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Abstract: This paper deals with a well known open problem raised by Kannan (Bull. Calcutta Math.
Soc., 60: 71–76, 1968) and B. E. Rhoades (Contemp. Math., 72: 233–245, 1988) on the existence
of general contractions which have fixed points, but do not force the continuity at the fixed point. We
propose some new affirmative solutions to this question using two new contractions called (ψ, ϕ)-A-
contraction and (ψ, ϕ)-A′-contraction inspired by the results of H. Garai et al. (Applicable Analysis
and Discrete Mathematics, 14(1): 33–54, 2020) and P. D. Proinov (J. Fixed Point Theory Appl. (2020)
22: 21). Some new fixed point and common fixed point results in compact metric spaces and also in
complete metric spaces are proved in which the corresponding contractive mappings are not necessarily
continuous at their fixed points. Moreover, we show that new solutions to characterize the completeness
of metric spaces. Several examples are provided to verify the validity of our main results.
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1. Introduction

In 1922, Banach [1] introduced the following theorem, which is well known as Banach Contraction
Principle to establish the existence of solutions for integral equations.
Theorem 1.1. [1] Let (X, d) be a complete metric space and T : X 7→ X be a contractive mapping, that
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is, there exists L ∈ [0, 1) such that
d(T x,Ty) ≤ Ld(x, y),

for all x, y ∈ X. Then, we have the following assertions hold:

(i) T has a unique fixed point.
(ii) For each x0 ∈ X, the sequence {T nx0} converges to the fixed point of T .

Since then, the research on fixed points of contractive mappings has continued through to the
present. There are many contractive conditions to furnish existence (and uniqueness) of fixed points
of different types of mappings in different settings. It is an interesting fact that, among the several
kinds of contractive conditions, some ones force the corresponding mappings to be continuous on the
entire domain and some ones force the corresponding mappings to be continuous on some particular
points of the domain. However there are number of contractive conditions which cannot guarantee the
continuity of mappings, although in most of the cases the continuity of the mapping is assumed.
Kannan’s work [2] can be considered as the start of the problem on continuity of contractive
mappings at the fixed point. In [2], Kannan introduced a weaker contractive condition and proved a
very interesting fixed point theorem which stated that every self-mapping T defined on a complete
metric space (X, d) has a unique fixed point if the following contraction holds (called Kannan type
contraction)

d(T x,Ty) ≤ λ[d(x,T x) + d(y,Ty)],

where λ ∈ (0, 1
2 ), for all x, y ∈ X. It may be observed that Kannan type contraction does not require

the continuity of the mapping T for the existence of the fixed point. However, a mapping T satisfying
Kannan type contractive condition turns out to be continuous at the fixed point.

In this direction, in [3], Rhoades compared 250 contractive conditions (including Kannan type
contraction) and showed that though most of the contractions do not force the corresponding
mappings to be continuous on the entire domain, all of them force the mapping to be continuous at
their corresponding fixed points. Moreover, he re-examined the continuity of a large number of
contractive mappings in detail and claimed that all of the contractive conditions assure that mappings
are continuous at the fixed points although continuity is not assumed in all the cases [4]. Motivated by
his observation, Rhoades proposed an exciting open problem as follows:
Open Problem 1.1 Whether there exists any contractive condition which can ensure the existence and
uniqueness of a fixed point which does not force the corresponding mapping to be continuous at the
underlying fixed points.

The first answer of this interesting open problem was achieved by Pant in [5], stated as the following
theorem.
Theorem 1.2. [5] Let f be a self-mapping of a complete metric space (X, d) such that for any x, y ∈ X,

(i) d( f x, f y) ≤ ϕ(m(x, y)),
(ii) for any ε > 0, there exists a δ > 0 such that

ε < m(x, y) < ε + δ =⇒ d( f x, f y) ≤ ε,

where m(x, y) = max{d(x, f x), d(y, f y)} and ϕ : R+ → R+ is a function such that ϕ(t) < t for all t > 0.
Then f has a unique fixed point, say z. Moreover, f is continuous at z if and only if lim

x→z
m(x, z) = 0.
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After this, some new solutions to this problem of continuity at fixed point and applications of such
results have been reported (e.g. Bisht and Pant [6, 7], Bisht and Rakočević [8, 9], Bisht and Özgür
[10], Çelik and Özgür [11], Özgür and Taş [12, 13, 20], Pant et al. [14, 15, 21], Rashid et al. [16],
Taş and Özgür [17], Taş et al. [18], Zheng and Wang [19]). Recently, H. Garai et al. [22] provided
another solution to this open problem by introducing two new types of contractive mappings, called
A-contractive and A′- contractive mappings which cover many well known contractions, such as,
Edelstein type contraction, Kannan type contraction, Chatterjea type contraction, Hardy-Rogers type
contraction and so on. They also proved some new fixed point theorems involving these two contractive
mappings for which are not necessarily continuous at their fixed points. Moreover, in 2020, inspired by
Wardowski and Dung [23], W.M. Alfaqih et al. introduced the new notion of F∗-weak contractions [24]
and utilized the same to prove some fixed point theorems which also give some affirmative answers to
Open Problem 1.1.

On the other hand, P. D. Proinov [25] studied the problem of finding (sufficient) conditions on the
auxiliary functions ψ, ϕ : (0,∞) 7→ R that guarantee that T has a unique fixed point and that Picard
iterative sequence {T nx} converges to the fixed point for every initial point x in a complete metric space
(X, d). Also, he proved that recent fixed point theorems of Wardowski [26] and Jleli and Samet [27]
are equivalent to a special case of the well-known fixed point theorem of Skof [28].

The aim of this paper is twofold:

1. to introduce two new notions of (ψ, ϕ)-A-contraction and (ψ, ϕ)-A′-contraction and utilize them
to prove some fixed point theorems (resp. common fixed point theorems).

2. to present some new affirmative answers to the Open Problem 1.1 via these new kinds of
contractions.

2. Preliminaries

In 2012, Wardowski [26] introduced the definition of an F-contraction mapping as follows:
Let (X, d) be a metric space. A mapping T : X 7→ X is said to be a F-contraction if there exists a real
number τ > 0 such that for all x, y ∈ X,

d(T x,Ty) > 0 ⇒ τ + F(d(T x,Ty) ≤ F(d(x, y)),

where F : R+ 7→ R is a mapping satisfying the following conditions:
(F1) F is strictly increasing, that is, for all x, y ∈ R+, x < y, F(x) < F(y);
(F2) For each sequence {αn}

+∞
n=1 of positive numbers,

lim
n→+∞

αn = 0 if and only if lim
n→+∞

F(αn) = −∞;

(F3) There exists k ∈ (0, 1) such that lim
α→0+

αkF(α) = 0.

Let F be the set of all functions satisfying (F1)–(F3).
Example 2.1. [26] The following functions belong to F .
(1) F(α) = lnα, α > 0.
(2) F(α) = lnα + α, α > 0.
(3) F(α) = − 1

√
α
, α > 0.

(4) F(α) = ln(α2 + α), α > 0.
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Further, Wardowski [26] stated a modified version of Banach contraction principle as follows.
Theorem 2.1. [26] Let T be a self-mapping on a complete metric space (X, d). If T forms a F-
contraction, then it possesses a unique fixed point x∗. Moreover, for any x ∈ X the sequence {T nx} is
convergent to x∗.

Inspired by Wardowski’s contribution, there is a sustained endeavor of many authors to extend and
improve this concept by relaxing or excluding some of the conditions (F1)–(F3) or generalizing the
shape of the respective F-contraction. In this respect, Secelean [29] proved that (F3) can be replaced by
adding certain boundedness condition on the operator T . Furthermore, if F is continuous then condition
(F3) can be dropped without any extra assumption on T . Piri and Kumam [30] replaced (F3) by the
continuity of F, which was essentially motivated by the fact that most of the utilized functions in the
existing literature were continuous. Vetro [31] extended the F-contraction by replacing the constant
τ with a function. Secelean and Wardowski [32] introduced a new concept of ψF-contraction which
strictly generalized F-contraction by weakening (F1) and considering the family of a certain class of
increasing functions ψ. Lukács and Kajántó [33] defined a new version of F-contraction by omitting
(F2) condition in b-metric spaces. For more sequent Wardowski’s results, one can refer to [34–37] and
so forth.

In 2020, W.M. Alfaqih et al. [24] introduced the notion of F∗-weak contraction by deleting (F1),
(F3) and removing one way implication of (F2). Also, they presented some fixed point results
corresponding to this type contraction and gave an affirmative answer to Open Problem 1.1.

Let F ′ be the set of all functions F : R+ 7→ R satisfying the following condition:
(F2′) : for every sequence {βn} ⊂ (0,+∞),

lim
n→+∞

F(βn) = −∞ ⇒ lim
n→+∞

βn = 0.

Obviously, F ⊂ F ′. However, the converse inclusion is not true in general (see Example 2.1–2.2
in [24] for details).
Definition 2.1. [24] Let (X, d) be a metric space. A self-mapping T on X is said to be an F∗−weak
contraction if there exist τ > 0 and F ∈ F ′ such that

d(T x,Ty) > 0⇒ τ + F(d(T x,Ty)) ≤ F(m(x, y)),

where m(x, y) = max{d(x, y), d(x,T x), d(y,Ty)}.
Theorem 2.2. [24] Let (X, d) be a complete metric space and T : X 7→ X an F∗-weak contraction. If
F is continuous, then
(1) T has a unique fixed point (say z ∈ X),
(2) lim

n→∞
T nx = z for all x ∈ X.

Moreover, T is continuous at z if and only if lim
n→∞

m(x, z) = 0.
Very recently, Proinov [25], to extend and unify many existing results, proved that the fixed point

theorem of Skof [28], in the setting of metric spaces, covers many existing results, including the
attractive results of Wardowski [26] and Jleli-Samet [27] by introducing the following theorem.
Theorem 2.3. [25] Let (X, d) be a metric space and T : X 7→ X be a mapping such that ψ(d(T x,Ty)) ≤
ϕ(d(x, y)) for all x, y ∈ X, with d(T x,Ty) > 0, where the functions ψ, ϕ : (0,∞) → R satisfy the
following conditions:
(i) ψ is nondecreasing;
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(ii) ϕ(t) < ψ(t) for t > 0;
(iii) lim supt→ε+ϕ(t) < ψ(ε+) for any ε > 0.
Then T has a unique fixed point x∗ ∈ X and the iterative sequence {T nx} converges to x∗ for every
x ∈ X.

Setting ϕ(t) = ψ(t) − τ in Theorem 2.3, we can obtain the following corollary.
Corollary 2.1. [25] Let (X, d) be a metric space and T : X 7→ X be a mapping satisfying the following
condition:
ψ(d(T x,Ty)) ≤ ψ(d(x, y)) − τ for all x, y ∈ X with d(T x,Ty) > 0,
where τ > 0 and ψ : (0,+∞) 7→ R is nondecreasing. Then T has a unique fixed point ξ and the
sequence {T nx} is convergent to ξ for every x ∈ X.

