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Abstract: This paper proposes the concept of a neighborhood soft set and its corresponding decision
system, named neighborhood soft decision system to solve decision-making (DM) problems with
heterogeneous information. Firstly, we present the definition of a neighborhood soft set by combining
the concepts of a soft set and neighborhood space. In addition, some operations on neighborhood
soft sets such as “restricted/relaxed AND” operations and the degree of dependency between two
neighborhood soft sets are defined. Furthermore, the neighborhood soft decision system and its
parameter reduction, core attribute are also defined. According to the core attribute, we can get
decision rules and make the optimal decision. Finally, the algorithm of DM with heterogeneous
information based on the neighborhood soft set is presented and applied in the medical diagnosis,
and the comparison analysis with other DM methods is made.
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1. Introduction

Various mathematical theories, such as fuzzy set theory [6, 11], rough set theory [38, 39], vague set
theory [2, 31], etc., have been proposed by researchers to deal with vagueness and uncertainty in
practical problems in engineering, economics, social science, medical science and so on. However,
Molodtsov [1] pointed out that the parameterization tools of the above aforementioned theories were
inadequate due to inherent limitation. Then he instead proposed soft set theory, which is a new
mathematical tool to deal with uncertain problems. It is free from the inherent limitations, and its
parameterization tools are adequate to process uncertainties. Objects can be described based on soft
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set theory through establishing the mapping from parameters to universe. The result from the
mapping in a soft set is not a set, but a parameterized family of subsets of universe, so parameters of
soft sets can be any form such as numerical values, words, logical language, sentences and so on.

On the basis of Molodtsov’s research [1], many researchers have enriched the theory of soft set
through discussing some classical set theoretic laws and algebraic properties in soft set theory,
including the equality of two soft sets, subset and super set of soft set, complement of a soft set, null
soft set, absolute soft set, the binary operations between two soft sets, such as AND, OR, union,
intersection, De Morgan’s law and so on [10, 12, 15, 16, 18, 23, 28]. With the establishment and
development of soft set theory, it was applied to various research fields such as data
analysis and recognition [37], combined forecasting [40], information system [24],
decision-making [4, 5, 17, 26, 36], evaluation [14], economic [25], medical diagnosis [42], fixed point
theory [27], and feature selection [13, 30, 34]. The application of soft sets in decision-making (DM)
problems, among many others, is of great interest to many researchers [8].

Vagueness and uncertainty of information widely exist in practical DM problems and prevent an
appropriate decision-making. Expressing the information accurately by mathematical languages to
modeling DM problems is an effective method. Therefore, the first step of an efficient
decision-making is to transform the vague and uncertain information into numerical variables through
mathematical languages, such as fuzzy language, vague language, rough language, interval language,
etc. In addition, by exploring the advantage of soft sets in providing unlimited parameterization tools,
the above mathematical languages and soft set theory were combined to study practical DM
problems. For example, Yang [32] combined soft sets with interval-valued fuzzy set to deal with the
DM problems with interval-valued fuzzy information. Guan [33] introduced a new order relation on
fuzzy soft sets, called soft information order, by combining soft sets with fuzzy sets to analyze DM
problems. Likewise, many other researches focused on proposing new DM methods by constructing
different kinds of hybrid soft sets, including N-soft set [7], trapezoidal interval type-2 fuzzy soft
sets [41], Pythagorean fuzzy soft sets [29] and so on. Apparently, these methods facilitated DM under
different types of information environment.

However, by each hybrid soft set mentioned above, only one type of information in practical DM
problems can be processed. In order to describe objects exactly and make an optimal decision, several
attributes with different types of data should be used to represent alternatives comprehensively and
accurately. As a consequence, the information in practical DM problems may be heterogeneous. That
is to say, there may be coexistence of continuous data, discrete data, dual/Multilevel semantic data and
other data types in one DM model, which cannot be processed effectively by any kinds of hybrid soft
sets at hand. Therefore, the focus of this paper is to develop a new method to process heterogeneous
information in DM problems in order to deliver better decisions in practice.

At present, the main method for processing the heterogeneous information in DM problems is either
by limiting the description of objects under an information circumstance with only one data type, or
by transforming different types of data into the same [35]. Either way, the information can be used is
restricted or may be lost in the process of transformation, which may result in incorrect decisions.

Neighborhood space, introduced by Fix and Hodges [3], is a popular learning and classification
technique and a more general topological space than equivalence space. Some new types
neighborhoods system in classical rough set theory have been recently presented [21, 22], and it has
been applied to many fields such as attribute reduction, feature selection, classification, information

AIMS Mathematics Volume 7, Issue 12, 20420–20440.



20422

recognition [9, 19, 20] and so on. By using some gathering rules in neighborhood space, objects can
be classified into several groups according to their similarity and some neighborhood granules can be
generated. More importantly, these gathering rules and neighborhood granules can be generated from
a heterogeneous information environment. That means there is no limitation on the types of data in
description on objects, or no need to transfer different types of data into the same in the process of
DM. On the contrary, neighborhood space can process the heterogeneous information directly.
Considering soft sets have the advantage of providing adequate parameterization tools and
neighborhood space is capable of classifying objects with heterogeneous information, this paper
proposes a new method to deal with DM problems which contain heterogeneous information by
combining soft sets with neighborhood space.

The rest of this paper is organized as follows: Section 2 introduces the basic definitions of soft sets
and neighborhood space. The concept of a neighborhood soft set which is a combination of the soft
set and neighborhood space is presented in section 3. Besides, the operation rules on the neighborhood
soft set are discussed in this section. In section 4, the definition of a neighborhood soft decision
system is proposed and the method of DM under heterogeneous information environment based on the
neighborhood soft decision system is proposed, followed by an illustrative example and a comparison
analysis. Section 5 applies the new method in the medical diagnosis, and the last section discusses our
main conclusions.

