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1. Introduction

The financial crisis will have a great impact on the economic order of China and even the whole
world. During the past several decades, the international financial crises have continually burst out and
spread to many countries or regions quickly. For example, “tequila crisis” of Latin American countries
in 1994, “Russian virus” in 1998, and the financial crises of Southeast Asian in 1997, etc. [1]. The
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financial crises is very harmful and will lead to great disorder of economic development. Thus it is an
important task for us to deal with the various financial models to reveal their inherent change law in
order to control vicious economic development and serve human beings. At present, there are many
valuable works on all kinds of finance models. For example, Yu et al. [2] reported the bifurcation
and its control issue for a hyperchaotic finance model, Cao [3] investigated the chaos control of a
hyperchaotic finance model, Liao et al. [4] revealed the impact of policy lag on the Hopf bifurcation
and chaos for a macroeconomic model. For more related studies, one can see [5–11]

Hopf bifurcation is an important dynamical phenomenon in delayed systems. In particular, Hopf
bifurcation and its control in economic systems plays a vital role in maintaining economic stability and
virtuous circle of development. Thus it is important for us to explore this topic in economic or financial
models.

In 2011, Chen and Ying [1] investigated the following financial crises contagions model:
du1(t)

dt
= α − u1(t)u2

2(t),
du2(t)

dt
= u2(t)(−β + u1(t)u2(t)),

(1.1)

where u1, u2 denote the stock return rates of country I and country II, respectively, α > 0 represents
the increasing rate of the average stock returns of country I under the normal situation, and β > 0
represents the decreasing rate of the stock returns of country II. In details, one can see [1]. By virtue
of the stability theory of ordinary differential equation, Chen and Ying [1] systematically analyzed the
stability of different equilibrium points of model (1.1).

Considering that the stock return rate of country I is affected by the stock return rate of country II
during the past time and the stock return rate of country II is affected by the stock return rate of country
I during the past time, we think that it is more suitable for us to introduce the time delay into model
(1.1), then we can establish the following delayed financial crises contagions model:

du1(t)
dt

= α − u1(t)u2
2(t − σ),

du2(t)
dt

= u2(t)(−β + u1(t − σ)u2(t)),
(1.2)

where u1, u2 denote the stock return rates of country I and country II, respectively, α > 0 represents
the increasing rate of the average stock returns of country I under the normal situation, and β > 0
represents the decreasing rate of the stock returns of country II, σ is a delay.

From a mathematical point of view, fractional-order dynamical model is more efficient instrument
to describe the real financial phenomenon in economics than integer-order ones since fractional-order
dynamical model possesses the memory trait and hereditary peculiarity for all kinds of economic vari-
ables and inherent development process [12,17–23], Inspired by this idea, we modify the delayed
financial crises contagions model (1.2) as the following fractional-order form:

duµ1(t)
dtµ

= α − u1(t)u2
2(t − σ),

duµ2(t)
dtµ

= u2(t)(−β + u1(t − σ)u2(t)),
(1.3)
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where 0 < µ < 1 is a constant, u1, u2 denote the stock return rates of country I and country II, respec-
tively, α > 0 represents the increasing rate of the average stock returns of country I under the normal
situation, and β > 0 represents the decreasing rate of the stock returns of country II, σ is a delay. The
fractional-order financial crises contagions model (1.3) owns greater advantages in describing eco-
nomic laws than the integer-order ones and Hopf bifurcation property can effectively depict the stock
return rates of country I and country II. Motivated by this idea, we think that it is necessary to deal with
the Hopf bifurcation and its control issue for model (1.3). In particular, the key object is to discuss the
stability and Hopf bifurcation of system (1.3) and analyze the Hopf bifurcation control issue of system
(1.3). In addition, we still reveal the effect of delay on Hopf bifurcation of system (1.3).

The key contributions of this work are as follow: (1) A novel fractional-order delayed financial
crises contagions model is built. (2) A delay-independent sufficient condition guaranteeing the sta-
bility and the creation of Hopf bifurcation for the involved fractional-order delayed financial crises
contagions model is obtained. (3) A suitable delayed feedback controller is successfully designed to
control the Hopf bifurcation of the involved fractional-order delayed financial crises contagions model.

The work is arranged as follows. The requisite theory about fractional-order differential system is
prepared in Section 2. The delay-independent stability and bifurcation criteria remaining the stability
and the onset of Hopf bifurcation for fractional-order delayed financial crises contagions model are
built in Section 3. The delay-independent stability and bifurcation criteria maintaining the stability and
the onset of Hopf bifurcation for fractional-order delayed controlled financial crises contagions model
are built in Section 4. The computer simulations substantiating the studied key results are performed
in Section 5. The conclusion is drawn in Section 6.

