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Abstract: In this article, the modified coupled Korteweg-de Vries equation with Caputo and Caputo-
Fabrizio time-fractional derivatives are considered. The system is studied by applying the modified
double Laplace transform decomposition method which is a very effective tool for solving nonlinear
coupled systems. The proposed method is a composition of the double Laplace and decomposition
method. The results of the problems are obtained in the form of a series solution for 0 < @ < 1, which
is approaching to the exact solutions when @ = 1. The precision and effectiveness of the considered
method on the proposed model are confirmed by illustrated with examples. It is observed that the
proposed model describes the nonlinear evolution of the waves suffered by the weak dispersion effects.
It is also observed that the coupled system forms the wave solution which reveals the evolution of the
shock waves because of the steeping effect to temporal evolutions. The error analysis is performed,
which is comparatively very small between the exact and approximate solutions, which signifies the
importance of the proposed method.
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1. Introduction

The time-fractional singular and non-singular operator are widely used in modern sciences and
technology to study the behavior and applications of nonlinear ordinary and partial differential
equations [1-4]. Fractional-order models are useful to study numerous real-world problems for
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longtime memory, and chaotic behaviour [5]. Due to these characteristics, the nonlinear models
having fractional-order derivatives have been widely attracted in many areas of fractional calculus
including image processing and signal, mechanics, biophysics and bioengineering, electrical
engineering, biology, viscoelasticity, rheology, and control theory [6-8].

The Korteweg-de Vries (KdV) equation has extensively studied for nonlinear models describing
the evaluation in time of long, unidirectional shallow water waves [9]. It was mainly presented by
Boussinesq in 1877 and then retrieved by Diederik Korteweg and Gustav-de Vries in 1895 [10]. The
existence solution to the a KdV equation can be seen in [11, 12]. The KdV system having
time-fractional derivatives attained remarkable attention in plasma physics especially in electrons
acoustic waves (EAWSs) propagation, due to its important role in studying diverse forms of mutual
developments experimentally [13, 14]. It has observed that the time-fractional operators in the system
dramatically change the soliton amplitudes of the electron-acoustic solitary waves. This effects have
been particularly equated with the structures of the broadband electrostatic noise experienced in the
dayside auroral zone [15]. The system of coupled KdV system plays a leading part in various areas of
sciences and engineering, particularly in water waves, quantum field theory, hydrodynamics and
plasma physics [16, 17]. It also represents the relations in extended waves with altered dispersion
relations and describes iterations of water waves [18,19].

Here, we consider the mCKdV in the form [20]

0%¢ L0 307y oy O0p 0p 10°¢
— +3¢°— —=— —3¢— —3Yy— + 31— — —— =0,
e 2 x Taaw o Mo T T 2 @D
iy 200 o 0P oy Py '
—_ —_ —_ _ —_ e <
pw 3¢8x+3¢,(9x+36x6x 3/1(9x+(9x3 0, O<a<l, t>0

with subsidiary conditions
¢(x,0) = f(x),  ¥(x,0) = g(x),

where A is a real number to be chosen accordingly.

The proposed mCKdV Eq (1.1) has more interesting features than classical, because the operators
will be defined by an integral which play a vital role in modern technology, engineering, plasma
physics, hydrodynamics and quantum theory [21]. The nonlinear differential equations contain
numerous fractional differential singular and non-singular operators such as Hilfer, Caputo,
Caputo-Fabrizio, Riemann-Liouville, Antagana-Balenau in Caputo’s sense [22-24]. These operators
can be reduced in Caputo’s form after some parametric addition. One can assume that the fractional
operator could provide a power-law estimate of the local conduct of non-differentiable functions [25].
The Caputo operator possesses a power-law kernel and has restrictions to apply in modeling physical
phenomena.

A modified laplace decomposition method (MLDM) is applied to Schrodinger-KdV equation in the
sense of Atangana-Baleanu derivative in [26]. To deal successfully in such a situation, an alternative
fractional operator possess a kernel with exponential decay has been introduced [27]. This novel
operator is called the Caputo-Fabrizio (CF) operator which has a non-singular kernel. This operator
is broadly applicable for modeling particular type of physical problems which follows the exponential
decay law. Currently, mathematical and physical models having the CF operator have a remarkable
development. The characteristics and applications of the above derivatives has been extensively studied
(see [28-35] and the reference therein).
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There are many analytical methods that offer approximate solutions to nonlinear models,
for example, perturbation methods [36-38], homotopy perturbation [39-42], the Adomian
decomposition methods (ADM) [43, 44] and Laplace Adomian decomposition methods
(LADM) [45-47]. The modified coupled KdV model has been analyzed numerically by applying the
g-homotopy approach with Caputo operator by using Petrov-Galerkin method and product
approximation technique [20, 48]. We will study the mCKdV equations with Caputo and CF
derivatives by applying the modified double Laplace transform decomposing method (MDLDM) [49].
The decomposition method has extensively applied for many fractional models in physics and applied
mathematics [50-52].

Some resent contribution of the time fractional order KdV equations have been studied by using
different techniques [53-57]. The proposed method is an essential and effective approach to finding
approximate solutions of the nonlinear models having time-fractional derivatives. In the non-linear
model (1.1), the time fractional derivative has been taken in the form of Caputo’s and Caputo-Fabrizio
operator form which have a remarkable advantages in such physical models. The model is solved by
using an affective method called modified double Laplace decomposition method (MDLDM) to obtain
an approximate solution. The numerical solution of the model has been discuss in the form tables
follow by its plots.