Indeed, Corollary 2.1 improves Theorem 1.1 and the results of Secelean [29], Piri and Kumam [30]
and Lukács and Kajántó [33]. In fact, Corollary 2.1 shows that both conditions (F2) and (F3) can be
omitted from Theorem 2.1. Besides, the strictness of monotonicity of F is not necessary.

Throughout the rest part of this paper, we denote by X,R+,N the nonempty set, the set of non-
negative real numbers and the set of natural numbers, respectively.

Now, we recall the notions of A-contractive and A′-contractive mappings introduced by H. Garai
et al. in [22].

We denote byA the collection of all mappings f : R3
+ 7→ R+ which satisfy the following conditions:

(A1) f is continuous.
(A2) If v > 0 and u < f (u, v, v) or u < f (v, u, v) or u < f (v, v, u), then u < v.
(A3) f (u, v,w) ≤ u + v + w, for all u, v,w ∈ R+.

Example 2.2. [22] Here are some examples of mappings belonging to the class A given by the
following:
(1) f (u, v,w) = v+w

2 .
(2) f (u, v,w) = u+v

2 .
(3) f (u, v,w) = 1

2 max{u + v, v + w,w + u}.
(4) f (u, v,w) = max{u, v,w}.
(5) f (u, v,w) = max{v,w}.
(6) f (u, v,w) = max{u, αv + (1 − α)w, (1 − α)v + αw}, 0 ≤ α < 1.
(7) f (u, v,w) = xu + yv + zw, where x, y, z are positive real numbers such that x + y + z = 1.
(8) f (u, v,w) =

√
vw.

(9) f (u, v,w) = u.
(10) f (u, v,w) = (uvw)

1
3 .

We denote byA′ the collection of all mappings f : R3
+ → R+ which satisfy the following conditions:

(A′1) f is continuous.
(A′2) If v > 0 and u < f (u, v, v) or u < f (v, u, v) or u < f (v, v, u), then u < v.
(A′3) If v > 0 and u < f (v, u + v, 0), then u < v.
(A′4) If v ≤ v1, then f (u, v,w) ≤ f (u, v1,w), for all u,w ∈ R+.
(A′5) f (u, u, u) ≤ u, for all u ∈ R+.
(A′6) f (u, v,w) ≤ u + v + w, for all u, v,w ∈ R+.

Example 2.3. [22] Some examples of mappings f belonging toA′ are the following:
(1) f (u, v,w) = 1

3 (u + v + w).
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(2) f (u, v,w) = 1
2 max{u, v,w}.

(3) f (u, v,w) = 1
2 (v + w).

Motivated by the contributions of H. Garai et al. [22] and Proinov [25], we will introduce two new
notions of contractions called (ψ, ϕ)-A-contraction and (ψ, ϕ)-A′-contraction as follows.
Definition 2.2. Let (X, d) be a metric space. A self-mapping T on X is said to be an
(ψ, ϕ)-A-contraction, if for every x, y ∈ X such that d(T x,Ty) > 0, the following inequality

ψ(d(T x,Ty)) ≤ ϕ(m(x, y)), (2.1)

holds, where ψ, ϕ : (0,+∞) 7→ R are two functions such that ϕ(t) < ψ(t), for t > 0 and m(x, y) is
defined by m(x, y) = f (d(x, y), d(x,T x), d(y,Ty)), f ∈ A.
Definition 2.3. Let (X, d) be a metric space. A self-mapping T on X is said to be an (ψ, ϕ)-A′-
contraction, if for every x, y ∈ X such that d(T x,Ty) > 0, the following inequality

ψ(d(T x,Ty)) ≤ ϕ(m′(x, y)), (2.2)

holds, where ψ, ϕ : (0,+∞) 7→ R are two functions such that ϕ(t) < ψ(t), for t > 0 and m′(x, y) is
defined by m′(x, y) = f (d(x, y), d(x,Ty), d(y,T x)), f ∈ A′.
Definition 2.4. Let (X, d) be a metric space. A pair (T, S ) of self-mappings on X is said to be an
(ψ, ϕ)-A-contraction, if for every x, y ∈ X such that d(T x, S y) > 0, the following inequality

ψ(d(T x, S y)) ≤ ϕ(M(x, y)), (2.3)

holds, where ψ, ϕ : (0,+∞) 7→ R are two functions such that ϕ(t) < ψ(t), for t > 0 and M(x, y) is
defined by M(x, y) = f (d(x, y), d(x,T x), d(y, S y)), f ∈ A.
Definition 2.5. Let (X, d) be a metric space. A pair (T, S ) of self-mappings on X is said to be an
(ψ, ϕ)-A′-contraction, if for every x, y ∈ X such that d(T x, S y) > 0, the following inequality

ψ(d(T x, S y)) ≤ ϕ(M′(x, y)), (2.4)

holds, where ψ, ϕ : (0,+∞) 7→ R are two functions such that ϕ(t) < ψ(t), for t > 0 and m′(x, y) is
defined by M′(x, y) = f (d(x, y), d(x, S y), d(y,T x)), f ∈ A′.
Definition 2.6. [38] A mapping T on a metric space (X, d) is said to be orbitally continuous if, for any
sequence {yn} in Ox(T ), yn → u implies Tyn → Tu as n → +∞, where Ox(T ) = {T nx : n ≥ 0} is the
orbit of T at x.

It is easy to observe that a continuous mapping is orbitally continuous, but not conversely.
Definition 2.7. [39] A self-mapping T of a metric space (X, d) is called k-continuous, k = 1, 2, 3, . . . ,
if T kxn → T x whenever {xn} is a sequence in X such that T k−1xn → x.

It was shown in [39] that continuity of T k and k-continuity of T are independent conditions when
k > 1 and continuity⇒ 2-continuity⇒ 3-continuity⇒ . . . , but not conversely. It is also easy to see
that 1-continuity is equivalent to continuity.
Definition 2.8. [40] Let (X, d) be a metric space and T : X 7→ X. A mapping f : X 7→ R is said to be
T -orbitally lower semi-continuous at z ∈ X if {xn} is a sequence in Ox(T ) for some x ∈ X, lim

n→∞
xn = z

implies f (z) ≤ lim
n→∞

inf f (xn).
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Proposition 2.1 [41] Let (X, d) be a metric space, T : X 7→ X and z ∈ X. If T is orbitally continuous
at z or T is k-continuous at z for some k , 1, then the function f (x) := d(x,T x) is T -orbitally lower
semi-continuous at z.

It is noted that T -orbital lower semi-continuity of f (x) = d(x,T x) is weaker than both orbital
continuity and k-continuity of T (see Example 1 in [41]).

3. Main results

At the beginning of this section, we first investigate new solutions to the Open Problem 1.1 using
the (ψ, ϕ)-A-contraction which generates a unique fixed point (resp. common fixed point) in compact
metric spaces and complete metric spaces.

3.1. New fixed point results via (ψ, ϕ)-A-contractions

Theorem 3.1. Let (X, d) be a compact metric space and T : X 7→ X be a (ψ, ϕ)-A-contraction such
that T is orbitally continuous. Also, assume that ψ is nondecreasing. Then we have the following
assertions:
(i) T has a unique fixed point z ∈ X.
(ii) If u > f (u, 0, 0) for all u > 0, then the sequence {T nx0} of iterates converges to that fixed point for
each x0 ∈ X.
(iii) Further, if f (0, 0, u) = 0 implies u = 0, then T is continuous at the fixed point z if and only if
lim
x→z

m(z, x) = 0, where

m(z, x) = f (d(z, x), d(z,Tz), d(x,T x)).

Proof. (1) Starting with an arbitrary point x0 ∈ X, we define a sequence {xn} ⊆ X by xn+1 = T xn =

T nx0 for n ∈ N ∪ {0}. Let αn = d(xn, xn+1), for n ∈ N ∪ {0}.
Now, we will prove that {αn} converges to 0.
It is trivial if αn = 0 for some n ∈ N ∪ {0}.
Suppose now that αn > 0 for all n ∈ N ∪ {0}.
Using (2.1), with x = xn, y = xn+1, we have

ψ(d(xn, xn+1)) = ψ(d(T xn−1,T xn))
≤ ϕ(m(xn−1, xn))
= ϕ( f (d(xn−1, xn), d(xn−1, xn), d(xn, xn+1)))
< ψ( f (d(xn−1, xn), d(xn−1, xn), d(xn, xn+1))).

From the monotonicity of ψ, we have

d(xn, xn+1) < f (d(xn−1, xn), d(xn−1, xn), d(xn, xn+1)).

Therefore, by (A2), we have

αn = d(xn, xn+1) < d(xn−1, xn) = αn−1,

which shows that {αn} is a decreasing sequence of nonnegative real numbers and hence converges to
some nonnegative real number r ≥ 0.
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Again, since X is compact, there exists a convergent subsequence {xnk} ⊆ {xn} and let lim
k→+∞

xnk = z.
Further, by the orbital continuity of T , we have

r = lim
k→+∞

d(xnk , xnk+1) = d(z,Tz).

Again, we have

r = lim
k→+∞

d(xnk+1, xnk+2) = d(Tz,T 2z).

If r > 0, then z , Tz, from (2.1) and (A2), we have

d(Tz,T 2z) < f (d(z,Tz), d(z,Tz), d(Tz,T 2z))
⇒ d(Tz,T 2z) < d(z,Tz)
⇒ r < r,

which leads to a contradiction. So we have r = 0, that is, lim
n→+∞

d(xn, xn+1) = 0, and z is a fixed point of
T .
Next, we will prove the uniqueness of the fixed point. For this, let z′ be another fixed point of T . Then
we have

ψ(d(Tz,Tz′)) ≤ ϕ(m(z, z′))
= ϕ( f (d(z, z′), d(z,Tz), d(z′,Tz′)))
< ψ( f (d(z, z′), d(z,Tz), d(z′,Tz′)))
= ψ( f (d(z, z′), 0, 0)).

It follows from the monotonicity of ψ that

d(z, z′) < f (d(z, z′), 0, 0). (3.1)

From (A3), we have

d(z, z′) ≥ f (d(z, z′), 0, 0),

which contradicts to (3.1). So z = z′.
(2) Next, we assume that u > f (u, 0, 0) for all u > 0. We consider the sequence of real numbers {sn},

where sn = d(z, xn). Define a function g(x) = d(z, x) for all x ∈ X. Clearly, g is continuous on X, and
hence g(X) is bounded. Thus, {sn} is a bounded sequence of a real numbers. Since the subsequence
{xnk} of {xn} converges to z, we get that

lim
k→+∞

d(z, xnk) = 0,

i.e., lim
k→+∞

snk = 0. Thus 0 is a cluster point of the sequence {sn}. Let c be any cluster point of {sn}. Then
there exists a subsequence {sni} of {sn} such that sni → c. So d(z, xni) → c as i → +∞. Therefore, we
have

|sni+1 − sni | = |d(xni+1, z) − d(xni , z)|
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≤ d(xni+1, xni)→ 0,

as i→ +∞ and hence lim
i→+∞

sni+1 = lim
i→+∞

sni .
We now prove that c = 0. If c > 0, then lim

i→+∞
d(z, xni) > 0 and so we may assume that xni , z for all

i ≥ 1. Then we have

ψ(d(T xni ,Tz)) ≤ ϕ(m(xni , z))
= ϕ( f (d(xni , z), d(xni ,T xni), d(z,Tz)))
< ψ( f (d(xni , z), d(xni ,T xni), d(z,Tz))),

which implies that

sni+1 = d(T xni ,Tz) < f (d(xni , z), d(xni , xni+1), d(z,Tz)).

