2α−1g1(τ) dτ

Γ(pα + qβ + 2α)

(
p + q

q

)
(4.5)

+ a12

∞∑
p=0

∞∑
q=0

ap
11aq

22

∫ t

0
(t − τ)pα+qβ+α+β−1g2(τ) dτ

Γ(pα + qβ + α + β)

(
p + q

q

)

= x0
1 +

(
x0

1a11 + x0
2a12

) ∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+α

Γ(pα + qβ + α + 1)

(
p + q

q

)

+ x1
1t +

(
x1

1a11 + x1
2a12

) ∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ+α+1

Γ(pα + qβ + α + 2)

(
p + q

q

)

+

∫ t

0
(t − τ)α−1g1(τ) dτ

Γ(α)
+ a11

∞∑
p=0

∞∑
q=0

ap
11aq

22

∫ t

0
(t − τ)pα+qβ+2α−1g1(τ) dτ

Γ(pα + qβ + 2α)

(
p + q

q

)

+ a12

∞∑
p=0

∞∑
q=0

ap
11aq

22

∫ t

0
(t − τ)pα+qβ+α+β−1g2(τ) dτ

Γ(pα + qβ + α + β)

(
p + q

q

)
.

Rewriting some terms in the above equation using bivariate Mittag-Leffler function yields
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x1(t) = x0
1 +

(
x0

1a11 + x0
2a12

)
tαEα,β,α+1

(
a11tα, a22tβ

)
+ x1

1t +
(
x1

1a11 + x1
2a12

)
tα+1Eα,β,α+2

(
a11tα, a22tβ

)
+

1
Γ(α)

∫ t

0
(t − τ)α−1g1(τ) dτ

+ a11

∫ t

0
(t − τ)2α−1Eα,β,2α

(
a11(t − τ)α, a22(t − τ)β

)
g1(τ) dτ

+ a12

∫ t

0
(t − τ)α+β−1Eα,β,α+β

(
a11(t − τ)α, a22(t − τ)β

)
g2(τ) dτ. (4.6)

Using the similar approach for x2(t), we then have the following theorem:

Theorem 2. The incommensurate fractional differential equation systems with fractional order 1 <
α, β < 2

CDαx1(t) = a11x1(t) + a12x2(t) + g1(t),
CDβx2(t) = a21x1(t) + a22x2(t) + g2(t),

with initial conditions x1(0) = x0
1, x2(0) = x0

2, x′1(0) = x1
1, x′2(0) = x1

2 and constant A = a12a21
a11a22

= 1 has
the following solutions given by:

x1(t) = x0
1 +

(
x0

1a11 + x0
2a12

)
tαEα,β,α+1

(
a11tα, a22tβ

)
+ x1

1t +
(
x1

1a11 + x1
2a12

)
tα+1Eα,β,α+2

(
a11tα, a22tβ

)
+

1
Γ(α)

∫ t

0
(t − τ)α−1g1(τ) dτ

+ a11

∫ t

0
(t − τ)2α−1Eα,β,2α

(
a11(t − τ)α, a22(t − τ)β

)
g1(τ) dτ

+ a12

∫ t

0
(t − τ)α+β−1Eα,β,α+β

(
a11(t − τ)α, a22(t − τ)β

)
g2(τ) dτ,

(4.7)

x2(t) = x0
2 +

(
x0

1a21 + x0
2a22

)
tβEα,β,β+1

(
a11tα, a22tβ

)
+ x1

2t +
(
x1

1a21 + x1
2a22

)
tβ+1Eα,β,β+2

(
a11tα, a22tβ

)
+

1
Γ(β)

∫ t

0
(t − τ)β−1g2(τ) dτ

+ a21

∫ t

0
(t − τ)α+β−1Eα,β,α+β

(
a11(t − τ)α, a22(t − τ)β

)
g1(τ) dτ

+ a22

∫ t

0
(t − τ)2β−1Eα,β,2β

(
a11(t − τ)α, a22(t − τ)β

)
g2(τ) dτ.

(4.8)

Proof: The solution is proved when the first equation of (1.1) is satisfied. Hence, using Eqs (4.7) and
(4.8), the LHS of (1.1) (after taking the fractional derivative for Eq (4.7) with Lemma 1) and RHS of
(1.1) are shown as follows:
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CDαx1(t) =
(
x0

1a11 + x0
2a12

)
Eα,β,1

(
a11tα, a22tβ

)
+

(
x1

1a11 + x1
2a12

)
tEα,β,2

(
a11tα, a22tβ

)
+ g1(t) + a11

∫ t

0
(t − τ)α−1Eα,β,α

(
a11(t − τ)α, a22(t − τ)β

)
g1(τ) dτ

+ a12

∫ t

0
(t − τ)β−1Eα,β,β

(
a11(t − τ)α, a22(t − τ)β

)
g2(τ) dτ, (4.9)

a11x1 + a12x2 + g1(t) = a11x0
1 + a11

(
x0

1a11 + x0
2a12

)
tαEα,β,α+1

(
a11tα, a22tβ

)
+ x1

1a11t + a11

(
x1

1a11 + x1
2a12

)
tα+1Eα,β,α+2

(
a11tα, a22tβ

)
+

a11

Γ(α)

∫ t

0
(t − τ)α−1g1(τ) dτ

+ a11a11

∫ t

0
(t − τ)2α−1Eα,β,2α

(
a11(t − τ)α, a22(t − τ)β

)
g1(τ) dτ

+ a11a12

∫ t

0
(t − τ)α+β−1Eα,β,α+β

(
a11(t − τ)α, a22(t − τ)β

)
g2(τ) dτ

+ a12x0
2 + a12

(
x0

1a21 + x0
2a22

)
tβEα,β,β+1

(
a11tα, a22tβ

)
+ x1

2a12t + a12

(
x1

1a21 + x1
2a22

)
tβ+1Eα,β,β+2

(
a11tα, a22tβ

)
+ a12a21

∫ t

0
(t − τ)α+β−1Eα,β,α+β

(
a11(t − τ)α, a22(t − τ)β

)
g1(τ) dτ

+
a12

Γ(β)

∫ t

0
(t − τ)β−1g2(τ) dτ

+ a12a22

∫ t

0
(t − τ)2β−1Eα,β,2β

(
a11(t − τ)α, a22(t − τ)β

)
g2(τ) dτ + g1(t). (4.10)

