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1. Introduction

Subjects like non-Newtonian flow and rheology have wide range of practical applications in
nature. In many applied processing chemical industries, behaviour of NN fluid can be observed. The
rheological properties and characteristics are complex to define and thus, require deep study to
understand. Due to the fact many researchers in different fields (e.g chemists, applied mathematics,
physicists) find it interesting to simplify such complex structured models, amongst others, few of
whom may have regarded the subject as central to their disciplines. In application of handling and
processing of complex materials like emulsions, polymer melts, foams, slurries, and solutions e.t.c,
engineers having background knowledge in field of process and chemical engineering, have dominant
interest. Also, practicing engineers, scientists and theoretical mathematicians find this subject very
applicable in their fields. Based on applications in different fields, fluid flow models are studied in
many different ways.

Many solutions for fluid flow through different mediums and cross sections e.g rectangular,
triangular and circular e.t.c region, are discussed by many researchers. The analytic solution of
strokes for second grade fluid problem was proposed by Nazar et al. [20] and Fetecau and Fetecau [8]
for evaluating velocity field. For evaluation of tangential stresses and velocity field regarding unsteady
fluid of an Oldroyd-B, Fetecau et al. [9] used Fourier sine transform for obtaining solution. This flow
was generated by the constant acceleration of plate placed between coupled perpendicular side walls.
The exact solution using Fourier transform was obtained by Siddiqui [22], for the fluid flow generated
by the periodic oscillation, placed between coupled parallel plates. The velocity tooth pulses
regarding an Oldroyd-B fluid model causing hydromagnetics channel flow was discussed by Ghosh
and Sana [10]. A study was done for determining the effect of sawtooth pulses on the unsteady MHD
flow of an Oldroyd-B model and Laplace transform was used for obtaining the solution by Khan and
Zeeshan [18]. Study regarding the fluid flow generated by sawtooth pulses are discussed in [10, 11].

Fluid Flows can be observed in many engineering, medical and agricultural problems e.g., dams,
blood, and drains. The study of side walls in a duct and its effect on unsteady flow of a second grade
fluid was proposed by Erdogan and Imrak [5]. Furthermore, the rectangular duct was allowed to move
parallel to its length and also to an applied pressure gradient whose sides were at rest. The effect
caused by the rectangular oscillating duct was studied by Nazar et al. [21], Khan and Anjum [17] for
evaluating the Maxwell and Burger fluids respectively using the Laplace transforms and double finite
Fourier sine for solution.

The fluid flow through porous space is important to study in areas like biomechanics, geomechanics
and industry e.g flow of water through rocks, filtration of fluids and flow for regulation of skin. The
Analytic solution can be obtained for such flow models by using the technique of Fourier sine transform
for determining the variable accelerated flow as well as for the constant accelerated flow. Using such
technique, Husain et al. [12] discussed the unsteady motion of fluid for an Oldroyd-B model passing
through the porous medium. The effect of periodic pressure gradient on the oscillating viscous fluid
was proposed by Johri and Singh [13] for the space of rectangular cross-section. The exact solution
for the unsteady MHD flow was obtained using the Fourier and laplace transform for the Oldroyd-B
fluid model passing through the long porous rectangular region by Sultan el al. [24]. Further studies of
flows for non-Newtonian fluids through duct have been examined by Erdogan and Imrak [6], and Khan
et al. [15, 16]. Interested readers can also be referred to [1–3, 7, 14, 19].
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The equations for the differential fluid models are mostly nonlinear which are known as
non-Newtonian fluids. The exact solution for such fluid models are difficult to obtain. But
approximate solution can be obtained by using the technique of numerical solution. The importance
of exact solution is that they completely describe the rheological effects as well as profile of fluid flow
of a model and which can be used for validation and evaluation of convergence, consistency and
stability of asymptotic and numeric prototype. In this article, we mainly emphasize on the induced
rectified sine pulses on the fluid model which flows through a porous rectangular duct. The solution is
obtained using Laplace transform and Fourier sine transform. Also, non-dimensional aspect ratio
(ration of length to width) is obtained by transforming the equation of linear momentum to
non-dimensional form. Also as a special case, we will obtain the explicit expressions for the velocity
and the associated tangential stresses of the Newtonian fluid through duct.