2. Preliminaries

2.1. Soft sets

Definition 1. [1] Suppose that U is an initial universe set and A is a set of parameters. Let P(U)
denote the set of all subsets of U, a pair (F, A) is called a soft set over U, where F is a mapping
given by

F : A→ P(U). (2.1)

Clearly, a soft set is a mapping from parameters to P(U), and it is not a set, but a parameterized
family of subsets of U. For e ∈ A, F(e) can be considered as the set of e-approximate elements of the
soft set (F, A).

Example 1. Suppose the following:
i. U is a set of houses under consideration;
ii. A is a set of parameters, each parameter is a word or a sentence.

For example,
U = {h1, h2, h3, h4, h5, h6}

and

A = {e1, e2, e3, e4, e5} = {cheap, beauti f ul, bigarea, goodlocation, inthegreensurroundings}.

In this case, to define a soft set means to point out cheap houses, beautiful houses, and so on. The soft
set (F, A) describes the ‘attractiveness of the houses’ which Mr. X is going to buy.

Thus, we can view the soft set (F, A) as a collection of approximations as below:
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(F, A) =
{
cheap houses = {h2, h4},

beauti f ul houses = {h1, h3},

big houses = {h3, h4, h5},

good location houses = {h1, h3, h5},

in the green surroundings = {h1}
}
.

The soft set of ‘attractiveness of the houses’ in Example 2.1 can also be tabulated as in Table 1.

Table 1. The soft set (F, A).

U ‘cheap’ ‘beautiful’ ‘big area’ ‘good location’ ‘in the green surroundings’

h1 0 1 0 1 1
h2 1 0 0 0 0
h3 0 1 1 1 0
h4 1 0 1 0 0
h5 0 0 1 1 0
h6 0 0 0 0 0

2.2. Neighborhood space

Definition 2. [3] Let U = {x1, x2, · · · , xn} be an initial universe set, and A = {e1, e2, · · · , em} be a set
of parameters. ∀xi ∈ U and B ⊆ A, the neighborhood of xi in the subspace B denoted by δB(xi) is
defined as:

δB(xi) = {x j|x j ∈ U,∆P
B(xi, x j) ≤ δ} (2.2)

where δ is an arbitrary small nonnegative number and ∆ is a metric function which satisfies:
i. ∆{xi, x j} ≥ 0;
ii. ∆{xi, x j} = 0, if and only if xi and x j are the same;
iii. ∆{xi, x j} = ∆{x j, xi};
iv. ∆{xi, xk} ≤ ∆{xi, x j} + ∆{x j, xk} and

∆P
B(xi, x j) =

(∑
| f (xi, ek) − f (x j, ek)|P

)1/P
(P = 1, 2, · · · ,∞) (2.3)

where ∆P
B(xi, x j) is a Minkowsky distance [19], xi, x j ∈ U, ek ∈ B ⊆ A, f (x, ek) is the value function of

object x in the kth dimension.

From Definition 2, it is obvious that the family of neighborhood granules {δB(xi)|xi ∈ U} forms an
elemental granule system, which gathers similar objects from the universe set, rather than partitions off

it into several mutual exclusive subsets.
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3. Neighborhood soft sets

3.1. The concept of a neighborhood soft set

Based on Definition 1 and Definition 2, we can combine the concepts of soft sets and neighborhood
space to get the following definition of a neighborhood soft set.

Definition 3. Let U = {x1, x2, · · · , xn} be an initial universe set and A = {e1, e2, · · · , em} be a set of
parameters. A pair (Fδ, A) is called a neighborhood soft set over U, where Fδ is a mapping given by:

Fδ : A→ Pδ(U), (3.1)

where Pδ(U) denotes the set of all neighborhoods of each object in U. For any xi ∈ U(i = 1, 2, · · · , n)
and ek ∈ A(k = 1, 2, · · · ,m), let δek(xi) denotes the neighborhood of xi on ek and

δek(xi) = {x j|x j ∈ U,∆ek(xi, x j) ≤ δ}, (3.2)

where j = 1, 2, · · · , n and δ is a threshold parameter which defines the range of the neighborhood
δek(xi). δ can be defined on any type of data but should be small enough. We can calculate the range
according to the Eq (2.3), and for the purpose of simplicity, let P = 1, then

∆ek(xi, x j) = | f (xi, ek) − f (x j, ek)|, (3.3)

where f (xi, ek) is the value function of the object xi on the parameter ek.
Obviously, a neighborhood soft set is also a special case of a soft set, because it is still a mapping

from parameters to the universe. For e ∈ A, Fδ(e) can be considered as the set of e-approximate
elements of the neighborhood soft set (Fδ, A). Unlike the other subtypes of soft sets, such as fuzzy
soft sets, interval-valued fuzzy soft sets and so on, which express information by a uniform type of
data (the discrete data 0 or 1, or the interval number between 0 and 1), neighborhood soft sets store
information by neighborhood granules, which are determined by the threshold parameter δ and are the
sets of approximate objects of xi on parameter ek.

According to the Definition 3, there is no restriction on the data types of the threshold parameter δ.
It can be any form if it can weigh the distance between two objects. We can define it according to the
actual situation. For example, for numerical data, δ can be an arbitrarily small nonnegative number,
which denotes the maximum acceptable difference between two objects; for semantic data, δ can be
a word/sentence, which can identify the difference of objects precisely. Therefore, neighborhood soft
sets can process the heterogeneous information in DM problems. The following example can make
this easier to understand.

Example 2. Let U = {x1, x2, x3, x4, x5, x6} be an initial universe set which represents a set of six houses,
and A = {e1, e2, e3, e4} be a parameter set which describes the status of the houses. Specifically, e1

denotes the area of house; e2 denotes the appearance of house; e3 describes the public transportation
of house; and e4 represents the price of house. The data are listed in Table 2:
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Table 2. Status of the six alternative houses.

e1(m2) e2 e3(number of buses/trains) e4(thousand yuan/m2)

x1 122 beautiful 4 13
x2 83 ordinary 7 11
x3 75 beautiful 8 12.5
x4 69 ordinary 3 9
x5 91 beautiful 7 12
x6 155 beautiful 0 15

From Table 2 we can see that the types of data which describe the six houses are different: e1 and
e4 are continuous variables, e2 is a semantic variable, e3 is a discrete variable. For the four variables
we specify the following threshold parameters δ respectively:

For e1, let δ1 = 10m2. According to the definition of neighborhood soft sets, it means if the
difference between the area of two houses xi and x j is not bigger than 10 m2, then they can be
regarded as similar area, and x j should be in the neighborhood of xi. Analogously, we can define that
δ2= “the same”, δ3= 2 bus/train routes, and δ4=1.5 thousand yuan/m2.

