Research article

Compactness for iterated commutators of general bilinear fractional integral operators on Morrey spaces with non-doubling measures

Zhiyu Lin, Xiangxing Tao and Taotao Zheng*

Department of Mathematics, School of Science, Zhejiang University of Science and Technology, Hangzhou 310023, China

* Correspondence: Email: zhengtao@zust.edu.cn; Tel: +86188867136439.

Abstract: In the present article, we obtain the compactness of iterated commutators generated by general bilinear fractional operator with RVMO functions on Morrey spaces with non-doubling measures.

Keywords: compactness; iterated commutators; general bilinear fractional integral operators; Morrey spaces; non-doubling measures

Mathematics Subject Classification: 42B20, 47B07, 42B35

1. Introduction

For $0 < \alpha < n$, the fractional integral operator,

$$I_\alpha f(x) = \int_{\mathbb{R}^d} \frac{f(y)}{|x-y|^{n-\alpha}} d\mu(y),$$

has many applications in harmonic analysis, PDEs and the theory of Sobolev embeddings (see [2, 15]). For the boundedness of the fractional integral operator on function spaces, Adams [1] first obtained the boundedness of I_α on Morrey space. Recently it has been shown that many results of the classical singular integral theory also hold without assuming the doubling property, considerable attention has been paid to the study of when the underlying measures only satisfy the polynomial growth condition, namely, there exists a positive constant $C_0 > 0$ and $n \in (0, d]$ such that

$$\mu(B(x, l)) \leq C_0 l^n,$$ \hspace{1cm} (1.1)

for every $x \in \mathbb{R}^d$ and $l > 0$, $B(x, l)$ being the Euclidean ball with center x and radius l. In 2005, Sawano and Tanaka [19] introduced the definition of Morrey spaces under non-doubling measure conditions, and considered the boundedness of some classic operators including fractional integral...
I_a on Morrey spaces. Let us recall the definition of Morrey spaces $M^q_p(\mu)$, where μ satisfies the growth condition (1.1). Let $\kappa > 1$ and $1 \leq q \leq p < \infty$. We define the Morrey spaces $M^q_p(\kappa, \mu)$ as

$$M^q_p(\kappa, \mu) := \{f \in L^q_{\text{loc}}(\mu) : \|f\|_{M^q_p(\kappa, \mu)} < \infty\},$$

where the norm $\|f\|_{M^q_p(\kappa, \mu)}$ is given by

$$\|f\|_{M^q_p(\kappa, \mu)} := \sup_{Q \in \mu(\mu)} \mu(\kappa Q)^{1 - \frac{1}{q}} \left(\int_Q |f|^q d\mu\right)^{\frac{1}{q}}.$$ \hfill (1.2)

Applying Hölder’s inequality, it is easy to see that

$$L^p(\mu) = M^q_p(\kappa, \mu) \subset M^q_p(\kappa, \rho) \subset M^q_p(\kappa, \mu),$$

for $1 \leq s \leq t \leq p < \infty$. Moreover, the definition of Morrey spaces is independent of the constant $\kappa > 1$, and the norms for different choice of $\kappa > 1$ are equivalent, see [17, 19, 20] for details. So we will denote $M^q_p(2, \mu)$ by $M^p_q(\mu)$. One can see from the definition of Morrey spaces that, if $f_1 \in M^p_q(\mu)$, $1 \leq s_i \leq p_i < \infty$, $i = 1, 2$, and $\frac{1}{p} = \frac{1}{p_1} + \frac{1}{s_1} = \frac{1}{s_2} + \frac{1}{s_2}$, we have $\|f_1 f_2\|_{M^p_q(\mu)} \leq \|f_1\|_{M^p_q(\mu)} \|f_2\|_{M^p_q(\mu)}$.

In recent decades, there have been many works [3, 12, 14, 24] about the properties of commutators. Chanillo [5] obtained the boundedness of the commutator $[b, I_a]$ on the classical Lebesgue space, the operator $[b, I_a]$ given by

$$[b, I_a]f = bI_a f - I_a (bf), \quad b \in \text{BMO}.$$

Subsequently, Di Fazio and Ragusa [9] studied the boundedness of the commutator $[b, I_a]$ on the classical Morrey space. These conclusions can be extended to the case of non-doubling measures. Tolsa [23] introduced the concept of BMO space with non-double measures and called it as RBMO. In order to describe RBMO, we use the follow notations. Here and below we mean by a “cube” a compact cube with the sides parallel to the coordinate axis. $Q(x, l(Q))$ will be the cube centered at x with side length $l(Q)$. Next, we define the set of doubling cubes:

$$Q(\mu) := \{Q : Q \text{ is a cube with } \mu(Q) > 0\},$$

$$Q(\mu, 2) := \{Q \in Q(\mu) : 0 < \mu(2Q) \leq c_1 \mu(Q)\},$$

where c_1 is a constant independent of $Q \in Q(\mu)$. $Q(\mu, 2)$ denotes the set of doubling cubes. For $Q \in Q(\mu)$ to be a cube which is not always doubling, one can find N large enough such that NQ is a doubling cube. Let $j \geq 0$ be the smallest integer such that $2^j Q$ is doubling, we denote this cube by Q^j.

Let $0 \leq \gamma < n$. Denote by c_γ the center of $Q \in Q(\mu)$. Then we define

$$K^{(\gamma)}_{Q,R} := 1 + \int_{B(Q, l)} \left(\frac{\mu(B(c, l))}{l^n}\right)^{1 - \frac{1}{\gamma}} dl,$$

and $K_{Q,R} := K^{(0)}_{Q,R}$ for $Q, R \in Q(\mu, 2)$ with $Q \subset R$. The coefficient $K_{Q,R}$ was introduced by Tolsa in [23] and the modified coefficient $K^{(\gamma)}_{Q,R}$ was defined later by Chen and Sawyer [7]. For $Q \in Q(\mu, 2)$ we denote by $m_\gamma b$ the average of the $L^1_{\text{loc}}(\mu)$-function b, namely, $m_\gamma b = \frac{1}{\mu(\gamma)} \int_Q b(x) d\mu$. Let $\eta > 1$ be a fixed constant, we say that $b \in L^1_{\text{loc}}(\mu)$ is in RBMO(μ) if there exists a constant A such that

$$\frac{1}{\mu(\gamma \eta Q)} \int_Q |b(y) - m_\gamma b| d\mu(y) \leq A.$$
for any cube Q, and
\[|m_\Omega b - m_R b| \leq \mathcal{A} K_{Q,R}, \]
for any two doubling cubes $Q \subset R$. The minimal constant \mathcal{A} is the RBMO(μ) norm of b, and it will be denoted by $\|b\|_\mathcal{A}$.

By using an uniform boundedness property for I_α associated with non-doubling measures in \mathbb{R}^d, Betancor and Fariña [4] obtained the compactness of the commutator $[b, I_\alpha]$ when $b \in \text{RVMO}(\mu)$, where RVMO(μ) denotes the closure of the space $C^\infty_c(\mathbb{R}^d)$ of the smooth and compact supported functions on \mathbb{R}^d, in RBMO(μ).