In order to verify the LHS (i.e. Eq (4.9)) is equal to RHS (i.e. Eq (4.10)) for the first equation
in (1.1), we will compare the terms containing x0

1, x0
2, x1

1, x1
2, g1(τ) and g2(τ). First, we take part of

(4.10) involving x0
1 to prove its equivalence with the corresponding x0

1 term in (4.9). Since A = 1, then
a11a22 = a12a21 which yields

x0
1

(
a11 + a2

11tαEα,β,α+1

(
a11tα, a22tβ

)
+ a12a21tβEα,β,β+1

(
a11tα, a22tβ

) )
= x0

1a11

(
1 + a11tαEα,β,α+1

(
a11tα, a22tβ

)
+ a22tβEα,β,β+1

(
a11tα, a22tβ

) )
= x0

1a11

(
1 +

∞∑
p=0

∞∑
q=0

ap+1
11 aq

22tpα+qβ+α

Γ(pα + qβ + α + 1)

(
p + q

q

)
+

∞∑
p=0

∞∑
q=0

ap
11aq+1

22 tpα+qβ+β

Γ(pα + qβ + β + 1)

(
p + q

q

) )

= x0
1a11

(
1 +

∞∑
p=1

∞∑
q=0

ap
11aq

22tpα+qβ

Γ(pα + qβ + 1)

(
p + q − 1

q

)
+

∞∑
p=0

∞∑
q=1

ap
11aq

22tpα+qβ

Γ(pα + qβ + 1)

(
p + q − 1

q − 1

) )

= x0
1a11

(
1 +

∞∑
p=1

ap
11tpα

Γ(pα + 1)
+

∞∑
q=1

aq
22tqβ

Γ(qβ + 1)
+

∞∑
p=1

∞∑
q=1

ap
11aq

22tpα+qβ

Γ(pα + qβ + 1)

[ (
p + q − 1

q

)
+

(
p + q − 1

q − 1

) ])
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= x0
1a11

( ∞∑
p=0

∞∑
q=0

ap
11aq

22tpα+qβ

Γ(pα + qβ + 1)

(
p + q

q

) )
= x0

1a11Eα,β,1
(
a11tα, a22tβ

)
. (4.11)

Indeed, the above expression can be obtained via Lemma 2. Hence, using a similar approach, we
have the proof for the terms with x0

2 as follows:

x0
2a12

(
1 + a11tαEα,β,α+1

(
a11tα, a22tβ

)
+ a22tβEα,β,β+1

(
a11tα, a22tβ

) )
= x0

2a12Eα,β,1
(
a11tα, a22tβ

)
.

(4.12)

Similarity, for the terms with x1
1 and x1

2, the LHS is equal to the RHS since we have

x1
1a11t + a11

(
x1

1a11 + x1
2a12

)
tα+1Eα,β,α+2

(
a11tα, a22tβ

)
+ x1

2a12t

+ a12

(
x1

1a21 + x1
2a22

)
tβ+1Eα,β,β+2

(
a11tα, a22tβ

)
=

(
x1

1a11 + x1
2a12

)
tEα,β,2

(
a11tα, a22tβ

)
.

(4.13)

For the terms containing g1(τ) and g2(τ), using Lemma 2 and A = 1, we show that it is equivalent via
the following equations.

a11

Γ(α)

∫ t

0
(t − τ)α−1g1(τ) dτ

+ a2
11

∫ t

0
(t − τ)2α−1Eα,β,2α

(
a11(t − τ)α, a22(t − τ)β

)
g1(τ) dτ

+ a12a21

∫ t

0
(t − τ)α+β−1Eα,β,α+β

(
a11(t − τ)α, a22(t − τ)β

)
g1(τ) dτ

= a11

∫ t

0
(t − τ)α−1Eα,β,α

(
a11(t − τ)α, a22(t − τ)β

)
g1(τ) dτ,

(4.14)

and

a12

(
1
Γ(β)

∫ t

0
(t − τ)β−1g2(τ) dτ

+ a11

∫ t

0
(t − τ)α+β−1Eα,β,α+β

(
a11(t − τ)α, a22(t − τ)β

)
g2(τ) dτ

+ a22

∫ t

0
(t − τ)2β−1Eα,β,2β

(
a11(t − τ)α, a22(t − τ)β

)
g2(τ) dτ

)
= a12

∫ t

0
(t − τ)β−1Eα,β,β

(
a11(t − τ)α, a22(t − τ)β

)
g2(τ) dτ.

(4.15)

Theorem 2 is verified since the Eq (4.9) is equivalent to Eq (4.10) for each of the terms containing
x0

1, x0
2, x1

1, x1
2, g1(τ) and g2(τ).
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4.2. The a11 = 0 case

We have emphasized that a11 and a22 are not equal to zero in Theorem 1. However, we can still make
assumption for these special cases. For the case a11 = 0, we consider α, β ∈ (1, 2). The incommensurate
fractional differential equation system (1.1) is now given by

CDαx1(t) = a12x2(t) + g1(t),
CDβx2(t) = a21x1(t) + a22x2(t) + g2(t), (4.16)

with the same initial conditions as (1.1).
Since a11 = 0, we use Eq (3.18) which makes it double series when j = 0, yielding

x1(t) = x0
1 + x0

1

∞∑
k=0

∞∑
m=0

ak+1
12 ak+1

21 am
22t(k+1)α+(m+k+1)β

Γ((k + 1)α + (m + k + 1)β + 1)
(k + m)!

k!m!

+ x1
1t + x1

1

∞∑
k=0

∞∑
m=0

ak+1
12 ak+1

21 am
22t(k+1)α+(m+k+1)β+1

Γ((k + 1)α + (m + k + 1)β + 2)
(k + m)!

k!m!

+ x0
2

∞∑
k=0

∞∑
m=0

ak+1
12 ak

21am
22t(k+1)α+(m+k)β

Γ((k + 1)α + (m + k)β + 1)
(k + m)!

k!m!

+ x1
2

∞∑
k=0

∞∑
m=0

ak+1
12 ak

21am
22t(k+1)α+(m+k)β+1

Γ((k + 1)α + (m + k)β + 2)
(k + m)!

k!m!