Taking limits as i→ +∞ in the above inequality, we have

c < f (c, 0, 0),

which contradicts to assumption (ii). So, c = 0. Therefore, 0 is the only cluster point of the bounded
sequence {sn} and so this sequence also converges to 0. Hence {xn} converges to z. Since x0 is arbitrary
point in X, it follows that {T nx0} converges to the fixed point z for each x0 ∈ X.

(3) Next, we assume that f (0, 0, u) = 0 implies u = 0. Let T be continuous at the fixed point z. To
show lim

x→z
m(z, x) = 0, let {yn} be a sequence in X converging to z. Then

lim
n→+∞

m(z, yn) = lim
n→+∞

f (d(z, yn), d(z,Tz), d(yn,Tyn))

= f (0, 0, d(z,Tz)) = 0.

Therefore, lim
x→z

m(z, x) = 0.

Conversely, let lim
x→z

m(z, x) = 0. To prove T is continuous at the fixed point z, let {yn} be a sequence in

X converging to z. Therefore, we have

lim
n→+∞

m(z, yn) = 0

=⇒ lim
n→+∞

f (d(z, yn), d(z,Tz), d(yn,Tyn)) = 0

=⇒ f (0, 0, lim
n→+∞

d(yn,Tyn)) = 0

=⇒ lim
n→+∞

d(yn,Tyn) = 0

=⇒ lim
n→+∞

Tyn = lim
n→+∞

yn = z = Tz.

So T is continuous at the fixed point z.
Now, we give some illustrative examples of Theorem 3.1.

Example 3.1. Let X = [0, 2] and d be the usual metric on X. Consider the self-mapping T : X → X
defined by

T x =

{ 1
4 x ; x ≥ 1
0 ; x < 1
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It is easy to see that T satisfies the conditions of Theorem 3.1 with the functions f (u, v,w) = v+w
2

defined for all u, v,w ∈ R+, ψ (t) = t and ϕ (t) = 2
3 t, for t > 0. Notice that 0 is the unique fixed

point of the orbitally continuous (ψ, ϕ)-A-contractive mapping T . Also, we have u > f (u, 0, 0) for all
u > 0 and hence, the sequence {T nx0} of iterates converges to the fixed point 0 for each x0 ∈ X. Since
f (0, 0, u) = 0 implies u = 0, we can check the continuity of T by calculating the limit

lim
x→0

m(0, x) = lim
x→0

f (d(0, x), d(0,T0), d(x,T x))

= lim
x→0

f (|x| , 0, |x|) = lim
x→0

|x|
2

= 0.

This shows that T is continuous at the fixed point 0.
Example 3.2. Let X = [0, 2] and d be the usual metric on X. Consider the self-mapping T : X → X
defined by

T x =

{
1 ; 0 ≤ x ≤ 1
0 ; 1 < x ≤ 2

.

It is easy to see that T satisfies the conditions of Theorem 3.1 with the functions f (u, v,w) = max{v,w}
defined for all u, v,w ∈ R+, ψ (t) = t and

ϕ(t) =

{ t
2 ; 0 < t ≤ 1
√

t ; 1 < t
,

for t > 0. Notice that 1 is the unique fixed point of the orbitally continuous (ψ, ϕ)-A-contractive
mapping T . Also, we have u > f (u, 0, 0) for all u > 0 and hence, the sequence {T nx0} of iterates
converges to the fixed point 0 for each x0 ∈ X. Since f (0, 0, u) = 0 implies u = 0, we can check the
continuity of T by calculating the limit

lim
x→1

m(1, x) = lim
x→1

f (d(1, x), d(1,T1), d(x,T x))

= lim
x→1

max{d(1,T1), d(x,T x)}

, 0. (not exist)

This shows that T is discontinuous at the fixed point 1.
Theorem 3.2. Let (X, d) be a compact metric space and a pair (T, S ) of self-mappings on X be an
(ψ, ϕ)-A-contraction such that T and S are orbitally continuous. Also, assume that ψ is nondecreasing.
Then we have the following assertions:
(i) T and S have a unique common fixed point z ∈ X.
(ii) If u > f (u, 0, 0) for all u > 0, then the sequences {T nx0} and {S nx0} of iterates converge to that fixed
point for each x0 ∈ X.
(iii) Further, if f (0, u, 0) = 0 implies u = 0, then T is continuous at the fixed point z if and only if
lim
x→z

M(x, z) = 0. Also, if f (0, 0, u) = 0 implies u = 0, then S is continuous at the fixed point z if and

only if lim
y→z

M(z, y) = 0, where

M(x, z) = f (d(x, z), d(x,T x), d(z, S z)) and M(z, y) = f (d(z, y), d(z,Tz), d(y, S y)).
Proof. (1) Let x0 ∈ X be an arbitrary point. We define a sequence {xn} ⊆ X such that x2n+1 = T x2n,

x2n+2 = S x2n+1, for n ∈ N ∪ {0}. Let αn = d(xn, xn+1), for n ∈ N ∪ {0}.
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Now, we will prove that {αn} converges to 0.
It is trivial if αn = 0 for some n ∈ N ∪ {0}. Suppose now that αn > 0 for all n ∈ N ∪ {0}.
Using (2.3), with x = x2n, y = x2n+1, we have

ψ(d(x2n+1, x2n+2)) = ψ(d(T x2n, S x2n+1))
≤ ϕ(M(x2n, x2n+1))
= ϕ( f (d(x2n, x2n+1), d(x2n, x2n+1), d(x2n+1, x2n+2)))
< ψ( f (d(x2n, x2n+1), d(x2n, x2n+1), d(x2n+1, x2n+2))).

From the monotonicity of ψ, we have

d(x2n+1, x2n+2) < f (d(x2n, x2n+1), d(x2n, x2n+1), d(x2n+1, x2n+2)).

By (A2), we have

α2n+1 = d(x2n+1, x2n+2) < d(x2n, x2n+1) = α2n.

Using similar arguments, we can also obtain that α2n < α2n−1.
Thus, {αn} is a decreasing sequence of nonnegative real numbers and hence converges to some
nonnegative real number r ≥ 0.
Again, since X is compact, there exists a convergent subsequence {xnk} ⊆ {xn} and let lim

k→+∞
xnk = z.

Further, by the orbital continuity of T , we have

r = lim
k→+∞

d(xnk ,T xnk) = d(z,Tz),

where nk = 2 j, j ∈ N. If r > 0, then z , Tz, from (2.3) and (A2), we have

ψ(d(Tz, S x2 j+1)) ≤ ϕ(M(z, x2 j+1))
= ϕ( f (d(z, x2 j+1), d(z,Tz), d(x2 j+1, S x2 j+1)))
< ψ( f (d(z, x2 j+1), d(z,Tz), d(x2 j+1, S x2 j+1))).

From the monotonicity of ψ, we have

d(Tz, S x2 j+1) < f (d(z, x2 j+1), d(z,Tz), d(x2 j+1, S x2 j+1)).

Taking limits as j→ +∞ in the above inequality, we have

d(Tz, z) < f (0, d(z,Tz), 0)),

which implies that d(Tz, z) < 0, a contradiction. Hence, r = 0 and z is a fixed point of S .
Using the same manner in the case that T is orbitally continuous, we can conclude that z is a fixed point
of T . Therefore, z is a common fixed point of T and S .
Next, we will prove the uniqueness of the common fixed point. For this, let z′ be another common
fixed point of T and S , that is, z′ = Tz′ = S z′. Then we have

ψ(d(Tz, S z′)) ≤ ϕ(M(z, z′))
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= ϕ( f (d(z, z′), d(z,Tz), d(z′, S z′)))
< ψ( f (d(z, z′), d(z,Tz), d(z′,Tz′)))
= ψ( f (d(z, z′), 0, 0)).

It follows from the monotonicity of ψ that

d(z, z′) < f (d(z, z′), 0, 0).

By (A3), we have

d(z, z′) ≥ f (d(z, z′), 0, 0),

which contradicts to the above inequality. So z = z′.
(2) Next, we assume that u > f (u, 0, 0) for all u > 0. We consider the sequence of real numbers {sn}

where sn = d(z, xn). Define a function g(x) = d(z, x) for all x ∈ X. Clearly, g is continuous on X, and
hence g(X) is bounded. Thus, {sn} is a bounded sequence of a real numbers. Since the subsequence
{xnk} of {xn} converges to z, we get that

lim
k→+∞

d(z, xnk) = 0,

i.e., lim
k→+∞

snk = 0. Thus 0 is a cluster point of the sequence {sn}. Let c be any cluster point of {sn}. Then
there exists a subsequence {sni} of {sn} such that sni → c. So d(z, xni) → c as i → +∞. Therefore, we
have

|sni+1 − sni | = |d(xni+1, z) − d(xni , z)|
≤ d(xni+1, xni)→ 0,

as i→ +∞ and hence lim
i→+∞

sni+1 = lim
i→+∞

sni .
We now prove that c = 0. If c > 0, then lim

i→+∞
d(z, xni) > 0 and so we may assume that xni , z for all

i ≥ 1. Then, for all ni = 2 j, i ≥ 1, j ∈ N, we have

ψ(d(T x2 j, S z)) ≤ ϕ(m(x2 j, z))
= ϕ( f (d(x2 j, z), d(x2 j,T x2 j), d(z, S z)))
< ψ( f (d(x2 j, z), d(x2 j,T x2 j), d(z, S z))),

which implies that

s2 j+1 = d(T x2 j, S z) < f (d(x2 j, z), d(x2 j, x2 j+1), d(z, S z)).

Taking limits as j→ +∞ in the above inequality, we have

c < f (c, 0, 0),

which contradicts to assumption (ii). So, c = 0. Therefore, 0 is the only cluster point of the bounded
sequence {sn} and so this sequence also converges to 0. Hence {xn} converges to z. Since x0 is arbitrary
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point in X, it follows that {T nx0} converges to the fixed point z for each x0 ∈ X.
Using the similar arguments as mentioned above, we can also obtain that {S nx0} converges to the fixed
point z for each x0 ∈ X.