The rest of the paper is organized as follows: In Section 2, some main definitions, remarks,
important results and a brief discussion of the proposed method is included. The convergence and
uniqueness of the proposed method with the help of Banach contraction principle theorems are also
studied in Section 3. In Section 4, the problem is discussed in Caputo’s and Fabrizio forms and its
solutions are obtained in a series form. We consider two numerical examples in Caputo’s and Fabrizio
form with the application of the proposed method, approximate solutions are obtained in the same
section. This section also includes numerical discussion and figures for both the examples. Section 5
concludes the article followed by the Section 6 contain the future work in the manuscript, and
Appendix contains the numerical values of the examples in the form of tables and also includes some
parameters values.

2. Materials and methods

2.1. Some basic definitions

In this section, we provide some basic definitions, lemmas and remarks regarding to the proposed
method. Here also given some basics rules and definition related to double Laplace transform and
decomposition method.

Definition 1. [5,35,58] Caputo’s fractional derivative of positive real order @ > 0 of a function ¢(x, 7)
is given by function ¢ : (0, c0) — IR is defined by

‘D@(x,1) = ﬁ I) (t =) p(x, )" (x, 8)ds, n—-1<a<n, (2.11)

where n = [a] + 1, [@] denotes the integer part of a real number «, provided the right-hand side is
point-wise defined on (0, co).
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Definition 2. [35,59] Let ¢(x,1) € H'(a,b), with b > a and a € (0, 1], then the fractional order in
sense of Caputo-Fabrizio is define as

—at

cr Dp(x,1t) = w f o(x, )" (x, s)exp(
1-a) 0 1

- s) ds, 2.12)
-—a
where ¢ D%¢(x, 1) is a fractional operator with Mittage-Leffler kernel in Caputo sense. M(a) is called

normalization function with properties M(0) = M(1) = 1.

Definition 3. [60] For a ¢(x, t), where x,¢ > 0 lies in xt-plane, the double Laplace transform of the
function ¢(x, 1) is defined by

L L o(x, )] = f“ e P* f‘” e o(x, 1) dtdx, (2.13)
0 0

where p and s are complex numbers.

Definition 4. [61, 62] Applying the definition of double Laplace transform on fractional order
derivative with respect 7 and x in Caputo sense is given by

_ n—1 ak 0’
LLDE G0 = B - Y pa-‘-’az{ = ”}, 2.14)
k=0
_ m—1 ak ’ 0
LG DL 9 0) = Lpip,5) - . 2 TERD) 2.15)
k=0

wheren = [a] + 1, m = [B] + 1.

Definition 5. [61, 62] Applying the definition of double Laplace transform on fractional order
derivative with respect ¢ and x in Caputo-Fabrizio sense is given by

M(a)

L LD px 1)) = ———— | P Ll s)—Zn: < #¢0.1 (2.16)
L e B ) A Kl U T & '

r M . i F*¢(x,0
LD ¢<x,r>}:w(f)_s)[srlfxcw(p,s)—;s ’iﬁf{%}} 2.17)

where n = [a] + 1, m = [B] + 1 for r = 0, 1. For Eq (2.17), with normalization property hold, we can
write

L2 DY ¢(x, 1) [s Lo Lip(x,1) = Lg(x, 0)],

- s+a(l-y)

ZL D] ¢(x, 1) [s L Lp(x, 1) = L (x,0) - xxgtqs(x, 0>] :

~ 1
s+ B8(1-5y)

From the above definitions, we can conclude that
L Lip(x, )Y (x, 1) = ¢(p, HY(p, 5) = Lop(x, )L (x, 1). (2.13)
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The inverse double Laplace transform Xx‘lx‘l{é(x, 1} = ¢(x,1), is represented by a complex
double integral formula

c+ico d+ioco

202 o) =5 [ @ [ a9 dpas 2.19)
2mi

c—ioo d—ico

where ¢ (p, s) is an analytic function ¥ p and s defined in the region by the inequalities Re (p) > ¢ and
Re (s) > d, where ¢, d € R to be considered accordingly.

2.2. Series solutions of mCKdV using the proposed method

The proposed method MDLDM is hybrid method used widely for non-linear ordinary or partial
differential equations. It is the combination of double Laplace and Adomian decomposition method to
obtain an approximate solution for problems in hand. To discuss the analysis of the proposed method,
we consider the following coupled non-linear problems:

Lo(x,1) + Rp(x,1) + N1 (6, %)) = fi(x, 1),

(2.21)
Ly(x,1) + Ry(x, 1)) + N1 (¢, ¥)) = fa(x, 1), Y teR,

where L =¢ D{(.) is the fractional-time derivative in Caputo’s form, R;, R, are the operators contains
the linear terms of Eq (1.1), Ny, N, are the non-linear operators and f;(x, 1), f>(x, t) are some external
functions. Applying double Laplace on both sides to Eq (2.21), we obtain

LD} ¢y + L LR @) + L LN, )} = L L filx, D,

2.22
L LD W)+ LB RN} + Lo LN G} = Lo o D). (2:22)

th

Using the scheme defined above of double Laplace on the n™*-derivative in Caputo’s form, we obtain

1 1
Lo, )} = Gi(p, s) - ;XXZ{R@(X’ n)} - ;ZXZ{N1(¢’ ¥},

| ) (2.23)
L L(x, 1))} = Ga(p, s) - ;«%Z{thﬁ(x, n)} - S—QO%Z{Nz@, )},
where
n—1 6k , 0
Gilp.9) = "L Lo )~ 3 5L IR f),
k=0
o " 0 (2.24)
Gap. s) = " Lo L. ) - Y s“‘l":z;{‘”éf—;’)} + ).
k=0
Consider the series solution of the form
Bx.0) = ) gu(x0), Yr0) = ) dn(x,1), (2.25)
n=0 n=0
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let Ny and N, be the non-linear operators in the model are defined by

N6, 9) = D Aw Na@9) = ) By, (2.26)
n=0 n=0
where A, and B, are well known Adomian polynomials [50] of the functions ¢, ¢y, ¢,,... and
Yo, Y1, ¥n, ... respectively. For convince consider A, can be described by the following formula:
Ao ) = Zn:/l"qﬁ(xt)zﬂw(xt) (2.27)
n\¢0s .- Oa'-' I’l'd/ln k k 0- .