+
1
Γ(α)

∫ t

0
(t − τ)α−1g1(τ) dτ

+

∞∑
k=0

∞∑
m=0

ak+1
12 ak+1

21 am
22

∫ t

0
(t − τ)(k+2)α+(m+k+1)β−1g1(τ) dτ

Γ((k + 2)α + (m + k + 1)β)
(k + m)!

k!m!

+

∞∑
k=0

∞∑
m=0

ak+1
12 ak

21am
22

∫ t

0
(t − τ)(k+1)α+(m+k+1)β−1g2(τ) dτ

Γ((k + 1)α + (m + k + 1)β)
(k + m)!

k!m!
. (4.17)

Rewriting the above equation using bivariate Mittag-Leffler function yields

x1(t) = x0
1 + x0

1a12a21tα+βEα+β,β,α+β+1

(
a12a21tα+β, a22tβ

)
+ x1

1t + x1
1a12a21tα+β+1Eα+β,β,α+β+2

(
a12a21tα+β, a22tβ

)
+ x0

2a12tαEα+β,β,α+1

(
a12a21tα+β, a22tβ

)
+ x1

2a12tα+1Eα+β,β,α+2

(
a12a21tα+β, a22tβ

)
+

1
Γ(α)

∫ t

0
(t − τ)α−1g1(τ) dτ

+ a12a21

∫ t

0
(t − τ)2α+β−1Eα+β,β,2α+β

(
a12a21(t − τ)α+β, a22(t − τ)β

)
g1(τ) dτ

+ a12

∫ t

0
(t − τ)α+β−1Eα+β,β,α+β

(
a12a21(t − τ)α+β, a22(t − τ)β

)
g2(τ) dτ. (4.18)

Since a11 = 0, the x2(t) solution can be obtained directly from the first equation of (4.16). By
rearranging the first equation of (4.16), we obtain
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x2(t) =
CDαx1(t)

a12
−

g1(t)
a12

=
1

a12

(
x0

1a12a21tβEα+β,β,β+1

(
a12a21tα+β, a22tβ

)
+ x1

1a12a21tβ+1Eα+β,β,β+2

(
a12a21tα+β, a22tβ

)
+ x0

2a12Eα+β,β,1
(
a12a21tα+β, a22tβ

)
+ x1

2a12tEα+β,β,2
(
a12a21tα+β, a22tβ

)
+ g1(t)

+ a12a21

∫ t

0
(t − τ)α+β−1Eα+β,β,α+β

(
a12a21(t − τ)α+β, a22(t − τ)β

)
g1(τ) dτ

+ a12

∫ t

0
(t − τ)β−1Eα+β,β,β

(
a12a21(t − τ)α+β, a22(t − τ)β

)
g2(τ) dτ

)
−

g1(t)
a12
. (4.19)

Using Lemma 1, and since our α, β > 1, we obtain the x2(t) as follows:

x2(t) = x0
1a21tβEα+β,β,β+1

(
a12a21tα+β, a22tβ

)
+ x1

1a21tβ+1Eα+β,β,β+2

(
a12a21tα+β, a22tβ

)
+ x0

2Eα+β,β,1
(
a12a21tα+β, a22tβ

)
+ x1

2tEα+β,β,2
(
a12a21tα+β, a22tβ

)
+ a21

∫ t

0
(t − τ)α+β−1Eα+β,β,α+β

(
a12a21(t − τ)α+β, a22(t − τ)β

)
g1(τ) dτ

+

∫ t

0
(t − τ)β−1Eα+β,β,β

(
a12a21(t − τ)α+β, a22(t − τ)β

)
g2(τ) dτ. (4.20)

Hence, we can obtain the following theorem.

Theorem 3. For special case a11 = 0, the system (1.1) can be written as

CDαx1(t) = a12x2(t) + g1(t),
CDβx2(t) = a21x1(t) + a22x2(t) + g2(t),

and the explicit analytical solution of the above system with initial conditions x1(0) = x0
1, x2(0) = x0

2,
x′1(0) = x1

1, x′2(0) = x1
2 is given by:

x1(t) = x0
1 + x0

1a12a21tα+βEα+β,β,α+β+1

(
a12a21tα+β, a22tβ

)
+ x1

1t + x1
1a12a21tα+β+1Eα+β,β,α+β+2

(
a12a21tα+β, a22tβ

)
+ x0

2a12tαEα+β,β,α+1

(
a12a21tα+β, a22tβ

)
+ x1

2a12tα+1Eα+β,β,α+2

(
a12a21tα+β, a22tβ

)
+

1
Γ(α)

∫ t

0
(t − τ)α−1g1(τ) dτ

+ a12a21

∫ t

0
(t − τ)2α+β−1Eα+β,β,2α+β

(
a12a21(t − τ)α+β, a22(t − τ)β

)
g1(τ) dτ

+ a12

∫ t

0
(t − τ)α+β−1Eα+β,β,α+β

(
a12a21(t − τ)α+β, a22(t − τ)β

)
g2(τ) dτ,

(4.21)
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x2(t) = x0
1a21tβEα+β,β,β+1

(
a12a21tα+β, a22tβ

)
+ x1

1a21tβ+1Eα+β,β,β+2

(
a12a21tα+β, a22tβ

)
+ x0

2Eα+β,β,1
(
a12a21tα+β, a22tβ

)
+ x1

2tEα+β,β,2
(
a12a21tα+β, a22tβ

)
+ a21

∫ t

0
(t − τ)α+β−1Eα+β,β,α+β

(
a12a21(t − τ)α+β, a22(t − τ)β

)
g1(τ) dτ

+

∫ t

0
(t − τ)β−1Eα+β,β,β

(
a12a21(t − τ)α+β, a22(t − τ)β

)
g2(τ) dτ.

(4.22)

Proof: The theorem can be checked by substituting the solutions into the second equation of (4.16).
For the LHS, take the fractional derivative for Eq (4.22) and use Lemma 1, which yields

CDβx2(t) = x0
1a21Eα+β,β,1

(
a12a21tα+β, a22tβ

)
+ x1

1a21tEα+β,β,2
(
a12a21tα+β, a22tβ

)
+ x0

2
CDβ

[
Eα+β,β,1

(
a12a21tα+β, a22tβ

)]
+ x1

2
CDβ

[
tEα+β,β,2

(
a12a21tα+β, a22tβ

)]
+ a21

∫ t

0
(t − τ)α−1Eα+β,β,α

(
a12a21(t − τ)α+β, a22(t − τ)β

)
g1(τ) dτ

+ CDβ
[∫ t

0
(t − τ)β−1Eα+β,β,β

(
a12a21(t − τ)α+β, a22(t − τ)β

)
g2(τ) dτ

]
.