(3) Next, we assume that f (0, u, 0) = 0 implies u = 0. Let T be continuous at the fixed point z. To
show lim

x→z
M(x, z) = 0, let {tn} be a sequence in X converging to z. Then

lim
n→+∞

M(tn, z) = lim
n→+∞

f (d(tn, z), d(tn,Ttn), d(z, S z))

= f (0, d(z,Tz), 0) = 0.

Therefore, lim
x→z

M(x, z) = 0.

Conversely, let lim
x→z

M(x, z) = 0. To prove T is continuous at the fixed point z, let {tn} be a sequence in

X converging to z. Therefore, we have

lim
n→+∞

M(tn, z) = 0

=⇒ lim
n→+∞

f (d(tn, z), d(tn,Ttn), d(z, S z)) = 0

=⇒ f (0, lim
n→+∞

d(tn,Ttn), 0) = 0

=⇒ lim
n→+∞

d(tn,Ttn) = 0

=⇒ lim
n→+∞

Ttn = lim
n→+∞

tn = z = Tz.

So T is continuous at the fixed point z. The same conclusion can be drawn for S by using similar
arguments.

The following example illustrates Theorem 3.2.
Example 3.3. Let us consider the compact metric space (X, d) and the self-mapping T considered in
Example 3.1. Define the self-mappings S : X → X as

S x =

{
0 ; x ≥ 1
1
4 x ; x < 1

It is easy to see that the pair (T, S ) satisfies the conditions of Theorem 3.2 with the functions f (u, v,w) =
v+w

2 defined for all u, v,w ∈ R+, ψ (t) = t and ϕ (t) = 2
3 t, for t > 0. Clearly, 0 is the unique common fixed

point of the orbitally continuous (ψ, ϕ)-A-contractive mappings T and S . Since we have u > f (u, 0, 0)
for all u > 0, the sequences {T nx0} and {S nx0} of iterates converge to the common fixed point 0 for each
x0 ∈ X. Notice that f (0, u, 0) = 0 implies u = 0 and f (0, 0, u) = 0 implies u = 0. So, we can check the
continuity of T and S at the fixed point 0 by means of the limits

lim
x→0

M(x, 0) = lim
x→0

f (d(x, 0), d(x,T x), d(0, S 0))

= lim
x→0

f (|x| , |x| , 0) = lim
x→0

|x|
2

= 0

and

lim
y→0

M(0, y) = lim
y→0

f (d(0, y), d(0,T0), d(y, S y))
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= lim
y→0

f (|y| , 0,
∣∣∣∣∣y − y

4

∣∣∣∣∣) = lim
y→0

3 |y|
8

= 0.

This shows that both of the self-mappings T and S are continuous at the common fixed point 0.
Example 3.4. Let X = { 1n : n ∈ N} and define a metric d : X × X 7→ X on X by

d(x, y) =

{
0 ; x = y

ex+y ; x , y

It is easy to check that (X, d) is a complete but not-compact metric space.
Define a function T : X 7→ X by T ( 1

n ) = 1
4n for all n ∈ N. Also, we take f ∈ A, where f (u, v,w) = u,

for u, v,w ∈ R+ and define

ψ(t) =

{ 1
2 ln t ; t > 1

1
4 ln( t

2 ) ; 0 < t ≤ 1

and

ϕ(t) =

{ 1
3 ln t ; t > 1

1
2 ln( t

2 ) ; 0 < t ≤ 1

Let x, y ∈ X be arbitrary with x , y and take x = 1
n , y = 1

m with n , m. Therefore, we have

ψ(d(T x,Ty)) =
1
2

ln[e
1
4n + 1

4m ] =
1
2

(
1

4n
+

1
4m

) =
1

8n
+

1
8m

,

and

ϕ( f (d(x, y), d(x,T x), d(y,Ty))) = ϕ(e
1
n + 1

m )

=
1
3

ln(e
1
n + 1

m )

=
1
3

(
1
n

+
1
m

)

=
1

3n
+

1
3m

.

Thus, it is easy to check that ψ(d(T x,Ty)) ≤ ϕ( f (d(x, y), d(x,T x), d(y,Ty))). Hence, T is a (ψ, ϕ)-A-
contractive mapping and also T is orbitally continuous, but T is fixed point free.

If we take the underlying space as complete, we need additional conditions on f ∈ A and/or T and
S to validate the conclusions of the above theorems.
Theorem 3.3. Let (X, d) be a complete metric space and T : X 7→ X be a (ψ, ϕ)-A-contraction such
that either T is orbitally continuous or k-continuous or T k is continuous for some k ∈ N. Also, assume
that ψ is nondecreasing and f satisfies the following conditions:
(i) for any ε > 0, there exists an δ > 0 such that

f (d(x, y), d(x,T x), d(y,Ty)) < ε + δ =⇒ d(T x,Ty) ≤
ε

3
,

for all x, y ∈ X.
(ii) f (0, 0, u) = 0 implies u = 0.
Then we have the following assertions:
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(1) T has a unique fixed point z.
(2) The sequence {T nx0} of iterates converges to z for each x0 ∈ X.
(3) Moreover, T is continuous at z if and only if lim

x→z
m(z, x) = 0, where

m(z, x) = f (d(z, x), d(z,Tz), d(x,T x)).

Proof.(1) Let x0 ∈ X be an arbitrary point and define a sequence {xn} ⊆ X by xn+1 = T xn = T nx0 for
all natural numbers n ≥ 1. Let αn = d(xn, xn+1), for all natural numbers n ≥ 1. Analysis similar to the
proof in Theorem 3.1 shows that {αn} is a decreasing sequence of nonnegative real numbers and hence
converges to some nonnegative real number r ≥ 0.
We claim that r = 0. If not, by assumption (i), there exists an δ such that

f (d(x, y), d(x,T x), d(y,Ty)) < 3r + δ⇒ d(T x,Ty) ≤ r.

Since {αn} converges to r, for the above δ, there exists an N ∈ N such that for n ≥ N,

αn < r +
δ

3
,

that is,

d(xn, xn+1) < r +
δ

3
.

So, together with (A3), we have

f (d(xn, xn+1), d(xn+1, xn+2), d(xn+1, xn+2))
≤ d(xn, xn+1) + d(xn+1, xn+2) + d(xn+1, xn+2)
= αn + αn+1 + αn+1

< 3αn

< 3r + δ.

Therefore, d(xn+1, xn+2) ≤ r, that is αn+1 ≤ r. But this contradicts to the fact that {αn} converges to r
and we must have r = 0, that is, lim

n→+∞
d(xn, xn+1) = 0.

Next, we will show that {xn} is a Cauchy sequence. Let ε > 0 be arbitrary. It follows from the
condition (i) that there exits an δ > 0 such that

f (d(x, y), d(x,T x), d(y,Ty)) < ε + δ⇒ d(T x,Ty) ≤
ε

3
,

for all x, y ∈ X. Without loss of generality, we assume that δ < ε. Since lim
n→+∞

d(xn+1, xn) = 0, there
exists an N ∈ N such that

d(xn, xn+1) <
δ

3
<
ε

3
< ε,

for all n ≥ N. By induction on p, we will show that

d(xN , xN+p) < ε, (3.2)
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for all p ∈ N. Clearly, (3.2) holds true for p = 1. Suppose that (3.2) is true for p, that is, d(xN , xN+p) < ε.
Then we have

f (d(xN , xN+p), d(xN , xN+1), d(xN+p, xN+p+1))
≤ d(xN , xN+p) + d(xN , xN+1) + d(xN+p, xN+p+1)

< ε +
δ

3
+
δ

3
< ε + δ.

Therefore, d(xN+1, xN+p+1) ≤ ε
3 . So we have

d(xN , xN+p+1)
≤ d(xN , xN+1) + d(xN+1, xN+p+1)

<
ε

3
+
ε

3
< ε.

Hence, (3.2) is true for p + 1, Thus (3.2) holds for all p ≥ 1. In a similar manner we can obtain that

d(xn, xn+p) < ε,

for all n ≥ N and p ≥ 1. Therefore, {xn} is a Cauchy sequence in a complete metric space (X, d) and
hence converges to some z ∈ X.
Suppose that T admits the following types of continuity, respectively.
Case 1. T is orbitally continuous. Since {xn} converges to z, orbital continuity implies that T xn → Tz.
This yields Tz = z, since T nx0 → z. Therefore, z is a fixed point of T .
Case 2. T is k-continuous for some k ∈ N. Since T k−1xn → z, k-continuity of T implies that T kxn → Tz.
Hence z = Tz as T kxn → z. Therefore, z is a fixed point of T .
Case 3. T k is continuous for some k ∈ N. We have that lim

n→+∞
T kxn = T kz which yields T kz = z as

xn → T kz. If Tz , z, then T k−1z , z. So we have

ψ(d(T kxn,Tz)) = ψ(d(TT k−1xn, z))
≤ ϕ( f (d(T k−1xn, z), d(T k−1xn,T kxn), d(z,Tz)))
< ψ( f (d(T k−1xn, z), d(T k−1xn,T kxn), d(z,Tz))).

Using the monotonicity of ψ and (A2) we also get

d(T kxn,Tz) < f (d(T k−1xn, z), d(T k−1xn,T kxn), d(z,Tz)),

which leads to d(Tz, z) < d(Tz, z) by taking limits as k → +∞, a contradiction. So we must have
Tz = z, i.e., z is a fixed point of T .
For the uniqueness of the common fixed point, let z′ be another common fixed point of T and S , that
is, z′ = Tz′ = S z′. Then we have

ψ(d(Tz, S z′)) ≤ ϕ(m(z, z′))
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= ϕ( f (d(z, z′), d(z,Tz), d(z′, S z′)))
< ψ( f (d(z, z′), d(z,Tz), d(z′,Tz′)))
= ψ( f (d(z, z′), 0, 0)).

It follows from the monotonicity of ψ that

d(z, z′) < f (d(z, z′), 0, 0).

