
http://www.aimspress.com/journal/Math

AIMS Mathematics, 7(12): 20441–20460.
DOI: 10.3934/math.20221120
Received: 26 July 2022
Revised: 28 August 2022
Accepted: 08 September 2022
Published: 19 September 2022

Research article

An area-type nonmonotone filter method for nonlinear constrained
optimization

Ke Su1,2, Wei Lu1,2∗ and Shaohua Liu1,2

1 College of Mathematics and Information Science, Hebei University, Baoding, China
2 Key Laboratory of Machine Learning and Computational Intelligence, Hebei University, Baoding,

China

* Correspondence: Email: wei lu 22@163.com.

Abstract: In this paper, we define a new area-type filter algorithm based on the trust-region method.
A relaxed trust-region quadratic correction subproblem is proposed to compute the trial direction at
the current point. Consider the objective function and the constraint violation function at the current
point as a point pair. We divide the point pairs into different partitions by the dominant region of the
filter and calculate the contributions of the point pairs to the area of the filter separately. Different from
the conventional filter, we define the contribution as the filter acceptance criterion for the trial point.
The nonmonotone area-average form is also adopted in the filter mechanism. In this paper, monotone
and nonmonotone methods are proposed and compared with the numerical values. Furthermore, the
algorithm is proved to be convergent under some reasonable assumptions. The numerical experiment
shows the effectiveness of the algorithm.
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1. Introduction

Currently, numerical methods for solving nonlinear optimization problems have been widely used
in the military, transportation, engineering design, economic analysis, artificial intelligence and other
fields. In this paper, we consider the constrained optimization problems, where the objective function
and the nonlinear constraints are smooth. The numerical solution to the following problem is
considered.

minimize
x∈Rn

f (x)

subject to ci(x) 6 0, i ∈ I,
(1.1)

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20221120


20442

where I = {1, 2, 3, . . . ,m}. The real valued objective function f (x) : Rn → R and the inequality
constants ci(x) = (c1, c2, . . . , cm)T : Rn → Rm are twice continuously differentiable.

In traditional optimization problems, the objective function and constraints are usually analytical
models with deterministic parameters. The method of this paper is to solve the deterministic problem,
but there are widely uncertain problems in practical problems. In fact, there are many optimization
problems with uncertain information that have their own specific solutions for uncertain optimization
problems, but eventually it all comes down to a deterministic method. Although the algorithm in this
paper is for solving deterministic problems, it is still valid for uncertain problems. That is, the problem
of uncertainty can also be applied to our algorithm. As we all know, there are two main approaches
to uncertainty optimization, robust optimization (RO) [1,2] and reliability-based design optimization
(RBDO) [3,4].

The common solutions to uncertain problems are probabilistic constraints and robust constraints
methods. The robust constraint can be transformed into a semi-infinite problem by subjecting the
uncertain set to certain inscriptions. The semi-infinite problem can be transformed into a finite problem
in the form of (1.1) under discretization methods or other appropriate transformations. Probabilistic
constraints can be transformed into deterministic optimization by replacing the objective function and
nonlinear constraints with a Kriging model. The transformed deterministic optimization problem can
be solved by the method in this paper. Therefore, the algorithm in this paper has some potential
applications to the study of uncertain problems.

It is generally known that the sequential quadratic programming (SQP) method is one of the most
effective methods to solve this problem. The SQP algorithm converts a complex nonlinear constrained
optimization problem into a relatively simple quadratic programming problem (QP) solution. The
objective function of a quadratic programming problem is quadratic, and the constraint function is
linear. At the kth iterate, the search direction dk is obtained by the following QP subproblem.

minimize
d

〈∇ f (xk), d〉 +
1
2
〈d, Bkd〉

subject to ci(xk) + ∇ci(xk)T d 6 0,
(1.2)

where Bk ∈ R
n×n is an appropriate symmetric matrix of the the Hessian ∇2 f (xk).

Unlike the line search method, the trust-region method computes a trial step by solving a
subproblem in which the model function is minimized in the trust-region. In general, the trust-region
method is easier to establish global convergence than the line search method. In recent years, the trust
region method has been widely used in constrained optimization [5–8], unconstrained optimization
[9–12], nonlinear equations [13,14], least-squares problems [15,16] and other problems [17–19].

In order to ensure sufficient descent of sequential quadratic programming, a penalty function is
introduced as a merit function to decide whether to accept test points. The estimation of penalty
parameters may be difficult to choose. The filter method was proposed by Fletcher and Leyffer [20],
and its convergence was proved in [21]. It avoids the difficulty of updating the parameter in the
penalty function. The filter method adopts the idea of multi-objective constraints, and it balances the
relationship between objective function and constraint violation function. The poor trial points can be
rejected in the filter method. The global convergence of the filter method can be guaranteed by taking
any point as the starting point.