Applying an inverse double Laplace on both sides to Eq (2.23):
(o8] 1 (o8]
D = L L Gip,s) - L7 L { — L LR $(x, t)) - L 1{—03)6@%2&},
n=0 =0

Dnx = L L Galp, ) - £ 2 { L LR (x, r)) - L0
n=0

equating terms on both sides, we obtain

o = L' LG, 9)],
vo = L7 L7NGHp, o)),

¢ = ~2\ 2! { zx,{&%}} a7 {s—ﬂzxz DA }
n=0
v = -2 { ng{RIWO}} -z {liﬂxiﬂz Z Bo} ;
s s =
¢ = -~ {ifx.za{wl}} -~z {lfxz >, Al} :
s 5 g
v = 22 {izxzm]wl }} - {ixz D Bl} ,
s s oy
puyy. )l N
b = L L LG R - L LT LL ) Ay
s s o
v, =~ {izxzmlwz}} -z {133 > Bz}
S(l’ S(I e
In general, the following recursive formulas can be obtained, the final solutions can be obtained as
-1 -1 1 -1 1 N
bun = 60 0) = L LN LRGN - LSS LL Yy Ay (229)
n=0
-1 1 N
Wit = (%, 0) - z.z{ Wl p = L LA Y By (230)
n=0
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for numerical purposes we take @ = 1, the exact solution can be obtained as
lim (¢, 1) = (6,1). (231)

Similar procedures can be used to a problem having Caputo-Fabrizio fractional-time derivative to
obtain a recursive relation.

3. Convergence analysis of the proposed method

In this section, we are discussing the existence and uniqueness of the solutions (2.29) and (2.30)
of the general coupled time fractional non-linear partial differential equation (2.21). The following
theorems are taken from [63].

Theorem 1. (Uniqueness theorem) For 0 < o < 1, the solution (2.29) of Eq (2.21) is a unique solution,

_ (Kt +k3)t]
where o = @
Proof. We create a mapping T : B— B where B = (C[/],]|.]|) is the Banach space of all continuous

functions on J = [0, T'] with the norm ||.||. We can write Eq (2.29) in the following form:
1
Pu1 = P(x,0) + £ 2 {—Zxx(wn + Mg, +Ng, )}
SlI

where L = 2ax2 3/1 —'27‘5 and N = 3¢23x‘§’ 3:,06"’ 3(/’)% Let Ly, Mp and N¢ are
also Lipschitzian with |L¢ L¢| < K1 |¢ ¢| |M¢ M¢| < Ky Tgb ¢| and |N¢ N¢| < K3 |¢ ¢|
where k|, K, and k3 are Lipschitz constants, ¢ and ¢ are the function’s distinct values. Now we proceed

as follow:

I7¢ = T4 || = max

gx—lgt—l{ gz(u,’) +M¢ + N¢ )} 20 {si"g"%(w +Mp + Ng )}‘

< max
teJ

N {—azxz(up - 1§ )} s 2L {;&z(w - M§ )}
S S
v 227 L 22{No - No)} |

< max
teJ

s {Lao-s) nss [e-o)

ot (L)
S

(K] + Ky + Kg)t(l D

ls -1l

< max(k; + kp + K3)
teJ

»?i:‘f,“{ - 220 - ¢)}|

(@)
The mapping is contraction under the condition 0 < o < 1. As a result of the Banach fixed point
theorem for contraction, Eq (2.21) has a unique solution. This marks the end of the proof. O

Next we discuss convergence analysis of the problem.

Theorem 2. (Convergence theorem) The solution of Eq (2.21) in general forum will be convergence.
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Proof. The Banach space of all continuous functions on the interval J with the norm ||¢ ||=max;c; ||¢ ||
is denoted as (C[J],]|.|]). Define the {Sn} sequence of partial sums i.e S, = Z’}zo. Withn > m, let S,
and §,, be arbitrary partial sums. In this Banach space, we will show that S, is a Cauchy sequence. We
obtain by employing a new formulation of Adomian polynomials.

n—1 n—1
PS)=A,+ Y A, 0S)=A+ ) A,

r1=0 r2=0

now

n m n ~ ~ 1 n
1S, =Sull =D 0; = Y | =max| > o) < max | 7! {S—a-fxfr( > L )}

j=0 k=0 j=m+1 j=m+1

1 “ 1 “
P LA {@ZX'%( 2, M# )} r L {F’%‘Z( 2, A )}'
Jj=m+1 Jj=m+1

) ) 1 n—1 ) ) 1 n—1
-l [T o) vt [ S )|

+ gx_liﬂfl {%XXZ(E(AJ))}|

n—1
"?x_l"%—l {égxz( Z LSn—l - LSm—l)}

J=m

< max
teJ

1 n—1 1 n—1
L {;zxz( MS, | - Msm_l)} a7 {;zxz(ZNsn_l - Nsm_l)H
J=m j=m
1 1
<K mE}X %—lz—l {—CS”XZ(S,I_I - Sm—l)} + K> ma}x gx—lz—l {—O%Co%(sn_l - Sm—l)} ‘
te e te et
G 1 (K1 + Ky + K3)t7!
+i3max |.L L —ZCZ(S,,_l —Sm_l) = IS -1 = Sl
te] s ['(a)
Choosing n = m + 1, then
IS mer = Sull S NS = Sl S 7S et = Sl -+ <181 =Soll,
with o = %, by using the following triangular inequality
ISy = Sull <MSm = Smarll USmr1 = Sl < -- -+ - <o"[IS1 = Soll

< (o + ™ e ) IS )= Sol

l_o_n—m
so-’"(l+a+o-2+~-+0'""”_1)||51 = Soll SOJ"(T)”‘blll'

g

Now by definition 0 < o < 1, we have 1 — 0" < 1, thus we have

m

-0

max ||¢l, (3.1)
teJ
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and also as |¢| < oo (¢is bounded), therefore, ||S, — S|l — 0, hence §, is a Cauchy sequence in the
Banach space B, so the series }._, ¢, is convergent. m]

Remark 1. Theorems I and 2 can also be applicable to the solution (2.30) for its uniqueness and

convergent.