By (A3), we have

d(z, z′) ≥ f (d(z, z′), 0, 0),

which contradicts to above inequality. So z = z′.
The remaining parts of the proof of this theorem is similar to that of Theorem 3.1 and so is omitted.
Theorem 3.4. Let (X, d) be a complete metric space and a pair (T, S ) of self-mappings be an (ψ, ϕ)-A-
contraction such that either T and S are orbitally continuous or k-continuous or T k is continuous for
some k ∈ N. Also, assume that ψ is nondecreasing and f satisfies the following conditions:
(i) for any ε > 0, there exists an δ > 0 such that

f (d(x, y), d(x,T x), d(y, S y)) < ε + δ =⇒ d(T x, S y) ≤
ε

3
,

for all x, y ∈ X.
(ii) f (0, 0, u) = 0 implies u = 0.
Then we have the followings assertions:
(1) T and S has a unique common fixed point z.
(2) The sequences {T nx0} and {S nx0} of iterates converge to z for each x0 ∈ X.
(3) Moreover, T is continuous at z if and only if lim

x→z
M(x, z) = 0 and S is continuous at z if and only if

lim
x→z

M(z, y) = 0, where M(x, z) = f (d(x, z), d(x,T x), d(z, S z)), and

M(z, y) = f (d(z, y), d(z,Tz), d(y, S y)).
Proof.(1) Let x0 ∈ X be an arbitrary point and define a sequence {xn} ⊆ X by x2n+1 = T x2n and

x2n+2 = S x2n+1 for n ∈ N ∪ {0}. Let αn = d(xn, xn+1), for n ∈ N ∪ {0}. Analysis similar to the
proof in Theorem 3.2 shows that {αn} is a decreasing sequence of nonnegative real numbers and hence
converges to some nonnegative real number r ≥ 0.
We claim that r = 0. If not, by assumption (i), there exists an δ such that

f (d(x, y), d(x,T x), d(y,Ty)) < 3r + δ⇒ d(T x,Ty) ≤ r,

for all x, y ∈ X. Since {αn} converges to r, so does {α2n}. For the above δ, there exists an N ∈ N such
that for n ≥ N,

α2n < r +
δ

3
,

that is,

d(x2n, x2n+1) < r +
δ

3
.
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So, together with (A3), we have

f (d(x2n, x2n+1), d(x2n, x2n+1), d(x2n+1, x2n+2))
≤ d(x2n, x2n+1) + d(x2n, x2n+1) + d(x2n+1, x2n+2)
= α2n + α2n + α2n+1

< 3α2n

< 3r + δ.

Therefore, d(x2n+1, x2n+2) ≤ r, that is α2n+1 ≤ r. But this contradicts to the fact that {αn} converges to r
and we must have r = 0, that is, lim

n→+∞
d(xn, xn+1) = 0.

Next, we will show that {xn} is a Cauchy sequence. Let ε > 0 be arbitrary. It follows from the condition
(i) that there exits an δ > 0 such that

f (d(x, y), d(x,T x), d(y, S y)) < ε + δ⇒ d(T x, S y) ≤
ε

3
,

for all x, y ∈ X. Without loss of generality, we assume that δ < ε. Since {αn} converges to 0, so does
{α2n}. Then there exists an N ∈ N such that

d(x2n, x2n+1) <
δ

3
<
ε

3
< ε,

for all 2n ≥ N. By induction on p, we will show that

d(x2N , x2N+p) < ε, (3.3)

for all p ∈ N. Clearly, (3.3) holds true for p = 1. Suppose that (3.3) is true for p, that is, d(x2N , x2N+p) <
ε. Then we have

f (d(x2N , x2N+p), d(x2N , x2N+1), d(x2N+p, x2N+p+1))
≤ d(x2N , x2N+p) + d(x2N , x2N+1) + d(x2N+p, x2N+p+1)

< ε +
δ

3
+
δ

3
< ε + δ.

Therefore, d(x2N+1, x2N+p+1) ≤ ε
3 . So we have

d(x2N , x2N+p+1)
≤ d(x2N , x2N+1) + d(x2N+1, x2N+p+1)

<
ε

3
+
ε

3
< ε.

Hence, (3.3) is true for p + 1, Thus (3.3) holds for all p ≥ 1. Moreover, we can obtain that

d(x2n, x2n+p) < ε,
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for all 2n ≥ N and p ≥ 1.
Using the same argument, we also have

d(x2n+1, x2n+1+p) < ε,

for all 2n + 1 ≥ N and p ≥ 1.
Therefore, {xn} is a Cauchy sequence in a complete metric space (X, d) and hence converges to some
z ∈ X.
Suppose that T admits the following types of continuity, respectively.
Case 1. T is orbitally continuous. Since {xn} converges to z, orbital continuity implies that T xn → Tz.
This yields Tz = z, since T nx0 → z. Therefore, z is a fixed point of T .
Case 2. T is k-continuous for some k ∈ N. Since T k−1xn → z, k-continuity of T implies that T kxn → Tz.
Hence z = Tz as T kxn → z. Therefore, z is a fixed point of T .
Case 3. T k is continuous for some k ∈ N, then lim

n→+∞
T kxn = T kz. This yields T kz = z as T kxn → z. If

Tz , z, then T k−1z , z. So we have

ψ(d(T kxn, S z)) = ψ(d(TT k−1xn, S z))
≤ ϕ( f (d(T k−1xn, z), d(T k−1xn,T kxn), d(z, S z)))
< ψ( f (d(T k−1xn, z), d(T k−1xn,T kxn), d(z, S z))).

Using the monotonicity of ψ, we also get

d(T kxn, S z) < f (d(T k−1xn, z), d(T k−1xn,T kxn), d(z, S z)).

Taking limit in the above inequality as n→ +∞, we have

d(z, S z) < f (0, 0, d(z, S z)).

which leads to d(z, S z) < d(z, S z) by taking limits as k → +∞, a contradiction. So we must have
S z = z, i.e., z is a fixed point of S .
Using the same manner, we can obtain that z is a fixed point of T .
Hence, z is a common fixed point of T and S .
The remaining parts of the proof of this theorem is similar to that of Theorem 3.2 and so is omitted.
Remark 3.1. From Proposition 2.1, we can obtain that the T -orbital lower semi-continuity of f (x) =

d(x,T x) can be deduced from the orbital continuity or k-continuity of T for all k , 1. In such a case, if
{xn} ⊂ Ox(T ) and xn → z satisfying d(xn, xn+1) → 0 as n → ∞, by the T -orbital lower semi-continuity
of f (x) = d(x,T x), one has

d(z,Tz) ≤ lim
n→∞

inf d(xn,T xn) = 0,

which implies that Tz = z, that is z is a fixed point of T .
Corollary 3.1. Replacing the orbital continuity of T (or both T and S ) by the T -orbital lower semi-
continuity of f (x) = d(x,T x) (or both f (x) = d(x,T x) and g(x) = d(x, S x)) in Theorem 3.1 (or
Theorem 3.2), the conclusion remains true.
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Corollary 3.2. Replacing the orbital continuity or k-continuity of T (or both T and S ) by the T -orbital
lower semi-continuity of f (x) = d(x,T x) (or both f (x) = d(x,T x) and g(x) = d(x, S x)) in Theorem 3.3
(or Theorem 3.4), the conclusion remains true.
Define mi(x, y), i = 1, 2, 3, 4 as follows:

m1(x, y) = max{d(x,T x), d(y,Ty)}. m2(x, y) = max{d(x, y), d(x,T x), d(y,Ty)}.
m3(x, y) = max{d(x,T x), d(y, S y)}. m4(x, y) = max{d(x, y), d(x,T x), d(y, S y)}.

Define ϕ(t) = ψ(t) − τ, τ > 0 or ψ(t) = t for t > 0. We obtain the following corollaries.
Corollary 3.3. Let (X, d) be a complete metric space and T : X 7→ X either T be orbitally continuous
or k-continuous or T k continuous for some k ∈ N and satisfy the following conditions:
(i) for any ε > 0, there exists an δ > 0 such that

mi(x, y) < ε + δ =⇒ d(T x,Ty) ≤
ε

3
, i = 1, 2

for all x, y ∈ X.
(ii) d(T x,Ty) ≤ ϕ(mi(x, y)), i = 1, 2 for all x, y ∈ X with d(T x,Ty) > 0, where ϕ(t) < t, for t > 0.
Then T admits a unique fixed point z and the sequence {T nx0} is convergent to z for every x0 ∈ X.
Moreover, T is continuous at z if and only if lim

x→z
mi(x, z) = 0, i = 1, 2.

Corollary 3.4. Let (X, d) be a complete metric space and a pair (T, S ) of self-mappings either T and S
be orbitally continuous or k-continuous or T k is continuous for some k ∈ N and satisfy the following
assumptions:
(i) for any ε > 0, there exists an δ > 0 such that

mi(x, y) < ε + δ =⇒ d(T x, S y) ≤
ε

3
, i = 3, 4

for all x, y ∈ X.
(ii) ψ(d(T x, S y)) ≤ ψ(mi(x, y))−τ, i = 3, 4 for all x, y ∈ X with d(T x, S y) > 0, where ϕ(t) < t, for t > 0.
Then T and S have a unique common fixed point z and the sequences {T nx0} and {S nx0} are convergent
to z for every x0 ∈ X. Moreover, T and S are continuous at z if and only if lim

x→z
mi(x, z) = 0 and

lim
x→z

mi(z, y) = 0, i = 3, 4, respectively.

3.2. New fixed point results via (ψ, ϕ)-A′-contractions

We now obtain some fixed point and common fixed theorems concerning the (ψ, ϕ)-A′-contraction
in compact metric spaces and complete metric spaces.
Theorem 3.5. Let (X, d) be a compact metric space and T : X 7→ X be a (ψ, ϕ)-A′-contraction such
that T is orbitally continuous. Also, assume that ψ is nondecreasing. Then we have the following
assertions:
(i) T has a unique fixed point z.
(ii) If u > f (u, 0, 0) for all u > 0, the sequence {T nx0} converges to the fixed point z for every x0 ∈ X.
(iii) Further, if f (0, u, 0) = 0 implies u = 0, then T is continuous at the fixed point z if and only if
lim
x→z

m′(z, x) = 0, where

m′(z, x) = f (d(z, x), d(z,T x), d(x,Tz)).
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Proof. (1) Let x0 ∈ X be an arbitrary point and define a sequence {xn} ⊆ X by xn+1 = T xn = T nx0

for all n ∈ N ∪ {0}. Taking αn = d(xn, xn+1), for all n ∈ N ∪ {0}.
Now, we prove that {αn} converges to 0.
It is trivial, if αn = 0 for some n ∈ N ∪ {0}. Suppose that αn > 0 for all n ∈ N ∪ {0}.
Using (2.3), with x = xn, y = xn+1, we have

ψ(d(xn, xn+1)) = ψ(d(T xn−1,T xn))
≤ ϕ(m′(xn−1, xn))
= ϕ( f (d(xn−1, xn), d(xn−1, xn+1), d(xn, xn)))
< ψ( f (d(xn−1, xn), d(xn−1, xn+1), 0)).

From the monotonicity of ψ and (A′3), (A′4), we have that

ψ(d(xn, xn+1)) < ψ( f (d(xn−1, xn), d(xn−1, xn+1), 0))
≤ ψ( f (d(xn−1, xn), d(xn−1, xn) + d(xn, xn+1), 0))
⇒ d(xn, xn+1) < f (d(xn−1, xn), d(xn−1, xn) + d(xn, xn+1), 0)
⇒ d(xn, xn+1) < d(xn−1, xn).

That is

αn = d(xn, xn+1) < d(xn−1, xn) = αn−1,

which shows that {αn} is a decreasing sequence of nonnegative real numbers and hence converges to
some nonnegative real number r ≥ 0.
Again, since X is compact, there exists a convergent subsequence {xnk} ⊆ {xn} and let lim

k→+∞
xnk = z.