In the traditional filter method, a pair (hk, fk) is dominated by ( f j, f j) if and only if hk 6 h j and
fk 6 f j for each j , k. h and f are constraint violation and objective functions, respectively. A filter
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set F is a set of pairs (h, f ) such that no pair dominates any other pair. The trial point xk is accepted by
the filter set if and only if

h(x) ≤ βh j or f (x) 6 f j − γh j , ∀(h j, f j) ∈ F , (1.3)

where 0 < γ < β < 1, and h(x) and f (x) are the constraint violation function and objective function.
F represents the filter set. As the criteria are satisfied, the point is accepted by the current filter set.
The filter technique has become important in recent years [22–28].

Su and Pu [29] proposed a nonmonotone method based on the traditional filter and obtained good
numerical results for equality constrained optimization. Wang et al. [30] proposed a nonmonotone
adaptive filter method for unconstrained optimization and adopted an adaptive strategy to fix that step
size and update the trust-region radius. Xue and Liu [31] propose a multidimensional filter algorithm.
The constraint is divided into several parts, and the filter structure is composed of them. The individual
behavior of each part of the constraints is considered, but how to divide the constraints is still a difficult
problem to be explored. [32] proposed an area-based filtering algorithm, but feasibility recovery was
used in its algorithm. Although its convergence property was proved, no numerical calculation was
performed to know the performance of its numerical results.

This paper presents an area-type filter algorithm based on the trust-region approach. The
discriminant criterion is different from that of the traditional filter method and has the following
advantages. 1) This paper proposes a relaxed trust-region quadratic correction subproblem by which
the direction at the current point is calculated. The subproblem is guaranteed to be feasible. It avoids
the feasibility recovery algorithm and makes the algorithm more efficient and concise. 2) In our
algorithm, point pairs are divided into four partitions by the dominant region of the filter, and we
calculate the contributions of the point pairs to the area of the filter separately. The area-type filter
algorithm takes the contribution of the trial point to the area of the filter as the acceptance criterion.
Our proposed algorithm no longer requires the notion of a “margin” around the filter, a device
common to all theoretical approaches to filter methods so far. 3) Compared with traditional filter
methods, the use of filter acceptance criteria in our new iteration is relaxed to allow rules that are
dominated in some cases. 4) The approach is extended into monotone and nonmonotone methods.
The nonmonotone method avoids the situation where the points fall into the “valley” and may be not
convergent. In this paper, the numerical analysis is also performed for nonmonotone methods.

Our paper is organized as follows. An area-type nonmonotone filter algorithm for solving nonlinear
programming problems is described in the second section. In the third section, the global convergence
is established under some certain conditions. The preliminary numerical results of the algorithm are
shown in the fourth section. Finally, the fifth section concludes this paper.

2. An area-type nonmonotone filter algorithm

2.1. The SQP step

The iterative approach of the algorithm in this paper is based on the Sequential Quadratic
Programming (SQP) algorithm. In the trust-region method, the trial point xk + dk of the next iteration
is ensured to be within the trust-region centered at the point xk. Thus, the traditional trust-region

AIMS Mathematics Volume 7, Issue 12, 20441–20460.



20444

method can be used to solve the quadratic programming subproblem given by

minimize
d

〈∇ f (xk), d〉 +
1
2
〈d, Bkd〉

subject to ci(xk) + ∇ci(xk)T d 6 0,
‖d‖∞ 6 ∆k

(2.1)

where ∆k is the trust-region radius. Su [7] proposes a convex problem to avoid the infeasibility of the
trust-region subproblem.

minimize
d

〈∇ f (xk), d〉 +
1
2
〈d, Bkd〉

subject to ci(xk) + ∇ci(xk)T d 6 ψ+(xk,∆k), i ∈ I,

‖d‖∞ 6 ∆k,

(2.2)

where ∆k > 0, and

ψ+(xk,∆k) = max {ψ(xk,∆k), 0} ,

ψ(xk,∆k) = min
{
ψ(xk, dk) : ‖dk‖ 6 ∆k

}
,

ψ(xk, dk) = max
{
ci(xk) + ∇ci(xk)T dk, i ∈ I

}
.

(2.3)

Based on this, we introduce a relaxation variable τ in the quadratic subproblem to simplify the
objective function and control constraints.

(QP) minimize
d,τ

mk(d, τ) = τ +
1
2
〈d, Bkd〉

subject to ∇ f (xk)T d 6 τ,

ci(xk) + ∇ci(xk)T d 6 ψ+(xk,∆k), i ∈ I,

‖d‖ 6 ∆k.

