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1. Introduction

Let Q be a bounded domain in RY (N = 1,2, 3) a sufficiently smooth boundary dQ. In this study,
we consider a nonlinear biharmonic equation, as follows:

Nt = gy + 2ipe + Uy = GOx, 1, u(x, 1)), in Q% (0,T], (1.1)
satisfying the following boundary conditions:

u(x,t) = Au(x,t) =0, 0Qx(0,T), (1.2)
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and

u(x,T) = f(x), e Ty=0. in Q

o1

OAu (1.3)
Au(x,T) = g(x), 7(x,T)=0, in Q,

wherein the condition (1.2) is the Navier boundary condition; and the condition (1.3) is the mixed
Dirichlet-Neumann boundary condition. The function u = u(x,t) represents a concentration of
contaminant at a position x and at time ¢. The data f, g € LY(Q2) and G € L*(0,T; L(Q)) are defined
later on. However, in actual conditions, there are always included errors in the measurement methods
of a physical process, so we have the following conditions:

1fs = fllzscey + 11gs = gllzsc + |Gs = Gl oo rosacan < & (1.4)

The biharmonic equation plays an important role in engineering and physics. It arises in the
deformation of thin plates, the motion of fluids, free boundary problems and nonlinear elasticity,
see [1-5]. Therefore, the biharmonic equation has a long history of research. It has been studied
by many authors at early time. The most highlighted studies on numerical methods for the biharmonic
equation are described in [5—10]. In particular, Smith [6] presented a numerical method for solving the
biharmonic difference equation using finite difference methods. Ehrlich [7] has improved the iteration
scheme to lead the Smith’s result to be a special case of his study. Recently, Tuan et al. [11] have studied
an approximate solution for a nonlinear biharmonic equation with discrete random data. Especially, in
applications to radar imaging, Matevossian et al. [12,13] have focused on the solution of the biharmonic
equation with the Dirichlet, Neumann and Cauchy boundary value problems for the Poisson equation
using the scattering model.

Regarding the regularization for biharmonic equations, the authors in [14] considered a nonlinear
biharmonic equation, and proved that problem (1.1) under the conditions (1.2) and (1.3) is ill-posed
in the sense of Hadamard, and showed the error estimates. The corresponding regularized solutions
in their study are strongly converged to the exact solution in L*(€2) under some priori assumptions
on the solution. Besides, there are many other studies on linear homogeneous biharmonic equations;
however, most of previous studies are focused on the regularization for biharmonic equations in L7(€2)
with g = 2; and the convergent rate in L/(€2), with g # 2 is still not well implemented (Nam et al. [14]).
Therefore, it can be stated that our study in this paper is one of the first results regarding the inverse
problem for the biharmonic equation, once the observed data is obtained in the L7(Q) space with
q # 2. The main objective of this study is to establish regularized solutions for problem (1.1) under
the conditions (1.2) and (1.3) and showed the regularized solution is converged to the exact solution;
in the linear case refered to (3.13), and in the nonlinear case referred to (3.73).

For evaluation cases in L?(Q) spaces, the most obstacle is unable to use Parseval’s equality;
therefore, we applied the embedding between L7((2) and Hilbert scales spaces H”(QQ) to overcome
this limitation; and Lemma 2.1 will be used throughout this article. The manuscript is proceeding as
follows:

o The first part deals with the inverse problem with a defined source function. In this subsection, we
introduce the mild solution of problem (1.1) under the conditions (1.2) and (1.3) with the observed
data fs5,85s € LY(Q), and G5 € L>(0,T;L4(Q)). Then, applying the Fourier series truncation
method, we estimate the error between the regular and exact solution in the LN%P(Q).
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e The second part of the manuscript investigates the inverse initial value problem for problem (1.1)
under the conditions (1.2) and (1.3) with a nonlinear source function. In this section, the main
results to be obtained are theorems: (i) The existence and the well-posedness of regularized
solutions using Banach fixed point theorem; and (i) The convergent rate between the regularized

solution and the exact solution through the estimation of ||V/‘i( (1) — u(-, t)” N
o LN-4p (Q)

Hence, this manuscript is organized as follows. In Section 2, some preliminaries such as definition
and Lemmas are given. Section 3 introduces some results on regularization of problem (1.1) under
the conditions (1.2) and (1.3) in the linear and non-linear cases. Numerical examples is described in
Section 4 associate with observed data in L(Q).

2. Preliminaries

We begin this section by introducing some preliminary definitions and basic lemmas that are needed
for our analysis.

Definition 2.1. Assume that —A has the eigenvalues Ay, k € N*:
0</11S/12S/13S...—>oo, (21)

and the corresponding eigenelements e, (x), which form an orthonormal basis in L*(Q).