Further, by the orbital continuity of T , we have

r = lim
k→+∞

d(xnk , xnk+1) = d(z,Tz).

Again, we have

r = lim
k→+∞

d(xnk+1, xnk+2) = d(Tz,T 2z).

If r > 0, then z , Tz, from (2.3) and (A′4), we have

d(Tz,T 2z) < f (d(z,Tz), d(z,T 2z), d(Tz,Tz))
≤ f (d(z,Tz), d(z,Tz) + d(Tz,T 2z), 0)
⇒ d(Tz,T 2z) < d(z,Tz)
⇒ r < r,

which is a contradiction. So we have r = 0 and z is a fixed point of T .
Next, we will prove the uniqueness of the fixed point. For this, let z′ be another fixed point of T . Then
we have

ψ(d(Tz,Tz′)) ≤ ϕ(m′(z, z′))
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= ϕ( f (d(z, z′), d(z,Tz′), d(z′,Tz)))
< ψ( f (d(z, z′), d(z,Tz′), d(z′,Tz))),

which implies that

d(z, z′) = d(Tz,Tz′) < f (d(z, z′), d(z,Tz′), d(z′,Tz)). (3.4)

By (A′5), we also have

d(z, z′) ≥ f (d(z, z′), d(z, z′), d(z, z′)),

which contradicts (3.4). So z = z′.
(2) Next, we consider the sequence of real numbers {sn} where sn = d(z, xn). We will show that {sn}

converges to 0. If xn = z for some n ∈ N, then {sn} converges to 0. So, we assume that xn , z for all
n ∈ N. Then we have

ψ(sn+1) = ψ(d(T xn,Tz)
≤ ϕ(m′(xn, z))
= ϕ( f (d(xn, z), d(xn,Tz), d(z,T xn)))
< ψ( f (d(xn, z), d(xn,Tz), d(z,T xn)))
= ψ( f (sn, sn, sn+1)).

Hence, we have sn+1 < sn, and this is true for all natural numbers n. Then {sn} is a decreasing sequence
of real numbers. Also, since {xnk} converges to z, it follows that {snk} converges to 0. Therefore, {sn}

must converges to 0, that is, {xn} converges to the fixed point z.
(3) Next, we assume that f (0, u, 0) = 0 implies u = 0. Let T be continuous at the fixed point z. To

show that lim
x→z

m′(x, z) = 0, let {yn} be a sequence in X converging to z. Then

lim
n→+∞

m′(z, yn) = lim
n→+∞

f (d(z, yn), d(z,Tyn), d(yn,Tz))

= f (0, 0, 0) ≤ 0.

Therefore, lim
x→z

m′(z, x) = 0.

Conversely, let lim
x→z

m′(z, x) = 0. To prove T is continuous at the fixed point z, let {yn} be a sequence in

X converging to z. Therefore, we have

lim
n→+∞

m′(z, yn) = 0

=⇒ lim
n→+∞

f (d(z, yn), d(z,Tyn), d(yn, z)) = 0

=⇒ f (0, lim
n→+∞

d(yn,Tyn), 0) = 0

=⇒ lim
n→+∞

d(yn,Tyn) = 0

=⇒ lim
n→+∞

Tyn = lim
n→+∞

yn = z = Tz.

So T is continuous at the fixed point z.

AIMS Mathematics Volume 7, Issue 2, 1628–1663.



1650

The following example illustrates Theorem 3.5.
Example 3.5. Let X = [−1, 1] and d be the usual metric on X. Consider the self-mapping T : X → X
defined by

T x =

{
−1

4 x ; 0 < x ≤ 1
0 ; −1 ≤ x ≤ 0

T satisfies the conditions of Theorem 3.5 with the functions f (u, v,w) = v+w
2 defined for all u, v,w ∈ R,

ψ (t) = t
2 and ϕ (t) = t

4 (t > 0). The point 0 is the unique fixed point of the orbitally continuous (ψ, ϕ)-
A′-contractive mapping T . Since f (0, u, 0) = 0 implies u = 0, we can check the continuity of T by
calculating the limit lim

x→0
m′(0, x). We have

lim
x→0+

m′(0, x) = lim
x→0+

f (d(0, x), d(0,T x), d(x,T0))

= lim
x→0+

f (|x| ,
|x|
4
, |x|) = lim

x→0+

5 |x|
8

= 0

and
lim
x→0−

m′(0, x) = lim
x→0−

f (|x| , 0, |x|) = lim
x→0+

|x|
2

= 0.

Thus, we obtain lim
x→0+

m′(0, x) = 0 and this shows that T is continuous at the fixed point 0.
Theorem 3.6. Let (X, d) be a compact metric space and a pair (T, S ) of self-mappings on X be an (ψ, ϕ)-
A′-contraction such that T and S are orbitally continuous. Also, assume that ψ is nondecreasing. Then
we have the following assertions:
(i) T and S have a unique common fixed point z ∈ X.
(ii) The sequences {T nx0} and {S nx0} of iterates converge to that fixed point for each x0 ∈ X.
(iii) Further, if f (0, 0, u) = 0 implies u = 0, then T is continuous at the fixed point z if and only if
lim
x→z

M′(x, z) = 0. Also, if f (0, 0, u) = 0 implies u = 0, then S is continuous at the fixed point z if and

only if lim
y→z

M′(z, y) = 0, where

M′(x, z) = f (d(x, z), d(x, S z), d(z,T x)) and M′(z, y) = f (d(z, y), d(z, S y), d(y,Tz)).
Proof. (1) Let x0 ∈ X be an arbitrary point. We define a sequence {xn} ⊆ X such that x2n+1 = T x2n,

x2n+2 = S x2n+1, for n ∈ N ∪ {0}. Let αn = d(xn, xn+1), for n ∈ N ∪ {0}.
Now, we will prove that {αn} converges to 0.
It is trivial if αn = 0 for some n ∈ N ∪ {0}. Suppose now that αn > 0 for all n ∈ N ∪ {0}.
Using (2.4), with x = x2n, y = x2n+1, we have

ψ(d(x2n+1, x2n+2)) = ψ(d(T x2n, S x2n+1))
≤ ϕ(M′(x2n, x2n+1))
= ϕ( f (d(x2n, x2n+1), d(x2n, S x2n+1), d(x2n+1,T x2n)))
= ϕ( f (d(x2n, x2n+1), d(x2n, x2n+2), d(x2n+1, x2n+1)))
= ϕ( f (d(x2n, x2n+1), d(x2n, x2n+2), 0))
< ψ( f (d(x2n, x2n+1), d(x2n, x2n+2), 0)).

From the monotonicity of ψ and (A′4), we have

d(x2n+1, x2n+2) < f (d(x2n, x2n+1), d(x2n, x2n+1) + d(x2n+1, x2n+2), 0).
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By (A′3), we have

α2n+1 = d(x2n+1, x2n+2) < d(x2n, x2n+1) = α2n.

Using the similar arguments, we can also obtain that α2n < α2n−1.
Thus, {αn} is a decreasing sequence of nonnegative real numbers and hence converges to some
nonnegative real number r ≥ 0.
Again, since X is compact, there exists a convergent subsequence {xnk} ⊆ {xn} and let lim

k→+∞
xnk = z.

Further, by the orbital continuity of T , we have

r = lim
k→+∞

d(xnk , S xnk) = d(z,Tz),

where nk = 2 j, j ∈ N. If r > 0, then z , Tz, from (2.4), we have

ψ(d(Tz, S x2 j+1)) < ϕ(M′(z, x2 j+1))
= ϕ( f (d(z, x2 j+1), d(z, S x2 j+1), d(x2 j+1,Tz)))
< ψ( f (d(z, x2 j+1), d(z, x2 j+2), d(x2 j+1,Tz))).

From the monotonicity of ψ, we have

d(Tz, S x2 j+1) < f (d(z, x2 j+1), d(z, x2 j+2), d(x2 j+1,Tz)).

Taking limits as j→ +∞ in the above inequality, we have

d(Tz, z) < f (0, 0, d(z,Tz)),

which implies that d(Tz, z) < 0, a contradiction. Hence, r = 0 and z is a fixed point of T .
Using the same manner in the case that S is orbitally continuous, we can conclude that z is a fixed point
of S . Therefore, z is a common fixed point of T and S .
Next, we will prove the uniqueness of the common fixed point. For this, let z′ be another common
fixed point of T and S , that is, z′ = Tz′ = S z′. Then we have

ψ(d(Tz, S z′)) ≤ ϕ(M′(z, z′))
= ϕ( f (d(z, z′), d(z, S z′), d(z′,Tz)))
< ψ( f (d(z, z′), d(z, S z′), d(z′,Tz)))
= ψ( f (d(z, z′), d(z, z′), d(z, z′))).

It follows from the monotonicity of ψ that

d(z, z′) < f (d(z, z′), d(z, z′), d(z, z′).

By (A′5), we have

f (d(z, z′), d(z, z′), d(z, z′) ≤ d(z, z′),

which contradicts to above inequality. So z = z′.
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(2) We consider the sequence of real numbers {sn} where sn = d(z, xn). Define a function g(x) =

d(z, x) for all x ∈ X. Clearly, g is continuous on X, and hence g(X) is bounded. Thus, {sn} is a bounded
sequence of a real numbers. Since the subsequence {xnk} of {xn} converges to z, we get that

lim
k→+∞

d(z, xnk) = 0,

i.e., lim
k→+∞

snk = 0. Thus 0 is a cluster point of the sequence {sn}. Let c be any cluster point of {sn}. Then
there exists a subsequence {sni} of {sn} such that sni → c. So d(z, xni) → c as i → +∞. Therefore, we
have

|sni+1 − sni | = |d(xni+1, z) − d(xni , z)|
≤ d(xni+1, xni)→ 0,

as i→ +∞ and hence lim
i→+∞

sni+1 = lim
i→+∞

sni .
We now prove that c = 0. If c > 0, then lim

i→+∞
d(z, xni) > 0 and so we may assume that xni , z for all

i ≥ 1. Then, for all ni = 2 j, i ≥ 1, j ∈ N, we have

ψ(d(T x2 j, S z)) ≤ ϕ(M′(x2 j, z))
= ϕ( f (d(x2 j, z), d(x2 j, S z), d(z,T x2 j)))
< ψ( f (d(x2 j, z), d(x2 j, S z), d(z,T x2 j))),

which implies that

s2 j+1 = d(T x2 j, S z) < f (d(x2 j, z), d(x2 j, S z), d(z,T x2 j)).

Taking limits as j→ +∞ in the above inequality, we have

c < f (c, c, c),

which contradicts to (A′5). So, c = 0. Therefore, 0 is the only cluster point of the bounded sequence
{sn} and so this sequence also converges to 0. Hence {xn} converges to z. Since x0 is arbitrary point in
X, it follows that {T nx0} converges to the fixed point z for each x0 ∈ X.
Using the similar arguments as mentioned above, we can also obtain that {S nx0} converges to the fixed
point z for each x0 ∈ X.