(2.4)

The ψ+(xk,∆k) can be represented as

ψ+(xk,∆k) = max
{

min
||d||6∆k

{
max

j∈I

{
c j(xk) + ∇c j(xk)T dk

}}
, 0

}
. (2.5)

As a matter of fact, the (QP) is always feasible, as (dk, τk) = (0, 0). Thus, at the kth iteration, the
solution dk of (QP) is used as the sequential quadratic programming step for the next iteration. So,

x+
k = xk + dk, (2.6)

where x+
k is a new trial point.

2.2. The area-type filter criterion

At the current kth iteration, the first step is to consider whether the trial point x+
k satisfies the trust-

region condition.

aredk = f (xk) − f (xk + dk), predk = mk(0, 0) − mk(dk, τk). (2.7)
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The trust-region ratio is

ρk =
aredk

predk
=

f (xk) − f (xk + dk)
mk(0, 0) − mk(dk, τk)

. (2.8)

The trial point is accepted when the trust-region ratio is close to 1. As the ratio is close to 0,
to decide whether the trial points are acceptable or not, the filter technique is adopted in this paper.
Define a constraint violation function as an infeasibility measure.

H(x) = ‖ci(x)+‖2 , i ∈ I, (2.9)

where
ci(x)+ = (max {c1(x), 0} ,max {c2(x), 0} , . . . ,max {cm(x), 0})T . (2.10)

In the traditional filtering technique, a trial point is accepted if the objective function or the
constraint violation function is decreasing compared to the result of the filter set. However, in this
paper, we adopt an area-type filter.

An area-type filter is one in which the area dominated by the trial point is accepted, and then the
point is accepted by the set of filters. Define

D(F ) =
{
(H , f )|H > H j and f > f j for some j ∈ F

}
such that the pair (H , f ) is dominated by the filter. See Figure 1.

Figure 1. The domination of the filter.

In this paper, the constraint violation degree function and the objective function are put into the
two-dimensional surface with H(x) × f (x) ∈ [0,+∞] × [−∞,+∞]. The plane is divided into four
regions.

1) The upper left portion of the region, that not dominated by the filter Fk.

R1(Fk) , [0,min
j∈Fk
H(x j)) × (max

j∈Fk

f (x j),+∞]. (2.11)
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2) The lower left portion of the region, that not dominated by the filter Fk.

R2(Fk) , D(Fk)C ∩ [0,max
j∈Fk

H(x j)) × (−∞,max
j∈Fk

f (x j)], (2.12)

whereD(Fk)C is the complement ofD(Fk).
3) The lower right portion of the region, that not dominated by the filter Fk.

R3(Fk) , [max
j∈Fk

H(x j),+∞) × (−∞,min
j∈Fk

f (x j)]. (2.13)

4) The region dominated by the filter.

R4(Fk) ,
{
(H , f )|H > H j and f > f j for some j ∈ Fk

}
. (2.14)

See Figure 2 for the region division.

Figure 2. The partition of a filter Fk containing four (H(x), f (x)) pairs.

Next, we calculate the contributionA of the corresponding point pairs (H(x+
k ), f (x+

k )) to the area of
the filter for each of the test points x+

k , depending on the partition in which the trail point is located.
1) As the trial point x+

k is in the undominated upper left partition that is (H(x+
k ), f (x+

k )) ∈ R1(Fk),

A(x+
k ,Fk) , λ

(
min
j∈Fk
H(x j) −H(x+

k )
)
, (2.15)

where λ is a positive constant.
2) As the trial point x+

k is in the undominated lower left partition, that is (H(x+
k ), f (x+

k )) ∈ R2(Fk),

A(x+
k ,Fk) , area

(
D(Fk)C ∩

[
H(x+

k ),max
j∈Fk

H(x j)
]
×

[
f (x+

k ),max
j∈Fk

f (x j)
])
. (2.16)
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3) As the trial point x+
k is in the undominated lower right partition, that is (H(x+

k ), f (x+
k )) ∈ R3(Fk),

A(x+
k ,Fk) , λ

(
min
j∈Fk

f (x j) − f (x+
k )

)
. (2.17)

4) As the trial point x+
k is in the dominated partition, that is (H(x+

k ), f (x+
k )) ∈ R4(Fk),

A(x+
k ,Fk) , −area

(
D(Fk) ∩

[
H(x+

k ) −min
j∈Pk
H(x j)

]
×

[
f (x+

k ) −min
j∈Pk

f (x j)
])
, (2.18)

where

Pk ,
{
(H(xk), f (x j)) ∈ Fk|H(x j) < H(x+

k ) and f (x j) < f (x+
k )

}
. (2.19)

Figure 3 shows the contribution of the trial points in four different partitions, respectively, to the
area of the filter Fk. The contribution of the trial points in partitions R1(Fk),R2(Fk) and R3(Fk) to the
area of the filter is positive, while the contribution in partition R4(Fk) is negative.