Then according to Definition 3, a neighborhood soft set (Fδ, A) can be used to describe the six
houses on the shortlist, the mapping from parameters to the universe in (Fδ, A) is given as follows:

(Fδ, A) =
{
Fδ(e1), Fδ(e2), Fδ(e3), Fδ(e4)

}
,

where:

Fδ(e1) =

{
{x1}

x1
,
{x2, x3, x5}

x2
,
{x2, x3, x4}

x3
,
{x3, x4}

x4
,
{x2, x5}

x5
,
{x6}

x6

}
,

Fδ(e2) =

{
{x1, x3, x5, x6}

x1
,
{x2, x4}

x2
,
{x1, x3, x5, x6}

x3
,
{x2, x4}

x4
,
{x1, x3, x5, x6}

x5
,
{x1, x3, x5, x6}

x6

}
,

Fδ(e3) =

{
{x1, x4}

x1
,
{x2, x3, x5}

x2
,
{x2, x3, x5}

x3
,
{x1, x4}

x4
,
{x2, x3, x5}

x5
,
{x6}

x6

}
,

Fδ(e4) =

{
{x1, x3, x5}

x1
,
{x2, x3, x5}

x2
,
{x1, x2, x3, x5}

x3
,
{x4}

x4
,
{x1, x2, x3, x5}

x5
,
{x6}

x6

}
.

In Example 2, the raw data which describes the houses can be processed directly by the neighborhood
soft set defined by this paper. It is obvious that through setting the value of δ carefully, the new mapping
method under the framework of neighborhood soft sets is capable of processing various types of data,
and there is no need to transform the different types of data into the same. Therefore, neighborhood
soft sets can provide a holistic approach to process heterogeneous information directly and precisely.
It can classify the universe U into several categories through finding the neighborhood of each object.

Figure 1 illustrates an example of classification based on two parameters in the neighborhood soft
set (Fδ, A): e1 and e3, which is a simplified version of Example 2. Consider x3, its neighborhood on
parameter e1 with δ1 can be defined by the space between parallel dashed lines R1 and R2, so x2, x4,
and of course including x3 itself, are in the neighborhood of x3 based on e1. That means the houses x2,
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x3 and x4 in U can be treated as similar to x3 in terms of the area of house; similarly, x2, x5 and also x3

itself are in the neighborhood of x3 based on e3 with δ3. If both e1 and e3 are considered, then only x2

and x3 are in the neighborhood of x3.

Figure 1. An example of classification with two parameters in the neighborhood soft set.

Based on the definition of neighborhood soft sets, the following properties of neighborhood soft
sets can be derived:

i. Reflexive: xi ∈
Fδ(e)

xi
.

Proof. ∆e(xi, xi) = 0 ≤ δ, then according to Definition 3, xi ∈ δe(xi), i.e. xi ∈
Fδ(e)

xi
. �

ii. Symmetric: xi ∈
Fδ(e)

x j
⇔ x j ∈

Fδ(e)
xi

.

Proof. xi ∈
Fδ(e)

x j
, i.e. xi ∈ δe(x j), then ∆e(xi, x j) ≤ δ, that is to say x j ∈ δe(xi). Thus, x j ∈

Fδ(e)
xi

. �

iii. Nontransitive: x j ∈
Fδ(e)

xi
, xk ∈

Fδ(e)
xi
; xk ∈

Fδ(e)
x j

or x j ∈
Fδ(e)

xk
.

Proof. x j ∈
Fδ(e)

xi
, xk ∈

Fδ(e)
xi

, then ∆e(x j, xi) ≤ δ and ∆e(xk, xi) ≤ δ, which implies ∆e(xk, x j) ≤ 2δ, not

∆e(xk, x j) ≤ δ. Therefore, the neighborhood soft set is nontransitive. A counterexample in Example 2

can be given to prove it: x2 ∈
Fδ(e1)

x3
, x4 ∈

Fδ(e1)
x3

, but x4 <
Fδ(e1)

x2
. �

Definition 4. Let U be an initial universe set and E be a set of parameters. Suppose that A, B ⊆ E,
(Fδ, A), and (Gδ, B) are two neighborhood soft sets, we say that (Fδ, A) is a neighborhood soft subset
of (Gδ, B), denoted by (Fδ, A) ⊆δ (Gδ, B) if and only if:
i. A ⊆ B, and;
ii. ∀e ∈ A, Fδ(e)/xi ⊆ Gδ(e)/xi.

(Fδ, A) is a neighborhood soft super set of (Gδ, B), denoted by (Fδ, A) ⊇δ (Gδ, B), if (Gδ, B) is a
neighborhood soft subset of (Fδ, A).
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Example 3. Given two neighborhood soft sets (Fδ, A) and (Gδ, B), U = {x1, x2, x3, x4, x5, x6}. Here U
is the set of houses on the list.