In 2004, Garcia-Cuerva and Gatto [13] generalized the classic Hardy-Littlewood-Sobolev theorem, for $1 < p < \frac{n}{\alpha}$, $\|I_n f\|_{L^p(\mu)} \leq C\|f\|_{L^p(\mu)}$, where $\frac{1}{\theta} = \frac{1}{p} - \frac{\alpha}{n}$. They also introduced a general class of fractional integrals operators K_α for the purpose of obtaining boundedness of the operators from $L^p(\mu)$ to $Lip(\alpha - \frac{n}{p})$, $\frac{n}{p} < p \leq \infty$, which defined as follows
\[K_\alpha(f)(x) = \int_{\mathbb{R}^d} \mathcal{R}_\alpha(x,y) f(y) d\mu(y), \tag{1.3} \]
the kernel function $\mathcal{R}_\alpha : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{C}$ is said to be a general fractional kernel of order α and regularity $\delta(0 < \delta \leq 1)$ if it satisfies the following two conditions:
\[|\mathcal{R}_\alpha(x,y)| \leq \frac{C}{|x-y|^{n-\alpha}} \quad \text{for all } x \neq y, \tag{1.4} \]
and
\[|\mathcal{R}_\alpha(x,y) - \mathcal{R}_\alpha(x',y)| \leq C \frac{|x-x'|^\theta}{|x-y|^{n-\alpha+\delta}}, \tag{1.5} \]
for $|x-y| \geq 2|x-x'|$. We can see that I_α is a fractional integral operator with a kernel having regularity 1. In 2008, Sawano and Shirai [18] proved that if operator K_α with the kernel \mathcal{R}_α which satisfying the conditions (1.4) and (1.5), then the commutator $[b, K_\alpha]$ with $b \in \text{RVMO}(\mu)$ is a compact operator on the Morrey spaces with non-doubling measures. For the multilinear fractional integral I_α, we can also see [6,8,11,16]. Tao and Zheng in [22] discussed the Morrey spaces boundedness of the iterated commutators $[b_1, b_2, I_\alpha]$ under the setting with non-doubling measures for some indexes, which is defined by
\[[b_1, b_2, I_\alpha](f_1, f_2)(x) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \frac{(b_1(x) - b_1(y_1))(b_2(x) - b_2(y_2)) f_1(y_1) f_2(y_2)}{(|x-y_1| + |x-y_2|)^{2n-\alpha}} d\mu(y_1) d\mu(y_2), \tag{1.6} \]
where $b_1, b_2 \in \text{RBMO}(\mu)$, and
\[I_\alpha(f_1, f_2)(x) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \frac{f_1(y_1) f_2(y_2)}{(|x-y_1| + |x-y_2|)^{2n-\alpha}} d\mu(y_1) d\mu(y_2). \]
For $b \in \text{VMO}$, the BMO-closure of C^∞_c, Ding and Mei [10] established the compactness of the bilinear fractional integrals commutators $[I_\alpha, b]_i(i = 1, 2)$ on Morrey spaces, the commutators of I_α are defined by
\[[I_\alpha, b]_1(f,g)(x) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \frac{b(y) - b(x)}{(|x-y| + |x-z|)^{2n-\alpha}} f(y)g(z) dydz, \]
Lemma 1.1. Let \(K \) be a simple inequality (Morrey-boundedness of the general bilinear fractional integral operator for max Morrey spaces with non-doubling measures. For the convenience of the following, the modified AIMOS Mathematics operator \(M_f \) is defined by

\[
M_{\gamma, \eta} f(x) := \sup_{x \in \mathcal{Q} \in \mathcal{Q}(\mu)} \frac{1}{\mu(\frac{Q}{2})^{1-\frac{\gamma}{\eta}}} \int_Q |f(y)| d\mu(y), 0 \leq \gamma < n,
\]

and \(M_f(x) := M_{0, \frac{n}{n}} f(x) \).

In this paper, we consider a general bilinear fractional integral operator \(K_{\alpha} \) based on (1.3), which is given by

\[
K_{\alpha}(f_1, f_2)(x) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} k_{\alpha}(x, y_1, y_2) f_1(y_1) f_2(y_2) d\mu(y_1) d\mu(y_2),
\]

where \(0 < \alpha < 2n \) and \(0 < \delta \leq 1 \). A function \(k_{\alpha} : \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{C} \) is said to be a general bilinear fractional kernel of order \(\alpha \) and regularity \(\delta \) if it satisfies the following two conditions:

\[
|k_{\alpha}(x, y_1, y_2)| \leq \frac{C}{|x - y_1| + |x - y_2|^{2n-\alpha}} \quad \text{for all} \ x \neq y_i, i = 1, 2, \tag{1.8}
\]

\[
|k_{\alpha}(x, y_1, y_2) - k_{\alpha}(x', y_1, y_2)| \leq \frac{|x - x'|^{\delta}}{|x - y_1| + |x - y_2|^{2n-\alpha+\delta}}, \tag{1.9}
\]

for \(\max |x - y_i| \geq 2|x - x'| > 0 \).

In this paper, under non-doubling measure conditions we will study the \(L^p \)-boundedness and Morrey-boundedness of the general bilinear fractional integral operator \(K_{\alpha} \), and the Morrey-boundedness and compactness of \(K_{\alpha} \) associated commutators. Firstly, we give the boundedness of \(K_{\alpha} \) on Lebesgue spaces:

Lemma 1.1. Let \(0 < \alpha < 2n \), \(f_i \in L^p(\mu) \) with \(1 < p_i < \frac{\alpha}{\alpha - \gamma} \), \(i = 1, 2 \). If \(\frac{1}{p_i} = \frac{1}{p} + \frac{1}{p_2} - \frac{\gamma}{\alpha} > 0 \), then there exists a constant \(C > 0 \) independent of \(f_1, f_2 \) such that

\[
\|K_{\alpha}(f_1, f_2)\|_{L^q(\mu)} \leq C \|f_1\|_{L^{p_1}(\mu)} \|f_2\|_{L^{p_2}(\mu)}. \tag{1.10}
\]

Proof. By a simple inequality \((a + b)^c \geq c^c b^c / a^c \), \(a, b, c > 0 \), we have

\[
\begin{align*}
|K_{\alpha}(f_1, f_2)(x)| & \leq \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |k_{\alpha}(x, y_1, y_2)||f_1(y_1)||f_2(y_2)| d\mu(y_1) d\mu(y_2) \\
& \leq C \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \frac{|f_1(y_1)||f_2(y_2)|}{|x - y_1| + |x - y_2|^{2n-\alpha}} d\mu(y_1) d\mu(y_2) \\
& \leq C \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \frac{|f_1(y_1)|}{|x - y_1|^{\frac{\alpha-\gamma}{\alpha}} |x - y_2|^{\frac{\alpha-\gamma}{\alpha}}} d\mu(y_1) d\mu(y_2) \\
& \leq CI_{\frac{\alpha}{\alpha}}(f_1)(x)I_{\frac{\alpha}{\alpha}}(f_2)(x).
\end{align*}
\]

Applying Hölder’s inequality with \(\frac{1}{\alpha} = \frac{1}{p_1} - \frac{\alpha}{\alpha - \gamma}, \frac{1}{\alpha} = \frac{1}{p_2} - \frac{\alpha}{\alpha - \gamma} \) and \(\|f_i\|_{L^{p_i}(\mu)} \leq C \|f\|_{L^{p_i}(\mu)}, i = 1, 2 \) (see [13, Corollary 3]), we get

\[
\|K_{\alpha}(f_1, f_2)\|_{L^q(\mu)} \leq C \|I_{\frac{\alpha}{\alpha}}(f_1)\|_{L^{p_1}(\mu)} \|I_{\frac{\alpha}{\alpha}}(f_2)\|_{L^{p_2}(\mu)} \leq C \|f_1\|_{L^{p_1}(\mu)} \|f_2\|_{L^{p_2}(\mu)}. \]

\(\square \)

Next we will illustrate the boundedness properties of the general bilinear fractional integrals on Morrey spaces with non-doubling measures. For the convenience of the following, the modified fractional maximal operator is defined by

\[
M_{\gamma, \eta} f(x) := \sup_{x \in \mathcal{Q} \in \mathcal{Q}(\mu)} \frac{1}{\mu(\frac{Q}{2})^{1-\frac{\gamma}{\eta}}} \int_Q |f(y)| d\mu(y), 0 \leq \gamma < n,
\]

and \(M_f(x) := M_{0, \frac{n}{n}} f(x) \).