(4.23)

For the RHS, substitute Eqs (4.21) and (4.22) into the second equation of (4.16) yields

a21x1(t) + a22x2(t) + g2(t)

= x0
1a21

(
1 + a12a21tα+βEα+β,β,α+β+1

(
a12a21tα+β, a22tβ

))
+ x1

1a21t
(
1 + a12a21tα+βEα+β,β,α+β+2

(
a12a21tα+β, a22tβ

))
+ x0

2a12a21tαEα+β,β,α+1

(
a12a21tα+β, a22tβ

)
+ x1

2a12a21tα+1Eα+β,β,α+2

(
a12a21tα+β, a22tβ

)
+

a21

Γ(α)

∫ t

0
(t − τ)α−1g1(τ) dτ

+ a12a2
21

∫ t

0
(t − τ)2α+β−1Eα+β,β,2α+β

(
a12a21(t − τ)α+β, a22(t − τ)β

)
g1(τ) dτ

+ a12a21

∫ t

0
(t − τ)α+β−1Eα+β,β,α+β

(
a12a21(t − τ)α+β, a22(t − τ)β

)
g2(τ) dτ

+ x0
1a21a22tβEα+β,β,β+1

(
a12a21tα+β, a22tβ

)
+ x1

1a21a22tβ+1Eα+β,β,β+2

(
a12a21tα+β, a22tβ

)
+ x0

2a22Eα+β,β,1
(
a12a21tα+β, a22tβ

)
+ x1

2a22tEα+β,β,2
(
a12a21tα+β, a22tβ

)
+ a21a22

∫ t

0
(t − τ)α+β−1Eα+β,β,α+β

(
a12a21(t − τ)α+β, a22(t − τ)β

)
g1(τ) dτ

+ a22

∫ t

0
(t − τ)β−1Eα+β,β,β

(
a12a21(t − τ)α+β, a22(t − τ)β

)
g2(τ) dτ.

(4.24)

Similar approach will be employed in proving Theorem 2, where we will be comparing one by one
of the terms containing x0

1, x0
2, x1

1, x1
2, g1(τ) and g2(τ). First, for the parts involving x0

1, x1
1 and g1(t),

by using Lemma 2, we prove Eq (4.24) to be equivalent as those corresponding parts in Eq (4.23) as
follows:
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x0
1a21

(
1 + a12a21tα+βEα+β,β,α+β+1

(
a12a21tα+β, a22tβ

)
+ a22tβEα+β,β,β+1

(
a12a21tα+β, a22tβ

))
= x0

1a21

1 + ∞∑
m=1

∞∑
n=0

am
12am

21an
22tmα+mβ+nβ

(
m+n−1

n

)
Γ(mα + mβ + nβ + 1)

+

∞∑
m=0

∞∑
n=1

am
12am

21an
22tmα+mβ+nβ

(
m+n−1

n−1

)
Γ(mα + mβ + nβ + 1)


= x0

1a21Eα+β,β,1
(
a12a21tα+β, a22tβ

)
, (4.25)

x1
1a21t

(
1 + a12a21tα+βEα+β,β,α+β+2

(
a12a21tα+β, a22tβ

)
+ a22tβEα+β,β,β+2

(
a12a21tα+β, a22tβ

))
= x1

1a21t

1 + ∞∑
m=1

∞∑
n=0

am
12am

21an
22tmα+mβ+nβ

(
m+n−1

n

)
Γ(mα + mβ + nβ + 2)

+

∞∑
m=0

∞∑
n=1

am
12am

21an
22tmα+mβ+nβ

(
m+n−1

n−1

)
Γ(mα + mβ + nβ + 2)


= x1

1a21tEα+β,β,2
(
a12a21tα+β, a22tβ

)
, (4.26)

a21

[
1
Γ(α)

∫ t

0
(t − τ)α−1g1(τ) dτ

+ a12a21

∫ t

0
(t − τ)2α+β−1Eα+β,β,2α+β

(
a12a21(t − τ)α+β, a22(t − τ)β

)
g1(τ) dτ

+ a22

∫ t

0
(t − τ)α+β−1Eα+β,β,α+β

(
a12a21(t − τ)α+β, a22(t − τ)β

)
g1(τ) dτ

]
= a21

[
1
Γ(α)

∫ t

0
(t − τ)α−1g1(τ) dτ

+

∞∑
m=0

∞∑
n=0

am+1
12 am+1

21 an
22

∫ t

0
(t − τ)mα+mβ+nβ+2α+β−1g1(τ) dτ

(
m+n

n

)
Γ(mα + mβ + nβ + 2α + β)

+

∞∑
m=0

∞∑
n=0

am
12am

21an+1
22

∫ t

0
(t − τ)mα+mβ+nβ+α+β−1g1(τ) dτ

(
m+n

n

)
Γ(mα + mβ + nβ + α + β)

]
= a21

[
1
Γ(α)

∫ t

0
(t − τ)α−1g1(τ) dτ

+

∞∑
m=1

∞∑
n=0

am
12am

21an
22

∫ t

0
(t − τ)mα+mβ+nβ+α−1g1(τ) dτ

(
m+n−1

n

)
Γ(mα + mβ + nβ + α)

+

∞∑
m=0

∞∑
n=1

am
12am

21an
22

∫ t

0
(t − τ)mα+mβ+nβ+α−1g1(τ) dτ

(
m+n−1

n−1

)
Γ(mα + mβ + nβ + α)

]
= a21

[
1
Γ(α)