Figure 3. The contribution of four pairs (H(x+
k ), f (x+

k )) to the area of the filter Fk .

After obtaining the contribution of the trial point to the filter, it can be determined whether the point
is accepted by the filter.

In this paper, we give two methods to determine whether the trial point is acceptable for the filter,
the monotone method and the nonmonotone method, respectively. x+

k satisfies

A(x+
k ,Fk) > λ

(
H(x+

k )
)2
, (2.20)
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that is, the acceptance criterion for the monotone method. λ ∈ (0, 1) is a positive constant.
Define J as a set of non-negative integers.

j ∈ J = {0, 1, 2, . . . } , (2.21)

where the maximum value in the set J is the number of updates of the filter, i.e. jmax.
Thus, the condition of the nonmonotone method is weaker than that of the monotone method

A′(xk,Fk) +A(x+
k ,Fk) > λ

(
H ′(xk)2 +H(x+

k )2
)
, (2.22)

where λ ∈ (0, 1), and

A′(xk,Fk) = A′j+1, H
′(xk,Fk) = H ′j+1, j ∈ J, (2.23)

W0 = 1, W j+1 = ζ jW j + 1, j ∈ J, (2.24)

A′0 = A0, H
′
0 = H0, (2.25)

A′j+1 =
ζ jW jA

′
j +A j+1

W j
, H ′j+1 =

ζ jW jH
′
j +H j+1

W j
, j ∈ J, (2.26)

ζ ∈
[
ζmin, ζmax

]
, ζmax < 1. A j is the contribution of the point to the filter at the jth successful iteration.

A′(xk,Fk) is the contribution of the updated points to the filter area, which is nonmonotone.
H ′(xk,Fk) is the nonmonotone average of the constraint violation degree that corresponds to the point
ofA′(xk,Fk). If (2.22) is satisfied, the point is accepted as a new iteration point even though it may be
dominated by the filter. Meanwhile, the set J and F need to be updated.

As (2.20) or (2.22) holds, the trial point is accepted, which means xk+1 = x+
k .

Initialize the set of the filter at the beginning of the algorithm. Define F0 = ∅. If xk+1 is not
dominated by the filter xk+1 ∈ D(Fk)C, that is, xk is in R1(Fk),R2(Fk) or R3(Fk) partition, then

Fk+1 = Fk ∪ (H(xk+1), f (xk+1)) \ Dk+1. (2.27)

The other situation is that xk+1 is dominated by the filter, xk+1 ∈ D(Fk). Thus, xk+1 is in the R4(Fk)
partition.

Fk+1 = (Fk \ Pk) ∪
(
min
j∈Pk
H(x j), f (xk+1)

)
∪

(
H(xk+1),min

j∈Pk
f (x j)

)
. (2.28)

Add a new iteration point to the filter, but remove the points that can dominate the new iteration
points. See Figure 4.
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Figure 4. Update the filter Fk+1 as xk+1 ∈ D(Fk).

For convenience, define

U =
{
k| x+

k is updated by the filter
}
. (2.29)

It is followed by the full statement of the algorithm.

Algorithm 1.
Step 0 Initialization. Given a start point x0, an initial trust-region radius ∆0 > 0 and a symmetric

matrix B0, choose constants 1 > η3 > η2 > 0, η1 ∈ (1, 2] and ρ1, ρ2, λ, ζ ∈ (0, 1). Let F0 = {(H0, f0)},
k = 0, j = 0.

Step 1 Solve the modified subproblem (QP) to obtain τk and dk.

Step 2 If |τk| 6 ε, stop.
Step 3 Set x+

k = xk + dk and compute ρk by (2.8).
Step 4 If ρk > ρ1, go to Step 6.
If ρk 6 ρ2, set xk+1 = xk,∆k+1 = η2∆k and k = k + 1. Go to Step 1.
Otherwise, determine the partition of the trial point x+

k and compute the contribution of the point to
the area of the filter.

Step 5 If x+
k is not accepted by the filter Fk, then set xk+1 = xk,∆k+1 = η3∆k and k = k + 1. Go to

Step 1. Otherwise, update the filter Fk+1, j = j + 1, and go to Step 6.
Step 6 Set xk+1 = x+

k ,∆k+1 = η1∆k. Update Bk+1, k = k + 1. Go to Step 1.
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Remark 1. If the pair (H(x+
k ), f (x+

k )) of the trial point x+
k is on the boundary of the dominated region

D(Fk), then the contribution of this point to the area of the filter is zero.
Remark 2. j is the number of filter set updates.

3. Convergent properties

Assumption 1. The objective function f (x) and the inequality constraints ci(x), i ∈ I are twice
continuous and differentiable. ∇ f (x) is Lipschitz continuous.