AIMS Mathematics Volume 7, Issue 12, 20645–20659.
Lemma 1.2. [19, 20] Suppose that the parameters p, q, s, t and γ satisfy $1 < q \leq p < \infty$, $1 < t \leq s < \infty$, $0 \leq \gamma < n$, $\frac{1}{s} = \frac{1}{p} - \frac{\gamma}{n}$ and $\frac{q}{p} = \frac{t}{s}$. Then there exists a constant $C > 0$ such that, for all $f \in M^p_q(\mu)$,

$$\| M_{\gamma, f} \|_{M^p_q(\mu)} \leq C \| f \|_{M^p_q(\mu)}.$$

Lemma 1.3. [19] Let $1 < q \leq p < \infty$, $1 < t \leq s < \infty$, $0 < \alpha < n$ and $\frac{q}{p} = \frac{t}{s}$, $\frac{1}{s} = \frac{1}{p} - \frac{\alpha}{n}$. Then there exists a constant $C > 0$ such that, for every $f \in M^p_q(\mu)$,

$$\| K_n f \|_{M^p_q(\mu)} \leq C \| f \|_{M^p_q(\mu)}.$$

Lemma 1.4. Support $0 < \alpha < 2n$, $1 < q_i \leq p_i < \infty$, $\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2} - \frac{\alpha}{n} > 0$ and $\frac{1}{q} = \frac{1}{q_1} + \frac{1}{q_2} - \frac{\alpha}{n} > 0$, $i = 1, 2$. Then, the operators K_n are bounded from $M^{p_1,q_1}(\mu) \times M^{p_2,q_2}(\mu)$ to $M^p_q(\mu)$, that is to say,

$$\| K_n(f_1, f_2) \|_{M^p_q(\mu)} \leq C \| f_1 \|_{M^{p_1,q_1}(\mu)} \| f_2 \|_{M^{p_2,q_2}(\mu)},$$

where $C > 0$ is the constant independent of f_1, f_2.

Proof. For all $y \in \mathbb{R}^d$, $y \neq x$, an elementary calculation yields

$$\frac{C}{|x - y|^{n - \alpha}} = \int_{|x - y|}^{\infty} r^{n - 1} dr = C \int_0^{\infty} \frac{\chi_{|x - y|}(y)}{r^{n-1}} r^{n-1} dr. \quad (1.10)$$

Thus, by (1.10) and Fubini’s theorem, we get

$$|K_n(f_1, f_2)(x)|$$

$$\leq \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} |k_n(x, y_1, y_2)||f_1(y_1)||f_2(y_2)| d\mu(y_1) d\mu(y_2)$$

$$\leq C \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \frac{|f_1(y_1)||f_2(y_2)|}{|x - y_1| + |x - y_2|^{2n-\alpha}} d\mu(y_1) d\mu(y_2)$$

$$\leq C \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \left(\int_{|x - y_1| + |x - y_2|}^{\infty} r^{n - 2n + 1} dr \right)^{\frac{1}{p_1}} |f_1(y_1)||f_2(y_2)| d\mu(y_1) d\mu(y_2)$$

$$\leq C \int_0^{\infty} \left(\frac{1}{p_1} \int_{|x - y_1|}^{\infty} |f_1(y_1)| d\mu(y_1) \right)^{\frac{1}{p_1}} \left(\frac{1}{p_2} \int_{|x - y_2|}^{\infty} |f_2(y_2)| d\mu(y_2) \right)^{\frac{1}{p_2}} dt$$

$$= C \int_0^{\infty} \left(\frac{1}{p_1} \int_{|x - y_1|}^{\infty} |f_1(y_1)| d\mu(y_1) \right)^{\frac{1}{p_1}} \left(\frac{1}{p_2} \int_{|x - y_2|}^{\infty} |f_2(y_2)| d\mu(y_2) \right)^{\frac{1}{p_2}} dt$$

$$+ C \int_0^{\infty} \left(\frac{1}{p_1} \int_{|x - y_1|}^{\infty} |f_1(y_1)| d\mu(y_1) \right)^{\frac{1}{p_1}} \left(\frac{1}{p_2} \int_{|x - y_2|}^{\infty} |f_2(y_2)| d\mu(y_2) \right)^{\frac{1}{p_2}} dt$$

$$:= E_1 + E_2.$$

Applying the Hölder inequality and the growth condition (1.1), and letting cube $Q = Q(x, 2l)$, we get

$$\frac{1}{p_i} \int_{|x - y| < \epsilon} |f_i(y_i)| d\mu(y_i) \leq \frac{C}{\mu(Q)} \int_Q |f_i(y_i)| d\mu(y_i) \leq M f_i(x), \quad i = 1, 2 \quad (1.11)$$

AIMS Mathematics Volume 7, Issue 12, 20645–20659.
and
\[
\frac{1}{m} \int_{|x-y|<\epsilon} |f_i(y_i)| \, d\mu(y_i) \leq \frac{C}{m} \int_Q |f_i(y)| \, d\mu(y)
\]
\[
\leq \frac{C}{m} \left(\int_Q |f_i(y)|^q \, d\mu(y) \right)^{\frac{1}{q}} \mu(Q)^{\frac{1}{q}}
\]
\[
\leq C \Gamma \frac{n}{m} \|f_i\|_{\mathcal{M}_1^q(\omega)}, \quad i = 1, 2.
\] (1.12)

Then, by (1.11), we have
\[
E_1 \leq C e^\epsilon M f_1(x) M f_2(x).
\]

And by (1.12), we get
\[
E_2 \leq C \int_\epsilon^{\infty} \left(\Gamma \frac{n}{m} \|f_1\|_{\mathcal{M}_1^q(\omega)} \right) \left(\Gamma \frac{n}{m} \|f_2\|_{\mathcal{M}_2^q(\omega)} \right)^{p-1} \, dl
\]
\[
\leq C e^{-\frac{n}{m} \|f_1\|_{\mathcal{M}_1^q(\omega)} \|f_2\|_{\mathcal{M}_2^q(\omega)}}.
\]

By choosing \(\epsilon = \left(\frac{\|f_1\|_{\mathcal{M}_1^q(\omega)} \|f_2\|_{\mathcal{M}_2^q(\omega)}}{M f_1(x) M f_2(x)} \right)^\frac{1}{\gamma} \), where \(\frac{1}{\gamma} = \frac{1}{p_1} + \frac{1}{p_2} \), we can get
\[
|\mathcal{K}_\alpha(f_1, f_2)(x)| \leq C \left(\|f_1\|_{\mathcal{M}_1^q(\omega)} \|f_2\|_{\mathcal{M}_2^q(\omega)} \right)^{1-\frac{1}{\gamma}} (M f_1(x) M f_2(x))^\frac{1}{\gamma}.
\] (1.13)