Definition 2.2. Let {(-,-) be an inner product in L*(Q). The notation || - ||x stands for in the norm in
the Banach space. We denote by L1(0,T;X), 1 < q < oo, the Banach space of real-valued functions
u:(0,T) — X measurable, providing that

T
1
el oo = f ||u(t)||th)" < oo, forl <q< oo, (2.2)
0

while

lullzo0,7:x) = ess sup |lu(®)llx, for g = oo.
te(0,T)

Definition 2.3. (see [8]) For any o > 0, we also define the space

H(Q) = {u e L*(Q): Z 7, ek>|2 < +oo}, (2.3)

k=1

then H° (Q) is a Hilbert space endowed with the norm

(o] ) %
lletllpio ) = (Z /li‘7|<u,€k>| ) : (2.4)
k=1
Lemma 2.1. (see [15]) The following inclusions hold true:
d 2d
q o if — = < >
LI(Q) — H(Q), if 1 <o <0, q_d_40_,
, d 2d
HI(Q)— LIQ), if 0<o<—, g< . (2.5)
4 d-4oc
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3. Results on regularization of the biharmonic equation in L7 spaces

First of all, we present the formula of a mild solution of problem (1.1) as follows.

3.1. Mild solution of problem (1.1)

The solution of problem (1.1) can be written in the following Fourier series form:

(o)

u(x, 1) = Z ur(er(x), where wui(t) = (u(-, 1), er)- 3.1

k=1

We have a particular solution of problem (1.1) in the form

(T - 1) sinh(\//l_k(T - r))

(1) = cosh (VAT = D)(f, ex) + T (g,ex)
¢ (r =y cosh (VA(r - 1)
+ f 1 (G(, 1), exydr
k

-~ sinh ( VA (r — t))
i f 20 VA

(G(-, 1), e )dr. (3.2)

Substituting the result into (3.1), we will have the formal solution of problem (1.1). The following
steps, we are going to find the mild solution of problem (1.1) when the source function is linear and

nonlinear.

3.2. Mild solution for a linear source function

By applying the Fourier truncation method, we provide a regularization solution as follows:

Nir Nu (T —t) sinh ( VA(T — 1)
Uy (x, 1) = Z cosh ( VAT - t))(ﬁs, eryer(x) + Z 5 \(//l_ ‘ )<gé, exyer(x)
k=1 k

k=1

—+

Ne |~ (r—f)cosh ( VA (r - f))
2/

L (Gs(-, 1), ek>a’r)ek(x)

k=1 :

T

Nor (f sinh gff/(/%_ t))

+ (Gs(:, 1), ek>dr)ek(x), (3.3)

k=1

whereby N,, is a parameter regularization which will be defined later. From (3.3), it allows us to deduce
that the mild solution to problem (1.1) in the following form:
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= (T = #) sinh (VAT - 1))
h —
u(x, f) = ;cos (VAT = 0)(f. exderx) + 2

o0 (r—1t) cosh(\//l_k(r - t))
" £ (f 20,

(& exyer(x)

<G(a r)a ek>dr)€k(.X)

+Z( f Smhzfjﬂ%_ t))<G(-,r>,ek>dr)ek<x>. a4

Theorem 3.1. Let assume that fs, g5, Gs € L1(Q) X L1(Q) X L*(0, T; L1(Q)) are observed data such that

1fs = Flleoy + ligs = &llzaey + [|Gs = G| o g0y < 6 (3.5)

1 - N
Let u € L*(0,T; H™Y(Q)) for any y > 0. By choosing N, = (T \/g log (5‘1)) forany 0 < a < 1,
1

then we have ||u5 (1) — u(-, t)||LN . is of order
l-—a 200+ %—1) 1 — =2y
max 6"( log (6‘1)) ( log (6~ 1)) } (3.6)
{ T \Ci Ve,

Proof. Because of the Sobolev embedding L(Q) — H %;Z)(Q), we have

15 - qu{N(Z 2 " s - ¢ w52 [Gs - G||L°°(0,T;‘H%‘;2)(Q))

SC1||f5 - f”Lq(Q) + C1||g5 - g“Lq(Q) + C1”G5 - G”L"“(O,T;L‘i(ﬂ))
<C,6, (3.7)

with C; depends on N, p. Our goal in this theorem is to assess the convergence error of ||u(-, 1) —
N
Ir t)|

Next, we first introduce the following function:

H7(Q)
_ N Ne (T = ) sinh ( V(T - 1))
UNr(x,t) = ) cosh \//l_(T — [, exyer(x) + (g, eryer(x)
kz; ( k ) )€k Z VL k)€k
N o (r = 1) cosh ( VA(r = 1))
+ ( f (G(-, 1), ek)dr)ek(x)
=\ 2
Ni 1 sinh ( VA (r - t))
. d . 3.8
+ ;( f v (Gtrhe) r)ek(x) (3.8)

Using the triangle inequality, we receive
. = oy = 0= T g + [T = 0 B
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Next, we evaluate (3.9) through two steps as follows:

Step 1: Estimate of ||uN” — UNe(- t)|| gy We find that
Nlr
)’ (x, 1) = UM (x, 1) = > cosh (VAT = K = fin exden(x)
=1
Ne (T — 1) sinh (VAT - 1))
+ 2 VL (g — 85> exyer(x)
Nu 1~ (r — £)cosh ( VA(r — t))
+ ; (f o (G(-,r) = Gs(-, 1), €k>d”)€k(x)
Ni 1~ sinh ( VA(r - t))
+ £ (f 2/1]( \/A_k <G(a r) - Gﬁ(" l"), ek>dr)ek(~x)
=A1(x, 1) + Ax(x, 1), (3.10)
whereby
Nir
Ai(x 1) = ) cosh (VAT = D)(F = f5, exden(x)
=1
N (T = ) sinh ( V(T - 1))
+ 2 VL (g — 85> exyer(x),