Let A = {e1, e2} = {cheap, beautiful}, B = {e1, e2, e3} = {cheap, beautiful, big area}, and

Fδ(e1) =

{
{x1}

x1
,
{x2, x3}

x2
,
{x2, x3}

x3
,
{x4}

x4
,
{x5}

x5
,
{x6}

x6

}
,

Fδ(e2) =

{
{x1, x3, x5, x6}

x1
,
{x2, x4}

x2
,
{x1, x3, x5, x6}

x3
,
{x2, x4}

x4
,
{x1, x3, x5, x6}

x5
,
{x1, x3, x5, x6}

x6

}
,

Gδ(e1) =

{
{x1}

x1
,
{x2, x3, x5}

x2
,
{x2, x3, x4}

x3
,
{x3, x4}

x4
,
{x2, x5}

x5
,
{x6}

x6

}
,

Gδ(e2) =

{
{x1, x3, x5, x6}

x1
,
{x2, x4}

x2
,
{x1, x3, x5, x6}

x3
,
{x2, x4}

x4
,
{x1, x3, x5, x6}

x5
,
{x1, x3, x5, x6}

x6

}
,

Gδ(e3) =

{
{x1, x4}

x1
,
{x2, x3, x5}

x2
,
{x2, x3, x5}

x3
,
{x1, x4}

x4
,
{x2, x3, x5}

x5
,
{x6}

x6

}
.

Therefore, we have (Fδ, A) ⊆δ (Gδ, B).

Definition 5. For two neighborhood soft sets (Fδ, A) and (Gδ, B), we say (Fδ, A) and (Gδ, B) are
neighborhood soft equal, denoted by (Fδ, A) =δ (Gδ, B), if and only if:
i. (Fδ, A) ⊆δ (Gδ, B),
ii. (Fδ, A) ⊇δ (Gδ, B).

Definition 6. Let U be an initial universe set, E be a set of parameters, and A, B ⊆ E. (Fδ, A) is called
a null neighborhood soft set (with respect to the parameter set A), denoted by ∅A

δ , if Fδ(e) = ∅ for all
e ∈ A; (Gδ, B) is called a whole neighborhood soft set (with respect to the parameter set B), denoted
by UB

δ , if Gδ(ε) = U for all ε ∈ B.

However, because of the reflexive in neighborhood soft sets as proved above, i.e. xi ∈
Fδ(e)

xi
. So

Fδ(e) , ∅, the null neighborhood soft set does not exist.

3.2. Operations on neighborhood soft sets

3.2.1. Restricted/relaxed AND on a neighborhood soft set and a subset

Definition 7. Let U = {x1, x2, · · · , xn} be an initial universe set, (Fδ, A) be a neighborhood soft set
defined on U and X be a subset of U. The operation of “(Fδ, A) restricted AND X” denoted by (Fδ, A)∧δ
X is given by:

(Fδ, A) ∧δ X =
⋃
e∈A

{Fδ(e) ∧δ X} =
⋃
e∈A

{
xi|

Fδ(e)
xi
⊆ X, xi ∈ U

}
. (3.4)

Example 4. Reconsider Example 2. Let X = {x1, x3, x5, x6} be the set of houses which are preferred by
most consumers and are the bestselling houses on the market. Then

(Fδ, A) ∧δ X =
⋃
e∈A

{Fδ(e) ∧δ X}

= {x1, x6} ∪ {x1, x3, x5, x6} ∪ {x6} ∪ {x1, x6}

= {x1, x3, x5, x6}.
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From the above definition, we have:
i. (Fδ, A) ∧δ U = U.

Proof. For ∀e ∈ A, and xi ∈ U, Fδ(e)/xi ⊆ U, i.e. (Fδ, A) ∧δ U = U. �

ii. (Fδ, A) ∧δ ∅ = ∅.

Proof. For ∀e ∈ A, and xi ∈ U, according to the reflexive property: xi ∈ Fδ(e)/xi, Fδ(e)/xi , ∅, i.e.
Fδ(e)/xi * ∅. Therefore, (Fδ, A) ∧δ ∅ = ∅. �

iii. (Fδ, A) ∧δ X ⊆ X.

Proof. For ∀e ∈ A, X ⊆ U and xi, x j ∈ U.
For xi ∈ (Fδ, A) ∧δ X, that means Fδ(e)/xi ⊆ X, according to the reflexive property: xi ∈ Fδ(e)/xi,

then xi ∈ X.
For x j ∈ X, it is not conclusive that Fδ(e)/x j ⊆ X, then x j may be not in (Fδ, A) ∧δ X.
Therefore, (Fδ, A) ∧δ X ⊆ X. �

Definition 8. Let U = {x1, x2, · · · , xn} be an initial universe set, (Fδ, A) be a neighborhood soft set
defined on U and X be a subset of U. The operation of “(Fδ, A) relaxed AND X” denoted by (Fδ, A)∧δX
is given by:

(Fδ, A) ∧δ X =
⋃
e∈A

{
Fδ(e) ∧δ X

}
=

⋃
e∈A

{
xi|

Fδ(e)
xi
∩ X , ∅, xi ∈ U

}
. (3.5)

Example 5. Continue Example 4:

(Fδ, A) ∧δ X =
⋃
e∈A

{
Fδ(e) ∧δ X

}
= {x1, x2, x3, x4, x5, x6} ∪ {x1, x3, x5, x6} ∪ {x1, x2, x3, x4, x5, x6} ∪ {x1, x2, x3, x5, x6}

= {x1, x2, x3, x4, x5, x6}.

Similarly, from the above definition, we have:
i. (Fδ, A) ∧δ U = U;
ii. (Fδ, A) ∧δ ∅ = ∅;
iii. X ⊆ (Fδ, A) ∧δ X.

Proof. Straightforward. �

3.2.2. The degree of dependency between two neighborhood soft sets

To explore the ability of classification of neighborhood soft sets, we give the definition of the degree
of dependency between two neighborhood soft sets.