(3) Next, we assume that f (0, 0, u) = 0 implies u = 0. Let T be continuous at the fixed point z. To
show lim

x→z
M′(x, z) = 0, let {tn} be a sequence in X converging to z. Then

lim
n→+∞

M′(tn, z) = lim
n→+∞

f (d(tn, z), d(tn, S z), d(z,Ttn))

= f (0, 0, d(z,Tz)) = 0.

Therefore, lim
x→z

M′(x, z) = 0.

Conversely, let lim
x→z

M′(x, z) = 0. To prove T is continuous at the fixed point z, let {tn} be a sequence in

X converging to z. Therefore, we have

lim
n→+∞

M′(tn, z) = 0
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=⇒ lim
n→+∞

f (d(tn, z), d(tn, S z), d(z,Ttn)) = 0

=⇒ f (0, 0, lim
n→+∞

d(z,Ttn)) = 0

=⇒ lim
n→+∞

d(z,Ttn) = 0

=⇒ lim
n→+∞

Ttn = lim
n→+∞

tn = z = Tz.

So T is continuous at the fixed point z. The same conclusion can be drawn for S by using similar
argument.
Example 3.6. Let X = [−1, 1] and d be the usual metric on X and the self-mapping T considered in
Example 3.5. Define the self-mapping S : X → X as

S x =

{
0 ; 0 < x ≤ 1
−1

4 x ; −1 ≤ x ≤ 0

Then the pair (T, S ) satisfies the conditions of Theorem 3.6 with the functions f (u, v,w) = v+w
2 defined

for all u, v,w ∈ R, ψ (t) = 1
2 t and ϕ (t) = 1

4 t (t > 0). Clearly, 0 is the unique common fixed point of the
orbitally continuous (ψ, ϕ)-A′-contractive mappings T and S . Notice that both of the self-mappings T
and S are continuous at the common fixed point 0.

Now, we show that the compactness hypothesis of X in Theorem 3.5 can not be replaced by
completeness. The following example illustrates this fact.
Example 3.7. Let us consider X = { 1n : n ∈ N} and define a metric d : X × X 7→ X on X by

d(x, y) =

{
0 ; x = y

exy ; x , y
.

It is easy to check that (X, d) is a complete but not-compact metric space.
Define the self-mapping T : X 7→ X by T ( 1

n ) = 1
4n , for n ∈ N. Consider the functions f ∈ A′ where

f (u, v,w) = 1
2 max{u, v,w}, for all u, v,w ∈ R+, and define

ψ(t) =

{
ln t ; t > 1

1
2 ln t ; 0 < t ≤ 1

and

ϕ(t) =

{ 1
2 ln t ; t > 1
ln t ; 0 < t ≤ 1

Let x, y ∈ X be arbitrary with x , y and take x = 1
n , y = 1

m with m , n. Therefore, we have

ψ(d(T x,Ty)) = ln[e
1

4n×
1

4m )] =
1

16mn
,

and

ϕ( f (d(x, y), d(x,Ty), d(y,T x))) = ln[2 ×
1
2

max{e
1

mn , e
1

4nm , e
1

4mn }]

=
1

mn
.
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Thus, it is easy to check that ψ(d(T x,Ty)) ≤ ϕ(m′(x, y)).
Then it is easy to verify that T is an orbitally continuous (ψ, ϕ)-A′-contractive mapping. Clearly, T is
fixed point free.

Next, we add some conditions on f ∈ A′ and/or T and S to obtain some fixed point and common
fixed point theorems in the setting of complete metric spaces as follows.
Theorem 3.7. Let (X, d) be a complete metric space and T : X 7→ X be a (ψ, ϕ)-A′-contraction. Also,
assume that ψ is nondecreasing and f satisfies the following conditions:
(i) for any ε > 0, there exists an δ > 0 such that

f (d(x, y), d(x,Ty), d(y,T x)) < ε + δ =⇒ d(T x,Ty) ≤
ε

4
,

for all x, y ∈ X.
(ii) f (0, u, 0) = 0 implies u = 0.
Then we have the following assertions:
(1) T has a unique fixed point z.
(2) The sequence {T nx0} of iterates converges to z for each x0 ∈ X.
(3) Moreover, T is continuous at z if and only if lim

x→z
m′(z, x) = 0, where

m′(z, x) = f (d(z, x), d(z,T x), d(x,Tz)).

Proof.(1) Let x0 ∈ X be an arbitrary point and define a sequence {xn} ⊆ X by xn+1 = T xn = T nx0 for
n ∈ N ∪ {0}. Let αn = d(xn, xn+1), for n ∈ N ∪ {0}.
Now, we will prove that {αn} converges to 0.
It is trivial, if xn0 = xn0+1 for some n0 ∈ N. Suppose that αn > 0 for all n ∈ N ∪ {0}.
Analysis similar to that in the proof of Theorem 3.5, we can show that {αn} is a decreasing sequence of
nonnegative real numbers and hence converges to some nonnegative real number r ≥ 0. If r > 0, then
by assumption (i), there exists an δ such that

f (d(x, y), d(x,Ty), d(y,T x)) < 3r + δ⇒ d(T x,Ty) ≤
3r
4
.

Since {αn} converges to r, for the above δ, there exists an n ∈ N such that

αn < r +
δ

3
,

that is,

d(xn, xn+1) < r +
δ

3
.

Then, together with (A′6), we have

f (d(xn, xn+1), d(xn, xn+2), d(xn+1, xn+1))
≤ d(xn, xn+1) + d(xn, xn+2) + d(xn+1, xn+1)
≤ d(xn, xn+1) + d(xn, xn+1) + d(xn+1, xn+2)
= 2αn + αn+1
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< 3αn

< 3r + δ.

Therefore, d(xn+1, xn+2) ≤ 3r
4 , that is αn+1 ≤

3r
4 < r. But this contradicts the fact that {αn} converges to r

and we must have r = 0, that is, lim
n→+∞

d(xn, xn+1) = 0.
Next, we will show that {xn} is a Cauchy sequence. Let ε > 0 be arbitrary. Then by the assumption

(i), there exits an δ > 0 such that

f (d(x, y), d(x,Ty), d(y,T x)) < 3ε + δ⇒ d(T x,Ty) ≤
3ε
4
,

for all x, y ∈ X. Without loss of generality, we assume that δ < ε. Since lim
n→+∞

d(xn+1, xn) = 0, for above
δ, there exists an N ∈ N such that

d(xn, xn+1) <
δ

4
<
ε

4
< ε,

for all n ≥ N. By induction on p, we will show that

d(xN , xN+p) < ε, (3.5)

for all p ∈ N. Clearly, (3.5) holds true for p = 1. Suppose that (3.5) is true for p, i.e. d(xN , xN+p) < ε.
Then we have

f (d(xN , xN+p), d(xN , xN+p+1), d(xN+p, xN+1)
≤ d(xN , xN+p) + d(xN , xN+p+1) + d(xN+p, xN+1)
≤ d(xN , xN+p) + d(xN , xN+p) + d(xN+p, xN+p+1) + d(xN+p, xN) + d(xN , xN+1)

< 3ε +
δ

4
+
δ

4
< 3ε + δ.

Therefore, d(xN+1, xN+p+1) ≤ 3ε
4 . So we have

d(xN , xN+p+1)
≤ d(xN , xN+1) + d(xN+1, xN+p+1)

<
ε

4
+

3ε
4

= ε.

Hence, (3.5) is true for p + 1. Thus (3.5) holds for all p ≥ 1. In a similar manner we can obtain that

d(xn, xn+p) < ε,

for all n ≥ N and p ≥ 1. Therefore, {xn} is a Cauchy sequence in a complete metric space (X, d) and
hence converges to some z ∈ X.
If d(T xn,Tz) = 0 for infinitely many values of n, then we have

d(z,Tz) ≤ d(z,T xn) + d(T xn,Tz) = d(z,T xn) = d(z, xn+1),
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for these values of n. Taking limits as n→ +∞, we have d(z,Tz) ≤ 0, which implies that d(z,Tz) = 0.
This means that z = Tz, that is z is a fixed point of T .
If d(T xn,Tz) > 0 holds for infinitely many values of n, applying (2.3) with x = xn, y = z, we conclude
that

ψ(d(T xn,Tz)) ≤ ϕ(m′(xn, z))
= ϕ( f (d(xn, z), d(xn,Tz), d(z,T xn)))
< ψ( f (d(xn, z), d(xn,Tz), d(z,T xn))),

which together with the monotonicity of ψ implies that

0 < d(T xn,Tz) = d(xn+1,Tz) < f (d(xn, z), d(xn, z), d(z, xn+1)).

Taking limits as n→ +∞ in above inequality, we have

0 < d(z,Tz) < f (0, 0, 0) < 0,

which is a contradiction.
Hence, z is a fixed point of T .
The remaining parts of the proof of this theorem is similar to that of Theorem 3.5 and so is omitted.
Theorem 3.8. Let (X, d) be a complete metric space and a pair (T, S ) of self-mappings be an (ψ, ϕ)-
A′-contraction such that either T and S are orbitally continuous or k-continuous or T k is continuous
for some k ∈ N. Also, assume that ψ is nondecreasing and f satisfies the following conditions:
(i) for any ε > 0, there exists an δ > 0 such that

f (d(x, y), d(x, S y), d(y,T x)) < ε + δ =⇒ d(T x, S y) ≤
ε

4
,

for all x, y ∈ X.
(ii) f (0, 0, u) = 0 implies u = 0.
Then we have the following assertions:
(1) T and S has a unique common fixed point z.
(2) The sequences {T nx0} and {S nx0} of iterates converge to z for each x0 ∈ X.
(3) Moreover, T is continuous at z if and only if lim

x→z
M′(x, z) = 0 and S is continuous at z if and only if

lim
x→z

M′(z, y) = 0, where M′(x, z) = f (d(x, z), d(x, S z), d(z,T x)) and

M′(z, y) = f (d(z, y), d(z, S y), d(z,T x)).
Proof.(1) Let x0 ∈ X be an arbitrary point and define a sequence {xn} ⊆ X by x2n+1 = T x2n and

x2n+2 = S x2n+1 for all n ∈ N ∪ {0}. Let αn = d(xn, xn+1), for all n ∈ N ∪ {0}. Analysis similar to the
proof in Theorem 3.2 shows that {αn} is a decreasing sequence of non-negative real numbers and hence
converges to some nonnegative real number r ≥ 0.
We claim that r = 0. If not, by assumption (i), there exists an δ such that

f (d(x, y), d(x, S y), d(y,T x)) < 3r + δ⇒ d(T x, S y) ≤
3r
4
,

for all x, y ∈ X. Since {αn} converges to r, so does {α2n}. For the above δ, there exists an N ∈ N such
that for n ≥ N,

α2n < r +
δ

3
,
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that is,

d(x2n, x2n+1) < r +
δ

3
.