Then, there exists a positive constant L, such that

‖∇ f (x) − ∇ f (y)‖ 6 L‖x − y‖.

Assumption 2. Sequence {xk} is a compact convex subset of Rn, generated by Algorithm 1.
Assumption 3. The matrix sequence {Bk} and sequence {dk} are uniformly bounded. That is, there
exist positive constants M1,M2 > 0, such that ‖Bk‖ 6 M1 and ‖dk‖ 6 M2.
Assumption 4. The Mangasarian Fromovitz Constraint Qualification (MFCQ) holds at feasible point
x ∈ Rn. There exists a vector p such that {d|∇c(x)T p < 0} , ∅.
Lemma 1. Suppose that Assumptions 1 and 4 hold; the (QP) has an optimal solution.
Proof. First, we prove the feasible region of the (QP) is not an empty set. As (dk, τk) = (0, 0), the
constraints

∇ f (xk)T dk 6 τk, ci(xk) + ∇ci(xk)T dk 6 ψ
+(xk,∆k), ‖dk‖ 6 ∆k, i ∈ I,

hold. Therefore, the feasible region of the subproblem is not an empty set. For every possible solution
to the modified (QP), we have gT

k dk 6 τk. Thus,

τk +
1
2

dT
k Bkdk > ∇ f (xk)T dk +

1
2

dT
k Bkdk.

Because Bk is a positive symmetry, the objective function of the (QP) has a lower bound. Hence, there
exists a constant V ∈ (−∞,+∞), such that

V = inf
{
τk +

1
2

dT
k Bkdk : (dk, τk) ∈ Xk

}
,

Xk =
{
(dk, τk) : ∇ f (xk)T dk 6 τk, ci(xk) + ∇ci(xk)T dk 6 ψ

+(xk,∆k), ‖dk‖ 6 ∆k, i ∈ I
}
,

where Xk is the feasible region. From the Weierstrass theorem, there exists a subsequence
{
dk j , τk j

}
such that

τk j +
1
2

dT
k j

Bk jdk j → v, j→ ∞.

Since j is sufficiently large, there is

∇ f (xk j)
T dk j +

1
2

dT
k j

Bk jdk j 6 τk j +
1
2

dT
k j

Bk jdk j 6 V.

According to the boundedness of
{
dk j

}
j
,
{
τk j

}
j
, there exists a subset J ⊆ [0,∞),

lim
j→J

(dk j , τk j) = (dk, τk) ∈ Xk, V = τk +
1
2

dT
k Bkdk.
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The optimal solution is unique, because the (QP) is a convex programming problem.
Thus, the (QP) has an optimal solution.

Lemma 2. Suppose that Assumptions 1–4 hold, and (dk, τk) is the optimal solution to the (QP); then
(1) (dk, τk) is the Karush-Kuhn-Tucker (KKT) point of the (QP).
(2) τk = 0 if and only if dk = 0.
Proof. (1) If (dk, τk) is the optimal solution of (QP), and the constraints are linear functions, then (dk, τk)
is the Karush-Kuhn-Tucker point of the modified quadratic problem.
(2) According to the assumptions, (τk, dk) = (0, 0) is a feasible solution to the (QP). From hypothesis,
we know that (τk, dk) is the optimal solution to the (QP). It means that τk + 1

2dT
k Bkdk 6 0.

(i) If τk = 0, then 1
2dT

k Bkdk 6 0. Because Bk is a positive definite matrix, dk = 0.
(ii) If dk = 0, according to the positive quality of Bk, we have τk 6 0. By the constraint condition of

the modified (QP), we have ∇ f (xk)T dk 6 τk, and then τk > 0. Therefore, τk = 0 .
The proof is completed.
τk = 0 can serve as the termination condition of Algorithm 1 for the following lemma.

Lemma 3. Suppose that Assumptions hold, and τk = 0 is the optimal solution of the modified (QP);
then, xk is the (KKT) point of the problem (1.1).
Proof. From Lemmas 1 and 2, from τk = 0, we get dk = 0.

First we need to prove ψ+(xk,∆k) = 0. Suppose ψ+(xk,∆k) > 0, and there exists

x ∈ {x : max {ci(xk), i ∈ I}} .

Let

M(x) = {i : ci(x) > 0, i ∈ I} .

From Mangasarian-Fromovitz constraint qualification, there exits d ∈ Rn and ‖d‖ 6 ∆k such that

ci(xk) + ∇ci(xk)d < ci(xk), i ∈ M(xk),

ci(xk) + ∇ci(xk)d < 0, i ∈ I\M(xk).

Thus,

max
{
ci(xk) + ∇ci(xk)T dk, i ∈ I

}
< max {ci(xk), i ∈ I} ,

that is,

ψ(xk, dk) < max {ci(xk), i ∈ I} .