4. Applications of the proposed method

In this section, we illustrate some examples on Eq (1.1) with time-fractional derivatives in the form
of Caputo and Caputo-Fabrizio operators in each case, and apply the proposed method discussed in
this section with (fi, f>) = 0.

Example 1. Consider the following (mCKdV) [20] in Caputo’s form

dp 3%y oy 0p 0p 10°¢

‘D + 3> — —3¢p— —3Y— + 31— — —— =0,
9+ 39 ox 2 0x? ¢6x w6x+ ox 20x3 .1
: oy 0Py 2O Py ’
‘D¥ 3Wp—+3—— -3¢p"— - 31— + — =0, 0 <1, t>0,
A w0x+ Ox Ox ¢6‘x (9x+6x3 <@ ~
with initial conditions
A k
#(x,0) = il + ktanh(kx), ¥(x,0) = M + r; tanh(kx). 4.2)
2k 2r
The exact solution of Eq (4.1) for @ = 1 is [20]
A k
s = L s ktanh@). wnn = 20K L anhe), 4.3)
2k 2r
where 32
k , ka 3r
é::kx+z(—6/l—4k _r_l+ﬁ)t.

Apply the modified double Laplace transform decomposition (MDLDM) scheme discussed in this
section to Eq (4.1) and single Laplace transform to Eq (4.2), we obtain the following recurrence
relations:

t(n+l)a 3 1
= = —3A — B - 32 —
‘pO Gl(P, S), ¢n+1 r((n N I)CY + 1) 3 nt Zlﬁnxx +3 n T 3Cn 3 ¢nx + 2¢nxxx s
t(n+1)a (44)
lﬁo = GZ(P, S)’ l/’n+1 = [_3Dn - 3E‘n + 3Fn + 3/l¢nx - wnxxx] >

T((n+ Da + 1)

for n > 0. The Adomian polynomials A,,--- F,, n = 1,2, 3, for nonlinearity appears in Eq (4.4) are
calculated by using the general rules shown in Eq (2.27)

Ao = Bodor, A1 = 2¢0b1dox + Bybie, Az = 2¢0Padox + Bidox + 200111 + Bybaxs

By = ¢opox,  Bi = ¢1¥box + o, By = ¢otfox + $1¥1x + Poars

Co = Yodox, Ci = ¢1¢ox + Yodix, Co = Yo + Y1d1x + Yodar,

Do =Yoor, D1 =Y1ox + Y1, D2 =aor + Y11 + Yoor,

Eo = goxtbors  Er = 1o + Poxtlin,  E2 = dothox + drlix + dotlon,

Fo=¢gbo,  Fi = 2¢0p o+ Goh1s  Fa = 20062000 + 0. + 2hob1h 1 + Gin.

4.5)
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For more details, one can see [51,52,64]. Plugging Eq (4.5) in Eq (4.4), we obtain

do = ;—;C + ktanh(kx), o = A(rzl—:k) + r, tanh(kx),

¢ = #:H) (373 = 4rik* — 611 0% + 61K°) sech’ (kx) |,

U = Waﬂ) |(—4k*r1 = 6K + 64k ry + 3r7) sech?(kx)| .

¢ = _(Srfk)lfi;a n 1)[771 tanh(kx)sechz(kx)],

b = e kz)t;a( T [(al tanh(kx)(a; cosh(2kx)) + as tanh(kx)))sech4(kx)],

¢3 = (32r13k)?:3oz R [ (2]90 + 3sech2(kx) (2r1 tanh(kx) (ngGChz(k.X)) + bzsechz(kx))) sechz(kx)],
vy = (32r%k3)’;(l(3a - [3c1c2 tanh(kx) sech*(kx)(2¢o + 3 sech?(kx))(c3 sech?(kx) — sechz(kx))],

where the coeflicients given above can be seen in Appendix. It should be noted that, other terms can
be calculated in the similar way. The final solutions can be obtained

B0r D)= D B06D, W)= ) Un(x D). (4.6)
n=0 n=0

For numerical purposes we take @ = 1, the exact solution can be obtained as
1im (6, Y1) = (8,0).

For the numerical illustrations, Figure 1 depicts obtained solutions ¢ and ¢ in Eq (4.6) associated
with the modified coupled Korteweg-de Vries (mCKdV) Eq (4.1). Thus the waves solutions ¢(x, t)
and y(x,t) in Figure 1(a),(b) reveals the evolution of the shock excitations. The three-dimensional
profiles of ¢(x,t) and ¥(x, t) in Figure 1(c),(d) manifest sudden changes in the potential fields for the
spatial variables —10 < x < 10. We observe that the mCKdV equations describe nonlinear evolution
of the waves, suffered by weak dispersion effect in an inviscid fluid. Thus the nonlinear steeping
attributed to temporal evolution excites the shocks. For the impact of the time fraction coeflicient «
on the waves characteristics, we have displayed solutions (4.6) versus x at @ = 0.1,0.2,0.4, 1, see
Figure 2(a),(b). Notice that a degree enhancement in @ modifies the steeping effect and therefore rise
the waves amplitudes. Similarly Figure 2(c),(d) show the nature of the MDLDM method in Caputo’s
sense for different values of o and time when spatial variable x is kept constant of the Eq (4.6) in
Example 1. The wave solutions are revealing the propagation of monotonic shocks. Figure 3(a),(b)
show the error plots of the Table 1 (see Appendix).

