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1. Introduction

The matrix equation are often encountered in the control and system fields [1, 2]. For example,
one should solve the Sylvester matrix equation in the fields of the analysis and synthesis dynamic
control systems [3, 4]. Various strategies have been suggested to solve these linear matrix equations.
In the engineering and control fields, the time-variant matrix equations are often encountered [5, 6].
For example, the state equations of the linear time-variant system are time-varying. To control the
robot manipulators, we need to solve the time-varying equations in the robot kinematics [7–9]. In this
manuscript, we focus our energy on how to solve the following generalized linear time-varying matrix
equation:

A(t)X(t)B(t) + C(t)XT(t)D(t) = F(t), (1.1)

where A(t), B(t),C(t), D(t), F(t) ∈ Rn×n are the time-varying coefficient matrices and the X(t) ∈ Rn×n

is the unknown time-varying matrix to be determined.
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The zeroing neural network (shorted for ZNN) method is a very active topic in the fields of control
and engineering [10, 11] and automatic control field [12–14]. This method can achieve the global and
exponential convergence. Due to this important convergence property of the ZNN method, based on
the Lyapunov stable theory, the ordinary different equation theory and the Laplace transform theory,
three different convergence approaches were established [15–18]. The ZNN method or the improved
ZNN method can be used to solve a variety of matrix inversions or matrix equations. For example, the
complex matrix Drazin inverse was discussed [19], the time-varying Sylvester matrix equations were
solved [20–22] and the time-varying matrix square root was determined [23]. Using the ZNN method,
the QR decomposition of the complex value matrix can be done and this decomposition can be used to
track a robotic motion [7, 24, 25].

Due to the exponential convergence and robustness in dealing with the time-varying equation,
the ZNN method has acquired some new developments. Based on the ZNN method, the varying-
parameter recurrent neural-network method for solving online time-varying matrix equations has
been established [26, 27] and the super-exponential convergence was proved. This varying-parameter
recurrent zeroing neural network has been succeed in dealing with the complex Sylvester matrix
equation [28] and quadratic programming problems [29]. In this paper, we use the ZNN method to
solve Eq (1.1). First, we construct a ZNN model to solve Eq (1.1) and the convergence analysis
is offered. Second, with an activation function, the predefined-time convergence property and noise
suppression model is suggested and the convergence proof is presented. Third, to illustrate the efficacy
of the suggested methods, two numerical experiments are offered. The main contributions of this paper
can be emphasized as follows:

• Zeroing neural network model for solving linear time-varying matrix equation (1.1) is constructed
and the convergence proof is offered.
• The predefined-time convergence property is discussed and the noise suppression model is

suggested.
• Two numerical experiments are given to verify the effectiveness of the suggested models.

The remainder of this paper is organized as follows: Two preliminary lemmas and the analytical
time-varying solution of Eq (1.1) are presented in Section 2. Section 3 offers the ZNN model for
solving this time-varying linear matrix equation (1.1). Section 4 discusses the role of the activation
function and the predefined-time convergence property of the ZNN model. Two numerical experiments
are offered in Section 5 to illustrate the efficacy of the suggested models. Section 6 ends this note with
some concluding remarks.

The following notation is used in the paper. Symbols φ̇(t) and dφ(t)
dt denote the derivative of φ(t) in

the argument t. In represents an identity matrix of size n × n. O denotes a zero matrix with proper
size. For a real square matrix tr(A) represents the trace function, the Fobenious norm ‖A‖F is defined
by formula ‖A‖2F = tr(AT A). A ⊗ B stands for the Kronecker product of matrices A = (ai j) and B
by formula

A ⊗ B = (ai jB), i = 1, 2, · · · ,m, j = 1, 2, · · · , n.

col[A] denotes the vectorization operator of matrix A by defining col[A] = [αT
1,α

T
2, · · · ,α

T
n]T, where

A = [α1,α2, · · · ,αn].
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2. Preliminary work and the analytical solution

In this section, we give two preliminary lemmas [30] and the analytical solution of Eq (1.1).

Lemma 1. Let A(t) ∈ Rm×n, B(t) ∈ Rn×p and C(t) ∈ Rp×q. Then

col[A(t)B(t)C(t)] = [CT(t) ⊗ A(t)]col[B(t)].

Let ein denote an n-dimensional unit column vector which has 1 in the ith position and 0’s
elsewhere, i.e.,

ein := [0, 0, · · · , 0, 1, 0, · · · , 0]T.

Define the vec-permutation matrix

Pmn :=


Im ⊗ eT

1n
Im ⊗ eT

2n
...