2. Requisite knowledge

In this section, some necessary important definitions and lemmas about fractional-order dynamical
system are given.
Definition 2.1. [12] The fractional integral of order µ of the function g(η) is given by

Iµg(η) =
1

Γ(µ)

∫ η

η0

(η − s)µ−1g(s)ds,

where η ≥ η0, µ > 0, and Γ(s) =
∫ ∞

0
ηs−1e−ηdη denotes Gamma function.

Definition 2.2. [12] Let g(η) ∈ C([η0,∞),R). Define the Caputo fractional-order derivative of order µ
of g(η) as follows:

Dµg(η) =
1

Γ(l − µ)

∫ η

η0

g(m)(s)
(η − s)µ−m+1 ds,

where η ≥ η0 and m denotes a positive integer which satisfies m − 1 ≤ µ < m. Furthermore, when
0 < µ < 1, then

Dµg(η) =
1

Γ(1 − µ)

∫ η

η0

g
′

(s)
(η − s)µ

ds.

Definition 2.3. [13] For the given system:

Dµxl(t) = hl(xl(t)), l = 1, 2, · · · , k, (2.1)
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where µ ∈ (0, 1], xl(t) = (x1(t), x2(t), · · · , xk(t)), hl(t) = (h1(t), h2(t), · · · , hk(t)). If hl(x∗l ) = 0, then
(x∗1, x

∗
2, · · · , x

∗
k) is said to be the equilibrium point of system (2.1).

Lemma 2.1. [14] For the given fractional order system Dµy = Ly, y(0) = y0 where 0 < µ < 1, y ∈
Rk,L ∈ Rk×k. Assume that λh(h = 1, 2, · · · , k) is the root of the characteristic equation of Dµy = Ly.
Then system Dµy = Ly is said to be asymptotically stable⇔ |arg(λh)| > µπ

2 (h = 1, 2, · · · , k). Besides,
this system is said to be stable ⇔ |arg(λh)| > µπ

2 (h = 1, 2, · · · , k) and every critical eigenvalue that
satisfies |arg(λh)| = µπ

2 (h = 1, 2, · · · , k) has geometric multiplicity one.
Lemma 2.2. [15] For the given fractional order system Dµw(t) = T1w(t) + T2w(t − σ), where w(t) =

φ(t), t ∈ [−σ, 0], µ ∈ (0, 1],w ∈ Rn,T1,T2 ∈ Rn×n, µ ∈ R+(n×n). The characteristic equation of the system
can be expressed as det |sµI − T1 − T2e−sσ| = 0. Then the zero solution of the system is asymptotically
stable if each root of the equation det |sµI − T1 − T2e−sσ| = 0 owns negative real part.

3. Bifurcation of financial crises model (1.3)

In this section, we are to analyze the influence of time delayσ on Hopf bifurcation for the fractional-
order delayed financial crises contagions model (1.3).
Let (u1∗, u2∗) be the equilibrium point of model (1.3), then{

α − u1∗u2
2∗ = 0,

u2∗(−β + u1∗u2∗) = 0
(3.1)

It follows from (3.1) that system (1.3) has the unique positive equilibrium point U(u1∗, u2∗) where
u1∗ =

β2

α
, u2∗ = α

β
.

let {
ũ1(t) = u1(t) − u1∗,

ũ2(t) = u2(t) − u2∗,
(3.2)

then system (1.3) is expressed as the following form:
dũµ1(t)

dtµ
= α − (ũ1(t) + u1∗)(ũ2(t − σ) + u2∗)2,

dũµ2(t)
dtµ

= (ũ2(t) + u2∗)[−β + (ũ1(t − σ) + u1∗)(ũ2(t) + u2∗)].
(3.3)

The linear system of (3.3) near (0, 0) owns the expression:
dũµ1(t)

dtµ
= −u2

2∗ũ1(t) − 2u1∗u2∗ũ2(t − σ),
dũµ2(t)

dtµ
= u2

2∗ũ1(t − σ) + (2u1∗u2∗ − β)ũ2(t).
(3.4)

Let ui denote ũi(i = 1, 2), then system (3.4) becomes
duµ1(t)

dtµ
= −u2

2∗u1(t) − 2u1∗u2∗u2(t − σ),
duµ2(t)

dtµ
= u2

2∗u1(t − σ) + (2u1∗u2∗ − β)u2(t).
(3.5)
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The characteristic equation of Eq (3.5) is given by

det
[

sµ + u2
2∗ 2u1∗u2∗e−sσ

−u2
2∗e
−sσ sµ − (2u1∗u2∗ − β)

]
= 0, (3.6)

which leads to
s2µ + a1sµ + a2 + b1e−2sσ = 0, (3.7)

where 
a1 = u2

2∗ − 2u1∗u2∗ + β,

a2 = u2∗(β − 2u1∗u2∗),
b1 = 2u1∗u3

2∗.