So,

ψ(xk,∆k) < max {ci(xk), i ∈ I} .

We have 0 <
{
d : ci(xk) + ∇ci(xk)T dk 6 ψ

+(xk,∆k), ‖d‖ 6 ∆k, i ∈ I
}
. This contradicts with dk = 0.

Hence, ψ+(xk,∆k) = 0.
Next, we prove ui , 0. According to (2.4), there exist Lagrange multipliers U = (u1, u2, . . . , un)T

AIMS Mathematics Volume 7, Issue 12, 20441–20460.



20452

,V = (v1, v2, . . . , vm)T ,W = (w1,w2, . . . ,wn)T and L = (l1, l2, . . . , ln)T , such that

Bkd + ∇ f (xk)T U + ∇ci(xk)T V + W − L = 0,

1 −
n∑

i=1

ui = 0,

n∑
i=1

ui(∇ f (xk)T d − τ) = 0,

m∑
i=1

vi(ci(xk) + ∇ci(xk)T d − ψ+) = 0,

WT (d − ∆ke) = 0, LT (−d − ∆ke) = 0,
∇ f (xk)T d − τ 6 0, ci(xk) + ∇ci(xk)T d − ψ+ 6 0, ‖d‖ − ∆k 6 0,
U > 0,V > 0,W > 0, L > 0,

(3.1)

where e = (1, 1, · · · , 1)T
n×1.

With τk = 0 and dk = 0, the KKT condition of the (QP) can be reworded as

gT
k U + ∇ci(xk)T V + W − L = 0,

1 −
n∑

i=1

ui = 0,

m∑
i=1

vi(ci(xk) − ψ+) = 0,

−WT (∆ke) = 0,−LT (∆ke) = 0,
ci(xk) − ψ+ 6 0,
U > 0,V > 0,W > 0, L > 0.

(3.2)

From the above, we have
∑n

i=1 ui = 1. Thus, ui , 0. By the KKT condition, we have W = L = 0.
Let

λi =
vi

ui
.

The KKT condition of the problem (1.1) is

∇ f (xk) +

m∑
i=1

λi∇ci(xk) = 0,

ci(xk) 6 0,
m∑

i=1

λici(xk) = 0,

λi > 0.

(3.3)

Thus, there exist Lagrange multipliers λ ∈ Rn, λi = vi
ui
,
∑n

i=1 ui = 1 and W = L = 0 such that xk is a
KKT point of the inequality constraint problem (1.1).
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Lemma 4. Suppose that Assumptions 1-4 hold, and then for all k, we have

|( f (xk) − f (xk + d)) − (mk(0, 0) − mk(dk, τk))| 6 O(‖d2‖). (3.4)

Proof. From Lemma 1, the subproblem is always feasible. So, ∇ f (xk)T dk 6 τk and τk > 0.
According to Taylor’s theorem, we obtain

|( f (xk) − f (xk + d)) − (mk(0, 0) − mk(dk, τk))|

= | fxk −

(
f (xx) + ∇ f (xk)T dk +

∫ 1

0
dT

k (∇ f (xk) (xk + ξdk) − ∇ f (xk)) dx
)
|

= | f (xk) −
(

f (xk) + ∇ f (xk)T dk +

∫ 1

0
dT

k (∇ f (xk) (xk + ξdk) − ∇ f (xk)) dξ
)

+ τk +
1
2

dkBT
k dk|

6 | − ∇ f (xk)T dk +

∫ 1

0
‖dk‖‖∇ f (xk) (xk + ξdk − ∇ f (xk)) ‖ dξ + τk +

1
2

dkBT
k dk|

6
1
2
‖dk‖

2M1 + L
∫
‖dk‖ dξ + τk − ∇ f (xk)T dk

6
1
2
‖dk‖

2M1 + L
∫
‖dk‖

2 +
1
2
‖dk‖

2τk

= O(‖dk‖
2).

(3.5)

The proof is completed.
xk is generated by Algorithm 1. We consider that there exists a constant ε > 0, such that ‖∇ f (xk)‖ >

ε. Then, for every k, xk+1 is a successful iteration point.
Lemma 5. Suppose that Assumptions hold. Then, the inner loop of the Algorithm 1 terminates finitely.
Proof. There are two inner loops in the algorithm, but their proofs are the same, as follows. Assume
that the algorithm does not terminate at finite iterations. That is, in kth, xk+1 is not the successful
iteration point.

From Algorithm 1, we get ρk < ρ1,∆k → 0 and dk → 0.

|ρk − 1| = |
ared
pred

− 1| = |
ared − pred

pred
|

= |
( f (xk) − f (xk + dk)) − (mk(0, 0) − mk(dk, τk))

mk(0, 0) − mk(dk, τk)
|.