Definition 9. Suppose that (Fδ, A) and (Gδ, B) are two neighborhood soft sets over U, where A∩B = ∅.
We say (Fδ, A) has a ‘k degree of dependency’ on (Gδ, B) denoted by k

(
(Fδ, A), (Gδ, B)

)
and

k
(
(Fδ, A), (Gδ, B)

)
=

∣∣∣∣⋃ε j∈B
⋃

xi∈U

{
(Fδ, A) ∧δ Gδ(ε j)/xi

}∣∣∣∣
|U |

, (3.6)
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where | ∗ | denotes the number of elements in a set.
Apparently, k

(
(Fδ, A), (Gδ, B)

)
is the ratio of the number of elements in two sets, one is the result of

(Fδ, A) restricted AND Gδ(ε j)/xi, the other is U, and:
i. k(0 ≤ k ≤ 1), we say (Fδ, A) is partially depended on (Gδ, B), which measures the degree of

approximation in classification between two neighborhood soft sets.
ii. If k = 1 we say (Fδ, A) is completely depended on (Gδ, B), which means the results of

classification by the two neighborhood soft sets are exactly the same.
iii. If k = 0 we say (Fδ, A) is not depended on (Gδ, B), which means the results of classification by

the two neighborhood soft sets are completely different.
Through the definition of the degree of dependency between two neighborhood soft sets, we can

compare the similarity of classification results between two neighborhood soft sets.

Example 6. Let (Fδ, A) and (Gδ, B) be two neighborhood soft sets, and

Fδ(e1) =

{
{x1}

x1
,
{x2, x3, x5}

x2
,
{x2, x3, x4}

x3
,
{x3, x4}

x4
,
{x2, x5}

x5
,
{x6}

x6

}
,

Fδ(e2) =

{
{x1, x3, x5, x6}

x1
,
{x2, x4}

x2
,
{x1, x3, x5, x6}

x3
,
{x2, x4}

x4
,
{x1, x3, x5, x6}

x5
,
{x1, x3, x5, x6}

x6

}
,

Fδ(e3) =

{
{x1, x4}

x1
,
{x2, x3, x5}

x2
,
{x2, x3, x5}

x3
,
{x1, x4}

x4
,
{x2, x3, x5}

x5
,
{x6}

x6

}
,

Fδ(e4) =

{
{x1, x3, x5}

x1
,
{x2, x3, x5}

x2
,
{x1, x2, x3, x5}

x3
,
{x4}

x4
,
{x1, x2, x3, x5}

x5
,
{x6}

x6

}
,

Gδ(ε1) =

{
{x1, x2, x5, x6}

x1
,
{x1, x2}

x2
,
{x3, x4}

x3
,
{x3, x4}

x4
,
{x1, x5, x6}

x5
,
{x1, x5, x6}

x6

}
.

k ((Fδ, A), (Gδ, B)) =

∣∣∣∣⋃ε j∈B
⋃

xi∈U

{
(Fδ, A) ∧δ (Gδ, ε j)/xi

}∣∣∣∣
|U |

=
|{x1, x4, x5, x6}|

|U |
=

4
6

=
2
3
.

3.3. The neighborhood soft decision system

3.3.1. The concept of a neighborhood soft decision system

To store the heterogeneous information in DM problems and develop a DM method under a
heterogeneous information environment based on neighborhood soft sets, it is necessary to introduce
neighborhood soft decision systems.

Definition 10. Suppose that (Fδ, A) and (Gδ, B) are two neighborhood soft sets over a common universe
U, where A ∩ B = ∅. Then the information system

(
U, (Fδ, A), (Gδ, B)

)
is called a neighborhood soft

decision system over the common universe U, where A is a condition attributes set, B is a decision
attributes set, and (Fδ, A) is a condition neighborhood soft set, (Gδ, B) is a decision neighborhood
soft set.
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In a neighborhood soft decision system
(
U, (Fδ, A), (Gδ, B)

)
, the condition attributes set A is used for

describing characteristics of each alternative object. The decision attributes set B is used for describing
the rating of each alternative object.

Then, the degree of dependency of (U, (Fδ, A), (Gδ, B)) is defined as the degree of dependency
between (Fδ, A) and (Gδ, B), and is denoted by k

(
U, (Fδ, A), (Gδ, B)

)
(0 ≤ k ≤ 1). It provides a measure

of the similarity of classification results between the condition neighborhood soft set (Fδ, A) and the
decision neighborhood soft set (Gδ, B).

Example 7. Reconsider Example 2. Let A = {e1, e2, e3, e4} be a condition attribute set, (Fδ, A) is the
corresponding condition neighborhood soft set.

Table 3 listed the rating of sold houses.

Table 3. The rating of sold houses.

ε1(%)
x1 90
x2 86
x3 72
x4 76
x5 91
x6 92

According to Definition 3, let δ = 4%, which means the two houses are in the same class if their
difference of rating is no more than 4%, we get another neighborhood soft set (Gδ, B), where B = {ε1}

is the decision attribute set. The two neighborhood soft sets (Fδ, A) and (Gδ, B) are given as follows:

Fδ(e1) =

{
{x1}

x1
,
{x2, x3, x5}

x2
,
{x2, x3, x4}

x3
,
{x3, x4}

x4
,
{x2, x5}

x5
,
{x6}

x6

}
,

Fδ(e2) =

{
{x1, x3, x5, x6}

x1
,
{x2, x4}

x2
,
{x1, x3, x5, x6}

x3
,
{x2, x4}

x4
,
{x1, x3, x5, x6}

x5
,
{x1, x3, x5, x6}

x6

}
,

Fδ(e3) =

{
{x1, x4}

x1
,
{x2, x3, x5}

x2
,
{x2, x3, x5}

x3
,
{x1, x4}

x4
,
{x2, x3, x5}

x5
,
{x6}

x6

}
,

Fδ(e4) =

{
{x1, x3, x5}

x1
,
{x2, x3, x5}

x2
,
{x1, x2, x3, x5}

x3
,
{x4}

x4
,
{x1, x2, x3, x5}

x5
,
{x6}

x6

}
,

Gδ(ε1) =

{
{x1, x2, x5, x6}

x1
,
{x1, x2}

x2
,
{x3, x4}

x3
,
{x3, x4}

x4
,
{x1, x5, x6}

x5
,
{x1, x5, x6}

x6

}
.