(3.8)

Assume that
(K1) a1 > 0, a2 + b1 > 0

holds.
Lemma 3.1. For system (1.3), the positive equilibrium point U(u1∗, u2∗) is locally asymptotically stable
provided that (K1) holds true.
Proof. If σ = 0, then (3.7) becomes

λ2 + a1λ + a2 + b1 = 0. (3.9)

It follows from (K1) that every root λh of (3.7) satisfies |arg(λh)| > µπ

2 (h = 1, 2). By Lemma 3.1,
one knows that the positive equilibrium point U(u1∗, u2∗) is locally asymptotically stable. The proof
completes. �

Assume that s = iγ = γ
(
cos π

2 + i sin π
2

)
is a root of Eq. (3.7), then b1 cos 2γσ = −γ2µ cos γπ − a1γ

µ cos
γπ

2
− a2,

b1 sin 2γσ = −γ2µ sin γπ − a1γ
µ sin

γπ

2
.

(3.10)

According to (3.10), we have
cos 2γσ =

1
b1

[
−γ2µ cos γπ − a1γ

µ cos
γπ

2
− a2

]
,

sin 2γσ =
1
b1

[
−γ2µ sin γπ − a1γ

µ sin
γπ

2

]
.

(3.11)

and

b2
1 =

[
γ2µ cos γπ + a1γ

µ cos
γπ

2
+ a2

]2
+

[
γ2µ sin γπ + a1γ

µ sin
γπ

2

]2
, (3.12)

which leads to
γ4µ + ε1γ

3µ + ε2γ
2µ + ε3γ

µ + ε4 = 0 (3.13)

where 
ε1 = 2a1

(
cos γπ cos

γπ

2
+ sin γπ sin

γπ

2

)
,

ε2 = 2a2 cos γπ,
ε3 = 2a1a2 cos

γπ

2
,

ε4 = a2
2 − b2

1.

(3.14)
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Denote
Ψ(γ) = γ4µ + ε1γ

3µ + ε2γ
2µ + ε3γ

µ + ε4. (3.15)

Suppose that
(K2) a2

2 < b2
1.

By (K2), one derives ε4 < 0. Notice that dΨ(γ)
dγ > 0, for each γ > 0, then Eq (3.13) has at least one

positive real root. So, Eq (3.7) has at least a pair of purely roots.
Suppose that Eq (3.15) has four real roots (say γh > 0(h = 1, 2, 3, 4). By (3.11), we have

σl
h =

1
2γh

arccos
−γ2µ cos γπ − a1γ

µ cos γπ

2 − a2

b1

 + 2lπ
 , (3.16)

where l = 0, 1, 2, · · · , h = 1, 2, 3, 4. Let

γ0 = min
h=1,2,3,4

{γ0
h}, γ0 = γ|σ=σ0 . (3.17)

Assume that
(K3) Q1S1 + Q2S2 > 0,

where 
Q1 = 2µγ2µ−1

0 cos
(2µ − 1)π

2
+ µa1γ

µ−1
0 cos

(µ − 1)π
2

,

Q2 = 2µγ2µ−1
0 sin

(2µ − 1)π
2

+ µa1γ
µ−1
0 sin

(µ − 1)π
2

,

S1 = 2bγ0 sin 2γ0σ0,

S2 = 2bγ0 cos 2γ0σ0.

(3.18)

Lemma 3.2. Suppose that s(σ) = ρ1(σ) + iρ2(σ) is the root of (3.7) near σ = σ0 such that ρ1(σ0) =

0, ρ2(σ0) = γ0, then Re
[

ds
dσ

]
σ=σ0,γ=γ0

> 0.