For \(\frac{1}{\gamma} = \frac{1}{p_1} + \frac{1}{p_2} \), \(\frac{1}{\gamma} = \frac{1}{q_1} + \frac{1}{q_2} \), applying the H"{o}lder inequality and Lemma 1.2, we obtain that
\[
|\mu(2Q)|^{\frac{1}{\gamma} - \frac{1}{q}} \left\{ \int_Q |M f_1(y) M f_2(y)|^q \, d\mu(y) \right\}^{\frac{1}{q}}
\]
\[
\leq C |\mu(2Q)|^{\frac{1}{\gamma} - \frac{1}{q}} \left\{ \int_Q |M f_1(y) M f_2(y)|^q \, d\mu(y) \right\}^{\frac{1}{q}}
\]
\[
\leq C \left\{ |\mu(2Q)|^{\frac{1}{\gamma} - \frac{1}{q}} \left(\int_Q |M f_1(y) M f_2(y)|^q \, d\mu(y) \right) \right\}^{\frac{1}{q}}
\]
\[
\leq C \left\{ |\mu(2Q)|^{\frac{1}{\gamma} - \frac{1}{q}} \left(\int_Q |M f_1(y)|^q \, d\mu(y) \right)^{\frac{1}{q}} \left(\int_Q |M f_2(y)|^q \, d\mu(y) \right) \right\}^{\frac{1}{q}}
\]
\[
\leq C \left(\|M f_1\|_{\mathcal{M}_1^{q_1}(\omega)} \|M f_2\|_{\mathcal{M}_2^{q_2}(\omega)} \right)^{\frac{1}{q}} \leq C \left(\|f_1\|_{\mathcal{M}_1^{q_1}(\omega)} \|f_2\|_{\mathcal{M}_2^{q_2}(\omega)} \right)^{\frac{1}{q}}.
\] (1.14)

Thus, by (1.13) and (1.14), we get
\[
\|\mathcal{K}_\alpha(f_1, f_2)\|_{\mathcal{M}_1^{q_1}(\omega)} \leq C \|f_1\|_{\mathcal{M}_1^{q_1}(\omega)} \|f_2\|_{\mathcal{M}_2^{q_2}(\omega)}.
\]

Now let \(b_1, b_2 \in \text{RBMO}(\mu) \), then the iterated commutators of general bilinear fractional integral operator \([b_1, b_2, \mathcal{K}_\alpha]\) is formally defined as
\[
[b_1, b_2, \mathcal{K}_\alpha](f_1, f_2)(x) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} (b_1(x) - b_1(y_1))(b_2(x) - b_2(y_2)) k_\alpha(x, y_1, y_2) f_1(y_1)f_2(y_2) d\mu(y_1)d\mu(y_2).
\] (1.15)
Theorem 1.6. Let \(k_\alpha(x, y_1, y_2) = 1/(|x - y_1| + |x - y_2|)^{2n-\alpha} \). Inspired by [18] and [10, 22], we find that the boundedness and compactness of the iterated commutators of general bilinear fractional integral operators \([b_1, b_2, \mathcal{K}_\alpha]\) on the Morrey space with non-doubling measures have not been established. Our main results can be stated as follows.

Theorem 1.5. Let \(0 < \alpha < 2n, 1 < q_i \leq p_i < \infty, \frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2} - \frac{\alpha}{n} > 0 \) and \(\frac{1}{q} = \frac{1}{q_1} + \frac{1}{q_2} - \frac{\alpha}{n} > 0, i = 1, 2. \) Suppose \(\|\mu\| = \infty \) and \(b_1, b_2 \in \text{RBMO}(\mu) \). Then, the commutators \([b_1, b_2, \mathcal{K}_\alpha]\) are bounded from \(\mathcal{M}^p_q(\mu) \times \mathcal{M}^{2p}_q(\mu) \) to \(\mathcal{M}^p_q(\mu) \), moreover,

\[
\|[b_1, b_2, \mathcal{K}_\alpha](f_1, f_2)\|_{\mathcal{M}^p_q(\mu)} \leq C \|f_1\|_{\mathcal{M}^p_q(\mu)} \|f_2\|_{\mathcal{M}^{2p}_q(\mu)},
\]

where \(C > 0 \) is the constant independent of \(f_1, f_2, b_1, b_2 \).

By using the similar methods in [22, Theorem 1.4], we can obtain the proof of Theorem 1.5. Hence, we omit the details.

On the basis of Theorem 1.5, we will pay our attention to the compactness of \([b_1, b_2, \mathcal{K}_\alpha]\) on Morrey space with non-doubling measures. We have the following theorem.

Theorem 1.6. Let \(0 < \alpha < 2n, 1 < q_i \leq p_i < \infty, \frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2} - \frac{\alpha}{n} > 0 \) and \(\frac{1}{q} = \frac{1}{q_1} + \frac{1}{q_2} - \frac{\alpha}{n} > 0, i = 1, 2. \) Suppose \(\|\mu\| = \infty \) and \(b_1, b_2 \in \text{RVMO}(\mu) \). Then, the commutator \([b_1, b_2, \mathcal{K}_\alpha]\) is a compact operator from \(\mathcal{M}^p_q(\mu) \times \mathcal{M}^{2p}_q(\mu) \) to \(\mathcal{M}^p_q(\mu) \).

2. Proof of Theorem 1.6

In order to prove Theorem 1.6, we also need a compactness criterion on spaces of \(\mathcal{M}^p_q(\mu) \times \mathcal{M}^{2p}_q(\mu) \).

Lemma 2.1. [18, 21] Let \(1 < q \leq p < \infty, 1 < q_i \leq p_i < \infty, i = 1, 2. \) Suppose \(T \) is a bilinear integral operator defined as follows

\[
T(f_1, f_2)(x) := \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} k(x, y_1, y_2)f_1(y_1)f_2(y_2)d\mu(y_1)d\mu(y_2),
\]

(2.1)

where the kernel function \(k \in L^\infty(\mu \otimes \mu) \). Then \(T \) is a compact operator from \(\mathcal{M}^p_q(\mu) \times \mathcal{M}^{2p}_q(\mu) \) to \(\mathcal{M}^p_q(\mu) \).

Lemma 2.2. Let \(x \in \text{supp}(\mu), 0 \leq \alpha < n, \) and let \(\varrho > 0 \) and \(r > 0. \) Then there exist constants \(C_1, C_2 > 0 \) such that

\[
\int_{|x-y| \leq \rho} \frac{|f(y)|}{|x - y|^{n-\alpha-q}} d\mu(y) \leq C_1 r^{\varrho} M_\alpha f(x),
\]

(2.2)

\[
\int_{|x-y| > \rho} \frac{|f(y)|}{|x - y|^{n-\alpha-q}} d\mu(y) \leq C_2 r^{-\varrho} M_\alpha f(x).
\]

(2.3)

Proof. We will use the same procedure as in the proof of ([13], Lemmas 2.1 and 2.2). If \(n-\alpha \leq \varrho, \) (2.2) follows immediately from (1.1). If \(\varrho < n-\alpha, \) we write

\[
\int_{|x-y| \leq \rho} \frac{|f(y)|}{|x - y|^{n-\alpha-q}} d\mu(y) = \sum_{j=0}^{\infty} \int_{2^{-j-1} \rho \leq |x-y| < 2^{-j} \rho} \frac{|f(y)|}{|x - y|^{n-\alpha-q}} d\mu(y)
\]
$$\leq \sum_{j=0}^{\infty} \frac{1}{(2^{-j}r)^{n-a+q}} \int_{|x-y|<2^{-j}r} |f(y)|d\mu(y)$$
$$= C_1 r^\varepsilon M_{\alpha} f(x).$$