2. Flow configuration and basic governing equations

Defining the Cauchy stress for a second grade incompressible homogeneous fluid and denoting by
T as,

T = −pI + µτ1 + α1τ2 + α2τ
2
1, (2.1)

where hydrostatic pressure is denoted by p ,visco-elasticity is denoted by α1, cross-viscosity is denoted
by α2, the dynamic viscosity is denoted µ and the Rivlin-Ericksen kinematic tensors are defined by τ1

and τ2.

τ1 = (∇U) + (∇U)T ,

τ2 =
dτ1

dt
+ τ1(∇U) + (∇U)Tτ1 (2.2)

with d
dt is the material time derivative, ∇ is the gradient operator, U is the velocity field and the

transpose operation is denoted by the superposed T . It is worthwhile promising, when imposing the
so-called Clausius-Duhem condition and the fluid is locally in equilibrium then by minimizing the
Helmholtz free energy the stability and existence of the compatible solution for a thermodynamical
models are often guaranteed as refer to [4]. These thermodynamic stability conditions impose
following restrictions on normal stress moduli:

µ ≥ 0,
α1 ≥ 0,
α1 + α2 = 0.

Here, the flow of an unsteady and an incompressible fluid through a rectangular cross-section duct
possessing electrically conducting second grade fluid whose sides are at x = 0, x = d, y = 0 and y = h.
At time t = 0, both the duct and the fluid are at rest. The velocity and stress fields are in the form
mentioned in [23]

U = U(x, y, t) = w(x, y, t) k̂, S = S(x, y, t), (2.3)
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where the z − directional unit vector is denoted by k̂.
For the second grade fluid the Darcy resistance R fulfills the following equation

R = −
µφ

k

(
1 +

α

µ

∂

∂t

)
U, (2.4)

where µ and α are material constants, φ is the porosity and k is the permeability of the porous medium.
For the magnetohydrodynamics flow, the governing equations for the incompressible fluid will be

∇.U = 0

ρ

(
∂tU + (U.∇)U

)
= ∇.S + J × B + R. (2.5)

Invoking (2.1)–(2.4) into the (2.5), omitting the body forces and pressure gradient, we obtain the
following equation

∂t w(x, y, t) = (ν + α∂t)
(
∂2

x + ∂2
y

)
w(x, y, t) −

σβ2
0

ρ
w(x, y, t) −

φ

k
(
ν + α∂t

)
w(x, y, t), (2.6)

where α = α1
ρ

, kinematic viscosity of the fluid is denoted by ν =
µ

ρ
, ρ is the constant density, β0 is the

strength of applied to magnetic field and the electrical conductivity is denoted as σ.

3. Flow problem and non-dimensionalization

In this section, the boundary value problem corresponding to the aforementioned fluid flow is
obtained together with relevant boundary conditions. The following non-dimensional relations are
introduced in (2.6) as,

w∗ =
wd
ν
, x∗ =

x
d
, y∗ =

y
h
, z∗ =

z
d
, t∗ =

tν
d2 ,

α∗ =
α

d2 , T ∗ =
Tν
d2 , τ1 =

S xzd2

ρν2 , τ2 =
S yzd2

ρν2 . (3.1)

After dropping the asterik for brevity and using the same notations for dimensionless quantities by
abuse of notations, (2.6) in non-dimensional form becomes

∂t w(x, y, t) = (1 + α∂t)
(
∂2

x + B2∂2
y

)
w(t) −Ωw(x, y, t) − ε

(
1 + α∂t

)
w(x, y, t), (3.2)

where Ω =
σβ2

0
ρ

is the magnetic parameter, the non-dimensional parameter B = d
h is the aspect ratio and

ε =
νφ

k is the porosity parameter.
At time t = 0+, the duct is generated impulsively from rest due to periodically applied rectified sine

pulses. Assuming the following IBC in non-dimensional form as,

w(x, y, 0) = 0, x, y ∈ [0, 1],
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w(0, y, t) = w(1, y, t) = w(x, 0, t) = w(x, 1, t)

= 2
∞∑

p =1

(−1)pHpT (t) × sin{
π

T
(t − pT )}

+ sin{
π

T
t}H(t)for x, y ∈ [0, 1] t ∈ [0,∞), (3.3)

where the Heaviside unit step function is denoted as H(·) and time period is denoted as T ,

Hφ(t) = H(t − φ) =


0, t ≤ φ

1, t > φ .