Proof. It follows from (3.7) that(
2µs2µ−1 + µa1sµ−1

) ds
dσ
− 2b1e−2sσ

(
ds
dσ

σ + s
)

= 0. (3.19)

It follows from (3.19) that (
ds
dσ

)−1

=
2µs2µ−1 + µa1sµ−1

2sb1e−2sσ −
σ

s
, (3.20)

which leads to

Re
( ds

dσ

)−1 = Re
[
2µs2µ−1 + µa1sµ−1

2sb1e−2sσ

]
. (3.21)

Thus

Re
( ds

dσ

)−1
σ=σ0,γ=γ0

=
Q1S1 + Q2S2

S2
1 + S2

2

. (3.22)

Applying (K3), we have

Re
( ds

dσ

)−1
σ=σ0,γ=γ0

> 0, (3.23)
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which ends the proof. �

By means of the analysis above, the following assertion holds.
Theorem 3.1. If (K1)–(K3) are satisfied, then the positive equilibrium point (u1∗, u2∗) of system (1.3)
is locally asymptotically stable if 0 ≤ σ < σ0 and system (1.3) generates Hopf bifurcation around the
positive equilibrium point (u1∗, u2∗) when σ passes through the delay value σ0.

4. Bifurcation control for the financial crises model (1.3)

In this section, we are to analyze the influence of time delayσ on Hopf bifurcation for the fractional-
order delayed controlled financial crises contagions model. we design a time delay feedback controller
[16] which takes the form:

ξ(t) = θ[u1(t − σ) − u1(t)], (4.1)

where θ is feedback gain coefficient.
duµ1(t)

dtµ
= α − u1(t)u2

2(t − σ) + θ[u1(t − σ) − u1(t)],
duµ2(t)

dtµ
= u2(t)(−β + u1(t − σ)u2(t)),

(4.2)

Clearly, system (4.2) has the unique positive equilibrium point U(u1∗, u2∗) where u1∗ =
β2

α
, u2∗ = α

β
.

let {
ū1(t) = u1(t) − u1∗,

ū2(t) = u2(t) − u2∗,
(4.3)

then system (4.2) is expressed as the following form:
dūµ1(t)

dtµ
= α − (ū1(t) + u1∗)(ū2(t − σ) + u2∗)2 + θ[ū1(t − σ) − ū1(t)],

dūµ2(t)
dtµ

= (ū2(t) + u2∗)[−β + (ū1(t − σ) + u1∗)(ū2(t) + u2∗)].
(4.4)

The linear system of (4.4) near (0, 0) owns the expression:
dūµ1(t)

dtµ
= −(u2

2∗ + θ)ū1(t) + θū1(t − σ) − 2u1∗u2∗ū2(t − σ),
dūµ2(t)

dtµ
= u2

2∗ū1(t − σ) + (2u1∗u2∗ − β)ū2(t).
(4.5)

Let ui denote ūi(i = 1, 2), then system (4.5) becomes
duµ1(t)

dtµ
= −(u2

2∗ + θ)u1(t) + θu1(t − σ) − 2u1∗u2∗u2(t − σ),
duµ2(t)

dtµ
= u2

2∗u1(t − σ) + (2u1∗u2∗ − β)u2(t).
(4.6)

The characteristic equation of Eq (4.6) is given by

det
[

sµ + (u2
2∗ + θ) − θe−sσ 2u1∗u2∗e−sσ

−u2
2∗e
−sσ sµ − (2u1∗u2∗ − β)

]
= 0, (4.7)
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which leads to
s2µ + c1sµ + c2 − (sµ + d1)e−sσ + d2e−2sσ = 0, (4.8)

where 
c1 = u2

2∗ − 2u1∗u2∗ + β + θ,

c2 = (u2
2∗ − θ)(β − 2u1∗u2∗),

d1 = β − 2u1∗u2∗,

d2 = 2u1∗u3
2∗.

(4.9)

Assume that
(K4) c1 > 1, c2 − d1 + d2 > 0

holds.
Lemma 4.1. For system (4.2), the positive equilibrium point U(u1∗, u2∗) is locally asymptotically stable
provided that (K4) holds true.
Proof. If σ = 0, then (4.8) becomes

λ2 + (c1 − 1)λ + c2 − d1 + d2 = 0. (4.10)

It follows from (K4) that every root λ j of (4.8) satisfies |arg(λ j)| >
µπ

2 ( j = 1, 2). By Lemma 3.1,
one knows that the positive equilibrium point U(u1∗, u2∗) is locally asymptotically stable. The proof
completes. �

By (4.8), we have
(s2µ + c1sµ + c2)esσ − (sµ + d1) + d2e−sσ = 0. (4.11)

Let s = i% = %
(
cos π

2 + i sin π
2

)
be the root of Eq. (4.11), then{

m1 cos %σ − m2 sin %σ = m3,

n1 cos %σ + n2 sin %σ = n3,
(4.12)

where 

m1 = %2µ cos µπ + c1%
µ cos

µπ

2
+ c2 + d2,

m2 = %2µ sin µπ + c1%
µ sin

µπ

2
+ d2,

m3 = %µ cos
µπ

2
+ d1,

n1 = %2µ sin µπ + c1%
µ sin

µπ

2
,

n2 = %2µ cos µπ + c1%
µ cos

µπ

2
+ c2 − d2,

n3 = %µ sin
µπ

2
.