As(x, 1) = ( (G(-,r) = Gs(-, ), ek>dr)ek(x)

smh \//l_k(r — t))
2/1k

+

fT (r — 1) cosh \//l_k(r ~ 1)

(G(-,r) = Gs(-, 1), ek)dr)ek(x). (3.11)
)

First of all, estimating the A(x, ), it is easy to check that cosh(x) < exp(x) and sinh(x) < exp(x),
Vx > 0, this implies that

cosh (VAT — 1)) < exp (VAT — 1)), sinh (AT - 1)) < exp (VAT - 1)). (3.12)

Therefore, it gives

Nir N(g-2) N(g-2)

A <2 20 AT exp @VADS - foned)]

Nir o N2 Ng=2) 241
+ 22/113 2q /l 2q Tzexp( \/_k

k=1

T)|< g gs e (3.13)

AIMS Mathematics Volume 7, Issue 12, 20660-20683.



20666

In the fact that 4; < Czk%, and noting that o > N — 5, we can verify that for k < N,,,
20— N(g-2) _N@g-2)
24, 7 exp(2NAT) tor T exp (2 VAT)
o Nig=2) T o Na=2)
=2exp (2 \//l_kT)/lk 2 toT exp 2+ \/_T)/l .
<Cyexp (2 CANTIT 7 + 04 exp (2 VCAN Tk ¥ 7, (3.14)
o Na=2) T2 25_Na=2

in which C; = 2C27 * and Gy = —62 v

Combining (3.13) and (3.14), we have

N(g-2)

tr Ntr M
A1 ¢ Dl o) < Cs exp (2T +/Cs N)kN‘(Zﬂ K- fred DA |<g—g5,ek>|2)
k=1

< Csexp (2T \/C_sz)kN_;(” Fo ﬁ”w%m(g) g - g5||;MZ_2)(Q)), (3.15)

with Cs = 2 max {C3, C4}. It follows from (3.7) that
o g2
1ALCL Dl 0y < 2Cs exp (2VCLNDFT)N) ¥ 5 62, (3.16)

Next, considering the term [|A>(., )|l# (o), applying the Parseval’s equality, we can see that

Nir - VA(r —t
[|A2(., t)||;{g 0 <2 K| |- t)eXp( ) (G(-, 1) = Gs(-, 1), ex)dr 2
© 20,
k=1

T
exp (VA(r - 1) 2
12 ﬂ’[ f (G, F) = G-, ), ek)dr] . (3.17)
; ‘ t 24 VA
From (3.17), using the Holder’s inequality, we receive
N exp (2 Var - 1)
2 20 2
A2 Dy <2 Z 2 f (r - o (Gen=Gutn.eofar
N exp (2 VAi(r - 1) ,
200
+2 ; X f rye KG(.,r) = Gs(., 1), e dr

t

Nir _N@g-2) N@g-2)

<(2T2+1)Zexp 2\/_ AT), A f |<G(.,r)—G(;(.,r),ek)|2dr. (3.18)

N N
Because of 4, < CQkN and noting that o > 12 we can verify that for k < N,
q

Ng=2) 4o _q-2

7 exp (23Ar = D) < Cyexp (VAT F T < Cyexp (2VC NV TN F 7. (3.19)
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From (3.18), we noticed that

Nir N(q 2)

1A Dl o) SC3exp (2VCUNDA TN T @72+ 1) )
k

f KG(.,r) = Gs(., 1), ek>| dr

<Cs exp (2VCUNDTT)N) ¥ (272 + 1) f ||G(-,r)—G(;(-,r)”;%;z)(mdr. (3.20)

Due to condition (3.7) and from the estimation in (3.20), one has

142, DBy < Cs exp (2NN T)N) -5 (277 + T)o2, (3.21)
From all the estimation above, we received
o) = T¥ D
<2||Ay(., t)”%{o'(g) + 2||Az(., t)”;ﬁr(g)
<2Cs exp (2 VCUNNFT)N) 7 &
+2C5C, exp (2O NI TN % (277 + T)5 (3.22)

Step 2: Estimate of ||UM«(-, 1) — u(-, 1)|
we deduce that

go(cy fr0m (3.4) and (3.8), and using the Parseval’s inequality,

UM, ) —u(x,1) = ) cosh (VAT = D)(f, exdei(x)
k=Ny+1
No (T = 1) sinh(\//l_k(T—t))< >
+ g, ex)er(x)
2V, o
T
0 (r = tycosh ( VA (r = 1)
+kZ ( f o gk ' )(G( ), ek>dr)ek(x)
=Np+1
T
smh \//Tk(r—t))
: . 2
+k;+l(f SR (G(,r),ek)dr)ek(x) (3.23)
From (3.23), for any y > 0, we received
[TY .ty = uC D = D ARG = D AT BT 0. e (3.24)
k=N;+1 k=Ny+1

. . -_— 4
In case k > N, there exists a postive constant Cs > 0 such that 4, 7 < C’(,k‘Wy, we have
TN 2 _4 2 _&y 2
[ UM 0) = s Doy < CoONar) ™™ ([, D[ 002y < CoNar)™ M il vy (3.25)
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Combining (3.22) to (3.25), we conclude that

+2|| TN 1) = G 0|

””M 1) = u, t)”wv(g) 2||uN,, - UM, Ho(Q)

2
t)”(H‘T(Q)
<8Cs exp (2T Ca N F )N, F7 62

40 _q

+4C5C1 exp (2T CH (N )(N,,)W‘; QT +T)s°

_4
+ 2Cs(Nur)™ ¥ lullf o 71072y (3.26)

-« 1\\W
By choosing N,, = ( log (= ) , we need the following results:
y g N = (g e 5) g

exp (2T VCLN) YN F7 82 52“(;llog(— (3.27)

The provision of this theorem is completed. O

3.3. Mild solution for a nonlinear source function
In this section, we will study the initial inverse problem for nonlinear of source term.