∫ t

0
(t − τ)α−1g1(τ) dτ

+

∞∑
m=1

am
12am

21

∫ t

0
(t − τ)mα+mβ+α−1g1(τ) dτ

Γ(mα + mβ + α)
+

∞∑
n=1

an
22

∫ t

0
(t − τ)nβ+α−1g1(τ) dτ

Γ(nβ + α)
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+

∞∑
m=1

∞∑
n=1

am
12am

21an
22

∫ t

0
(t − τ)mα+mβ+nβ+α−1g1(τ) dτ

[(
m+n−1

n

)
+

(
m+n−1

n−1

)]
Γ(mα + mβ + nβ + α)

]
= a21

∫ t

0
(t − τ)α−1Eα+β,β,α

(
a12a21(t − τ)α+β, a22(t − τ)β

)
g1(τ) dτ. (4.27)

Meanwhile, for x0
2, x1

2 and g2(t) parts, we proceed the proving from (4.23) as follows:

x0
2

CDβ
[
Eα+β,β,1

(
a12a21tα+β, a22tβ

)]
= x0

2

∞∑
m,n=0

(m,n),(0,0)

am
12am

21an
22tmα+mβ+nβ−β

(
m+n

n

)
Γ(mα + mβ + nβ − β + 1)

= x0
2

[ ∞∑
m=1

∞∑
n=0

am
12am

21an
22tmα+mβ+nβ−β

(
m+n−1

n

)
Γ(mα + mβ + nβ − β + 1)

+

∞∑
m=0

∞∑
n=1

am
12am

21an
22tmα+mβ+nβ−β

(
m+n−1

n−1

)
Γ(mα + mβ + nβ − β + 1)

]

= x0
2

[ ∞∑
m=0

∞∑
n=0

am+1
12 am+1

21 an
22t(m+1)α+mβ+nβ

(
m+n

n

)
Γ((m + 1)α + mβ + nβ + 1)

+

∞∑
m=0

∞∑
n=0

am
12am

21an+1
22 tmα+mβ+nβ

(
m+n

n

)
Γ(mα + mβ + nβ + 1)

]
= x0

2

(
a12a21tαEα+β,β,α+1

(
a12a21tα+β, a22tβ

)
+ a22Eα+β,β,1

(
a12a21tα+β, a22tβ

))
, (4.28)

x1
2

CDβ
[
tEα+β,β,2

(
a12a21tα+β, a22tβ

)]
= x1

2

∞∑
m,n=0

(m,n),(0,0)

am
12am

21an
22tmα+mβ+nβ−β+1

(
m+n

n

)
Γ(mα + mβ + nβ − β + 2)

= x1
2

[ ∞∑
m=1

∞∑
n=0

am
12am

21an
22tmα+mβ+nβ−β+1

(
m+n−1

n

)
Γ(mα + mβ + nβ − β + 2)

+

∞∑
m=0

∞∑
n=1

am
12am

21an
22tmα+mβ+nβ−β+1

(
m+n−1

n−1

)
Γ(mα + mβ + nβ − β + 2)

]

= x1
2

[ ∞∑
m=0

∞∑
n=0

am+1
12 am+1

21 an
22t(m+1)α+mβ+nβ+1

(
m+n

n

)
Γ((m + 1)α + mβ + nβ + 2)

+

∞∑
m=0

∞∑
n=0

am
12am

21an+1
22 tmα+mβ+nβ+1

(
m+n

n

)
Γ(mα + mβ + nβ + 2)

]
= x1

2

(
a12a21tα+1Eα+β,β,α+2

(
a12a21tα+β, a22tβ

)
+ a22tEα+β,β,2

(
a12a21tα+β, a22tβ

))
, (4.29)

CDβ
[∫ t

0
(t − τ)β−1Eα+β,β,β

(
a12a21(t − τ)α+β, a22(t − τ)β

)
g2(τ) dτ

]
=

∞∑
m,n=0

(m,n),(0,0)

am
12am

21an
22

∫ t

0
(t − τ)mα+mβ+nβ−1g2(τ) dτ

(
m+n

n

)
Γ(mα + mβ + nβ)

=

∞∑
m=1

∞∑
n=0

am
12am

21an
22

∫ t

0
(t − τ)mα+mβ+nβ−1g2(τ) dτ

(
m+n−1

n

)
Γ(mα + mβ + nβ)
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+

∞∑
m=0

∞∑
n=1

am
12am

21an
22

∫ t

0
(t − τ)mα+mβ+nβ−1g2(τ) dτ

(
m+n−1

n−1

)
Γ(mα + mβ + nβ)

=

∞∑
m=0

∞∑
n=0

am+1
12 am+1

21 an
22

∫ t

0
(t − τ)mα+mβ+nβ+α+β−1g2(τ) dτ

(
m+n

n

)
Γ((mα + mβ + nβ + α + β)

+

∞∑
m=0

∞∑
n=0

am
12am

21an+1
22

∫ t

0
(t − τ)mα+mβ+nβ+β−1g2(τ) dτ

(
m+n

n

)
Γ(mα + mβ + nβ + β)

= a12a21

∫ t

0
(t − τ)α+β−1Eα+β,β,α+β

(
a12a21(t − τ)α+β, a22(t − τ)β

)
g2(τ) dτ

+ a22

∫ t

0
(t − τ)β−1Eα+β,β,β

(
a12a21(t − τ)α+β, a22(t − τ)β

)
g2(τ) dτ. (4.30)

Since all the terms in Eqs (4.23) and (4.24) are equivalent, the solution of the system (4.16) is
verified.

4.3. The a22 = 0 case

For the case a22 = 0, we consider α, β ∈ (1, 2). The incommensurate fractional differential equation
system (1.1) is now given by