Apparently according to Definition 10,
(
U, (Fδ, A), (Gδ, B)

)
can be called a neighborhood soft decision

system, and its degree of dependency is:

k (U, (Fδ, A), (Gδ, B)) =

∣∣∣⋃ε1∈B
⋃

xi∈U {(Fδ, A) ∧δ (Gδ, ε1)/xi}
∣∣∣

|U |
=
|{x1, x4, x5, x6}|

|U |
=

4
6

=
2
3
.
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3.3.2. The reduction of a neighborhood soft decision system

To explore which variables in the condition neighborhood soft set are decisive for DM, we give the
definition of the reduction of a neighborhood soft decision system based on the degree of dependency
of a neighborhood soft decision system.

Definition 11. Let (U, (Fδ, A), (Gδ, B)) be a neighborhood soft decision system, C ⊆ A, we say attribute
subset C is a reduction of (U, (Fδ, A), (Gδ, B)) if:
i. k (U, (Fδ,C), (Gδ, B)) = k (U, (Fδ, A), (Gδ, B));
ii. ∀e ∈ C, k (U, (Fδ,C), (Gδ, B))>k (U, (Fδ, (C − e)), (Gδ, B)).

Obviously, according to Definition 4, (Fδ,C) is a neighborhood soft subset of (Fδ, A) since C ⊆ A.
Through Definition 11, we can compare the degree of dependency between each neighborhood soft
subset of (Fδ, A) and (Gδ, B), and identify the subset C which not only contains the minimum number
of variables (the key attributes), but also produces the same degree of dependency between (Fδ,C) and
(Gδ, B) as that between (Fδ, A) and (Gδ, B).

Example 8. Consider the neighborhood soft decision system in Example 7. Our aim is to figure out
which attributes in the condition attribute set A are the major factors in deciding which house is the
most favorite house for Mr. X. The burden to make a good choice can be reduced by getting rid of
unnecessary information or attributes. Therefore, the reduction of (U, (Fδ, A), (Gδ, B)) is indispensable.⋃

x∈U

{(Fδ, e1) ∧δ Gδ(ε1)/xi} = {x1, x4, x5, x6},

⋃
x∈U

{(Fδ, e2) ∧δ Gδ(ε1)/xi} = ∅,⋃
x∈U

{(Fδ, e3) ∧δ Gδ(ε1)/xi} = {x6},⋃
x∈U

{(Fδ, e4) ∧δ Gδ(ε1)/xi} = {x4, x6}.

Then
k
(
(Fδ, e1), (Gδ, B)

)
= k

(
(Fδ, A), (Gδ, B)

)
= 2/3.

Moreover, subset C = {e1} can not be reduced anymore, so it is a reduction of
(
U, (Fδ, A), (Gδ, B)

)
.

That is to say, the area of house is the major factor in determining which house is the best for Mr. X.
It should be noted that C = {e1} is the sole reduction of

(
U, (Fδ, A), (Gδ, B)

)
, because the k between

the other minimal neighborhood soft subsets of (Fδ, A) and (Gδ, B) is not equal to k
(
(Fδ, A), (Gδ, B)

)
.

Based on the definition of the reduction of a neighborhood soft decision system, we can define the
core attribute of a neighborhood soft decision system and the core attribute set of a neighborhood soft
decision system as follows:

Definition 12. The attribute e(e ∈ A) is a core of a neighborhood soft decision system if it belongs to
every reduction of a neighborhood soft decision system.

Definition 13. The attribute set C(C ⊆ A) is a core attribute set of a neighborhood soft decision system,
if all of the elements in C are the core attributes.
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Example 9. In Example 8, the attribute e1 belongs to the unique (every) reduction of k
(
(Fδ, A), (Gδ, B)

)
,

so e1 is a core of it.
In addition, in the attribute set C = {e1}, all of its elements (e1) is a core of k

(
(Fδ, A), (Gδ, B)

)
, so C

is a core attribute set of it.

3.3.3. Classification rules of a neighborhood soft decision system

To make a decision based on the neighborhood soft decision system, we need to classify objects in
the first place. The follows are classification rules based on the neighborhood soft decision system:

In a neighborhood soft decision system, if Fδ(e)/xi ∩ Fδ(e)/x j = ∅, then xi and x j are in different
groups, otherwise they are in the same group.

Example 10. Consider
(
U, (Fδ, A), (Gδ, B)

)
in Example 7.

For the condition attribute e1, we have:

Fδ(e1) =

{
{x1}

x1
,
{x2, x3, x5}

x2
,
{x2, x3, x4}

x3
,
{x3, x4}

x4
,
{x2, x5}

x5
,
{x6}

x6

}
,

Fδ(e1)/x1 = {x1},

Fδ(e1)/x2 = {x2, x3, x5},

Fδ(e1)/x1 ∩ Fδ(e1)/x2 = ∅.

Therefore, for the condition attribute e1, the two objects x1 and x2 are not the same. From the raw data
on e1, we can regard x1 as a medium area house, and x2 as a small area house.

For the decision attribute ε1, we have:

Gδ(ε1) =

{
{x1, x2, x5, x6}

x1
,
{x1, x2}

x2
,
{x3, x4}

x3
,
{x3, x4}

x4
,
{x1, x5, x6}

x5
,
{x1, x5, x6}

x6

}
,

Gδ(ε1)/x1 = {x1, x2, x5, x6},

Gδ(ε1)/x2 = {x1, x2},

Gδ(ε1)/x1 ∩Gδ(ε1)/x2 , ∅.

Therefore, for the decision attribute ε1, the two objects x1 and x2 are the same. From the raw data on
ε1, we can regard x1 and x2 as two good-selling houses.

3.3.4. Decision rules of a neighborhood soft decision system

Based on the above classification, we can get the decision rules of the neighborhood soft decision
system. Through classification rules, the alternatives in a neighborhood soft decision system can be
classified into several categories, each category can be seen as a decision rule, that means we can make
a decision according to the relationship between the condition attributes and its decision attributes of
each category. Therefore, a neighborhood soft decision system is a set of rules actually.
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Example 11. In Example 10, there are two categories for condition attribute e1 in (U, (Fδ, A), (Gδ, B)),
so we can get two decision rules:

(1) If the area of house is like x1 (medium area house), then its rating is like x1 and x2 (good-selling
house);

(2) If the area of house is like x2 (small area house), then its rating is like x1 and x2 (good-selling
house).