(4.13)

It follows from (4.12) that 
cos %σ =

m3n2 + n3m2

m1n2 + n1m2
,

sin %σ =
m1n3 − n1m3

m1n2 + n1m2
,

(4.14)

which leads to
(m1n2 + n1m2)2 = (m3n2 + n3m2)2 + (m1n3 − n1m3)2 . (4.15)
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For the convenience of calculation, we deal with this formula (4.13) properly. Let



ν1 = cos µπ,
ν2 = c1 cos

µπ

2
,

ν3 = c2 + d2,

ν4 = sin µπ,
ν5 = c1 sin

µπ

2
,

ν6 = d2,

ν7 = cos
µπ

2
,

ν8 = d1,

ν9 = sin µπ,
ν10 = c1 sin

µπ

2
,

ν11 = cos µπ,
ν12 = c1 cos

µπ

2
,

ν13 = c2 − d2,

ν14 = sin
µπ

2
.

(4.16)

then (4.13) becomes



m1 = ν1%
2µ + ν2%

µ + ν3,

m2 = ν4%
2µ + ν5%

µ + ν6,

m3 = ν7%
µ + ν8,

n1 = ν9%
2µ + ν10%

µ,

n2 = ν11%
2µ + ν12%

µ + ν13,

n3 = ν14%
µ.

(4.17)

Notice that



(m1n2 + n1m2)2 = ς1%
8µ + ς2%

7µ + ς3%
6µ + ς4%

5µ + ς5%
4µ

+ ς6%
3µ + ς7%

2µ + ς8%
µ + ς9,

(m3n2 + n3m2)2 = ς10%
6µ + ς11%

5µ + ς12%
4µ + ς13%

3µ

+ ς14%
2µ + ς15%

µ + ς16,

m1n3 − n1m3)2 = ς17%
6µ + ς18%

5µ + ς19%
4µ + ς20%

3µ + ς21%
2µ,

(4.18)
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where



ς1 = (ν1ν11 + ν4ν9)2,

ς2 = 2(ν1ν11 + ν4ν9)(ν1ν12 + ν2ν11 + ν5ν9 + ν4ν10),
ς3 = (ν1ν12 + ν2ν11 + ν5ν9 + ν4ν10)2

+ 2(ν1ν11 + ν4ν9)(ν1ν13 + ν2ν12

+ ν3ν11 + ν6ν9 + ν5ν10),
ς4 = 2(ν1ν11 + ν4ν9)(ν2ν13 + ν3ν12 + ν6ν10)

+ 2(ν1ν12 + ν2ν11 + ν5ν9 + ν4ν10)
× (ν1ν13 + ν2ν12 + ν3ν11 + ν6ν9 + ν5ν10),

ς5 = (ν1ν13 + ν2ν12 + ν3ν11 + ν6ν9 + ν5ν10)2

+ 2(ν1ν12 + ν2ν11 + ν5ν9 + ν4ν10)
× (ν2ν13 + ν3ν12 + ν6ν10)
+ 2ν3ν13(ν1ν11 + ν4ν9),

ς6 = 2(ν1ν13 + ν2ν12 + ν3ν11 + ν6ν9 + ν5ν10)
× (ν2ν13 + ν3ν12 + ν6ν10)
+ 2ν3ν13(ν1ν12 + ν2ν11 + ν5ν9 + ν4ν10),

ς7 = 2ν3ν13(ν1ν13 + ν2ν12 + ν3ν11 + ν6ν9 + ν5ν10)
+ (ν2ν13 + ν3ν12 + ν6ν10)2,

ς8 = 2ν3ν13(ν2ν13 + ν3ν12 + ν6ν10),
ς9 = (ν3ν13)2,

ς10 = (ν9ν11 + ν4ν14)2,

ς11 = 2(ν9ν11 + ν4ν14)(ν9ν12 + ν8ν11 + ν5ν14),
ς12 = (ν9ν11 + ν4ν14)2 + 2(ν9ν11 + ν4ν14)
× (ν9ν13 + ν8ν12 + ν6ν14),