4. Expressions for velocity field and shear stress

4.1. Calculations for the velocity field

Applying Laplace transform (LT) to (3.2), and using condition in (3.3), to obtain

q w(x, y, q) = (1 + αq)
(
∂2

x + B2∂2
y

)
w(x, y, q) −Ωw(x, y, q) − ε

(
1 + αq

)
w(x, y, q). (4.1)

The LT w(x, y, q) of the function w(x, y, t) must satisfy the IBC

w(0, y, q) = w(1, y, q) = w(x, 0, q) = w(x, 1, q)

=
π/T

q2 + (π/T )2

{
2
∞∑

p =1

(−1)p exp (−p qT ) + 1
}

for x, y ∈ [0, 1]. (4.2)

By virtue of the property

L
{
H(t − c)g(t − c)

}
= exp(−cs)G(s).

Multiplying (4.1) by sin(ξmx) sin(λny) and integrating with respect to x and y from 0 to 1, where λn = nπ
and ξm = mπ, while corresponding conditions given in (4.2) and following [23], gives

w(m, n, q) = amnλ
2
mn
π

T
1 + αq

{q2 + (π/T )2}{(1 + αλ2
mn + αε)q + λ2

mn + Ω + ε}

×

{
1 + 2

∞∑
p =1

(−1)p exp(−p qT )
}
, (4.3)

where in (4.3)

amn = ({1 − (−1)m}{1 − (−1)n})/(λnξm),
λ2

mn = λ2
nB2 + ξ2

m,

m, n = 1, 2, 3, · · · .

Re-writing (4.3) as,
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w(m, n, q) = amn
π

T

{ 1
q2 + (π/T )2 −

(1 + αε)q + Ω + ε{
q2 + (π/T )2}{αmnq + βmn

}}
×

{
1 + 2

∞∑
p =1

(−1)p exp(−p qT )
}
, (4.4)

where αmn = 1 + αε + αλ2
mn and βmn = λ2

mn + Ω + ε. Following [23], to obtain

w(m, n, q) = amn
(π/T )

q2 + (π/T )2

{
2
∞∑

p =1

(−1)p exp(−p qT ) + 1
}
−

amn

(π/T )2α2
mn + β2

mn

×

[
(π/T )

{
(Ω + ε)αmn − βmn(1 + αε)

}{ 1
q + (βmn/αmn)

−
q

q2 + (π/T )2

}
+

{
(π/T )2αmn(1 + αε) + βmn(Ω + ε)

} (π/T )
q2 + (π/T )2

]
×

{
2
∞∑

p =1

(−1)p exp(−p qT ) + 1
}
. (4.5)

Taking inverse Fourier sine of (4.5), and then inverse Laplace transform of the resulting equation,
leads to

w(x, y, t) = sin
{ π
T

t
}
H(t) + 2

∞∑
p =1

(−1)pHpT (t) sin
{ π
T

(t − pT )
}
− 16

∞∑
m,n=0

sin(ξsx)
ξs

×
sin(λly)
λl

1
(π/T )2α2

mn + β2
mn

[
(π/T )

{
αmn(Ω + ε) − βmn(1 + αε)

}
×

{
exp

{
−
βmn

αmn
t
}
− cos

{ π
T

t
}}

H(t) +

{
(π/T )2αmn(1 + αε) + βmn(Ω + ε)

}
× sin

{ π
T

t
}
H(t) + 2

∞∑
p =1

(−1)pHpT (t)
{

(π/T )
{
αmn(Ω + ε) − βmn(1 + αε)

}
×

{
exp

{
−
βmn

αmn
(t − pT )

}
− cos

{ π
T

(t − pT )
}}]
, (4.6)

where s = 2m − 1, l = 2n − 1, ξs = ξ2m−1 = (2m − 1)π and ξl = ξ2n−1 = (2n − 1)π.

4.2. Calculation for tangential stresses

In the considered problem S xx = S xy = S yy = 0, and the meaningful equations as,

S xz(x, y, t) =
(
µ + α1∂t

)
∂x w(x, y, t) ;

S yz(x, y, t) =
(
µ + α1∂t

)
∂y w(x, y, t). (4.7)

Applying the non-dimensional scheme (3.1) to (4.7), to obtain

τ1(x, y, t) =
(
1 + α∂t

)
∂x w(x, y, t) ;
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τ2(x, y, t) =
(
1 + α∂t

)
∂y w(x, y, t). (4.8)

Now applying the LT to (4.8), to obtain

τ1(x, y, q) = (1 + αq)∂x w(x, y, q) ;
τ2(x, y, q) = (1 + αq)∂y w(x, y, q). (4.9)