On the other hand, with the similar ways as above we have

$$\int_{|x-y|> r} \frac{|f(y)|}{|x-y|^{n-a+q}} d\mu(y) = \sum_{j=0}^{\infty} \int_{2^{j}r \leq |x-y| < 2^{j+1}r} \frac{|f(y)|}{|x-y|^{n-a+q}} d\mu(y)$$
$$\leq \sum_{j=0}^{\infty} \frac{1}{(2^{j}r)^{n-a+q}} \int_{|x-y|\leq 2^{j+1}r} |f(y)|d\mu(y)$$
$$= C_2 r^{-\varepsilon} M_{\alpha} f(x).$$

$$\square$$

Recall the function space RVMO(μ), $b \in$ RVMO(μ) if and only if there exists a sequence of compactly supported smooth functions $\{b_j\}_{j=1}^{\infty}$ such that $\lim_{j \to \infty} \|b - b_j\|_a = 0$. In order to obtain the compactness in Theorem 1.6, we will establish some function approximations for the iterated commutator. Assume a function $\psi(t) \in C_0^\infty(\mathbb{R}^d)$ satisfying supp $\psi \subset [1, \infty)$ and $\psi(t) = 1$, $t \geq 2$. For $\varepsilon \leq 1$, we consider the truncation of \mathcal{K}_ε,

$$\mathcal{K}_\varepsilon^\alpha (f_1, f_2) (x) := \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \psi \left(\frac{|x-y_1|}{\varepsilon} \right) \psi \left(\frac{|x-y_2|}{\varepsilon} \right) \mu_\varepsilon (x, y_1, y_2) f_1 (y_1) f_2 (y_2) d\mu (y_1) d\mu (y_2). \quad (2.4)$$

Lemma 2.3. Let $b_1, b_2 \in C_0^\infty(\mathbb{R}^d)$, the kernel function μ_ε satisfies (1.8) and (1.9). For $f_1 \in \mathcal{M}_{\alpha}^{0} (\mu)$, $f_2 \in \mathcal{M}_{\alpha}^{0} (\mu)$ with $1 < q_i \leq p_i < \infty$, $i = 1, 2$, and let $\frac{1}{p} = \frac{1}{p_1} + \frac{1}{p_2} - \frac{a}{n} > 0$, $\frac{1}{q} = \frac{1}{q_1} + \frac{1}{q_2} - \frac{a}{n} > 0$, then the iterated commutators $[b_1, b_2, \mathcal{K}_\varepsilon]_\alpha$ tends to $[b_1, b_2, \mathcal{K}_\varepsilon]_\alpha$ uniformly in $\mathcal{M}_{\alpha}^{0} (\mu)$ as $\varepsilon \to 0$.

Proof. One can see that

$$[b_1, b_2, \mathcal{K}_\varepsilon]_\alpha (f_1, f_2) (x) - [b_1, b_2, \mathcal{K}_\varepsilon]_\varepsilon^\alpha (f_1, f_2) (x)$$
$$= \lim_{\rho \to 0} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \left[\psi \left(\frac{|x-y_1|}{\varepsilon} \right) \psi \left(\frac{|x-y_2|}{\rho} \right) - \psi \left(\frac{|x-y_1|}{\rho} \right) \psi \left(\frac{|x-y_2|}{\varepsilon} \right) \right]$$
$$\times (b_1 (x) - b_1 (y_1)) (b_2 (x) - b_2 (y_2)) \mu_\varepsilon (x, y_1, y_2) f_1 (y_1) f_2 (y_2) d\mu (y_1) d\mu (y_2). \quad (2.5)$$

In view of the size condition of the kernel μ_ε, the property of ψ, using Lebesgue’s convergence theorem and Lemma 2.2, we obtain

$$\left| [b_1, b_2, \mathcal{K}_\varepsilon]_\alpha (f_1, f_2) (x) - [b_1, b_2, \mathcal{K}_\varepsilon^\alpha]_\varepsilon (f_1, f_2) (x) \right|$$
$$\leq C \lim_{\rho \to 0} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \left| \psi \left(\frac{|x-y_1|}{\varepsilon} \right) \psi \left(\frac{|x-y_2|}{\rho} \right) - \psi \left(\frac{|x-y_1|}{\rho} \right) \psi \left(\frac{|x-y_2|}{\varepsilon} \right) \right|$$
$$\times \frac{|x-y_1||x-y_2|f_1 (y_1) f_2 (y_2)|}{(|x-y_1| + |x-y_2|)^{2n-a}} d\mu (y_1) d\mu (y_2)$$
$$\leq C \int_{|x-y_1| \leq 2r} \frac{|f_1 (y_1)|}{|x-y_1|^{n-1-a}} d\mu (y_1) \int_{|x-y_2| \leq 2r} \frac{|f_2 (y_2)|}{|x-y_2|^{n-1-a}} d\mu (y_2)$$
\[+ C \int_{|x-y| \leq 2 \varepsilon} \frac{|f_1(y_1)|}{|x-y_1|^{\alpha_1}} \, d\mu(y_1) \int_{|x-y_2| \leq 2 \varepsilon} \frac{|f_2(y_2)|}{|x-y_2|^{\alpha_2}} \, d\mu(y_2) + C \int_{|x-y| \leq 2 \varepsilon} \frac{|f_1(y_1)|}{|x-y_1|^{\alpha_1}} \, d\mu(y_1) \int_{|x-y_2| \leq 2 \varepsilon} \frac{|f_2(y_2)|}{|x-y_2|^{\alpha_2}} \, d\mu(y_2) \leq C \varepsilon^2 M_{\alpha_1} f_1(x) M_{\alpha_2} f_2(x), \]

where we have chosen \(\delta > 0 \) and \(\alpha_1 + \alpha_2 = \alpha \) such that \(\frac{1}{\alpha_i} = \frac{1}{p_i} - \frac{\alpha}{n} > 0 \), \(i = 1, 2 \). We note that
\[\|M_{\alpha_i} f_i\|_{M^p_c(\mu)} \leq C \|f_i\|_{M^p_c(\mu)} \] with \(\frac{n}{\alpha} = \frac{p_i}{q_i} \). Thus, we have that
\[\|(b_1, b_2, \mathcal{K}_\alpha) - (b_1, b_2, \mathcal{K}_\alpha^R)(f_1, f_2)\|_{M^p_c(\mu)} \leq C \varepsilon^2 \|f_1\|_{M^p_c(\mu)} \|f_2\|_{M^p_c(\mu)}. \]

Therefore, Lemma 2.3 holds. \(\square \)

Lemma 2.4. Under the same conditions and notations, let \(\mathcal{K}_\alpha^c \) be the truncation operator defined by (2.4). \(\mathcal{K}_\alpha^c \) be the truncation of \(\mathcal{K}_\alpha^c \).

\[\mathcal{K}_\alpha^c(f_1, f_2)(x) := \int_{|x-y| \leq R} \int_{|x-y| \leq R} \psi \left(\frac{|x-y_1|}{\varepsilon} \right) \psi \left(\frac{|x-y_2|}{\varepsilon} \right) k_{\alpha}(x, y_1, y_2) f(y_1) f(y_2) \, d\mu(y_1) \, d\mu(y_2). \]

Then, for \(f_1 \in M^p_{\psi_1}(\mu), f_2 \in M^p_{\psi_2}(\mu) \) with \(1 < q_i \leq p_i < \infty, i = 1, 2 \), the iterated commutator \([b_1, b_2, \mathcal{K}_\alpha^c] \) tends to \([b_1, b_2, \mathcal{K}_\alpha^c] \) uniformly in \(M^p_c(\mu) \) as \(R \to \infty \). Moreover, there exist \(\delta > 0 \) such that
\[\|(b_1, b_2, \mathcal{K}_\alpha^c) - [b_1, b_2, \mathcal{K}_\alpha^c](f_1, f_2)\|_{M^p_c(\mu)} \leq C \varepsilon R^{-\delta} \|f_1\|_{M^p_{\psi_1}(\mu)} \|f_2\|_{M^p_{\psi_2}(\mu)}. \]