CDαx1(t) = a11x1(t) + a12x2(t) + g1(t),
CDβx2(t) = a21x1(t) + g2(t),

(4.31)

with the same initial conditions as in Eq (1.1).
For the case a22 = 0, using similar approach from the previous subsection, we obtain the following

solution

x1(t) = x0
1Eα+β,α,1

(
a12a21tα+β, a11tα

)
+ x1

1tEα+β,α,2
(
a12a21tα+β, a11tα

)
+ x0

2a12tαEα+β,α,α+1

(
a12a21tα+β, a11tα

)
+ x1

2a12tα+1Eα+β,α,α+2

(
a12a21tα+β, a11tα

)
+

∫ t

0
(t − τ)α−1g1(τ)Eα+β,α,α

(
a12a21(t − τ)α+β, a11(t − τ)α

)
dτ

+ a12

∫ t

0
(t − τ)α+β−1g2(τ)Eα+β,α,α+β

(
a12a21(t − τ)α+β, a11(t − τ)α

)
dτ, (4.32)

x2(t) = x0
1a21tβEα+β,α,β+1

(
a12a21tα+β, a11tα

)
+ x1

1a21tβ+1Eα+β,α,β+2

(
a12a21tα+β, a11tα

)
+ x0

2 + x0
2a12a21tα+βEα+β,α,α+β+1

(
a12a21tα+β, a11tα

)
+ x1

2t + x1
2a12a21tα+β+1Eα+β,α,α+β+2

(
a12a21tα+β, a11tα

)
+ a21

∫ t

0
(t − τ)α+β−1g1(τ)Eα+β,α,α+β

(
a12a21(t − τ)α+β, a11(t − τ)α

)
dτ
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+
1
Γ(β)

∫ t

0
(t − τ)β−1g2(τ) dτ

+ a12a21

∫ t

0
(t − τ)α+2β−1g2(τ)Eα+β,α,α+2β

(
a12a21(t − τ)α+β, a11(t − τ)α

)
dτ. (4.33)

4.4. The a11 = 0 and a22 = 0 case

For the case a11 = 0 and a22 = 0, we consider α, β ∈ (1, 2). The incommensurate fractional
differential equation system (1.1) is now given by

CDαx1(t) = a12x2(t) + g1(t),
CDβx2(t) = a21x1(t) + g2(t),

(4.34)

with the same initial conditions as in Eq (1.1).
For the case a11 = 0 and a22 = 0, using similar approach from the previous subsection, we obtain

the following solution,

x1(t) = x0
1Eα+β

(
a12a21tα+β

)
+ x1

1tEα+β,2
(
a12a21tα+β

)
+ x0

2a12tαEα+β,α+1

(
a12a21tα+β

)
+ x1

2a12tα+1Eα+β,α+2

(
a12a21tα+β

)
+

∫ t

0
(t − τ)α−1g1(τ)Eα+β,α

(
a12a21(t − τ)α+β

)
dτ

+ a12

∫ t

0
(t − τ)α+β−1g2(τ)Eα+β,α+β

(
a12a21(t − τ)α+β

)
dτ,

(4.35)

x2(t) = x0
1a21tβEα+β,β+1

(
a12a21tα+β

)
+ x1

1a21tβ+1Eα+β,β+2

(
a12a21tα+β

)
+ x0

2Eα+β
(
a12a21tα+β

)
+ x1

2tEα+β,2
(
a12a21tα+β

)
+ a21

∫ t

0
(t − τ)α+β−1g1(τ)Eα+β,α+β

(
a12a21(t − τ)α+β

)
dτ

+

∫ t

0
(t − τ)β−1g2(τ)Eα+β,β

(
a12a21(t − τ)α+β

)
dτ.

(4.36)

5. Examples

This section illustrates an explicit analytical solution for the incommensurate fractional differential
system for order α, β ∈ (1, 2) using the theorems that we had derived in previous sections. Four
examples will be presented using Theorems 1–3, respectively, for the case of a11 = 0 and a22 = 0.

Example 1. Consider the following incommensurate linear fractional differential equation system d3/2 x1
dt3/2

d4/3 x2
dt4/3

 = (
3 2
1 2

) (
x1

x2

)
+

(
2t
−4t

)
, (5.1)

with respect to the initial conditions x1(0) = 3/2, x′1(0) = 2, x2(0) = 2 and x′2(0) = 3.

AIMS Mathematics Volume 7, Issue 2, 2281–2317.
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Solution: Using Theorem 1, the explicit analytical solution is obtained as follows:

x1(t) =
3
2

E 3
2

(
2t

3
2
)
+ 2tE 3

2 ,2

(
2t

3
2
)
+ 2t

5
2 E 3

2 ,
7
2

(
2t

3
2
)

+
3
2

∞∑
p=0

∞∑
q=0

3p2qt
3p
2 +

4q
3 +

3
2

Γ
(

3p
2 +

4q
3 +

5
2

) (p + 1)2F1

(
−p, 1 − q; 2;

1
3

)

+ 2
∞∑

p=0

∞∑
q=0

3p2qt
3p
2 +

4q
3 +

5
2

Γ
(

3p
2 +

4q
3 +

7
2

) (p + 1)2F1

(
−p, 1 − q; 2;

1
3

)

+ 4
∞∑

p=0

∞∑
q=0

3p2qt
3p
2 +

4q
3 +

3
2

Γ
(

3p
2 +

4q
3 +

5
2

) 2F1

(
−p,−q; 1;

1
3

)

+ 6
∞∑

p=0

∞∑
q=0

3p2qt
3p
2 +

4q
3 +

5
2

Γ
(

3p
2 +

4q
3 +

7
2

) 2F1

(
−p,−q; 1;

1
3

)

+ 2
∞∑

p=0

∞∑
q=0

3p2qt
3p
2 +

4q
3 +4

Γ
(

3p
2 +

4q
3 + 5

) (p + 1)2F1

(
−p, 1 − q; 2;

1
3

)

− 8
∞∑

p=0

∞∑
q=0

3p2qt
3p
2 +

4q
3 +

23
6

Γ
(

3p
2 +

4q
3 +

29
6

) 2F1

(
−p,−q; 1;

1
3

)
, (5.2)

x2(t) = 2E 4
3

(
4
3

t
4
3

)
+ 3tE 4

3 ,2

(
4
3

t
4
3

)
− 4t

7
3 E 4

3 ,
10
3

(
4
3

t
4
3

)
+

4
3

∞∑
p=0

∞∑
q=0

3p2qt
3p
2 +

4q
3 +

4
3

Γ
(

3p
2 +

4q
3 +

7
3

) (q + 1)2F1

(
1 − p,−q; 2;

1
3

)

+ 2
∞∑

p=0

∞∑
q=0

3p2qt
3p
2 +

4q
3 +

7
3

Γ( 3p
2 +

4q
3 +

10
3 )

(q + 1)2F1

(
1 − p,−q; 2;

1
3

)

+
3
2

∞∑
p=0

∞∑
q=0

3p2qt
3p
2 +

4q
3 +

4
3

Γ( 3p
2 +

4q
3 +

7
3 )