That is to say, if a house is a medium area house or a small area house, then it is a good-selling
house. However, we cannot decide whether a big area house is a good-selling house or a bad-selling
house based on the above decision rules, and the final decision rules may be different when all objects
are considered.

4. The method of DM under heterogeneous information environment

4.1. The algorithm of DM based on neighborhood soft sets

This section attempts to demonstrate how to apply the newly developed neighborhood soft sets to
DM problems with heterogeneous information. Based on the above definitions about the
neighborhood soft set and the neighborhood soft decision system, the algorithm of DM under
heterogeneous information environment is given as follows.

Figure 2 shows the flow of the new algorithm to get the classification rules and decision rules, and
then get the optimal decision.

Step 1. Construct a neighborhood soft decision system
(
U, (Fδ, A), (Gδ, B)

)
using Eqs (3.1)–(3.3)

and Definition 10;
Step 2. Calculate the degree of dependency of

(
U, (Fδ, A), (Gδ, B)

)
using Eq (3.5);

Step 3. Identify the reduction attributes of
(
U, (Fδ, A), (Gδ, B)

)
according to Definition 11;

Step 4. Derive the classification rules of
(
U, (Fδ, A), (Gδ, B)

)
;

Step 5. Get the decision rules and the optimal decision.
Then we can complete Example 2.
In step 2, according to the Eq (3.5), the degree of dependency of

(
U, (Fδ, A), (Gδ, B)

)
is given by

k = k
(
(Fδ, A), (Gδ, B)

)
=

∣∣∣⋃ε∈B
⋃

x∈U(Fδ, A) ∧δ (Gδ, e)/xi

∣∣∣
|U |

=
2
3
.

In step 3, the degree of dependency between the neighborhood soft subset (Fδ, ei) and (Gδ, B) in
Example 7 is given by:

k1 = k
(
(Fδ, e1), (Gδ, B)

)
= 2/3,

k2 = k
(
(Fδ, e2), (Gδ, B)

)
= 0,

k3 = k
(
(Fδ, e3), (Gδ, B)

)
= 1/6,

k4 = k
(
(Fδ, e4), (Gδ, B)

)
= 1/3.

Then according to Definition 11, we can conclude that attribute e1 is the reduction of(
U, (Fδ, A), (Gδ, B)

)
, because k1 = k

(
(Fδ, e1), (Gδ, B)

)
= k

(
(Fδ, A), (Gδ, B)

)
= 2/3. That means the

rating of sold houses is mainly determined by e1, i.e. the area of a house.
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In step 4, for the reduction attribute e1:

Fδ(e1) =

{
{x1}

x1
,
{x2, x3, x5}

x2
,
{x2, x3, x4}

x3
,
{x3, x4}

x4
,
{x2, x5}

x5
,
{x6}

x6

}
.

Figure 2. The algorithm of DM under heterogeneous information environment based on the
heterogeneous soft set.

We can classify objects according to the reduction attribute e1, as demonstrated in Table 4:

Table 4. Classification according to e1.

Fδ(e1)/xi ∩ Fδ(e1)/x j x1 x2 x3 x4 x5 x6

x1 ∅ ∅ ∅ ∅ ∅

x2 ∅ {x2, x3} {x3} {x2, x5} ∅

x3 ∅ {x2, x3} {x3, x4} {x2} ∅

x4 ∅ {x3} {x3, x4} ∅ ∅

x5 ∅ {x2, x5} {x2} ∅ ∅

x6 ∅ ∅ ∅ ∅ ∅
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Then we get the classification result: {{x1}, {x2, x3, x4, x5}, {x6}}, which means the objects were
categorized into three classes by condition attribute e1: medium area house x1, small area houses
x2, x3, x4, x5, and large area house x6.

For the decision attribute ε1:

Gδ(ε1) =

{
{x1, x2, x5, x6}

x1
,
{x1, x2}

x2
,
{x3, x4}

x3
,
{x3, x4}

x4
,
{x1, x5, x6}

x5
,
{x1, x5, x6}

x6

}
.

We can classify objects according to the decision attribute ε1, as shown in Table 5:

Table 5. Classification according to ε1.

Gδ(ε1)/xi ∩Gδ(ε1)/x j x1 x2 x3 x4 x5 x6

x1 {x1, x2} ∅ ∅ {x1, x5, x6} {x1, x5, x6}

x2 {x1, x2} ∅ ∅ {x1} {x1}

x3 ∅ ∅ {x3, x4} ∅ ∅

x4 ∅ ∅ {x3, x4} ∅ ∅

x5 {x1, x5, x6} {x1} ∅ ∅ {x1, x5, x6}

x6 {x1, x5, x6} {x1} ∅ ∅ {x1, x5, x6}

Then we get the classification result: {{x1, x2, x5, x6}, {x3, x4}}, which means decision attribute ε1

classifies the objects into two groups: Good-selling houses x1, x2, x5, x6, and poor-selling houses x3, x4.
And the final decision rules can be gotten as follows:
1) If the area of a house is medium, then it is a best-selling house;
2) If the area of a house is small, then it may be a best-selling house or may not;
3) If the area of a house is large, then it is a best-selling house.
In step 5, according to the above rules, the optimal choice(s) for Mr. X is to buy a medium area

house or a large area house, depends on his budgets, because both of them are good-selling houses.

4.2. Comparison analysis

DM methods based on soft sets have been analyzed by many researchers [4,5,17,36]. The common
feature of these methods, when dealing with heterogeneous information, is to homogenize the variables
or attributes. That means different types of data have to be transformed into the same one before
applying other DM methods based on soft sets. Take the research of Maji [17] for example, one of the
classical works in this field, Maji [17] presented the rough mathematics soft sets (RMSS) method
of decision-making by combining soft sets with rough mathematics of Pawlak [38]. This section
compares RMSS with the neighborhood soft sets (NSS) we proposed in this paper to the problem
of choosing the best house in Example 2.