Im ⊗ eT
nn

 ∈ Rmn×mn,

based on the definition of the vec-permutation matrix, we obtain the conclusion PT
mn = Pnm and the

following conclusion.

Lemma 2. For any matrix A ∈ Rm×n, it can be proved that

col[AT
m×n] = Pnmcol[Am×n].

For example, let

A2×3 =

[
a11 a12 a13

a21 a22 a23

]
and P32 =

[
I3 ⊗ eT

12
I3 ⊗ eT

22

]
=



1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1


,

it can be verified that colAT
23 = P32colA23 is right.

Using Lemmas 1 and 2, Eq (1.1) can be rewritten as

[BT(t) ⊗ A(t)]col[X(t)] + [DT(t) ⊗ C(t)]col[XT(t)] = col[F(t)],
[BT(t) ⊗ A(t)]col[X(t)] + [DT(t) ⊗ C(t)]Pnncol[X(t)] = col[F(t)],{
BT(t) ⊗ A(t) + [DT(t) ⊗ C(t)]Pnn

}
col[X(t)] = col[F(t)].

If the coefficient matrix BT(t) ⊗ A(t) + [DT(t) ⊗ C(t)]Pnn is invertible, then the exact solution of
Eq (1.1) is

col[X(t)] =
{
BT(t) ⊗ A(t) + [DT(t) ⊗ C(t)]Pnn

}−1 col[F(t)]. (2.1)

This conclusion will be used in the numerical experiments section.
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3. ZNN model for the time-varying linear matrix equation

In this section, we use the ZNN method to design a model to solve Eq (1.1). We use X(t) to denote
the neural state solution and introduce the time-varying error function matrix Φ(t) by defining

Φ(t) := A(t)X(t)B(t) + C(t)XT(t)D(t) − F(t). (3.1)

The ZNN method for solving Eq (1.1) is

dΦ(t)
dt

= −γΦ(t), (3.2)

where γ > 0 is a design parameter. To reduce the convergence time and improve the convergence
performance, an activation function version ZNN model is

dΦ(t)
dt

= −γF (Φ(t)), (3.3)

where F (Φ(t)) represents an activation function array with f (φi j(t)) as its entries. Ordinary speaking,
the activation function f (∗) is monotonous increasing odd function. Next, we establish ZNN model for
solving Eq (1.1).

Taking the derivative of Φ(t) gives

dΦ(t)
dt

=
dA(t)

dt
X(t)B(t) + A(t)

dX(t)
dt

B(t) + A(t)X(t)
dB(t)

dt
+

dC(t)
dt

XT(t)D(t)

+C(t)
dXT(t)

dt
D(t) + C(t)XT(t)

dD(t)
dt
−

dF(t)
dt

. (3.4)

Substituting Eqs (3.1) and (3.4) into Eq (3.2) gives

dA(t)
dt

X(t)B(t) + A(t)
dX(t)

dt
B(t) + A(t)X(t)

dB(t)
dt

+
dC(t)

dt
XT(t)D(t)

+C(t)
dXT(t)

dt
D(t) + C(t)XT(t)

dD(t)
dt
−

dF(t)
dt

=−γ
[
A(t)X(t)B(t) + C(t)XT(t)D(t) − F(t)

]
. (3.5)

With a proper manipulation gives

A(t)
dX(t)

dt
B(t) + C(t)

dXT(t)
dt

D(t) (3.6)

= −γ
[
A(t)X(t)B(t) + C(t)XT(t)D(t) − F(t)

]
−

{dA(t)
dt

X(t)B(t) + A(t)X(t)
dB(t)

dt
+

dC(t)
dt

XT(t)D(t)

+C(t)XT(t)
dD(t)

dt
−

dF(t)
dt

}
. (3.7)

Setting

Ψ(t) :=
dA(t)

dt
X(t)B(t) + A(t)X(t)

dB(t)
dt

+
dC(t)

dt
XT(t)D(t) + C(t)XT(t)

dD(t)
dt
−

dF(t)
dt
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and using the formula
col[A(t)X(t)B(t)] = [BT(t) ⊗ A(t)]col[X(t)],

Eq (3.6) can be rewritten as

[BT(t) ⊗ A(t)]col
[
dX(t)

dt

]
+ [DT(t) ⊗ C(t)]col

[
dXT(t)

dt

]
= −γcol[Φ(t)] − col[Ψ(t)]. (3.8)

Referring to Lemma 2, Eq (3.8) can be rewritten as

[BT(t) ⊗ A(t) +
(
DT(t) ⊗ C(t)

)
Pnn]col

[
dX(t)

dt

]
= −γcol[Φ(t)] − col[Ψ(t)]. (3.9)

The activation function version ZNN model (3.9) is

[BT(t) ⊗ A(t) +
(
DT(t) ⊗ C(t)

)
Pnn]col

[
dX(t)

dt

]
= −γF {col[Φ(t)]} − col[Ψ(t)]. (3.10)

The convergence proof of models (3.9) and (3.10) is given by the following theorem.