2F1

(
−p,−q; 1;

1
3

)

+ 2
∞∑

p=0

∞∑
q=0

3p2qt
3p
2 +

4q
3 +

7
3

Γ( 3p
2 +

4q
3 +

10
3 )

2F1

(
−p,−q; 1;

1
3

)

+ 2
∞∑

p=0

∞∑
q=0

3p2qt
3p
2 +

4q
3 +

23
6

Γ( 3p
2 +

4q
3 +

29
6 )

2F1

(
−p,−q; 1;

1
3

)

−
8
3

∞∑
p=0

∞∑
q=0

3p2qt
3p
2 +

4q
3 +

11
3

Γ( 3p
2 +

4q
3 +

14
3 )

(q + 1)2F1

(
1 − p,−q; 2;

1
3

)
. (5.3)

Example 2. Consider the following incommensurate linear fractional differential equation systemd3/2 x1
dt3/2

d4/3 x2
dt4/3

 = (
3/2 3
1 2

) (
x1

x2

)
+

(
cos(t)

et

)
, (5.4)
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with respect to the initial conditions x1(0) = 3, x′1(0) = −1, x2(0) = 1 and x′2(0) = 2.

Solution: This example is the case when A = 1. Hence, using Theorem 2, we have the following
explicit analytical solution

x1(t) = 3 − t +
15
2

t
3
2 E 3

2 ,
4
3 ,

5
2

(
3
2

t
3
2 , 2t

4
3

)
+

9
2

t
5
2 E 3

2 ,
4
3 ,

7
2

(
3
2

t
3
2 , 2t

4
3

)
+

1
Γ( 3

2 )

∫ t

0
(t − τ)

1
2 cos(τ) dτ

+
3
2

∫ t

0
(t − τ)2E 3

2 ,
4
3 ,3

(
3
2

(t − τ)
3
2 , 2(t − τ)

4
3

)
cos(τ) dτ

+ 3
∫ t

0
(t − τ)

11
6 E 3

2 ,
4
3 ,

17
6

(
3
2

(t − τ)
3
2 , 2(t − τ)

4
3

)
eτ dτ

= 3 − t +
15
2

t
3
2 E 3

2 ,
4
3 ,

5
2

(
3
2

t
3
2 , 2t

4
3

)
+

9
2

t
5
2 E 3

2 ,
4
3 ,

7
2

(
3
2

t
3
2 , 2t

4
3

)
+

√
t

3Γ( 3
2 )

[
3 sin(t) 1F2

(
1
4

;
1
2
,

5
4

;
−t2

4

)
− t cos(t) 1F2

(
3
4

;
3
2
,

7
4

;
−t2

4

)]

+
3
2

∞∑
p,q=0

(
3
2

)p
(2)q

Γ
(

3p
2 +

4q
3 + 4

) (p + q)!
p!q!

t
3p
2 +

4q
3 +3

1F2

(
1;

3p
4
+

2q
3
+ 2,

3p
4
+

2q
3
+

5
2

;
−t2

4

)

+ 3et
∞∑

p,q=0

(
3
2

)p
(2)q

Γ
(

3p
2 +

4q
3 +

17
6

) γ (3p
2
+

4q
3
+

17
6
, t
)
, (5.5)

x2(t) = 1 + 2t + 5t
4
3 E 3

2 ,
4
3 ,

7
3

(
3
2

t
3
2 , 2t

4
3

)
+ 3t

7
3 E 3

2 ,
4
3 ,

10
3

(
3
2

t
3
2 , 2t

4
3

)
+

1
Γ(4

3 )

∫ t

0
(t − τ)

1
3 eτ dτ

+

∫ t

0
(t − τ)

11
6 E 3

2 ,
4
3 ,

17
6

(
3
2

(t − τ)
3
2 , 2(t − τ)

4
3

)
cos(τ) dτ

+ 2
∫ t

0
(t − τ)

5
3 E 3

2 ,
4
3 ,

8
3

(
3
2

(t − τ)
3
2 , 2(t − τ)

4
3

)
eτ dτ

= 1 + 2t + 5t
4
3 E 3

2 ,
4
3 ,

7
3

(
3
2

t
3
2 , 2t

4
3

)
+ 3t

7
3 E 3

2 ,
4
3 ,

10
3

(
3
2

t
3
2 , 2t

4
3

)
+

et

Γ(4
3 )
γ

(
4
3
, t
)

+

∞∑
p,q=0

(1.5)p (2)q t
9p+8q+17

6
(p + q)!

p!q!

[
1

Γ
(

9p+8q+23
6

) − t2
1F2

(
1; 9p+8q+35

12 , 9p+8q+41
12 ; −t2

4

)
Γ
(

9p+8q+35
6

) ]

+ 2et
∞∑

p,q=0

(
3
2

)p
(2)q

Γ
(

3p
2 +

4q
3 +

8
3

) γ (3p
2
+

4q
3
+

8
3
, t
)
. (5.6)

Example 3. Consider the following incommensurate linear fractional differential equation system d1.2 x1
dt1.2

d1.5 x2
dt1.5

 = (
0 1
5 1

) (
x1

x2

)
+

(
t + et

e2t

)
, (5.7)

with respect to the initial conditions x1(0) = 1, x′1(0) = Γ(1.8), x2(0) = 1 and x′2(0) = 3.
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Solution: Since a11 = 0, Theorem 3 will be applied. For sake of simplicity, we present this solution
using decimal numbers. This example have the following explicit analytical solution

x1(t) = 1 + tΓ(1.8) + 5t2.7E2.7,1.5,3.7

(
5t2.7, t1.5

)
+ 5Γ(1.8)t3.7E2.7,1.5,4.7

(
5t2.7, t1.5

)
+ t1.2E2.7,1.5,2.2

(
5t2.7, t1.5

)
+ 3t2.2E2.7,1.5,3.2

(
5t2.7, t1.5

)
+

1
Γ(1.2)