So, together with (A′3), we have

f (d(x2n, x2n+1), d(x2n, x2n+2), d(x2n+1, x2n+1))
= f (d(x2n, x2n+1), d(x2n, x2n+2), 0)
≤ f (d(x2n, x2n+1), d(x2n, x2n+1) + d(x2n+1, x2n+2), 0)
≤ α2n + α2n + α2n+1

< 3α2n

< 3r + δ.

Therefore, d(x2n+1, x2n+2) ≤ r, that is α2n+1 ≤ r. But this contradicts the fact that {αn} converges to r
and we must have r = 0, that is, lim

n→+∞
d(xn, xn+1) = 0.

Next, we will show that {xn} is a Cauchy sequence. Let ε > 0 be arbitrary. It follows from the
condition (i) that there exits an δ > 0 such that

f (d(x, y), d(x, S y), d(y,T x)) < ε + δ⇒ d(T x, S y) ≤
ε

4
,

for all x, y ∈ X. Without loss of generality, we assume that δ < ε. Since {αn} converges to 0, so does
{α2n}. Then there exists an N ∈ N such that

d(x2n, x2n+1) <
δ

3
<
ε

3
< ε,

for all 2n ≥ N. By induction on p, we will show that

d(x2N , x2N+p) < ε, (3.6)

for all p ∈ N. Clearly, (3.6) holds true for p = 1. Suppose that (3.6) is true for p, that is, d(x2N , x2N+p) <
ε. Then we have

f (d(x2N , x2N+p), d(x2N , x2N+1), d(x2N+p, x2N+p+1)
≤ d(x2N , x2N+p) + d(x2N , x2N+1) + d(x2N+p, x2N+p+1)

< ε +
δ

3
+
δ

3
< ε + δ.

Therefore, d(x2N+1, x2N+p+1) ≤ ε
4 . So we have

d(x2N , x2N+p+1)
≤ d(x2N , x2N+1) + d(x2N+1, x2N+p+1)

<
ε

3
+
ε

4
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< ε.

Hence, (3.6) is true for p + 1, Thus (3.6) holds for all p ≥ 1. Moreover, we can obtain that

d(x2n, x2n+p) < ε,

for all 2n ≥ N and p ≥ 1.
Using the same argument, we also have

d(x2n+1, x2n+1+p) < ε,

for all 2n + 1 ≥ N and p ≥ 1.
Therefore, {xn} is a Cauchy sequence in a complete metric space (X, d) and hence converges to some
z ∈ X.
Suppose that T admits the following types continuity, respectively.
Case 1. T is orbitally continuous. Since {xn} converges to z, orbital continuity implies that T xn → Tz.
This yields Tz = z, since T nx0 → z. Therefore, z is a fixed point of T .
Case 2. T is k-continuous for some k ∈ N. Since T k−1xn → z, k-continuity of T implies that T kxn → Tz.
Hence z = Tz as T kxn → z. Therefore, z is a fixed point of T .
Case 3. T k is continuous for some k ∈ N, then lim

n→+∞
T kxn = T kz. This yields T kz = z as T kxn → z. If

Tz , z, then T k−1z , z. So we have

ψ(d(T kxn, S z)) = ψ(d(TT k−1xn, S z))
≤ ϕ( f (d(T k−1xn, z), d(T k−1xn, S z), d(z,T kxn)))
< ψ( f (d(T k−1xn, z), d(T k−1xn, S z), d(z,T kxn))).

Using the monotonicity of ψ, we also get

d(T kxn, S z) < f (d(T k−1xn, z), d(T k−1xn, S z), d(z,T kxn)).

Taking limits in above inequality as n→ +∞, we have

d(z, S z) < f (0, d(z, S z), 0).

which leads to d(z, S z) < 0, a contradiction. So we must have S z = z, i.e., z is a fixed point of S .
Using the same manner, we can obtain that z is a fixed point of T .
Hence, z is a common fixed point of T and S .
The remaining parts of the proof of this theorem is similar to that of Theorem 3.6 and so is omitted.
Corollary 3.5. Replacing the orbital continuity of T (or both T and S ) by the T -orbital lower semi-
continuity of f (x) = d(x,T x) (or both f (x) = d(x,T x) and g(x) = d(x, S x)) in Theorem 3.5 (or
Theorem 3.6), the conclusion remains true.
Corollary 3.6. Replacing the orbital continuity or k-continuity of T (or both T and S ) by the T -orbital
lower semi-continuity of f (x) = d(x,T x) (or both f (x) = d(x,T x) and g(x) = d(x, S x)) in Theorem 3.7
(or Theorem 3.8), the conclusion remains true.

Define m′i(x, y), i = 1, 2, 3, 4 as follows:

m′1(x, y) =
d(x, y) + d(x,Ty) + d(y,T x)

3
, m′2(x, y) =

1
2

max{d(x, y), d(x,Ty), d(y,T x)},
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m′3(x, y) =
d(x, y) + d(x, S y) + d(y,T x)

3
, m′4(x, y) =

1
2

max{d(x, y), d(x, S y), d(y,T x)}.

Define ϕ(t) = ψ(t) − τ, τ > 0 or ψ(t) = t for t > 0. We obtain the following corollaries.
Corollary 3.7. Let (X, d) be a complete metric space and T : X 7→ X be a mapping satisfying the
following conditions:
(i) for any ε > 0, there exists a δ > 0 such that

m′i(x, y) < ε + δ =⇒ d(T x,Ty) ≤
ε

4
, i = 1, 2

for all x, y ∈ X.
(ii) ψ(d(T x,Ty)) ≤ ψ(m′i(x, y)) − τ, i = 1, 2 for all x, y ∈ X with d(T x,Ty) > 0, where τ > 0 and
ψ : (0,+∞) 7→ R is nondecreasing.
Then T admits a unique fixed point z and the sequence {T nx0} is convergent to z for every x0 ∈ X.
Moreover, T is continuous at z if and only if lim

x→z
m′i(x, z) = 0, i = 1, 2.

Corollary 3.8. Let (X, d) be a complete metric space and T : X 7→ X be a mapping satisfying the
following conditions:
(i) for any ε > 0, there exists a δ > 0 such that

m′i(x, y) < ε + δ =⇒ d(T x, S y) ≤
ε

4
, i = 3, 4

for all x, y ∈ X.
(ii) ψ(d(T x, S y)) ≤ ψ(m′i(x, y))−τ, i = 3, 4 for all x, y ∈ X with d(T x, S y) > 0, where ϕ(t) < t, for t > 0.
Then T and S have a unique common fixed point z and the sequences {T nx0} and {S nx0} are convergent
to z for every x0 ∈ X. Moreover, T and S are continuous at z if and only if lim

x→z
mi(x, z) = 0 and

lim
x→z

mi(z, y) = 0, i = 3, 4, respectively.

Finally, we will show that fixed point property for every self-mapping of X satisfying conditions
of Theorem 3.3 or Theorem 3.7 implies completeness of X. There is, however an markable difference
between the next theorems and similar theorems (e.g. Kirk [42], Brahmanical [43], Saluki [44]) giving
expression of completeness in terms of fixed point property for contractive mappings. In [42–44], the
contractive condition implies continuity at the fixed point. However, the next theorems establish that
completeness of the space is equivalent to fixed point property for a large class of mappings including
continuous as well as discontinuous mappings.
Theorem 3.9. Let (X, d) be a metric space. Suppose that every orbitally continuous or k-continuous
or T k continuous self-mapping T of X being an (ψ, ϕ)-A-contraction with ϕ(t) ≤ ψ( t

3 ), t > 0 and ψ
is nondecreasing as well as T satisfying assumption (i) of Theorem 3.3 has a fixed point. Then X is
complete.

Proof. Suppose that all assumptions of Theorem 3.9 hold true. We will show that X is a complete
metric space.
If X is not complete, then there exists a Cauchy sequence S = {un} ⊆ X, consisting distinct points
which is not convergent.
Let x ∈ X be given. Since x is not a limit of the sequence S , we have d(x, S − {x}) > 0 and there exists
a least integer N(x) ∈ N such that x , uN(x).
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Let define T : X 7→ X by T x = uN(x). Then T (x) , x for all x ∈ X.
From the definition of (ψ, ϕ)-A-contraction and monotonicity of ψ, we have

ψ(d(T x,Ty)) < ϕ(m(x, y))
= ϕ( f (d(x, y), d(x,T x), d(y,Ty)))

≤ ψ(
f (d(x, y), d(x,T x), d(y,Ty))

3
)

⇒ d(T x,Ty) <
f (d(x, y), d(x,T x), d(y,Ty))

3
,

which, in other words, shows that T satisfies assumption (i) of Theorem 3.3.
Since the range of T is contained in the non-convergent sequence S , there is no sequence {xn} in X
violating the definitions of orbital continuity, 2-continuity and T 2 continuity. Thus, T satisfies all
assumptions of Theorem 3.9, which does not admit a fixed point. This contradicts to the assumption
that T has a fixed point. Hence, X is complete.
Theorem 3.10. Let (X, d) be a metric space. Suppose that every orbitally continuous or k- continuous
or T k continuous self-mapping T of X being an (ψ, ϕ)-A′-contraction with ϕ(t) ≤ ψ( t

4 ), t > 0 and ψ
is nondecreasing as well as T satisfying assumption (i) of Theorem 3.7 has a fixed point. Then X is
complete.

Proof. The same conclusion follows by the same method as in Theorem 3.9.

4. Conclusions

Some new solutions were given to the well known open problem raised by Kansan and B.E. Rhodes
on the existence of general contractions which have fixed points, but do not force the continuity at the
fixed point by introducing two new contractions called (ψ, ϕ)-A-contraction and (ψ, ϕ)-A′-contraction.
By means of these notions, new fixed point (resp. common fixed point) theorems were proved. In all
of the obtained results, the uniqueness of the fixed point (resp. common fixed point) was arisen. On
the other hand, there are a lot of studies on the non-unique fixed points in the literature (for example
see [45] and the references therein). Let (X, d) be a metric space, T be a self-mapping of X and
Fix(T ) = {x ∈ X : T x = x} be the fixed point set of T . A circle contained in the set Fix(T ) is called the
fixed-circle of T (see [12] and [13] for more details). In [11], considering the geometric properties of
non-unique fixed points, an extended version of Open Problem 1.1 have been stated as follows:

Is there a contractive condition which is strong enough to generate a fixed circle but which does not
force the map to be continuous on its fixed circle?

A solution to this extended version was obtained in [11] with the help of some auxiliary numbers.
At this point, some future directions of our study appear as the following:

By means of the notion of (ψ, ϕ)-A-contractive mapping (resp. (ψ, ϕ)-A′-contractive mapping);
1) New solutions to the above extended version of Open Problem 1.1 can be investigated.
2) New common fixed point (resp. coincidence point) results can be examined for the cases where

the set Fix(T ) is not a singleton.
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