{Azu = Uy + 2y + U = G(x, u(x, 1), in Q% (0,T],

(3.28)
u(x,t) = Au(x, 1) = 0, 0Qx(0,T),

with the final condition

u(x,T) = f(x), %(x, T) =0, in Q,

A
Au(x, T) = g(x), 8—;’(X,T):0, in Q.

(3.29)

We assume that v € L*(Q), let Pi(z — 1), i = {1,2,3,4} is an operator defined as follows:

Pi(z—-ty = Z cosh ( \//l_k(z - t))(v, eryer(x),
k=1
® (z—1t)sinh ( VA(z - 1)
Parz -1ty = kzz; 5 \(/ﬂ_k : )<V, exyer(x),
® (z — t)cosh ( VA(z - t))
Pi(z— 1ty = (v, exyer(x),
3 ; o k)€k
~_sinh ( VaAi(z - t))
Piz-ty =) VT (v, epder(x). (3.30)

k=1

From the way to set the operator (3.30), the mild solution of the problem (3.28) under the
condition (3.29) is as follows:

u@®) =Pi(T -t)f +Po(T —t)g + f‘Pg(r - G u(r))dr + f?%(r — G (u(r))dr. (3.31)
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We regularized the mild solution (3.31) by Fourier method. Assume that we have £ € L*(Q), then we
define €; 5, as follows:

Ns
TN(SK = Z <€9 €k>ek(.X), (332)
k=1

without loss of generality, we can completely assume that fj, gs € LY(€2) such that || f- f5|| ot || g -

g5|| L S 0. Therefore, we build the structure of regularized solution and symbols it is Vi@'

V30 =PA(T = 0T, fo + Po(T = )T n,85
T T
+ f P3(r — DT, G(V2, (M)dr + f Pi(r — HTx,G(V3, ()dr. (3.33)

t t

The next theorem will provide details about the existence and the well-posedness of regularized
solutions.

Theorem 3.2. Let the terminal data fN € LY(Q), then the nonlinear integral equation (3.33) has a

unique solution V/‘i/(j(x, 1) € L>(0, T; L¥%(Q)), then we have the following estimate:

Ne-g)
4q

VGOl 2 < N2AT = (N6~

LN=% (Q)

exp ((VNs +m)(T = 0)|[g]] (3.34)

where m > \Njs + 2.L(Nsy¥ max{T, 1} VNj.

Proof. Let any € € H7'(Q), suppose that o7 > o, we get
2
|PUT = DT p, L+ Po(T = DTl |0

<2||Pi(T - DTy, +2||Po(T - )T,

([ ([,

N,
<2 2 27727 cosh? (VAT - )2 |( )|
k=1

N .
(2 37 a0 s VAT —0)
k=1

™ A (3.35)

From (3.35) and in view of (3.12), we receive

2
|P\(T = DTN, + PoT = DTw Lo
2

<2(Ns)*" 2" exp (2VNs(T = 0)||€]l, @
+ 2T = 1*(N)™" 7" exp (2 VNs(T = 1))||¢]

2
Jo© (3.36)

By a similar argument above (3.36), we can find also that

AIMS Mathematics Volume 7, Issue 12, 20660-20683.



20670

N (r — 1)? cosh? ( VAx(r — 1)
1P = OTn ] = D A7 41(2 )/1,%”|(€, e
k=1 k
< (N7 (r = 17 exp (2 VNs(r = D) ||y (3.37)
and we can see that
Ne sinh? ( VA(r — 1))
[|P4(r — I)TN55||3401 @ = Z /li(rl—ZO' ( 7o /11%0- <£’ ek>|2
k=1 k
< (No)™ 77 exp (2 VN6 (r = )1 lllpo - (3.38)

For m > 0, we denote by L) (0,T; LN%(Q)) the function space L*(0, T; LN%(Q)) with the following
norm:

||v||m ;= ess sup , VE LNZ%‘V*P(Q). (3.39)

0<t<T

‘exp (m(t = TY)V(-, 1)

_2N
LV=% ()
Next, we define a nonlinear map M : L2(0, T; L¥%(Q)) < L0, T; L¥%(Q)) by

Mu(t) =P (T — )T n, f5s + Po(T — )TN, 85

T T
+ fﬂ%(r = DTN, G(u(r))dr + fﬂ;(r — )T xn,G(u(r))dr. (3.40)

e Case 1: u = 0, we have M(u = 0) = P(T — OTn, f5 + Po(T — )Ty, 85. From Lemma 2.1 and

0<p< %, with the Sobolev embedding H*(Q) — LN%(Q), there exists a constant C; depends

on N, p such that

|PA(T = 0Tw, f5 + PoT = DT84 2

N
LN-4p (Q)