ς13 = ν8ν13(ν9ν11 + ν4ν14) + 2(ν9ν13 + ν8ν12 + ν6ν14)
× (ν9ν12 + ν8ν11 + ν5ν14),

ς14 = (ν9ν13 + ν8ν12 + ν6ν14)2

+ ν8ν13(ν9ν12 + ν8ν11 + ν5ν14),
ς15 = ν8ν13(ν9ν12 + ν8ν11 + ν5ν14),
ς16 = (ν8ν13)2,

ς17 = (ν1ν14 − ν7ν9)2,

ς18 = 2(ν1ν14 − ν7ν9)(ν2ν14 − ν8ν9 − ν7ν10),
ς19 = 2(ν1ν14 − ν7ν9)(ν3ν14 − ν8ν10)

+ (ν2ν14 − ν8ν9 − ν7ν10)2,

ς20 = 2(ν3ν14 − ν8ν10)(ν2ν14 − ν8ν9 − ν7ν10),
ς21 = (ν3ν14 − ν8ν10)2.

(4.19)

By (4.15) and (4.18), we get

υ1%
8µ + υ2%

7µ + υ3%
6µ + υ4%

5µ + υ5%
4µ + υ6%

3µ + υ7%
2µ + υ8%

µ + υ9 = 0, (4.20)
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where 

υ1 = ς1,

υ2 = ς2,

υ3 = ς3 − ς10 − ς17,

υ4 = ς4 − ς11 − ς18,

υ5 = ς5 − ς12 − ς19,

υ6 = ς6 − ς13 − ς20,

υ7 = ς7 − ς14 − ς21,

υ8 = ς8 − ς15,

υ9 = ς9 − ς16.

(4.21)

Denote
Φ(%) = υ1%

8µ + υ2%
7µ + υ3%

6µ + υ4%
5µ + υ5%

4µ + υ6%
3µ + υ7%

2µ + υ8%
µ + υ9. (4.22)

Suppose that
(K5) ς9 < ς16.

By (K5), one derives υ9 < 0. Notice that dΦ(%)
d% > 0, for each % > 0, then Eq (4.20) has at least one

positive real root. So, Eq (4.11) has at least a pair of purely roots.
Suppose that Eq (4.11) owns eight real roots (say % j > 0( j = 1, 2, · · · , 8). By (4.14), we have

σi
j =

1
% j

[
arccos

(
m3n2 + n3m2

m1n2 + n1m2

)
+ 2iπ

]
, (4.23)

where i = 0, 1, 2, · · · , j = 1, 2, · · · , 8. Let

σ0 = min
j=1,2,··· ,8

{σ0
j}, %0 = %|σ=σ0 . (4.24)

Assume that
(K6) R1V1 + R2V2 > 0,

where 

R1 =

[
2µ%2µ−1

0 cos
(2µ − 1)π

2
+ µc1%

µ−1
0 cos

(µ − 1)π
2

]
cos %0σ0

−

[
2µ%2µ−1

0 sin
(2µ − 1)π

2
+ µc1%

µ−1
0 sin

(µ − 1)π
2

]
sin %0σ0

− µ%
µ−1
0 cos

(µ − 1)π
2

,

R2 =

[
2µ%2µ−1

0 cos
(2µ − 1)π

2
+ µc1%

µ−1
0 cos

(µ − 1)π
2

]
sin %0σ0

+

[
2µ%2µ−1

0 sin
(2µ − 1)π

2
+ µc1%

µ−1
0 sin

(µ − 1)π
2

]
cos %0σ0

− µ%
µ−1
0 sin

(µ − 1)π
2

,

V1 =

(
%

2µ
0 cos µπ + c1%

µ
0 cos

µπ

2
+ c2

)
%0 sin %0σ0 + d2%0 sin %0σ0

+

(
%

2µ
0 sin µπ + c1%

µ
0 sin

µπ

2
+ c2

)
%0 cos %0σ0,

V2 = −

(
%

2µ
0 cos µπ + c1%

µ
0 cos

µπ

2
+ c2

)
%0 cos %0σ0 + d2%0 cos %0σ0

+

(
%

2µ
0 sin µπ + c1%

µ
0 sin

µπ

2
+ c2

)
%0 sin %0σ0.