Proof. Note \(0 < \alpha < 2n, 1 < q \leq p < \infty, 1 < q_i \leq p_i < \infty, i = 1, 2 \), \(\frac{1}{h} = \frac{1}{p_1} + \frac{1}{p_2}, \frac{1}{r} = \frac{1}{q_1} + \frac{1}{q_2}, \frac{1}{p} = \frac{1}{h} - \frac{\alpha}{n} > 0, \frac{1}{q} = \frac{1}{r} - \frac{\alpha}{n} > 0 \) and \(b_1, b_2 \in C_c(\mathbb{R}^d) \). Taking \(f_1 \in M^p_{\psi_1}(\mu), f_2 \in M^p_{\psi_2}(\mu) \), we obtain
\[[b_1, b_2, \mathcal{K}_\alpha^c](f_1, f_2)(x) = \left(\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} - \int_{|x-y| \leq R} \int_{|x-y| \leq R} \right) \psi \left(\frac{|x-y_1|}{\varepsilon} \right) \psi \left(\frac{|x-y_2|}{\varepsilon} \right) \times (b_1(x) - b_1(y_1))(b_2(x) - b_2(y_2)) k_{\alpha}(x, y_1, y_2) f(y_1) f(y_2) \, d\mu(y_1) \, d\mu(y_2). \]

Next we introduce the following two indices:
\[\alpha_1 = \frac{1}{p_1} \left(\frac{1}{p_1} + \frac{1}{p_2} \right)^{-1} \alpha = \frac{h}{p_1} \alpha \quad \text{and} \quad \alpha_2 = \frac{1}{p_2} \left(\frac{1}{p_1} + \frac{1}{p_2} \right)^{-1} \alpha = \frac{h}{p_2} \alpha. \]

Then \(\alpha_1 \) and \(\alpha_2 \) satisfy
\[\alpha = \alpha_1 + \alpha_2, \quad 0 < \alpha_1 < \frac{n}{p_1}, \quad 0 < \alpha_2 < \frac{n}{p_2}. \]

In fact,
\[\alpha_i - \frac{n}{p_i} = n \left(\frac{h}{p_i n} - \frac{1}{p_i} \right) < n \left(\frac{1}{p_i h} - \frac{1}{p_i} \right) = 0, \quad i = 1, 2. \]

Now, since \(p_1, p_2 > 1 \), we see that \(n > \max(\alpha_1, \alpha_2) \). In particular, this yields
\[(|x-y_1| + |x-y_2|)^{2n-\alpha} = (|x-y_1| + |x-y_2|)^{(n-\alpha_1)(n-\alpha_2)} \geq |x-y_1|^{n-\alpha_1}|x-y_2|^{n-\alpha_2}. \]
For \(b_1, b_2 \in \mathcal{C}_c^\infty(\mathbb{R}^d) \), there exist \(Q_1 \supset \text{supp } b_1 \) and \(Q_2 \supset \text{supp } b_2 \). We can see that the kernel satisfies

\[
\left| \psi\left(\frac{|x - y_1|}{\varepsilon}\right) \psi\left(\frac{|x - y_2|}{\varepsilon}\right) \right| \left| (b_1(x) - b_1(y_1)) (b_2(x) - b_2(y_2)) \right| \left| k_{\alpha} (x, y_1, y_2) \right| \\
\leq C \frac{X_{\mathbb{R}^d(B(x, \varepsilon))}(y_1) (X_{\mathbb{R}^d(B(x, \varepsilon))}(y_1) + X_{\mathbb{R}^d(B(x, \varepsilon))}(y_2) + X_{\mathbb{R}^d(B(x, \varepsilon))}(y_2))}{|x - y_1|^{\alpha - 1} |x - y_2|^{\alpha - 2}}
\]

that is

\[
\left| [b_1, b_2, \mathcal{K}_\alpha^R](f_1, f_2)(x) - [b_1, b_2, \mathcal{K}_\alpha^R](f_1, f_2)(x) \right| \\
\leq C \left(\int_{|x - y_1| \geq R} \int_{|x - y_2| \geq R} + \int_{|x - y_1| \leq R} \int_{|x - y_2| < R} + \int_{|x - y_1| < R} \int_{|x - y_2| \geq R} \right) \\
\times \frac{(X_{\mathbb{R}^d(B(x, \varepsilon))}(y_1) + X_{\mathbb{R}^d(B(x, \varepsilon))}(y_2)) |f_1(y_1)| |f_2(y_2)|}{|x - y_1|^{\alpha - 1} |x - y_2|^{\alpha - 2}} \, d\mu(y_1) d\mu(y_2)
\]

:= D_1 + D_2 + D_3.

To estimate \(D_1 \), applying (1.10), the Fubini theorem and (1.12), we get

\[
D_1 = C \int_{|x - y_1| \geq R} \int_{|x - y_2| \geq R} \frac{|f_1(y_1)|}{|x - y_1|^{\alpha - 1}} \, d\mu(y_1) \\
\times \int_{|x - y_2| \geq R} \frac{|f_2(y_2)|}{|x - y_2|^{\alpha - 2}} \, d\mu(y_2)
\]

\[
= C \int_{|x - y_1| \geq R} \int_{|x - y_2| \geq R} \left(\int_0^\infty \frac{x_{|x - y_1| < l_1} \, dl_1}{l_1^{\alpha - 1}} \right) |f_1(y_1)| \, d\mu(y_1) \\
\times \int_{|x - y_2| \geq R} \left(\int_0^\infty \frac{x_{|x - y_2| < l_2} \, dl_2}{l_2^{\alpha - 2}} \right) |f_2(y_2)| \, d\mu(y_2)
\]

\[
= C \int_R \int_{|x - y_1| < l_1} \left(\int_0^\infty \frac{x_{|x - y_1| < l_1} \, dl_1}{l_1^{\alpha - 1}} \right) |f_1(y_1)| \, d\mu(y_1) \\
\times \int_{|x - y_2| < l_2} \left(\int_0^\infty \frac{x_{|x - y_2| < l_2} \, dl_2}{l_2^{\alpha - 2}} \right) |f_2(y_2)| \, d\mu(y_2)
\]

\[
\leq C \left(\int_R \int_{|x - y_1| < l_1} \frac{|f_1|_{\mathcal{M}_\alpha^R(\mu)} \, dl_1}{l_1^{\alpha - 1}} \right) |f_1(\alpha)| \, d\mu(\alpha) \\
\times \int_R \int_{|x - y_2| < l_2} \frac{|f_2|_{\mathcal{M}_\alpha^R(\mu)} \, dl_2}{l_2^{\alpha - 2}} \, d\mu(\alpha)
\]