Theorem 1. Suppose that the design parameter γ is a positive number, ZNN model (3.10) is global
asymptotic convergent.

Proof. Obviously, ZNN model equation (3.9) is a special case of Eq (3.10) when the activation function
is the linear function.

We use the Lyapunov stable theory to prove the global asymptotic convergence of model (3.10). By
introducing the Lyapunov energy function ε(t) := 1

2‖Φ(t)‖2F. Due to the definitions of the Frobenius
norm and the matrix trace, we have

ε(t) =
1
2
‖Φ(t)‖2F =

1
2

[
φ2

11(t) + φ2
12(t) + · · · + φ2

1n + · · · + φ2
nn(t)

]
=

1
2

tr
[
ΦT(t)Φ(t)

]
.

To calculate the derivative of the energy function ε(t), we get

ε̇(t) = [φ11(t)φ̇11(t) + φ12(t)φ̇12(t) + · · · + φ1n(t)φ̇1n(t) + · · · + φnn(t)φ̇nn(t)]

= tr
[
ΦT(t)

dΦ(t)
dt

]
. (3.11)

Using ZNN model dΦ(t)
dt = −γF (Φ(t)) in Eq (3.11) gives

ε̇(t) = tr
[
ΦT(t)

dΦ(t)
dt

]
= −γtr

[
ΦT(t)F (Φ(t))

]
=−γ

n∑
i=1

n∑
j=1

φi j(t) f [φi j(t)].

Because the entries f [φi j(t)], i, j = 1, 2, · · · , n are the continuous monotonous increasing odd
functions, we get

φi j(t) f [φi j(t)] > 0 ∀φi j(t) , 0, , i, j = 1, 2, · · · , n.
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Due to the Lyapunov stability theory [31–33], if ‖Φ(t)‖F = 0 then the neural state matrix X(t) is the
exact solution of Eq (3.10). If ‖Φ(t)‖F > 0 then ε̇(t) < 0 and this denotes that ‖Φ(t)‖F monotonically
decreasing and converges to the global asymptotic stable point. That is, we have ‖Φ(t)‖2F = 0 or
the neural state matrix X(t) will converge to the exact solution of Eq (3.10). It means that ZNN
model (3.10) is global asymptotic convergent. Note that model (3.9) is the special case of model (3.10).
We complete the proof. �

Finding the solutions of matrix equations and coupled matrix equations are very related to deriving
the identification algorithms of dynamical systems for their parameter estimation [34–36]. For some
identification problems, minimizing a criterion function about the differences between the system
outputs and the model outputs leads to a matrix equation. Based on the optimization techniques
and the obtained matrix equations about the parameter estimation, we can derive the gradient-based
identification algorithms, the least squares identification algorithms and the Newton identification
algorithms. In the numerical section, we will illustrate the effectiveness of model (3.9) by numerical
experiments.

4. Activation function and predefined-time convergence

In the practical control work, the noise should be suppressed [37, 38]. To suppress the noise, some
activation functions were introduced [39, 40] and the related theoretical analysis were presented. In
this section, we use an activation function to obtain the predefined-time time convergence property
[8, 9] and to reduce the influence of the noise. We mainly refer to [39, 40] in reasoning the following
conclusion, for more detailed discussion and more effective conclusion, one can refer to [41–44].
Referring to [39], we have the following result.

Lemma 3. Let α > 0, β > 0, 0 < p < 1 and q > 1 be some constant parameters, the following dynamic
nonlinear inequality system

V̇(t) 6 −αV p(x(t)) − βVq(x(t))

is globally predefined-time stable and the setting time is bounded by

Tmax =
1

α(1 − p)
+

1
β(q − 1)

.

The following universal activation function was first presented in [39].

f (x) = (k1|x|p + k2|x|q) × sgn(x) + k3x + k4sgn(x), 0 < p < 1, q > 1, k1, k2 > 0, k3, k4 > 0. (4.1)

Here, sgn(x) denotes the signal function. Using this activation function, the predefined-time ZNN
model can be obtained.