(4.25)
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Lemma 4.2. Suppose that s(σ) = η1(σ) + iη2(σ) is the root of (4.11) near σ = σ0 such that η1(σ0) =

0, η2(σ0) = %0, then Re
[

ds
dσ

]
σ=σ0,%=%0

> 0.

Proof. It follows from (4.11) that (
2µs2µ−1 + µc1sµ−1

) ds
dσ

esσ

+esσ

(
ds
dσ

σ + s
)

(s2µ + c1sµ + c2)

−µsµ−1 ds
dσ
− d2e−sσ

(
ds
dσ

σ + s
)

= 0. (4.26)

It follows from (4.26) that (
ds
dσ

)−1

=
R

V
−
σ

s
, (4.27)

where  R =
(
2µs2µ−1 + µc1sµ−1

)
esσ − µsµ−1,

V = e−sσs(s2µ + c1sµ + c2) + d2se−sσ.
(4.28)

Then

Re
( ds

dσ

)−1 = Re
( R
V

)−1 . (4.29)

Thus

Re
( ds

dσ

)−1
σ=σ0,%=%0

=
R1V1 + R2V2

V2
1 +V2

2

. (4.30)

Applying (K6), we have

Re
( ds

dσ

)−1
σ=σ0,%=%0

> 0, (4.31)

which ends the proof. �

By means of the analysis above, the following assertion holds.
Theorem 4.1. If (K4)-(K6) are satisfied, then the positive equilibrium point (u1∗, u2∗) of system (4.2)
is locally asymptotically stable if 0 ≤ σ < σ0 and system (4.2) generates Hopf bifurcation around the
positive equilibrium point (u1∗, u2∗) when σ passes through the delay value σ0.

5. Numerical examples

Example 5.1 Consider the following fractional-order financial crises contagions model:
du0.67

1 (t)
dt0.67 = 2 − u1(t)u2

2(t − σ),

du0.67
2 (t)

dt0.67 = u2(t)(−1.45 + u1(t − σ)u2(t)).
(5.1)

Apparently, system (5.1) owns the unique positive equilibrium point (1.0513, 1.3793). Making use
of Matlab software, we get γ0 = 0.5091 and σ0 = 0.0332. The conditions (K1)–(K3) of Theorem
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3.1 are fulfilled. In order to check the stability of the positive equilibrium point (1.0513, 1.3793)
and the appearance of Hopf bifurcation of system (5.1), we choose two unequal delay values. Let
σ = 0.025 < σ0 = 0.0332, we obtain the computer simulation results that are presented in Figure
1. According to Figure 1, one can clearly see that the positive equilibrium point (1.0513, 1.3793)
keeps locally asymptotically stable situation. Figure 1 contains 4 subfigures. Subfigure 1 of Figure 1
shows that the state variable u1 → 1.0513 when the time increases. Subfigure 2 of Figure 1 implies
that the state variable u2 → 1.3793 when the time increases. Subfigure 3 of Figure 1 manifests the
numerical relation of u1 and u2. Subfigure 4 of Figure 1 display the numerical relation of t-u1-u2. Let
σ = 0.045 > σ0 = 0.0332, we get the computer simulation results which are presented in Figure 2.
According to Figure 2, we can clearly see that a Hopf bifurcation arises around the positive equilibrium
point (1.0513, 1.3793). Figure 2 contains 4 subfigures. Subfigure 1 of Figure 2 implies that the state
variable u1 will keep a periodic oscillatory level around the value 1.0513 when the time increases.
Subfigures 2 of Figure 2 implies that the state variable u2 will keep a periodic oscillatory state near the
value 1.3793 when the time increases. Subfigures 3 of Figure 2 manifests the numerical relation of u1

and u2. Subfigures 4 of Figure 2 displays the numerical relation of t-u1-u2. The correlation for µ, γ0

and σ0 is listed in Table 1. Also, the bifurcation plots are presented to show that the bifurcation value
is approximately equal to 0.0332 (see Figures 3 and 4).
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Example 5.2 Consider the following fractional-order controlled financial crises contagions model
with delays:


du0.67

1 (t)
dt0.67 = 2 − u1(t)u2

2(t − σ) + θ[u1(t − σ) − u1(t)],

du0.67
2 (t)

dt0.67 = u2(t)(−1.45 + u1(t − σ)u2(t)),
(5.2)

Apparently, system (5.2) owns the unique positive equilibrium point (1.0513, 1.3793). Let θ =