AIMS Mathematics Volume 7, Issue 2, 1580-1602.



1590

Figure 1.

— Exact

= = Approximate

0.8

02r

(a) and (b):

——Exact

- = Approximate

t

Comparison of exact (Solid curve for «
(¢, ¥)-solution (Dashed curves for @ = 0.5) by MDLDM, (c) and (d): 3D plots for exact and

approximate (¢, ¥)-solution via MDLDM for Example 1.

Figure 2. (a) and (b): Comparison between approximate and exact solutions when « values
approaching 1, (¢) and (d): MDLDM Caputo solution when time and a are changing with

02r @

0.55

0.5

— Exact
—=0.6
— =07

«=0.8
— =09

8

10

X

1) with approximate

251

4 (x,0.01)
N

15¢
(b)

— Exact

—a=0.8

— a=0.85
«=0.9

fixed x-values (x=0.2) for b=k=0.3, 1 = 1.5 of Example 1.
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Figure 3. (a) and (b): The absolute error plots of the Table 1.

Example 2. Consider the following example having time fractional derivative in Caputo-Fabrizio (CF)

Sform
op  30%y oy 0p op 18°¢
CFDa/ 2707 T oo it 1L -~ =
AR Y i T T T Y @
YR Y VR VIR VIR, '
CF pa 3P 3 T —
D,w+3wax+36xax 3¢ o 3/10x+0x3 0, O<a<l, >0

With the help of Eq (2.17) and the procedure used in Example 1, we can obtain the following series
solutions in Caputo-Fabrizio form

A(ry +k

¢o = L +ktanh(kx), o= A+, ry tanh(kx),
2k 2ry
1 -1

b = IT+a@-1 [(3;{’ — 4kt = 6r AR + 6/1k3) sechz(kx)] ,

4r1
_ 1 + o (t - 1) 4 3 2 3 2
o= —— g |(+4k'n = 64K + 6k°r +3r]) sech®(kx)).
h
¢ = - 8;%2 [77 | tanh(kx)sechz(kx)],
(@ 4

v, = ————||a; tanh(kx)(a; cosh(2kx)) + a; tanh(kx)) |Jsech™(kx)]|,

(16r1k2)
ha(t
¢ = (322—5;]()[ (2bo + 3sech?(kx) (2ry tanh(kx) (bssech’(kx)) + bysech’(kx))) sechz(kx)],
Uy = (3};—(223)[(2% + 3sech’(kx)(c; tanh(kx)(cssech’(kx) — sech’ (kx) (3cysech’ (kx)) )))sechz(kx)],
"

where
() = 1/2a*F+a*-2a+1-2a%t+2at,
() = 3/2a°F -3/2a°F +a’ -3a*+3a-1-3a’t+6a°t-3at-1/6aF.

Other terms can be calculated in the similar way. The general solutions can be obtained in the form

B0r0) = D (D), Y1) = Y (). (4.8)
n=0 n=0
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For numerical purposes we take @ = 1, the exact solution can be obtained as
r}l_{g((ﬁm Yn) = (9, 9).

The shock wave solutions ¢(x, t) and ¥(x, ¢) in Eq (4.8) for the modified coupled Korteweg-de Vries
(mCKdV) Eq 4.1 with Caputo’s Fabrizio operators (CF) are depicted in Figure 4(a),(b) against x.
Obviously, the approximate Fabrizio solution (red stared dotted and blue dashed, black dotted curves)
in both the plots (a) and (b) by MDLDM method is approaching to the exact solution (black solid curve)
of the Eq (4.8) in Example 2, the corresponding plots in three dimension are shown in Figure 4(c),(d).

Figure 5(a),(b) show the nature of the MDLDM method in Fabrizio’s sense for different values of
a and time when spatial variable x is kept constant of the Eq (4.8) in Example 2. For the purpose
of error analysis, we have depicted the absolute of the difference of exact and approximate solutions
|Exact — (¢(x, 1) Y(x,1))| and for mCKdV equation, see Figure 6(a),(b). Notice that the difference of
the wave solutions from the exact solutions is much small. It signifies the importance of the MDLDM
for the approximate solutions. The observed errors are inserted in Table 2 (see Appendix) and their
related plots are shown in Figure 6(a),(b) which shows the effectiveness of our proposed method to such
non-linear modified coupled Korteweg-de Vries (mCKdV) equations. A comparative analysing of the
problem in Tables 3-6 (see Appendix) between the two methods (MDLDM and q-HATM [20]) are
shown. By analysing these tables, one can conclude easily the validation and accuracy of the proposed
method over the g-HATM. Figure 7(a)—(d) are also show a remarkable results for the presented method.

Figure 4. (a) and (b): Comparison between the exact with approximate CF (¢, y)-solution
for k=b=0.5, 1 = 1.5, (c) and (d): 3D plots for exact and approximate (¢, )-solution for
Example 2.
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¥(0.1,1)
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—«=0.7

0.55 } / —az08 || / —a=0.85
/ =09 / (b) =09
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0.5 0
0 2 4 6 8 10 4 6 8 10
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Figure 5. (a) and (b): MDLDM Caputo-Fabrizio solution when time and « are changing
with fixed x = 0.2 for b=k=0.3, 4 = 1.5 of Example 2.

Figure 6. (a) and (b): The absolute error plots of the Table 2.