In the practical work, some different noises can be emerged in the system, a noise version of
Eq (3.10) is

[BT(t) ⊗ A(t) +
(
DT(t) ⊗ C(t)

)
Pnn]col

[
dX(t)

dt

]
= −γF {col[Φ(t)]} − col[Ψ(t)] + co[Y(t)].

Here, the matrix Y(t) represents the noise matrix. Referring to [39] and using the universal activation
function (4.1), one can prove that ZNN model (4.2) is effective and the predefined-time is bounded by

1
γk1(1 − p)

+
1

γk2(q − 1)
.
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Theorem 2. Suppose that the exact solution matrix X∗(t) is derivable and the noise matrix Y(t) =

[yi j(t)] ∈ Rn×n satisfies |yi j(t)| 6 δ, where δ ∈ (0,+∞). If the universal activation function is used with
γk4 > δ then for any initial neural state solution matrix X(0) the neural state stable matrix X(t) of
model (4.2) will converge to the exact solution X∗(t) of Eq (1.1) in predefined-time tc. Here, tc satisfies

tc 6
1

γk1(1 − p)
+

1
γk2(q − 1)

.

Proof. Using error function (3.1) and activation function (4.1), the noise-perturbed ZNN model

Φ̇(t) = −γF (Φ(t)) + Y(t)

entry-wisely consists n2 sub-autonomous systems

φ̇i j(t) = −γ f (φi j(t)) + yi j(t), i, j = 1, 2, · · · , n, (4.2)

where φ̇i j(t), φi j(t) and yi j(t) are the i jth entry of matrix Φ̇(t), Φ(t) and Y(t) respectively.
Setting the Lyapunov energy function as u(t) = |φi j(t)|2 for the sub-autonomous system (4.2) and

computing the time derivative of u(t) gives

u̇(t) = 2φi j(t)φ̇i j(t) = 2φi j(t)
[
−γ f (φi j(t) + yi j(t)

]
=−2γφi j(t) f (φi j(t) + 2φi j(t)yi j(t). (4.3)

Substituting Eq (4.1) into Eq (4.3) and with proper operations gives

u̇(t) =−2γφi j(t) f [φi j(t)] + 2φi j(t)yi j(t)
=−2γφi j(t)[(k1|φi j(t)|p + k2|φi j(t)|q) × sgn(φi j(t))

+k3φi j(t) + k4sgn(φi j(t))] + 2φi j(t)yi j(t)

=−2γ
[
k1|φi j(t)|p+1 + k2|φi j(t)|q+1

]
− 2γk3|φi j(t)|2 + 2

[
φi j(t)yi j(t) − γk4|φi j(t)|

]
6−2γ

[
k1|φi j(t)|p+1 + k2|φi j(t)|q+1

]
+ 2

[
|φi j(t)||yi j(t)| − γk4|φi j(t)|

]
6−2γ

[
k1|φi j(t)|p+1 + k2|φi j(t)|q+1

]
+ 2

[
δ|φi j(t)| − γk4|φi j(t)|

]
6−2γ

[
k1|φi j(t)|p+1 + k2|φi j(t)|q+1

]
+ 2(δ − γk4)|φi j(t)|

6−2γ
[
k1|φi j(t)|p+1 + k2|φi j(t)|q+1

]
=−2γ[k1u

p+1
2 (t) + k2u

q+1
2 (t)]. (4.4)

Using Lemma 3, we get the convergence time of the i jth sub-system (4.2) is

ti j 6
1

2γk1

(
1 − p+1

2

) +
1

2γk2

(
q+1

2 − 1
) =

1
γk1(1 − p)

+
1

γk2(q − 1)
. (4.5)

Because the time ti j depends on the parameter γ of the ZNN model and the parameters k1, k2, p, q
of the activation function and does not depend on any initial value X(0), the convergence time of
model (4.2) is

tc 6
1

γk1(1 − p)
+

1
γk2(q − 1)

. (4.6)
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Thus, we complete the proof.
Referring to [39], a similar work can prove that ZNN model (3.10) has the same convergence time

upper bound, we omit it here. Theorem 2 shows that the predefined-time is independent of the initial
values for a class of systems. We will verify this fact in the numerical section.