Taking the inverse Fourier Sine transform of (4.5), then plug in the resulting value of w(x, y, q)
into (4.9), to obtain

τ1(x, y, q) = −16
π

T

∞∑
m,n=0

cos(ξsx)
sin(λly)
λl

α(1 + αε)q2 + (1 + 2αε + αΩ)q + Ω + ε

(q2 + (π/T )2)(αmnq + βmn)

×

(
2
∞∑

p =1

(−1)p exp(−p qT ) + 1
)
, (4.10)

τ2(x, y, q) = −16
π

T

∞∑
m,n=0

cos(λly)
sin(ξsx)
ξs

α(1 + αε)q2 + (1 + 2αε + αΩ)q + Ω + ε

(q2 + (π/T )2)(αmnq + βmn)

×

(
2
∞∑

p =1

(−1)p exp(−p qT ) + 1
)
. (4.11)

Rewriting (4.10) and (4.11) in the following equivalent form

τ1(x, y, q) = −16
∞∑

m,n=0

cos(ξsx)
sin(λly)
λl

1
(π/T )2α2

mn + β2
mn

{
π

T
aβ2

mn − bαmnβmn + cα2
mn

αmn

×
1

q + (βmn/αmn)
+ (cβmn − a3βmn + a3bαmn)

π/T
q2 + (π/T )2

+
π

T
(a3αmn + bβmn − cαmn)

q
q2 + (π/T )2

}{
1 + 2

∞∑
p =1

(−1)p exp(−p qT )
}
, (4.12)

τ2(x, y, q) = −16
∞∑

m,n=0

cos(λly)
sin(ξsx)
ξs

1
(π/T )2α2

mn + β2
mn

{
π

T
aβ2

mn − bαmnβmn + cα2
mn

αmn

×
1

q + (βmn/αmn)
+ (cβmn − a3βmn + a3bαmn)

π/T
q2 + (π/T )2

+
π

T
(a3αmn + bβmn − cαmn)

q
q2 + (π/T )2

}{
1 + 2

∞∑
p =1

(−1)p exp(−p qT )
}
, (4.13)

where

a = α(1 + αε), b = 1 + 2αε + αΩ, c = Ω + ε.
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Applying the inverse Laplace transform to (4.12) and (4.13), to obtain

τ1(x, y, t) = −16
∞∑

m,n=0

cos(ξsx)
sin(λly)
λl

1
(π/T )2α2

mn + β2
mn

[{
π

T
aβ2

mn − bαmnβmn + cα2
mn

αmn

× exp
{
−
βmn

αmn
t
}
+ (cβmn − a3βmn + a3bαmn) sin

{ π
T

t
}

+
π

T
(a3αmn + bβmn − cαmn) cos

{ π
T

t
}}

H(t) + 2
∞∑

p =1

(−1)pHpT (t)

×

{
π

T
aβ2

mn − bαmnβmn + cα2
mn

αmn
exp

{
−
βmn

αmn
(t − pT )

}
+ (cβmn − a3βmn + a3bαmn)

× sin
{ π
T

(t − pT )
}
+
π

T
(a3αmn + bβmn − cαmn) cos

{ π
T

(t − pT )
}}]
, (4.14)

τ2(x, y, t) = −16
∞∑

m,n=0

cos(λly)
sin(ξsx)
ξs

1
(π/T )2α2

mn + β2
mn

[{
π

T
aβ2

mn − bαmnβmn + cα2
mn

αmn

× exp
{
−
βmn

αmn
t
}
+ (cβmn − a3βmn + a3bαmn) sin

{ π
T

t
}

+
π

T
(a3αmn + bβmn − cαmn) cos

{ π
T

t
}}

H(t) + 2
∞∑

p =1

(−1)pHpT (t)

×

{
π

T
aβ2

mn − bαmnβmn + cα2
mn

αmn
exp

{
−
βmn

αmn
(t − pT )

}
+ (cβmn − a3βmn + a3bαmn) × sin

{ π
T

(t − pT )
}

+
π

T
(a3αmn + bβmn − cαmn) cos

{ π
T

(t − pT )
}}]
. (4.15)

4.3. Special case

For velocity field, letting α = 0 into (4.6), (4.14) and (4.15), to get

w(x, y, t) = sin{
π

T
t}H(t) + 2

∞∑
p =1

(−1)pHpT (t) sin
{ π
T

(t − pT )
}
− 16

∞∑
m,n=0

sin(ξsx)
ξs

×
sin(λly)
λl

1
(π/T )2 + β2

mn

[{
(π/T )λ2

mn

{
cos{

π

T
t} − exp

(
− βmnt

)}
+

{
(π/T )2 + βmn(Ω + ε)