1 2
—MDLDM —MDLDM
0.8 —g-HATM 18/ —q-HATM
06 ~16"
) w.
<04 Z14f
02 ] 12}
(a) (b)
0 1
-10 5 0 5 10 -10 -5 0 5 10
X X
1 I 2
=
0.8 —q-HATM 18" —g-HATM
06 ] ~16"
) o
<04 14t
020 © 12, @
0 1
-10 -5 0 5 10 -10 5 0 5 10
X X

Figure 7. (a) and (b): Comparison between MDLDM and q-HATM [20] for n=3, k=b=0.5,
A = 1.5, @ = 1 and h=-1 for Example 1, (c¢) and (d): comparison between MDLDM and
g-HATM [20] with the same parametric data for Example 2.
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5. Conclusions

We have studied analytically the mCKdV with Caputo’s and Caputo-Fabrizio (CF) derivatives using
MDLDM. The proposed method is applied to the mCKdV system and approximate results are obtained
in the form of series solutions by considering examples. The error analysis of the proposed method
is also discussed. It is observed that the suggested scheme is one of the vigorous tools to investigate
nonlinear problems. The main advantage of the suggested method is to analyze analytical solutions of
the considered problem without using linearization and discretization. For validation, two examples
in Caputo’s and CF form are studied numerically and the results are compared with the numerical
results with a physical interpretation. When non-integer order was employed in models including non-
integer order derivatives, many scientists were less interested. For non-integer order fractional time
derivative with singular and non-singular kernels of the mKdV equations, the MDLDM can be used.
The MDLDM approach for handling nonlinear evolutionary equations was shown to have a broader
applicability in this work. Physical meaning was given to the parameters in the resulting travelling
wave solution. For varied values of the parameters, a three-dimensional simulation of wave behaviour
is built, which alters the wave profile of the equation.The wave dynamics are discussed with the help of
simulation. The results show that this strategy worked. The new wave solution presented in this work
can open up new avenues for future research.

6. Future work

A modified coupled time fractional KdV equation with Caputo’s and Caputo-Fabrizio operators is
considered in this manuscript. The characteristics wave profiles of the solution to the equation show
some interesting behaviour especially when altering in the parameters. These interesting behaviours

may be more interesting to transform the modified coupled time fractional KdV to modified coupled
Schrodinger and sine-Gordon equations with Caputo’s and Caputo-Fabrizio operators.
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Appendix

m (975 + 7 (36K72 = 24K*) = 367115 1 + 4rik* (2K + 3)° = 2411 (267 + 32) + 36k°2°),
ar = —(3r] —4rk* + 6r k7 - 61Kk°)),
a = ((3r) - 4rik* + 6 Ak” — 64K7) + 317 + 4rik* + 610K — 6AK°),
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Co =

cT =

Cr =

cy3 =

8rik* ((3r; — 4rik* — 661, AK* + 660K°) + 18r Ak — 1))

(3r - 4r, k4)3 = 216 %K (ry = k) (1} + 4K*) + 36r1 Ak (ry = k) (37 — 24r1k* - 16K°)
—432°k5(ry - k)°,
36r K4 (ry — k) (317 + 14K*) — 67706 (ry — k) (97} — 60r7K* — 64K°)

“37 (72 - 24) (37 - 4K*)’ + 2162°K5r — kY,

2r1((3rf — 41k + 60r A3 (ry — k)(3rY — 20kY) + 25927 AKO(ry — k) + 1802k (ry — k)2),

(3r) = 4rik* + 6r, A7 - 61

3
’

=36r K4 (ry = k)? (977 — 124k*) = 18 AK%(ry — k)(9r — 152r7K* + 1296k%)

—ri (377 - 4k4)2 (3rf = 20k*) = 2160°K°(ry — k)* + 611K,

(3r = 4rk*)” = 41, A2 (ry = &) (1057 = 3692K") = 11520 AK(ry — k) — TBOLKA(ry — kY,
8riri — kA(9r) +216rik* — 116rik* + 18K (ry — k).

Error analysis tables:
Please notes that, for error analysis, we consider @« = 1, b = k = 0.5, 4 = 1.5, n=3 and h=-1.

Table 1. Comparison of Caputo’s solution with exact solution for Example 1.

t

X

Exact 0] | Exact—¢|

Exact W | Exact—y|

0.01 -10 4.7725E(-05) 4.7720E(-05) 1.1932E(-11)

0.02
0.03

0.01
0.02
0.03
0.01

0.02
0.03
0.01

0.02
0.03
0.01
0.02
0.03

10

5.0172E(-05) 5.0172E(-05) 1.9286E(-10)
5.2744E(-05) 5.2743E(-05) 9.8635E(-10)

7.0336E(-03) 7.0336E(-03) 1.4449E(-09)
7.3915E(-03) 7.3915E(-03) 1.3553E(-09)
7.7676E(-03) 7.7675E(-03) 4.8942E(-08)
5.1250E(-01) 5.1266E(-01) 1.6117E(-04)
2.4980E(-01) 5.2627E(-01) 1.2893E(-04)
5.3740E(-01) 5.4178E(-01) 4.3515E(-03)
9.9360E(-01) 9.9363E(-01) 4.5887E(-09)
9.9394E(-01) 9.9394E(-01) 4.8954E(-08)
9.9423E(-01) 9.9423E(-01) 2.0582E(-07)

1.0000E(-01)
1.0019E(-01)
1.0001E(-01)
1.0070E(-01)
1.0074E(-01)
1.0078E(-01)
1.5125E(-01)

1.5250E(-01)

1.0000E(-01) 2.5353E(-05)
1.0001E(-01) 5.0706E(-05)
1.0015E(-01) 7.6059E(-05)

1.0107E(-01) 3.7126E(-03)
1.0148E(-01) 7.4247E(-03)
1.0189E(-01) 1.1136E(-02)
1.6518E(-01) 1.3931E(-01)
1.8030E(-01) 2.7798E(-01)
1.5374E(-01) 1.9549E(-01) 4.1601E(-01)
1.9936E(-01) 1.9973E(-01) 3.7128E(-03)
1.9939E(-01) 2.0014E(-01) 7.4254E(-03)
1.9942E(-01) 2.0054E(-01) 1.1138E(-02)