(3.6)

From the last lemma,

|( f (xk) − f (xk + d)) − (mk(0, 0) − mk(dk, τk))| 6 O(‖d2‖). (3.7)

We obtain

|ρk − 1| 6
O(‖d2‖)

mk(0, 0) − mk(dk, τk)
=

O(‖d2‖)
τk + 1

2dkBT
k dk

6
O(‖d2‖)

∇ f (xk)T dk + 1
2dkBT

k dk

→ 0.

(3.8)
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This means ρk > ρ1, which contradicts ρk < ρ1.

Thus the inner loop of Algorithm 1 terminates at a finite number of iterations.
Lemma 6. Suppose that Assumptions hold. In the iteration, for each k,

area (D (Fk)) > λ
∑
i∈U

H(xi)2. (3.9)

Proof. The proof is similar to Lemma 3.3 in Gould et al. [32].
Lemma 7. Suppose that Assumptions hold, and the filter set is updated infinitely. That is, |U| = +∞.
Then, there exists a subsequence

{
k j

}
such that

lim
j→∞
H(xk j) = 0. (3.10)

Proof. Suppose that there exists an infinite subsequence ki ⊆ U such that H(xki) > ε for ε > 0.
According to Lemma 6, we deduce that

area
(
D

(
Fki+1

))
> iλε2. (3.11)

From Assumptions 1 and 2 can be directly derived that, for all k,

f min 6 f (xk) 6 f max, (3.12)

and

0 6 H(xk) 6 Hmax, (3.13)

for some constants f min 6 f max and 0 6 Hmax. This means that the domain of the ( f ,H)−points is[
f min, f max

]
×

[
0,Hmax] .

Hence, for any k, area
(
D

(
Fki+1

))
is bounded above by a constant σmax > 0 independent of k. Thus,

we have

i 6
σmax

λε2 . (3.14)

Therefore, i is finite. This contradicts that the subsequence ki is infinite.

lim
j→∞, k∈U

H(xk) = 0. (3.15)

So, the conclusion is valid.
Lemma 8. Suppose that Assumptions hold, and the filter is updated finitely. This means that |U| < ∞.
Then,H(xk) = 0.
Proof. According to the termination condition of Algorithm 1, if the algorithm is finitely terminated,
we obtain τk = 0 and dk = 0. Thus,H(xk) = 0. The proof is completed.
Theorem 1. Suppose that Assumptions hold, and sequence {xk} is obtained by Algorithm 1. There
exists a subsequence

{
xk j

}
and

lim
j→∞

xk j = x∗.

The cluster point x∗ is the KKT point for the problem (1.1).
Proof. It is easy to prove by the above hypothesis and lemma.
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4. Numerical results

We have implemented the preliminary numerical result of the Algorithm 1 in Matlab R2020a. All
experiments are run on a laptop with Intel(R) Core(TM) i7-10510U CPU @ 1.80GHz 2.30 GHz and
16GB RAM. The performance of our area-type filter method is compared with other methods for
solving nonlinear programming problems. SNOPT is an SQP algorithm that uses a smooth augmented
Lagrangian merit function [33]. IPOPT is an interior-point filter line-search algorithm for nonlinear
programming [34]. In this paper, the monotone and the nonmonotone area-type methods are denoted
by Monotone and Nonmonotone, respectively.

The following values are exploited: B0 = I ∈ Rn×Rn, ρ1 = 0.75, ρ2 = 0.01, λ = 0.0001, η1 = 2, η2 =

0.1, η3 = 0.5and ζ = 0.85. In addition, Bk+1 is updated by the BFGS formula [35]:

Bk+1 = Bk +
yT

k yk

yT
k pk
−

Bk pk pT
k Bk

pT
k Bk pk

,

where

yk = δky′k + (1 − δk) Hk pk,

y′k = ∇ f (xk+1) − ∇ f (xk), pk = xk+1 − xk,

and

δk =

 1, pT
k y′k ≥ 0.2pT

k Hk pk,
0.8pT

k Hk pk

pT
k Hk pk−pT

k y′k
, otherwise.

ε = 10−4 is the convergence tolerance of the algorithm.
The test problems are from [36,37]. In Table 1, the number of iterations calculated by monotone and

nonmonotone area-type filter algorithms are compared with the traditional filter method (FILTER) [20],
SNOPT and IPOPT. n,m are the numbers of problem variables and general constraints. NIT represents
the number of iterations to solve the nonlinear programming problem.