<C1(N, p)||P1(T = DT, f5 + Po(T — DTy, (3.41)

5”7{/’(9)'

From (3.41), use evaluation results in (3.36), taking square root on the both side, we choose

or=pando = N(i;q), it gives

|P\T = 0T, o+ Po(T = DT x, 86y

< VAN exp (VNAT = )£l o0

- VAT = DN exp (VNG(T — t))||g5||ﬂ%q>(m. (3.42)

For 1 < g < 2, using Lemma 2.1, we find that L9(Q) — H %;(D(Q). Therefore, there exist a
constant Cg(HV, p) such that
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IP1(T = 0T, s + PoT = DT x| nz-0

()
<Cs(N,p) (\/E(Né)p_%‘;q) exXp ( ‘/E(T - t))”]%”Lq(Q)
# VAT = DN exp (VNG(T = 0)Jgol ) (3.43)
Combining (3.41) to (3.43), this leads to
IP1(T = DT, fo + PoT = DT x|, g, )

N2-9)
<CoN,p) V2N~ exp (VNG(T = D)l
+ VAT = DN exp (VNG(T - r>)||g5||m(m), (3.44)
whereby Cy(N, p) = Cg(N, p)C7(N, p). Combining with above arguments, we deduce that
Pi(T = )T, fs + Po(T —)Tn,85 € L, (0, T LN%(Q)). (3.45)

e Case 2: In this case, we take two function u;,u, € L;)(0,T; LN%P (Q)), from (3.40), it is easy to

see that
T

Muy () = Muy(t) = f P(r = 0(Tn, G(ur (1) = Tr, Glua(r)))dr

t

+ f Par = O(Tn, G(ur (1) = Ty, Glua(r)) )dr. (3.46)

Taking any m > 0, this implies that
| exp (mte = 1) (M (6) - Mo

HP(Q)
T
f exp (m(z = T)) [P = (T, Gur (1)) - TNéG(uz(r)))“w(Q) r
! Di(r,p)
T
f exp (m(t - T))"P4(r—t)(TN5G(u1(r)) Ty, Glus(r )))HH 4T (3.47)
! Dy(r,t)

If we reuse estimates of (3.37) and (3. 38) with oy = p and o = 0, and in the two reviews below,
we have used the Sobolev embedding L% (Q) = L*(Q). So, D, (r, t) and Ds(r, ) can be bounded
as follows:

Di(r,1) < (NoY 0 = Dy exp (N = 0)[|G a1 (1) = Glan(r)

< LiNoY'(r = 1y exp (YNo(r = 0)]|uer (1) = 29| 2
< Li(NsY'(r=1)exp( VNs(r = t))||u1(r) - uz(r)” (3.48)

LV ()’

L2(Q)
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and by prove similarly, we obtain

Da(r,1) < (N exp (YNa(r = )| G (1) - Glan(r))

2(Q
< Ly(Ns) exp ( VNG (r - t))||u1 (r) — u(r )||LN Sy | (3.49)
Combining (3.40) to (3.49), we have

| exp (e = TH(Mus ) - M),

T

<L;(NsY f exp (m(t = T))(r = 1) exp (2VNo(r = )| (r) — 1 (P)]| e

t T

+ LN f exp (m(r = T)) exp (2yNo(r = ) ui () - ug(r)”LN o (3.50)

t

From (3.50), make a simple transformation, we get

H exp (m(t — T))(Mul(t) - Muz(t))H
T

<Li(NsY f exp (m(t = r))(r = 1) exp ( VNs(r — D)) exp (m(r = T)||ur(r) = wa(¥)|| . dr

HP(Q)

LV @)
l T
+ L(NsY f exp (m(t — r)) exp (VN(r = 1)) exp (m(r = T))|u; (r) - ug(r)” g BSD
Using the fact that, we get
||u1 - u2|| =ess sup exp(m(r — T))||u1(r) - uz(r)” (3.52)

LN 4 (Q)
From (3.47) and (3.52), we follow that
” exp (m(t — T))( Mu (1) - Muz(t))H

T

SLf(Né)p( fexp (m(t = r))(r —t)exp ( \/A_/g(l" - t))dr)”u] - u2||m

t

HP (&)

T

+ Lf(N(;)p( fexp (m(t —r))exp ( \/ﬁ(;(r - t))dr)”ul - u2||m. (3.53)
Form (3.53), we can see that
T T .
(fexp (m(t —r)(r—1) exp( \//v,g(r - t)) ) <T fexp (( W —m)(r— t))dr < — m,
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T

(fexp (m(t—r)) exp( \//v(;(r - t))dr) < ﬁm (3.54)

t

We combine estimation from (3.53) to (3.54), and Sobolev embedding as in H*(Q) — LN%(Q), one
obtains

H exp (m(t — T)( M (1) = Mi))|

LN 4p Q)

max {T, 1} .Ef(N5)p

| exp (e = 1) (M (1) - Mus(o)) i —wl,. (355

HP (Q)

Therefore, we have

max{T, 1}L,(Ns)’
_r _ w < “w| . (356
ess 05;12 'exp (m(t ))(Mul(t) Muz(l)) ) S — VN, ””1 ”2||m (3.56)