4.2.1. Results from RMSS

The first step of RMSS is to construct a soft set (F, A) according to the raw data set. However,
the raw data in Example 2 contains various types of variables which can not be described by soft set
theory. In order to implement RMSS, all of the variables should be transformed into binary variables
with values of “0” and “1”, where “1” indicates “cheap”, “beautiful”, “big”, and “good location”
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respectively, and “0” indicates otherwise as in table 6. Then the soft set (F, A) is given as follows
according to the mapping F from A to U, which consists of the sets of “cheap houses”, “beautiful
houses”, “big houses”, and “good location houses”:
(F, A) =

{
F(e1) = {cheap houses} = {x1, x6},

F(e2) = {beautiful houses} = {x1, x3, x5, x6},

F(e3) = {big houses} = {x2, x3, x5},

F(e4) = {good location houses} = {x1, x3, x5, x6}
}
.

In (F, A), F(e1) = {cheap houses} = {x1, x6}, for example, is a subset in U, in which the houses x1

and x6 are cheap in price, while the houses x2, x3, x4 and x5 are not cheap in price. F(e2), F(e3) and
F(e4) are defined in the same manner.

The choice value ci of each house is given by:

ci =

m∑
j

hi j (4.1)

where i = 1, · · · , n, j = 1, · · · ,m, hi j is the value of the house xi on the attribute e j.
Table 6 is the tabulation of (F, A) with the choice values presented in the last column. The optimal

choices are the houses with the largest choice value, i.e. x1, x3, x5 and x6.

Table 6. Tabular representation of (F, A).

e1 e2 e3 e4 ci

x1 1 1 0 1 3
x2 0 0 1 0 1
x3 0 1 1 1 3
x4 0 0 0 0 0
x5 0 1 1 1 3
x6 1 1 0 1 3

4.2.2. Comparison

From the results of RMSS and NSS, the differences between them can be summarized as follows:
Firstly, decision-making with the NSS method is much simpler than with the RMSS method. The
former has the capacity to reduce redundant parameters, so decisions can be made based on less but
essential parameters and the burden of decision-making is lessened. In RMSS, however, the final
decision had to be made based on all attributes. In the house buying example, four houses were
determined as the best houses in both methods. With limited budgets, consumers may have to choose
one from the four best alternatives. The NSS method simplified the core condition attributes to only
one: The area of the houses. Therefore, the final decision can be derived relying on this core attribute
and her/his budget. But in the RMSS method, consumers still need to go through all the attributes of
the best alternatives to determine her/his final choice. Therefore, the difficulties of making decision
with RMSS method were not fundamentally reduced. Secondly, in RMSS method, serious loss of
information was obvious. For example, the houses were classified into big and non-big roughly by the
area of them. However, the difference of area between houses within one class could be significant
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for decision-making. Therefore, the RMSS method based on the binary variables may drop a lot of
valuable information during transferring. In the NSS method, heterogeneous information in decision-
making problems can be integrated straightway, and information losing or distortion can be prevented.
Thirdly, the RMSS method did not make full use of the decision values in the process of decision-
making, and there was no connection between the conditional attributes and the decision attributes.
A single decision rule was generated by ranking the objectives according to their choice values, the
objectives with the maximum choice value were selected as the optimum. On the contrary, the NSS
method can generate decision rules by making a connection between the conditional parameters and
decision parameters, and the decision can be made based on multiple decision rules, which is more
suitable for the actual decision-making environment because of its variety and convenience.

5. Application in the medical diagnosis

In this section, we use the newly developed method to facilitate the diagnosis of heart disease. We
got a dataset of 297 patients from UCI machine learning repository, which contains 14 parameters for
their heart disease diagnosis. Among all of the parameters, the classes of heart disease was regarded
as the decision attribute, and the other 13 variables were regarded as the condition attributes for
describing the patients. This dataset was chosen because it contains various data types, including
binary variables, categorical variables, discrete variables and continuous numerical variables. So the
medical diagnosis of heart disease is a practical decision-making problem under a heterogeneous
information environment, which can be solved by the NSS method proposed by this paper.

We randomly selected 267 observations for training the NSS algorithm, and used the rest 30
observations for testing the predictive accuracy of the trained decision rules. We also applied the
RMSS method in the testing dataset to predict the patients’ type of heart disease. The prediction
errors of the two methods are shown in Table 7, and it is obvious that our method outperforms RMSS.
Moreover, in the process of diagnosis, even though there were more steps in our algorithm compared
with Maji’s, decision-making based on our algorithm relies on fewer parameters (derived from
parameter reduction) and more precise decision rules (obtained from the connection between the
conditional attributes and the decision attributes), which can make the decision-making simpler and
more efficient. But in Maji’s method, there is no parameter reduction involved, and no decision rules
specifically defined. As a result, decision-making and prediction using Maji’s method is not efficient
and less accurate.

Table 7. The prediction errors of NNS and RMSS.

The prediction error (%)
NSS 3.3
RMSS 30.0

6. Conclusions

Based on the research of Molodtsov [1], this paper proposed the concepts of neighborhood soft
sets and the neighborhood soft decision system. After that, a new decision-making method under
heterogeneous information environment was presented. This method not only can provide adequate
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parameterization tools inherited from the properties of soft sets, but also can integrate heterogeneous
information directly with the help of neighborhood space. More accurate decision can be derived based
on the new method, because information losing or distortion caused by transformation of information
can be avoided. An example of choosing the best houses was used to demonstrate the operation of the
newly developed decision-making method. With the same example, we also compared our method with
the decision-making method of Maji [17]. The results showed not only the advantage of our method
to process heterogeneous information, but also its capacity to develop concise and effective decision
rules. Moreover, the decision-making method proposed by this paper can be applied to a wide range of
areas such as feature selection, evaluation and forecasting problems with heterogeneous information.
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