9.9996E(-01) 9.9996E(-01) 1.1698E(-11) 2.0000 E(-01) 2.0000E(-01) 2.5353E(-05)

9.9996E(-01) 9.9996E(-01) 1.8532E(-10) 2.0000E(-01) 2.0000E(-01) 5.0707E(-05)
9.9996E(-01) 9.9996E(-01) 9.2900E(-10) 2.0000E(-01) 2.0000E(-01) 7.6061E(-05)
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Table 2. Comparison of Caputo-Fabrizio solution with exact solution for Example 2.

t

X

Exact

¢

| Exact—g|

Exact

¥

| Exact—y/|

0.01 -10 6.7725E(-04)

0.02
0.03

0.01
0.02
0.03
0.01

0.02
0.03
0.01

0.02
0.03
0.01

0.02
0.03

10

4.3172E(-04)
6.7440E(-04)

7.0346E(-04)
7.3945E(-03)
7.7655E(-03)
5.1550E(-01)
2.4980E(-01)
5.3740E(-01)
9.9360E(-01)
9.9394E(-01)
9.9423E(-01)
9.9996E(-01)

9.9996E(-01)

4.7520E(-05)
5.0152E(-05)
5.2543E(-05)

7.5336E(-03)
7.3515E(-03)
7.7575E(-03)
5.5266E(-01)
5.2527E(-01)
5.4678E(-01)
9.6363E(-01)
9.6394E(-01)
9.6423E(-01)
9.6996E(-01)

9.6996E(-01)

1.4932E(-11)
1.9276E(-10)
9.8637E(-10)

1.4479E(-09)
1.3557E(-09)
4.8946E(-08)
1.6116E(-04)

1.2896E(-04)
4.3516E(-03)
4.5867E(-09)
4.8964E(-08)
2.0586E(-07)

1.0004E(-01)
1.0019E(-01)
1.0001E(-01)

1.0070E(-01)
1.0743E(-01)
1.0078E(-01)
1.5125E(-01)
1.5260E(-01)
1.5374E(-01)
1.9936E(-01)
1.9939E(-01) 2.0014E(-01) 7.4654E(-03)
1.9942E(-01) 2.0054E(-01) 1.1136E(-02)
1.1696E(-11) 2.0000 E(-01) 2.0000E(-01) 2.5653E(-05)

1.8562E(-10) 2.0000E(-01) 2.0000E(-01) 4.0707E(-05)

1.0040E(-01) 2.5356E(-05)
1.0001E(-01) 5.0706E(-05)
1.0015E(-01) 7.6056E(-05)

1.0107E(-01) 3.7126E(-03)
1.0148E(-01) 7.4246E(-03)
1.0189E(-01) 1.1166E(-02)
1.6518E(-01) 1.6931E(-01)

1.8030E(-01) 2.7768E(-01)
1.9534E(-01) 4.1606E(-01)
1.9973E(-01) 3.6128E(-03)

9.9996E(-01) 9.96996E(-01) 9.2906E(-10) 2.0000E(-01) 2.0000E(-01) 7.6555E(-05)

Table 3. Comparison between ¢(x, £) solution with -HATM [20] Q3(x, t) for Example 1.

t

x Exact [18] q-HATM[20] |Exact — g — HATM| Exact¢ MDLDM

|Exact — ¢|

0.1 5.0 0.99360

0.2
0.3

0.1
0.2
0.3

0.1
0.2
0.3

0.1
0.2
0.3

0.1
0.2
0.3

0.1

0.2
0.3

6.0

7.0

8.0

9.0

10

0.99390
0.99420

0.99760
0.99780
0.99790

0.99910
0.99920
0.99920

0.99970
0.99970
0.99970

0.99990
0.99990
0.99990

1.00000

1.00000
1.00000

0.98290
0.97230
0.96160

0.99370
0.98970
0.98580

0.99770
0.99620
0.99470

0.9991
0.99860
0.99810

9.99700
9.99500
0.999300

0.99990
0.99980
0.99980

1.0700 x107%
2.1600 x107%
4.0000 x107%

8.0000x107%
1.2100x107%
3.3660x107%

1.5000x 1079
3.0000 x107%
4.5000x107%

5.0000 x107%
1.1000 x107%
1.6000x107%

1.9900 x10~%
4.0100 x107%
6.06200x107%

7.3200 x107%

1.4760%x107%
2.2310x107%

1.00000
1.00000
1.00000

0.99760
0.99780
0.99790

0.99910
0.99920
0.99920

0.99970
0.99970
0.99990

0.99990
0.99990
0.99990

1.00000

1.00000
1.00000

1.00000

4.6000x107%

1.000000 4.9600x10~%

1.00000

0.99760
0.99780
0.99790

0.99910
0.99920
0.99920

0.99970
0.99970
0.99970

0.99990
0.99990
0.99990

1.00000

1.00000
1.00000

2.0580x107%

1.0970x107%
5.3000x107%8
7.7000x 10710

2.4000x10710
3.7300x107%
1.8620x107%

8.6000x107!!
1.3660 x107%
6.8440x107%

3.2000x107!!
5.0300x1071
2.5230x107%

1.1700x 107
1.8530x1071°
9.2900x10%
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Table 4. Comparison between y(x, f) solution with -HATM [20] S 3(x, ¢) for Example 1.
t x FExact[20] g —- HATM[20] | Exact—q-HATM| Exact¢ MDLDM | Exact—¢|