Furthermore, using the Minkowski inequality, we can deduce that

\[
\|D_1\|_{\mathcal{M}_\alpha^R(\mu)} \\
\leq CR^{-\frac{\alpha - 1}{2} - \frac{\alpha - 2}{2}} \int_{R} \left(\int_{|x - y_1| < l_1} \int_{\mathcal{C}_c^\infty(\mathbb{R}^d)} |f_1|_{\mathcal{M}_\alpha^R(\mu)} \, dl_1 \, d\mu(\alpha) \right) \\
\times \int_{R} \left(\int_{|x - y_2| < l_2} \int_{\mathcal{C}_c^\infty(\mathbb{R}^d)} |f_2|_{\mathcal{M}_\alpha^R(\mu)} \, dl_2 \, d\mu(\alpha) \right)
\]
+ \mathbf{C} R^{-\frac{\mu}{p_1}+\alpha_1} \|f_1\|_{\mathcal{M}_{\mu}^{1}(\mu)} \left\| \chi_{Q_1}(x) \int_2^{\infty} \left(\int_{Q_2} \chi_{[x-y] \cdot c_2}(y_2) |f_2(y_2)| d\mu(y_2) \right) l_2^{n+\alpha_2-1} dl_2 \right\|_{\mathcal{M}_{\mu}^{2}(\mu)} \\
+ \mathbf{C} R^{-\frac{\mu}{p_2}+\alpha_2} \|f_2\|_{\mathcal{M}_{\mu}^{2}(\mu)} \left\| \chi_{Q_2}(x) \int_2^{\infty} \left(\int_{Q_1} \chi_{[x-y] \cdot c_1}(y_1) |f_1(y_1)| d\mu(y_1) \right) l_1^{n+\alpha_1-1} dl_1 \right\|_{\mathcal{M}_{\mu}^{1}(\mu)} \\
+ \mathbf{C} \left\| \int_2^{\infty} \left(\int_{Q_1} \chi_{[x-y] \cdot c_1}(y_1) |f_1(y_1)| d\mu(y_1) \right) l_1^{n+\alpha_1-1} dl_1 \right\|_{\mathcal{M}_{\mu}^{1}(\mu)} \\
\times \int_2^{\infty} \left(\int_{Q_2} \chi_{[x-y] \cdot c_2}(y_2) |f_2(y_2)| d\mu(y_2) \right) l_2^{n+\alpha_2-1} dl_2 \right\|_{\mathcal{M}_{\mu}^{2}(\mu)} := D_{11} + D_{12} + D_{13} + D_{14}.

It is easy to get that

\[D_{11} \leq \mathbf{C} R^{-\frac{\mu}{\gamma}} \|f_1\|_{\mathcal{M}_{\mu}^{1}(\mu)} \|f_2\|_{\mathcal{M}_{\mu}^{2}(\mu)}, \]

since

\[\left\| \chi_{Q_1}(x) \chi_{Q_2}(x) \right\|_{\mathcal{M}_{\mu}^{1}(\mu)} = \sup_{Q \in \mathcal{Q}(\mu)} \mu(2Q)^{-\frac{\mu}{\gamma}} \left(\int_Q \left| \chi_{Q_1} \chi_{Q_2} \right|^\gamma d\mu \right)^{\frac{1}{\gamma}} \]

\[= \sup_{Q \in \mathcal{Q}(\mu)} \frac{\mu(Q \cap Q_1 \cap Q_2)^{\frac{1}{\gamma}}}{\mu(2Q)^{-\frac{\mu}{\gamma}}} \]

\[\leq C \mu(Q_1 \cap Q_2)^{\frac{1}{\gamma}} < C. \]

For \(D_{12}, \) using the generalized Minkowski inequality, \(\mathcal{M}_{\mu}^{1}(\mu) \supset L^p(\mu) \) and the growth condition (1.1), we have the following estimate

\[D_{12} = \mathbf{C} R^{-\frac{\mu}{\gamma}+\alpha_1} \|f_1\|_{\mathcal{M}_{\mu}^{1}(\mu)} \left\| \int_2^{\infty} \left(\int_{Q_2} \chi_{Q_1}(x) \chi_{[x-y] \cdot c_2}(y_2) |f_2(y_2)| d\mu(y_2) \right) l_2^{n+\alpha_2-1} dl_2 \right\|_{\mathcal{M}_{\mu}^{1}(\mu)} \\
\leq \mathbf{C} R^{-\frac{\mu}{\gamma}+\alpha_1} \|f_1\|_{\mathcal{M}_{\mu}^{1}(\mu)} \int_2^{\infty} \left(\int_{Q_2} \left\| \chi_{Q_1}(x) \chi_{[x-y] \cdot c_2}(y_2) \right\|_{\mathcal{M}_{\mu}^{1}(\mu)} |f_2(y_2)| d\mu(y_2) \right) l_2^{n+\alpha_2-1} dl_2 \\
\leq \mathbf{C} R^{-\frac{\mu}{\gamma}+\alpha_1} \int_2^{\infty} \sup_{y_2 \in \mathbb{R}^d} \left\| \chi_{B(.,2)}(y_2) \right\|_{L^p(\mu)} l_2^{n+\alpha_2-1} dl_2 \|f_1\|_{\mathcal{M}_{\mu}^{1}(\mu)} \|f_2\|_{\mathcal{M}_{\mu}^{2}(\mu)} \\
\leq \mathbf{C} R^{-\frac{\mu}{\gamma}+\alpha_1} l_2^{n+\alpha_2-1} \int_2^{\infty} \sup_{y_2 \in \mathbb{R}^d} \left\| \chi_{B(.,2)}(y_2) \right\|_{L^p(\mu)} l_2 \|f_1\|_{\mathcal{M}_{\mu}^{1}(\mu)} \|f_2\|_{\mathcal{M}_{\mu}^{2}(\mu)} \\
\leq \mathbf{C} R^{-\frac{\mu}{\gamma}+\alpha_1} \|f_1\|_{\mathcal{M}_{\mu}^{1}(\mu)} \|f_2\|_{\mathcal{M}_{\mu}^{2}(\mu)}. \]

Similarly, we have

\[D_{13} \leq \mathbf{C} R^{-\frac{\mu}{\gamma}+\alpha_2} \|f_1\|_{\mathcal{M}_{\mu}^{1}(\mu)} \|f_2\|_{\mathcal{M}_{\mu}^{2}(\mu)}. \]

Applying the Hölder inequality, we obtain

\[D_{14} \leq \mathbf{C} \int_2^{\infty} \int_2^{\infty} \int_{Q_1} \int_{Q_2} \left\| \chi_{B(.,1)}(y_1) \chi_{B(.,2)}(y_2) \right\|_{\mathcal{M}_{\mu}^{2}(\mu)} |f_2(y_2)| d\mu(y_2) |f_1(y_1)| d\mu(y_1) l_2^{n+\alpha_2-1} dl_2 l_1^{n+\alpha_1-1} dl_1 \]

\[\leq \mathbf{C} \int_2^{\infty} \int_2^{\infty} \left\| \chi_{B(.,1)}(y_1) \chi_{B(.,2)}(y_2) \right\|_{L^p(\mu)} \int_{Q_1} \int_{Q_2} |f_2(y_2)| d\mu(y_2) |f_1(y_1)| d\mu(y_1) l_2^{n+\alpha_2-1} dl_2 l_1^{n+\alpha_1-1} dl_1 \]
\[\leq C \int_{\mathbb{R}}^{\infty} \sup_{y_1 \in \mathbb{R}^d} \| x_{B(\mathbb{R})}(y_1) \|_{L^{n+q_1-1}_y} \, dl_i \int_{\mathbb{R}}^{\infty} \sup_{y_2 \in \mathbb{R}^d} \| x_{B(\mathbb{R})}(y_2) \|_{L^{n+q_2-1}_y} \, dl_2 \| f_1 \|_{\mathcal{M}^1(\mu)} \| f_2 \|_{\mathcal{M}^2(\mu)} \]

\[\leq CR^{\frac{\alpha}{2}-n+a_1 + \frac{\alpha}{2}-n+a_2} \| f_1 \|_{\mathcal{M}^1(\mu)} \| f_2 \|_{\mathcal{M}^2(\mu)} \]

\[\leq CR^{\frac{\alpha}{2}-2n+a} \| f_1 \|_{\mathcal{M}^1(\mu)} \| f_2 \|_{\mathcal{M}^2(\mu)}, \]

where \(w_1, w_2, \) and \(p \) satisfy \(\frac{1}{w_1} = \frac{1}{p_1} - \frac{\alpha}{n}, \frac{1}{w_2} = \frac{1}{p_2} - \frac{\alpha}{n} \) and \(\frac{1}{p} = \frac{1}{w_1} + \frac{1}{w_2} \).