For any u,,u; € L;(0,T; L7 (2)), we conclude that

max{T, 1}L,(Ns)’
- VN

From (3.57), if we choose m > VN + 2L(Ns)y max{T, 1} VN, we can see that M is a contraction
mapping from L (0, T'; LN%(Q)) — L>(0,T; LN%(Q)), we conclude that M has a fixed point Vi@ €
Ly(O,T; L7 (Q)) throught the Banach fixed point. For the estimation (3.57), let assume that u; = \72,6
and u, = 0, and we denote V/‘% = M(T/gd), and Mu, = Pi(T — )T, fs + Po(T — t)T 85, We get

||Ml/l1 - MMQ”m <

jur = 2], - (3.57)

[V, = M@,
<M = PuT = 0T fi = PoT = 0T nge|| + [PrT = 0T fi + 22T = T x|

<], + (VN5 exp (VAR = D)l
+ VAT = NG exp (VNG(T = 0)[gal ) (3.58)

Using the estimation (3.44), thus, we obtain that

V3,1, <2( V2NoY ™5 exp (VNST = )]l
+ VAT = NG ™ exp (VAT = )86l ) (3.59)
O

In the theory below, we are going to show the error estimate between the regularized and exact
solutions in the space of L7(Q) type.

AIMS Mathematics Volume 7, Issue 12, 20660-20683.



20674

Theorem 3.3. Assume that problem (1.1) under the condition (1.2) has a unique solution u €

N
L*0,T; H"™*(Q)) foranyn > 0 and 0 < p < T In addition, we assume that there exists a positive

constant M such that

M = ess sup (exp (2t \//l—k)/li9|<u(t),ek)|2)§, (3.60)

0<t<T

where ¢ > 0, taking the noisy data fs, gs € L1(Q) such that

1=l * s = el 56 1< a <o Be1)
By choosing Ny such that
lim N, = oo, lim NG " exp (VNST)S = 0. (3.62)
Specifically in this section, we choose Nj as follows:
N = (&)_2[105;(5-1)]2 forany0 <y <1, (3.63)
then we have
V80 - uc. o is of order. (3.64)
max {(10gt67) ™ (togt6™)" . (1oge ") o7} (3.65)

Proof. In this provision, we provide the upper bound for the term ||V}f,§(-, 1) —
triangle inequality, then we get

”V(S (1) —ut, t)||L2(Q) = ”V/{/ S VN(S(" t)”LZ(Q) + ”VN(S(" B —ut, t)||L2(Q)' (3.66)

From definition (3.33), we can know that

using the

Vi, (1) =P (T = T, f + PoT — )Ty,
+ f Ps(r — DT, GV, (r))dr + f Py(r — DT, GV, (r))dr. (3.67)

From (3.33) and (3.67), we see that

V() = V2, (1) =P (T = T x,(f5 = f) + PoAT — DT, (g5 — 8)
T

+ f Ps(r = )| Tr, GV, (1) = Ta, GV, () |dr

+ f Par = D Tn,G(V3, (1) = Ta, GV, (1) |dr. (3.68)

Since (3.66) and (3.68), we receive
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”F‘;/{/g(" 1) = u(, t)”LZ(Q) = ||u(, 1) - VNA‘(" t)”LZ(Q)
B
+ |PuT = OTw, (s - f)”Lz(Q) + ||Po(T = )T n, (85 - g)”Lz(Q)

B

T
+ H f Ps(r = D| Tn,G(V3, (1)) = Ta, GV, (1) |dr

LX(Q)
B3
T
+ H f Par = 0| Tn, GV, () = Ta, GV () far ) (3.69)
LA ()
t
By
We rated ||Vi/5(~, 1) —u(, t)|| 2@ through four steps as follows:
Step 1: Estimate of B,, we have
(o] 1
~ _ 2 2
By < lluC-, 1) = Vi, (o Dl = ( D o (= 2NV exp VA (u(), )| )
k=Np+1
< (N;s) " exp(—tNs)M. (3.70)

Step 2: Estimate of B,, for 1 < g < 2, we follow Lemma 2.1 in combination wiith the Sobolev
embedding, one has

LYQ) — H " (Q). 3.71)
This implies that

B, <|[PuT = TN, (fs = N 2 + 1P2T = DT w85 = )| 2
<VING) " exp (VNAT = D)|[fs = /], e

Q)

+ V2T - l)(Na)_%‘;q) exp (VNG(T - t))||g5 - g”(HNg;w -

< \/E CIO(Na @(Né)_%‘;@ eXp ( \/E(T - t))”fé - f”L‘I(Q)
+ V2 CioN, (T = )(NG) % exp (VNG(T = )5 = &l (3.72)

Step 3: Estimate of B;, by using the similar argument as in (3.48), we can find that

dr. (3.73)

L2(Q)

T
812 £y [0 Dexp Nt = )] V3,0 = Vi
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Step 4: Estimate of B, by using the similar argument as in (3.49), one obtains

T

By < Ly f exp (VNs(r = D[V, (1) = Vi ()| 20 (3.74)

t

Combining (3.66), estimation of Steps 1-4, we conclude that

V321 = 1 )] 2y SONG) S eXP(—NIM + 2V2C1o(N. )Y (No) ™ exp (VNAT — )3

L f (= 0 expOYNor = D[V 1) = Vs

+Ls f exp (VNs(r = )|V () = Ve () 21 (3.75)