0.1 5.0 1.99360 1.98290 1.0700 X107 1.99360 1.99730 3.7000x10~%
0.2 0.99390 1.97230 2.1600 x107%  1.99390 2.00140 7.4000x10~%
0.3 1.99420 1.96160 3.2700x107%%  1.99420 2.00540 1.1100x107%
0.1 6.0 1.99760 1.99370 4.0000x107%  1.99760 1.99900 1.4000 x10~%
0.2 1.99780 1.98970 8.0000 X107 1.99780 2.00050 2.8000x10~%
0.3 1.99790 1.98580 1.2100x1072  1.99790 2.00200 4.1000x107%
0.1 7.0 1.99910 1.99770 1.5000x107%  1.99910 1.99960 5.0000x10-%
0.2 1.99920 1.99620 3.0000 X107 1.99920 2.00020 1.0000x10~%
0.3 1.99920 1.99470 4.5000x107%  1.99920 2.00070 1.5000x107%
0.1 8.0 1.99970 1.99910 5.0000 X107 1.99970 1.99990 1.8720x107%
0.2 1.99970 1.99860 1.1000 X107 1.99970 2.00010 3.7450x10~%
0.3 1.99970 1.99810 1.6000x107%  1.99990 2.00030 5.6170x107%
0.1 9.0 1.99990 9.99700 1.9900 x10™%*  1.99990 2.00000 6.8900x10~%
0.2 1.99990 9.99500 4.0100 X107 1.99990 2.00000 1.3780x10~%
0.3 1.99990 1.99930 6.0620x107%  1.99990 2.00000 2.0670x107%
0.1 10 2.00000 1.99990 7.3200 x107%  2.00000 2.00000 2.5350x107%
0.2 2.00000 1.99980 1.4760x107%  2.00000 2.00000 5.0710x10°%
0.3 2.00000 1.99980 2.2310x107%  2.00000 2.00000 7.6060x107%

Table 5. Comparison between ¢(x, f) solution with -HATM [20] Q(x, t) for Example 2.

t x Exact[18] q-HATM[20] | Exact—q-HATM| Exact¢  MDLDM | Exact—¢|

0.1 5.0 0.99363  0.995590 1.9616 x10™%  0.99363 0.99363 2.6743x107"
0.2 0.99394 0.99780 3.8576 X107 0.99394 0.99394 2.1272x107%
0.3 0.99423 0.99992 5.6881x107%  1.00000 0.99423 7.1386x107%

0.1 6.0 0.99765 0.99838 7.2768x107%  0.99765 0.99765 1.0070x107%
0.2 0.99776 0.99919 4.3080x107"  0.99776 0.99776 8.0150x10°
0.3 0.99787 0.99998 2.1094x107%*  0.99787 0.99787 2.6891x107"

0.1 7.0 0.99913 0.99940 2.6852 107 0.99913 0.99913 3.7495x107%8
0.2 0.99918 0.9997 5.2796 x10™*  0.99910 0.99910 2.9814x10°
0.3 0.99922 0.99999 7.7833x107%  0.99922 0.99922 1.0002x107%

0.1 8.0 0.99980 0.99940 5.0000 X107 0.99970 0.99970 8.6000x10~%
0.2 0.99980 0.99864 1.1000 X107 0.99970 0.99970 1.3660 x10~"
0.3 0.99980 0.99840 1.6000x107%*  0.99990 0.99970 6.8440x107%

0.1 9.0 0.99988 0.99992 3.6397 X107 0.99988 0.99988 5.1053x107%
0.2 0.99989 0.99996 7.1561x107%  0.99989 0.99989 4.0593x10°%
0.3 0.99989  0.999900 1.0549x107%  0.99989 00.99989 1.3618x10~""

0.1 10 0.99996 0.99996 1.3392 x10™%  0.99996 0.99996 1.8793x10~%
0.2 0.99997 0.99996 2.633x107%  0.99996 0.99996 1.4943x107%
0.3 0.99996 1.00000 3.8815x107%  0.99996 0.99996 5.0127x107%
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Table 6. Comparison of the MDLDM (x,?) solution with q-HATM [20] S3(x, 1) for
Example 2.

t x ExactH q— HATM[18] | Exact—q-HATM| Exact¢ MDLDM | Exact—¢|

0.1 5.0 1.99360 1.99560 1.9616 X107 1.99360 1.99730 3.7125x107%
0.2 0.99390 1.99780 3.8577x107%  1.99390 2.00140 7.4231x107%
0.3 1.99420 1.99990 5.6882x107%  1.99420 2.00540 1.1213x107%2
0.1 6.0 1.99760 1.99840 7.2768x107%  1.99760 1.99900 1.3774x107%
0.2 1.99780 1.99920 1.4308x107%  1.99780 2.00050 2.7542x107%
0.3 1.99790 2.00000 2.1095%107%  1.99790 2.00200 41.2970x10%
0.1 7.0 1.99910 1.99940 2.6852x107™  1.99910 1.99960 5.0831x10~*
0.2 1.99920 1.99970 5.2797x107%  1.99920 2.00020 1.0164x107%
0.3 1.99920 2.00000 7.7833x107%  1.99920 2.00070 1.5240x107%
0.1 8.0 1.99970 1.99980 9.8896x107%  1.99970 1.99990 1.8721x10~*
0.2 1.99970 1.99990 1.9444 107  1.99970 2.00010 3.7435x107%
0.3 1.99970 2.00000 2.8665%107%  1.99990 2.00030 5.6130x10~%
0.1 9.0 1.99990 1.99990 3.6397 x10™%  1.99990 2.00000 6.8902x10-%
0.2 1.99990 2.00000 7.1561x107%  1.99990 2.00000 1.3777x10~%
0.3 1.99990 2.00000 1.0549%x10°%  1.99990 2.00001 2.0658x10~%
0.1 10 2.00000 2.00000 1.3392 x10™%  2.00000 2.00000 2.5350x107%
0.2 2.00000 2.00000 2.6330x107%  2.00000 2.00000 5.0692x10~%
0.3 2.00000 2.00000 3.8815%x107%  2.00000 2.00000 7.7.6010x10~%
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