∫ t

0
(t − τ)0.2 (τ + eτ) dτ

+ 5
∫ t

0
(t − τ)2.9E2.7,1.5,3.9

(
5(t − τ)2.7, (t − τ)1.5

)
(τ + eτ) dτ

+

∫ t

0
(t − τ)1.7E2.7,1.5,2.7

(
5(t − τ)2.7, (t − τ)1.5

)
e2τ dτ

= 1 + tΓ(1.8) + 5t2.7E2.7,1.5,3.7

(
5t2.7, t1.5

)
+ 5Γ(1.8)t3.7E2.7,1.5,4.7

(
5t2.7, t1.5

)
+ t1.2E2.7,1.5,2.2

(
5t2.7, t1.5

)
+ 3t2.2E2.7,1.5,3.2

(
5t2.7, t1.5

)
+

t2.2

Γ(3.2)
+

etγ(1.2, t)
Γ(1.2)

+ 5t4.9E2.7,1.5,5.9

(
5t2.7, t1.5

)
+ 5et

∞∑
p,q=0

5p γ(2.7p + 1.5q + 3.9, t)
Γ(2.7p + 1.5q + 3.9)

+ e2t
∞∑

p,q=0

5pγ(2.7p + 1.5q + 2.7, 2t)
22.7p+1.5q+2.7Γ(2.7p + 1.5q + 2.7)

,

(5.8)

x2(t) = 5t1.5E2.7,1.5,2.5

(
5t2.7, t1.5

)
+ 5Γ(1.8)t2.5E2.7,1.5,3.5

(
5t2.7, t1.5

)
+ E2.7,1.5,1

(
5t2.7, t1.5

)
+ 3tE2.7,1.5,2

(
5t2.7, t1.5

)
+ 5

∫ t

0
(t − τ)1.7E2.7,1.5,2.7

(
5(t − τ)2.7, (t − τ)1.5

)
(τ + eτ) dτ

+

∫ t

0
(t − τ)0.5E2.7,1.5,1.5

(
5(t − τ)2.7, (t − τ)1.5

)
e2τ dτ

= 5t1.5E2.7,1.5,2.5

(
5t2.7, t1.5

)
+ 5Γ(1.8)t2.5E2.7,1.5,3.5

(
5t2.7, t1.5

)
+ E2.7,1.5,1

(
5t2.7, t1.5

)
+ 3tE2.7,1.5,2

(
5t2.7, t1.5

)
+ 5t3.7E2.7,1.5,4.7

(
5t2.7, t1.5

)
+ 5et

∞∑
p,q=0

5p γ(2.7p + 1.5q + 2.7, t)
Γ(2.7p + 1.5q + 2.7)

+ e2t
∞∑

p,q=0

5pγ(2.7p + 1.5q + 1.5, 2t)
22.7p+1.5q+1.5Γ(2.7p + 1.5q + 1.5)

.

(5.9)

Example 4. Consider the following incommensurate linear fractional differential equation systemd1.2 x1
dt1.2

d1.6 x2
dt1.6

 = (
0 3
−1 0

) (
x1

x2

)
+

(
2.5t0.8 − 9t
Γ (0.8) t2

)
, (5.10)

with respect to the initial conditions x1(0) = 2, x′1(0) = 0, x2(0) = −6 and x′2(0) = 3.

Solution: Since a11 = a22 = 0, applying the result presented in subsection 4.4 and with the help from
Eq (2.9), we have the following explicit analytical solution

x1(t) = 2E2.8

(
−3t2.8

)
− 18t1.2E2.8,2.2

(
−3t2.8

)
+ 9t2.2E2.8,3.2

(
−3t2.8

)
+ 2.5Γ(1.8)t2E2.8,3

(
−3t2.8

)
− 9t2.2E2.8,3.2

(
−3t2.8

)
+ 3Γ(0.8)t4.8E2.8,5.8

(
−3t2.8

)
,

(5.11)
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x2(t) = − 2t1.6E2.8,2.6

(
−3t2.8

)
− 6E2.8

(
−3t2.8

)
+ 3tE2.8,2

(
−3t2.8

)
− 2.5Γ(1.8)t3.6E2.8,4.6

(
−3t2.8

)
+ 9t3.8E2.8,4.8

(
−3t2.8

)
+ Γ(0.8)t3.6E2.8,4.6

(
−3t2.8

)
.

(5.12)

The solution of this example is shown in Figure 1. For the purpose of validate the solution (i.e.
LHS equal to RHS of the problem), we can find the LHS via fractional derivative of these x1(t) and
x2(t) for the desired order (i.e. in this example, are 1.2 and 1.6 respectively). Meanwhile for the RHS,
substitute the solution x1(t) and x2(t) in the RHS of problem. If the analytical expression is too lengthy,
we suggest to plot the both sides up to desired power. We use Maple to perform all the computation.

Figure 1. Solution x1(t) and x2(t) for Example 4.

6. Conclusions

This paper has successfully derived the explicit analytical solution of linear incommensurate
fractional differential equation systems with fractional order 1 < α, β < 2. Using the new theorems,
analytical solutions are obtained, and we presented them via some examples. This paper serves as an
extension of the similar result recently achieved in [1, 19], which limited to fractional order
0 < α, β < 1. Moreover, the analytical solution obtained in this paper may enable us to investigate
more rigorously the stability analysis and asymptotic stability for incommensurate fractional
differential equation systems with fractional order 1 < α, β < 2, especially when this kind of
incommensurate system may be more suitable to represent the real-world applications such as
COVID-19 [38], cancer modelling, fluid flows problems. It may also be extended to higher order in
the future. Explicit analytical solution for higher order (i.e. α, β > 2) incommensurate fractional
differential equation systems may be obtained using a similar approach.
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36. C. Kürt, M. A. Özarslan, A. Fernandez, On a certain bivariate Mittag-Leffler function analysed
from a fractional-calculus point of view, Math. Methods Appl. Sci., 44 (2021), 2600–2620. doi:
10.1002/mma.6324.

37. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential
equations, Vol. 204, Elsevier, 2006.

38. A. A. Hamou, E. Azroul, Z. Hammouch, A. Lamrani alaoui, On dynamics of fractional
incommensurate model of Covid-19 with nonlinear saturated incidence rate, medRxiv, 2021. doi:
10.1101/2021.07.18.21260711.

© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 2, 2281–2317.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Caputo fractional derivative
	Mittag-Leffler function

	Main result
	Some special cases
	The A=1 case
	The a11=0 case
	The a22=0 case
	The a11=0 and a22=0 case

	Examples
	Conclusions