Multiplying both sides by exp (z VNs), we have

exp (£ VNG)[|VR, (o D) = 1, D) 2
<(N) M +2V2C1o(N, )(Ng)™ @ exp (VNGT)

T

+2Lymax {7, 1} fexp( \/N(;r)”(vd (1) = Vn,(r) Lz(g) (3.76)
t
Applying the Gronwall’s inequality, we get
exp (¢ VNG)|[Va, () = (e, )| 2 0,
S((N(;)_gM +2V2C (N, q)(N(;)_%‘;q) exp ( \/N(;T)é) exp (2£f max {T, I}(T - t)) (3.77)

This implies that
V2, = .0l gy <50 (= 13N (N6) M +232C10N. (NG exp (VAGT)O)
x exp (2L max (T, 1)(T - 1)). (3.78)

Next, we have the following inequality:

V3,0 = utn)| o SCH, PV = uC )| 0 (3.79)
It is easy to see that
”V/(\S/ t)||ﬂp(g) = ”V/{/ .0 - VNa(" t)”w/m) + ”VNa(" 1 —ut, t)”w(g) : (3.80)
& &
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Now, for 0 < ¢ < p, we immediately have a rating the first term of (3.80) as follows:
2
—( Z /lzp|<vli/ .0 - VN& 0, €k>| ) < (Né)p”V/i/ VN& t)”LZ(Q)

< exp( —t N5)((N5)p SM +2V2C1o(N, ¢)(Ns) ™ i exp (VN;T)S
X exp (2.£f max {7, 1|(T - t))
&, can be bounded as follows:

0 1
_ 2\’ _
& < ( Z AP, 1), €] ) < (N5) "lletll oo, 7300 2y

k=N

From the observation above, we have
Vo, (1) = u(,t
|| ) ( )||LN 4p (Q)

SC]](N’p)“V}i/J(" 1 —u(, t)”‘HP(Q)

<Cu(N, P)[(Né)_n||M||L°°(0,T;7{"+p(§z)) +exp (—tVNs)

(VoYM + 22C10 V. NGY ™5 exp (VNGT)O ) exp (2L max (T, 1)(T »)]

4. Numerical example

(3.81)

(3.82)

(3.83)

In this section, we carry out a numerical example in order to verify our proposed theory. In other
words, we consider the stable property of the regularized solution based on the Fourier truncation
method. First of all, we introduce some definitions to support the numerical implementation as follows.
By choosing Qx (0, T) := (0, ) X (0, 1), we have the eigenvalues A; and the corresponding eigenvector
e; which are the complete orthonormal system of eigenfunctions forming an orthogonal basis such that
—Aey = e and eglyo = 0 for k € N. Here, we choose A, = k22, ex(x) = V2 sin(knx). We are going

to find a function X satisfied
AU = Uy + 2y + Unanr = G, tu(x, 1), (x,1) € (0,1) x (0, 1],
under the boundary conditions
u(x,t) = Au(x,t) =0, (x,1) €{0,1} x (0, 1),

and the boundary conditions at 7 = 1 as
ou
u(x, 1) = f(x), E(x, 1)=0, xe(,1),

Au(x, 1) = g(x), %(x, 1)=0, xe€(0,1).

4.1)

4.2)

4.3)
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Finally, we use the finite difference method with the following partitions of temporal and spatial
variable. For x € [0, 1] and ¢ € [0, 1], let us consider the partitions Dg X D7 as follows:
1 2 i—1

Dq = {x] =0, xz:N—Q, x3:N—Q, R e . = B fori:1,2,...,NQ,NQ+1},

1 2 j—1
Dri=941 =0, =—, t3=—, -+, t; = cee sty =1, forj=1,2,...Np,Nr + 1.
T {1 2 Ny 3 N, j Nr J T,INT }

In Python software, the solutions can be re-write by the following form matrix:

[ u(x, 1) u(xy, ) u(xy,t3) oo u(xy, i) |
u(xz, 1) u(xz, 1) u(xz,3) oo (X2, Iny41)
u(xs, 1) u(xs, 1) u(xs, 3) o0 u(x3, Iyge1)
[ U(xng+1s 1) U(Xnge1, 1) UQNG 1, 12) e QNG e D |y v

In this example, by choosing the solution u(x, ) = cosh(l — 7) sin(;rx) to test the proposed results
with the following input data:

G(x,t) = (m* = 2% + 1) cosh(1 — f) sin(nrx), (x,1) € (0,1) x (0, 1),
Sf(x) = sin(mx), x €(0,1), (4.4)
g(x) = —n? sin(x), x € (0,1).

During the measurement of electromagnetic fields in applications of environmental and geophysical
imaging, the exact data is approximated by the function f5, g5, Gs as follows:

s — fllo + 1185 — 8llLa) + ||G6 - G“Lw(o,r;m(g)) <9, (4.5)
where

Gs(-) = G(-) + drand()/3,
f5() = f(-) + 6rand(-)/3, (4.6)
gs(") = g() + drand(-)/3.