}
sin{

π

T
t}
}
H(t) + 2

∞∑
p =1

(−1)pHpT (t)

×

{
(π/T )λ2

mn

{
cos

{ π
T

(t − pT )
}
− exp{−βmn(t − pT )}

}
+

{
(π/T )2 + βmn(Ω + ε)

}
sin

{ π
T

(t − pT )
}}]

,
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and the tangential stresses

τ1(x, y, q) = −16
∞∑

m,n=0

cos(ξsx)
sin(λly)
λl

1
(π/T )2 + β2

mn

[{
π

T
λ2

mn

{
cos{

π

T
t} − exp (−βmnt)

}
+ βmn(Ω + ε) sin{

π

T
t}
}

H(t) + 2
∞∑

p =1

(−1)pHpT (t)
{
π

T
λ2

mn

{
cos

{ π
T

(t − pT )
}

− exp{−βsl(t − pT )}
}

+ βmn(Ω + ε) sin
{ π
T

(t − pT )
}}]

,

τ2(x, y, q) = −16
∞∑

m,n=0

cos(λly)
sin(ξsx)
ξs

1
(π/T )2 + β2

mn

[{
π

T
λ2

mn

{
cos{

π

T
t} − exp (−βmnt)

}
+ βmn(Ω + ε) sin{

π

T
t}
}

H(t) + 2
∞∑

p =1

(−1)pHpT (t)
{
π

T
λ2

mn

{
cos

{ π
T

(t − pT )
}

− exp{−βmn(t − pT )}
}

+ βmn(Ω + ε) sin
{ π
T

(t − pT )
}}]

,

for Newtonian fluid flowing through oscillating duct.

5. Graphical illustration

Graphs are presented for describing the flow of developing as well as retarding fluids. Time t = 0.2
corresponds to the developing flow and t = 1 corresponds to the retarding flow. Figure 1 is prepared
to notice the variation in the velocity profile of developing as well as the retarding fluids flow in the
absence and in the presence of side walls. Figure 1(a) displays the variation of magnitude of amplitude
of oscillation of velocity profile with respect to α for developing flow in the side walls presence. It is
evaluated in velocity profile of an oscillating amplitude that the magnitude decreases as α increases.
The value α = 0 corresponds to the Newtonian fluid. It is evident that the curves regarding the flow of
second grade model changes to that of Newtonian model as α is minimized. Figure 1(b) shows that the
magnitude of amplitude of oscillation of velocity decreases as α increases for retarding flow. Figure
1(c,d) predicts that the profile of velocity is a decreasing function of α in the absence of side walls for
both flows. Moreover, it is also evident from these figures that the velocity profile is smaller in the
absence of side walls while greater in the presence of side walls. Figure 2, showing the influence of the
spatial variable x for both flows on the amplitude of velocity versus y. The graphs for various values of
x have been plotted. It is seen for the velocity profile that the amplitude of oscillation is an increasing
function of x. The influence of x is more prominent for smaller values. The influence of magnetic
parameter Ω and time period T on the transient velocity profile is underlined in Figure 3. Figure 3(a)
shows that the time required to reach the steady state decreases as Ω increases in the presence of side
walls. But the time increases as T increases. Thus T reduces the magnetic effect on the velocity profile.
The case Ω = 0 corresponds to hydrodynamic flow. It can also be noted that the required time to reach
the steady state for hydrodynamic flow is greater as compared to that for hydro-magnetic flow. Figure
3(b) shows the effects of Ω and T on the velocity profile in side walls absence. The result is similar as
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in the case for flow in the presence of side walls. Figure 4(a,b) displays that the required time decreases
as ε increases for both conditions.

Figure 1. Velocity profiles for second grade fluid for different values of α.

Figure 2. Velocity profiles for second grade fluid for different values of x.
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Figure 3. Velocity profiles for second grade fluid for different values of Ω and T .

Figure 4. Velocity profiles for second grade fluid for different values of ε.

6. Conclusions

The exact analytic solutions for the flow of second grade fluid model through an area of a porous
rectangular cross-section induced by rectified sine pulses is established. To obtain the solution, Laplace
and double finite Fourier Sine transform are used for present mathematical model. In the absence of
side walls i.e; for B = 0, the problem reduces to the flow between two plates.
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