For simplicity of comparison, we have compared the efficiency of the number of iterations in
Figure 5 by using the performance profile [38]. Define the performance profile by

Θs(T ) =
The number of problems where log2(Rp,s)

Total number of problems
, (4.1)

where

Rp,s =
NITp,s

min
s∈S

NITp,s
. (4.2)

NITp,s means the number of iterations calculated by solver S for problem P. min
s∈S

NITp,s means the
minimum of the number of iterations to solve problem P for all solvers compared.
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Table 1. Comparison of NIT.

Problem n m
monotone nonmonotone FILTER SNOPT IPOPT
NIT NIT NIT NIT NIT

HS03 2 1 8 5 11 2 5
HS04 2 2 2 2 2 4 6
HS07 2 2 8 8 23 30 28
HS09 2 2 17 19 8 10 6
HS10 2 1 11 11 - 31 13
HS13 2 3 16 16 - 17 79
HS14 2 3 8 8 6 10 8
HS15 2 3 4 13 4 11 21
HS16 2 5 10 10 3 5 23
HS17 2 5 7 7 14 19 18
HS18 2 6 15 15 28 32 27
HS19 2 6 10 10 6 9 16
HS21 2 5 2 2 4 1 9
HS22 2 2 8 8 5 7 7
HS24 2 5 5 5 5 8 13
HS27 3 2 6 6 7 21 143
HS30 3 7 5 5 32 5 16
HS31 3 7 8 8 - 11 8
HS32 3 6 11 14 8 5 20
HS33 3 6 7 7 12 9 16
HS34 3 8 12 12 8 7 10
HS35 3 4 5 5 8 5 8
HS39 4 4 22 16 - 28 14
HS40 4 6 8 11 57 9 4
HS41 4 10 6 6 7 7 12
HS44 4 10 18 18 6 2 20
HS45 5 10 8 8 9 2 48
HS46 5 4 13 13 - 32 20
HS48 5 4 8 8 8 6 2
HS49 5 4 9 9 12 34 20

When the solver S cannot solve the problem P, the ratio R goes to infinity. If T → ∞, Θs(T ) is
the percentage of the number of problems that can be solved by solver S. The performance of the

AIMS Mathematics Volume 7, Issue 12, 20441–20460.



20457

considered algorithm is best in the range of the optimal T.

Figure 5. Performance profile.

Next, the different results of monotone and nonmonotone are taken to have a comparison in detail.
The number of iterations, CPU runtime and optimal values are compared, and the corresponding results
are shown in Table 2.

Table 2. Comparison of Monotone and Nonmonotone.

Problem n m
Monotone Nonmonotone
NIT CPU TIME f(x*) NIT CPU TIME f(x*)

HS03 2 1 8 0.994 -0.0009 5 0.982 0.0009
HS09 2 2 17 0.866 -0.4388 19 0.961 -0.4999
HS15 2 3 4 0.723 306.500 13 1.289 306.499
HS32 3 6 11 0.775 1.0000 14 2.029 0.9033
HS39 4 4 22 4.367 -1.0000 16 3.978 -0.9992
HS40 4 6 8 1.124 -0.2513 11 1.865 -0.2498

As shown in Table 1 and Figure 5, most of the area-type filter algorithm is better than FILTER,
SNOPT, and IPOPT. Our algorithm usually requires a small number of iterations. As a whole, our
algorithm can be applied to this problem generally. There are slightly worse cases for individual
problems. However, on the scale of the problem, it can be negligible. In most of the problems,
Algorithm 1 requires fewer iterations, such as HS17, HS18, HS33, HS49 and so on. As for HS10,
HS13, HS31, HS39 and HS46, the traditional filter method can not obtain the optimal solution as the
subproblem is infeasible, but this paper can avoid this problem. Moreover, Algorithm 1 is a good
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solver. It can be observed from Table 2 that the monotone method is slightly better than the
nonmonotone method in terms of both the number of iterations and CPU time. The nonmonotone
method avoids the situation where the points fall into the “valley” and cannot get out, making the
algorithm more efficient. As can be seen from the above table, our algorithm outperforms the
traditional filter method for most problems. The result indicates the use of the area-type filter method
provides a fast, convergent mechanism that reduces the number of iterations.

5. Conclusions

In this paper, a new area-type filter algorithm is proposed based on the trust-region method. A
relaxed trust-region quadratic correction subproblem is proposed to compute the direction. The
subproblem is guaranteed to be feasible. It avoids the feasibility recovery phase and makes the
algorithm more efficient and concise. The discriminant criterion is different from that of the
traditional filter method. The point pairs are divided into four partitions by the dominant region of the
filter. The area-type filter algorithm takes the contribution of the trial point to the area of the filter as
the acceptance criterion. The criterion is extended into monotone and nonmonotone methods. Both of
them are compared, and better numerical results are obtained. The global convergence of the
area-type filter method is also demonstrated. This algorithm can reduce the computational effort to a
certain extent, as shown in the numerical results.
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