5. Numerical examples

In this section, we verify the effectiveness of the suggested ZNN models by giving two numerical
examples. The strategy of choosing the coefficient matrices is inspired by [20, 26].
Example 1. We use ZNN model (3.9) to solve the time-varying matrix equation (1.1). We take

A(t) =

[
sin(t) + 3 − cos(t)

cos(t) sin(t) + 5

]
, B(t) =

[
sin(t) + 2 cos(t)
− cos(t) sin(t) + 3

]
,

C(t) =

[
sin(t) − cos(t)
cos(t) sin(t)

]
, D(t) = X∗(t) =

[
sin(t) cos(t)
− cos(t) sin(t)

]
,

F(t) := A(t)X(t)B(t) + C(t)[X∗(t)]T D(t)

as the coefficient matrices.
In this numerical experiment, we take the design parameter γ = 10 and the initial neural state

matrix X(0) = i × I2, i = 1, 2, 3, respectively, and use model (3.9) to solve time-varying nonlinear
matrix equation (1.1).

To illustrate the convergence trajectory, we use

X(t) =

[
x11(t) x12(t)
x21(t) x22(t)

]
to denote the neural state solution, and the convergence trajectories of xi j(t) are shown in Figure 1. The
red curves denote trajectories of the true solution matrix X∗(t). We use

δ1(t) := ‖A(t)X(t)B(t) + C(t)XT(t)D(t) − F(t)‖F

to denote the Frobenius norm of the absolute error matrix, the trajectory of ln δ1(t) is shown in Figure 2.
These two figures show that ZNN model (3.9) is efficacious for solving nonlinear matrix equation (1.1).

From Figure 1, we find that the trajectories of xi j(t) converge fast and neural state matrix X(t)
converges to the time-varying solution matrix X∗(t) exactly. Figure 2 shows that ln δ1(t) fluctuates
between −6 and −8 as the time t greater than 1 second. In the numerical experiment, if we set γ = 100,
then convergence precision will be improved greatly. This shows that the convergence behavior of the
absolute error norm δ1(t) will be dominated by some random factors when it converges to a certain
degree. How to explain the perturbation behavior of this stage requires further study.
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Figure 1. The convergence of model (3.8).
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Figure 2. ln δ1(t) versus time t.

To illustrate the effectiveness of the noise-perturbed ZNN model (4.2), we set Y(t) = sin(t)I2 as the
noise matrix and use model (4.2) to solve Eq (1.1). Here, we set the related parameters as

k1 = k2 = k3 = k4 = 1, p = 0.5, q = 2.

Using these parameters, the upper bound of the predefined-time convergence time is

Tmax =
1

γk1(1 − p)
+

1
γk2(q − 1)

=
1

10(1 − 0.5)
+

1
10(2 − 1)

= 0.3.
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The convergence index δ1(t) is shown in Figure 3. Figure 3 shows that the theoretical predefined
convergence time conforms to the practical convergence time. Although the predefined convergence
time is 0.3 second, on the computer testing, we find that there much more time are consumed due to
the computation of the activation function.
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Figure 3. The convergence of models (4.2) and (3.9).

Example 2. Set F(t) =

[
sin(t) + 9 0

0 sin(t) + 10

]
. The other initial conditions are the same as

Example 1, we use ZNN model (3.9) to solve Eq (1.1). The convergence performance of the neural
state matrix X(t) is shown in Figure 4. We use δ2(t) to denote the absolute error Frobenius matrix norm
of this example and δ2(t) shares the same definition of δ1(t), the natural logarithm of the absolute error
Frobenius matrix norm ln δ2(t) versus the time t is shown in Figure 5.
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Figure 4. The convergence of model (3.9).
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Figure 5. ln δ2(t) versus time t.

From Figure 4, we find that every entries of the neural state matrix X(t) converge to some fixed
time-varying functions fast. This means the neural state matrix X(t) converge to the solution matrix
X∗(t). From Figure 5, we find that the absolute error logarithm goes to −8 fast about 2 seconds. These
shows that the ZNN model (3.9) is effective in solving the time-varying linear matrix equation (1.1).

6. Conclusions

To solve the linear time-varying matrix equation A(t)X(t)B(t) + C(t)XT(t)D(t) = F(t), the zeroing
neural network model is constructed. The convergence proof is given and the predefined-time
convergence property and noise suppression technique are discussed. Two numerical examples are
offered to illustrate the efficacy of the suggested models. Although we have proven that the Frobenius
norm of the absolute error matrix is monotonic decreasing, the numerical experiments show that
the convergence behavior will be dominated by some random factors when the absolute error norm
decreasing to certain degree. We will study this fluctuation in the future. The proposed algorithms in
this paper can combine other estimation methods to explore new iterative solution algorithms of some
linear and nonlinear matrix equations and of the parameter estimation for dynamical systems and can
be applied to other literatures such as signal processing and system modeling.
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