3. Making use of Matlab software, one gets %0 = 0.9012 and σ0 = 0.0583. The conditions (K4)-
(K6) in Theorem 4.1 are satisfied. In order to check the stability of the positive equilibrium point
(1.0513, 1.3793) and the onset of Hopf bifurcation of system (5.2), we choose two unequal delay
values. Let σ = 0.045 < σ0 = 0.0583, we get the computer simulation results that are presented in
Figure 5. According to Figure 1, one can distinctly see that the equilibrium point (1.0513, 1.3793)
keeps locally asymptotically stable situation. Figure 5 includes 4 subfigures. Subfigure 1 of Figure 1
shows that the state variable u1 → 1.0513 when the time increases. Subfigure 2 of Figure 5 implies
that the state variable u2 → 1.3793 when the time increases. Subfigure 3 of Figure 5 manifests the
numerical relation of u1 and u2. Subfigure 4 of Figure 5 display the numerical relation of t-u1-u2. Let
σ = 0.075 > σ0 = 0.0583, we obtain the computer simulation results which are presented in Figure 6.
According to Figure 6, we can clearly see that a Hopf bifurcation arises around the positive equilibrium
point (1.0513, 1.3793). Figure 2 contains 4 subfigures. Subfigure 1 of Figure 6 implies that the state
variable u1 will keep a periodic oscillatory level around the value 1.0513 when the time increases.
Subfigures 2 of Figure 6 implies that the state variable u2 will keep a periodic oscillatory state near the
value 1.3793 when the time increases. Subfigures 3 of Figure 6 manifests the numerical relation of u1

and u2. Subfigures 4 of Figure 6 displays the numerical relation of t-u1-u2. The correlation for µ, %0

and σ0 is listed in Table 2. Also, the bifurcation plots are presented to show that the bifurcation value
is approximately equal to 0.0583 (see Figures 7 and 8).
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Figure 1. The computer simulation results of system (5.1) when σ = 0.025 < σ0 = 0.0332.

Figure 2. The computer simulation results of system (5.1) when σ = 0.045 > σ0 = 0.0332.
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Figure 3. Bifurcation plot of system (5.1): σ versus u1.

Figure 4. Bifurcation plot of system (5.1): σ versus u2.
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Figure 5. The computer simulation results of system (5.2) when σ = 0.045 < σ0 = 0.0583.

Figure 6. The computer simulation results of system (5.2) when σ = 0.075 > σ0 = 0.0583.
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Figure 7. Bifurcation plot of system (5.2): σ versus u1.

Figure 8. Bifurcation plot of system (5.2): σ versus u2.
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Table 1. The correlation of µ, γ0 and σ0 in system (5.1).

µ γ0 σ0

0.18 0.9713 0.2109
0.23 0.8107 0.2655
0.36 0.7861 0.2872
0.48 0.6723 0.0301
0.67 0.5091 0.0332
0.76 0.4728 0.0457
0.81 0.4011 0.0504
0.89 0.3856 0.0609
0.94 0.2781 0.00821

Table 2. The correlation of µ, %0 and σ0 in system (5.2).

µ %0 σ0

0.25 1.5209 0.0278
0.38 1.4155 0.0357
0.43 1.2376 0.0433
0.55 0.9904 0.0502
0.67 0.9012 0.0583
0.73 0.8155 0.0624
0.82 0.7466 0.0743
0.90 0.6123 0.0829
0.96 0.5842 0.0925

Remark 5.1 From the computer numerical simulation results of Example 5.1 and Example 5.2,
we know that the stability region of system (5.1) is [0, σ0 = 0.0332) and the Hopf bifurcation value
is 0.0332, the stability region of system (5.2) is [0, σ0 = 0.0583) and the Hopf bifurcation value is
0.0583. Thus the stability region of system (5.1) is enlarged and the time of the onset Hopf bifurcation
is postponed by designing a suitable delayed feedback controller.

6. Conclusions

Fractional-order differential system has displayed underlying application prospect in the economic
sphere. Based on the previous publications, we propose a new fractional-order delayed financial crises
contagions model. By virtue of the stability theory and bifurcation knowledge of fractional-order
differential equation, we derive a novel delay-independent stability and bifurcation condition to remain
the stability and generate Hopf bifurcation for the involved fractional-order delayed financial crises
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contagions model. Through designing an appropriate delayed feedback controller, we can successfully
control the stability region and the time of onset of Hopf bifurcation for the involved fractional-order
delayed financial crises model. The investigated fruits are helpful for us to grasp the inherent law of
economic operation and then serve mankind effectively. Also, the research approach can be applied to
control the dynamical peculiarity of numerous other dynamical models in lots of disciplines.
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