By applying the Fourier truncation method, we provide a regularization solution as follows:

Nir No (T —t) sinh ( VA(T - ¢)
ug/"(x, ) = Z cosh ( \//l_k(T - t))(ﬁ;, exyer(x) + Z 5 \(//l_ - )<g5, exyer(x)
k=1 k=1 k
N (1 (r — t)cosh [ VA (r — 1)
+ ; ( f zgk - )<G6(', . ek>dr)ek(x)
Ni 1~ sinh ( VA (r - t))
+ £ (f 2/lk \//l_k <G5(" Z)$ ek>dr)ek(X), (47)

where N,, is a parameter regularization.
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We use the following estimation to evaluate the error between the regularized and exact solution at
a certain time f:

No+1

Z 'u§ "(x;, 1) — u(x;, 1) ’

i=1

Nir () —
86 (t) B No +1
Table 1 and Figures 1-5 show the error estimate between the exact and regularized solutions at five
observation times ¢ € {0.1,0.3,0.5,0.7,0.9} with § € {0.5,0.05, 0.005}, respectively. Figure 6 presents
the 3D graphs of the exact and regularized solutions, it shows they are quite similar. Overall, it shows
that the error becomes smaller as the noise ¢ is decreased. It also shows the regularized solution is
converged to the exact solution in this example.

Table 1. The error estimation between the regularized and exact solutions with No =

100, Ny = 100.

t 6, =035 0, = 0.05 63 = 0.005

0.1 0.09600230092017747  0.06839424680602106  0.035043593672148474
0.3 0.09297773184568403  0.06548087722374361  0.030044924035854536
0.5 0.08631247486802868  0.05829101885421206  0.031096834115623428
0.7 0.08256109054607924  0.04950471042879639  0.028282438899535974
0.9 0.08226034798718103  0.03610621656184547  0.024246403928042365

—#— Error between u®*t and u®
Error between u®ct and u®
0.2 1 —— Error between u

0.1

0.1+

0.1, respectively

0.0 A

The solutions at t

The errors at t

—0.14

-0.24

T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x€[0,1] x€[0,1]

(a) The solution at ¢t = 0.1 (b) The error at t = 0.1

Figure 1. The solutions at # = 0.1 and the error between exact and regularized solutions.
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—#— Error between u®®t and u®
21 0.2 Error between u®* and u®
N —— Error between u®?t and u®: |
: [
2
m S
I @
= 3
8 = | ] I i
o 1A I o
g > | LR Nl
5 0 S 1, ! L I el il
5 L 004 ,,' l‘ i I g il ll
E 5 ‘ LTSI \
a o IR 2l
g ¢ !
™ o 01 || Wi
£
=
2] -0.2
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

x€[0,1] x€[0,1]

(a) The solution atr = 0.3 (b) The erroratt = 0.3

Figure 2. The solutions at t = 0.3 and the error between exact and regularized solutions.

=05

The solutions at t

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
x€[0,1]

(a) The solution at r = 0.5

0.5, respectively

The errors at t

0.20 —«— Error between u®?t and u®
Error between u®® and u®
0.15 —w— Error between u®? and u%
0.10
| b
0.05 H | ‘ ]
I ikt et (1AL
0.00 1 v’”' I ‘ A L df AR A
i [ V
-0.05 1 ’ [ s I ’
| |
—0.10 1 '
-0.151
—0.20 1
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
x€[0,1]

(b) The error att = 0.5

Figure 3. The solutions at ¢ = 0.5 and the error between exact and regularized solutions.

=07

The solutions at t

0.0 0.2 0.4 0.6 0.8 1.0
x€[0,1]

(a) The solution at r = 0.7

0.7, respectively

The errors at t

—0.20 1

—#— Error between u®t and u®:

Error between u® and u®
—— Error between u®? and u®:

0.0

0.2 0.4 0.6 0.8
x€[0,1]

(b) The error at ¢ = 0.7

1.0

Figure 4. The solutions at t = 0.7 and the error between exact and regularized solutions.

AIMS Mathematics

Volume 7, Issue 12, 20660-20683.



20681

0.15 -

::5 H’“'”\ M.J(“P W‘ Ui ‘“H l(

u

=09
=0.9, respectively
o

—0.05 -

The solutions at t

—0.10 -

The errors at t

—a— Error between u®e< and u®
—0.15 A Error between u® and u®:
—— Error between u® and u%

0:4 0:6 0:8 110

0:0 0:2 0:4 016 0:8 110 0:0 012
x€[0,1]

x€[0,1]

(a) The solution at r = 0.9 (b) The error at ¢t = 0.9

Figure 5. The solutions at t = 0.9 and the error between exact and regularized solutions.

Regularized solution for 63

N 0.0
. . 0.2
> 0.4
02 * re )
{0, 0.8
. 1) .
0.0 10

0.0

0.2
0.4

x .
@[0, by 0.8

1.0

(a) The exact solution u (b) The regularized solution 6 = 0.005

Figure 6. The 3D solutions on Do X D7 € (0, 1) x (0, 1) for 6 = 0.005.

5. Conclusions

In this study, we focused on the final value problem of an inverse problem for both linear and
nonlinear bi-harmonic equations. The regularized method for the biharmonic equation is proposed
using the Fourier series truncation method and the terminal input data in L4(Q) for ¢ # 2. The error
between the exact and regularized solutions is estimated in L?(€2) using the embedding between L7(€2)
and Hilbert scale spaces H*(L2). The proposoed method has been verified by a numerical example;
wherein, the regularized solution is well converged to the exact solution. It shows that our proposal
method is capable of solving the final value problem of an inverse problem for both linear and nonlinear

biharmonic equations.
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