Therefore, recalling that \(\mathcal{M}^0_i \supset \mathcal{M}^0_q \), we obtain the norm estimate of \(D_1 \),

\[\| D_1 \|_{\mathcal{M}^p(\mu)} \leq C \left(R^{-\frac{\alpha}{2}} + R^{-\frac{\alpha}{2}-\eta} + R^{-\frac{\alpha}{2}-n} + R^{-\frac{\alpha}{2}+2n+\alpha} \right) \| f_1 \|_{\mathcal{M}^1(\mu)} \| f_2 \|_{\mathcal{M}^2(\mu)}. \]

We now estimate \(D_2 \). Similarly, using (1.10), the Fubini theorem and (1.12), we get

\[D_2 = C \int_{|x-y_1|\geq R} \left(\chi_{O_1}(x) + \chi_{O_1}(y_1) \right) \frac{|f_1(y_1)|}{|x-y|^{n+a_1}} \, d\mu(y_1) \int_{|x-y_2|< R} \left(\chi_{O_2}(x) + \chi_{O_2}(y_2) \right) \frac{|f_2(y_2)|}{|x-y|^{n+a_2}} \, d\mu(y_2) \]

\[= C \int_{|x-y_1|\geq R} \left(\chi_{O_1}(x) + \chi_{O_1}(y_1) \right) \left(\int_{0}^{\infty} \frac{\chi_{[|x-y_1|< R](y_1)}}{p_1} \left(\int_{0}^{\infty} \frac{\chi_{[|x-y_2|< R](y_2)}}{p_2} \right) \right) \, d\mu(y_1) \]

\[\times \left(\int_{|x-y_2|< R} \left(\chi_{O_2}(x) + \chi_{O_2}(y_2) \right) \left(\int_{0}^{\infty} \frac{\chi_{[|x-y_1|< R](y_2)}}{p_2} \right) \, d\mu(y_2) \right) \]

\[= C \int_{|x-y_1|\geq R} \left(\chi_{O_1}(x) + \chi_{O_1}(y_1) \right) \left(\int_{0}^{\infty} \frac{\chi_{[|x-y_1|< R](y_1)}}{p_1} \right) \, d\mu(y_1) \]

\[\times \left(\int_{|x-y_2|< R} \left(\chi_{O_2}(x) + \chi_{O_2}(y_2) \right) \left(\int_{0}^{\infty} \frac{\chi_{[|x-y_1|< R](y_2)}}{p_2} \right) \, d\mu(y_2) \right) \]

\[\leq C \left[\chi_{O_1}(x) R^{-\frac{\alpha}{2}+\alpha_1} \| f_1 \|_{\mathcal{M}^1(\mu)} + \int_{|x-y_1|< R} \left(\int_{0}^{\infty} \frac{\chi_{[|x-y_1|< R](y_1)}}{p_1} \right) \, d\mu(y_1) \right] \left(\int_{0}^{\infty} \frac{\chi_{[|x-y_1|< R](y_2)}}{p_2} \right) \, d\mu(y_2) \]

Thus, we get the norm estimate of \(D_2 \),

\[\| D_2 \|_{\mathcal{M}^p(\mu)} \leq C \left(R^{-\frac{\alpha}{2}+\alpha_1} e^{-\frac{\alpha}{2}+\alpha_2} + R^{-\frac{\alpha}{2}+\alpha_1} e^{\frac{\alpha}{2}-n+\alpha_2} + e^{-\frac{\alpha}{2}+\alpha_2} R^{-n+\alpha_1} \right) \]

\[+ R^{-\frac{\alpha}{2}-2n+\alpha} e^{\frac{\alpha}{2}-n+\alpha} \| f_1 \|_{\mathcal{M}^1(\mu)} \| f_2 \|_{\mathcal{M}^2(\mu)}. \]

where \(w_1, w_2, p \) satisfy \(\frac{1}{w_1} = \frac{1}{p_1} - \frac{\alpha}{n}, \frac{1}{w_2} = \frac{1}{p_2} - \frac{\alpha}{n} \) and \(\frac{1}{p} = \frac{1}{w_1} + \frac{1}{w_2} \).

The same estimate holds for \(D_3 \) by above argument with the role of \(y_1 \) and \(y_2 \) interchanged,

\[\| D_3 \|_{\mathcal{M}^p(\mu)} \leq C \left(e^{-\frac{\alpha}{2}+\alpha_1} R^{-\frac{\alpha}{2}+\alpha_2} + e^{-\frac{\alpha}{2}+\alpha_1} R^{\frac{\alpha}{2}-n+\alpha_2} + R^{\frac{\alpha}{2}+\alpha_2} e^{\frac{\alpha}{2}-n+\alpha_1} \right) \]
\[+ \epsilon^{\frac{n}{n+\alpha_1}} R^\frac{n}{n+\alpha_2} \| f_1 \|_{\mathcal{A}_1^{w_1}(\mu)} \| f_2 \|_{\mathcal{A}_2^{w_2}(\mu)}, \]
The terms \(w_1, w_2, p \) satisfy \(\frac{1}{w_1} = \frac{1}{p_1} - \frac{\alpha_1}{n} \), \(\frac{1}{w_2} = \frac{1}{p_2} - \frac{\alpha_2}{n} \) and \(\frac{1}{p} = \frac{1}{w_1} + \frac{1}{w_2} \).
Thus, we obtain that
\[\| \langle [b_1, b_2, \mathcal{K}_\alpha^{R}] - [b_1, b_2, \mathcal{K}_\alpha] \rangle (f_1, f_2) \|_{\mathcal{A}_q^{\mu}(\mu)} \leq C_\epsilon R^{-\delta} \| f_1 \|_{\mathcal{A}_1^{w_1}(\mu)} \| f_2 \|_{\mathcal{A}_2^{w_2}(\mu)}, \]
for some constants \(\delta > 0 \), and the constant \(C_\epsilon \) independent of \(R \).

Proof of Theorem 1.6. Lemmas 2.3 and 2.4 reduce the proof of Theorem 1.6 to proving the compactness for \([b_1, b_2, \mathcal{K}_\alpha^{R}] \) if \(b_1, b_2 \in C^\infty_c(\mathbb{R}^d) \) on product Morrey spaces. We can also get the compactness for the operator \([b_1, b_2, \mathcal{K}_\alpha^{R}] \) by using Lemma 2.1.

3. Conclusions

In this paper, we mainly obtain the Morrey-boundedness and compactness of the iterated commutators of general bilinear fractional integral operators \(\mathcal{K}_\alpha \) under the non-doubling measure conditions. Instead of establishing of the compactness of the iterated commutators directly we proved it by means of two truncation.

Acknowledgments

We would like to thank the editors and reviewers for their helpful suggestions. This research was supported by the National Natural Science Foundation of China under grant No.11771399, No.11626213 and No.11961056.

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)