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Abstract: The research on the learning performance of machine learning algorithms is one of the
important contents of machine learning theory, and the selection of loss function is one of the important
factors affecting the learning performance. In this paper, we introduce a parameterized loss function
into the online learning algorithm and investigate the performance. By applying convex analysis
techniques, the convergence of the learning sequence is proved and the convergence rate is provided in
the expectation sense. The analysis results show that the convergence rate can be greatly improved by
adjusting the parameter in the loss function.
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1. Introduction

Let X c R? be the input space , Y = [-M, M] be the output space for some M > 0. z = {(x,, y)}"_,
are the random samples i.i.d. (independently and identically drawn) according to a Borel probability
measure p(x,y) = p(y|x)px(x) on Z = X xY. Based on these samples, the goal of regression problems is
to look for a predictor f : X — R from some hypothesis space such that f(x) is a “good” approximation
of y. The quality of the predictor f is measured by the generalization error

&(f) = f V(x,y, fdp(x, ),
Z

where V(r) : R — R, is a prescribed loss function.

The hypothesis space considered in this paper is the reproducing kernel Hilbert space(RKHS) H.
This means that there exists a unique symmetric and positive definite continuous function K : X X
X — R, called the reproducing kernel of Hy, or Mercer kernel, and an inner product (-, -)x such
that f(x) = (K(x,-), f)x which is the reproducing property of the kernel, and all f € Hy are linear
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combinations of kernel functions. In other words, the RKHS H is the closure of the linear span of
the set of functions {K,(-) = K(x,-) : x € X} with the inner product (-, -)x. For each x € X and
f € Hy the evaluation functional e, (f) := f(x) is continuous (i.e.bounded) in the topology of Hy, and

|f(x)| < kl|fllxk with k := sup VK(x, x) (see [1]).

xeX
Traditional off-line learning is also called batch learning, all sample points need to be tested in each

training. When the amount of data is large or new sample points are added, the learning ability of batch
learning decreases significantly. Online learning is one effective approach raised for analyzing and
processing big data in various applications, such as communication, electronics, medicine, biology,
and other fields (see e.g., [2-6]). The performance of the kernel-based regularized online learning
algorithms have been researched and their effectiveness has been verified (see e.g., [7-11] and
references therein). Unlike the off-line learning algorithms, online learning algorithms process the
observations one by one, and the output is adjusted in time according to the results of the last learning.

With the observations z = {(x;, y,)}|_,, the kernel regularized online learning algorithm based on the

stochastic descent method is given by (see e.g., [8—10])

Ji=0. (1.1)
ﬁ+1 = fl - nt(va(xt’yt’ fI)Kx, + /lﬁ‘),

where 7, 1s called the stepsize, 4 > 0 1s a regularization parameter and the sequence {f; : t = 1,...,T+1}
is the learning sequence.

When the least-square loss function V(x,y, f(x)) = (f(x) — y)* is selected, the specific iteration
format of the online learning algorithm is given by

fi=0,
(1.2)
{ft+1 = fi = n((fi(x) = yOK,, + Af).

To study the learning performance of online learning algorithms we need to bound the convergence
rate of the iterative sequence {f; : t+ = 1,---,T + 1}. The convergence of the online learning
algorithm (1.2) has been extensively studied in the literature (see e.g., [8,9, 12]). The research
results in [12] show that under mild conditions the regularized online learning algorithm can converge
comparably fast as the off-line learning algorithm.

The least square-loss is the most widely utilized criterion for regression in practice. However, from
a robustness point of view, the least square loss is not a good choice. In many practical applications,
outliers or heavy-tailed distributions often occur in real data sets. In recent years, how to improve
the robustness of algorithms has become one of the hot topics in the field of machine learning. In
the literature on learning theory, a lot of efforts have been made and there have been some results on
generalization analysis (see e.g., [13—17]) and empirical experiments (see e.g., [18, 19]) of learning
algorithms when outliers or heavy-tailed noise are allowed.

One of the main strategies to improve robustness is to use some robust loss function with a scale
parameter(see e.g., [20,21]). Based on the quadratic function V1 + 72,7 € R which plays an important
role in constructing shape preserving quasi-interpolation and solving partial differential equations with
mesh-free method since its strong nonlinear property and its convexity, [21] constructed a robust loss
function V,(r) with a scale parameter o € (0,1]. For o € (0, 1], the parameterized loss function
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V() : R = [0, 00) is defined as

V() = az(—w'j:r2 ~1), reR
The analysis results in [21] show that the learning algorithm based on the parameterized loss
function V,(r) has a good generalization ability.

Encouraged by these researches, we want to further improve the performance and applicability of
the online algorithm. In this paper, we introduce the parameterized loss function V() into the online
learning algorithm, and analyze the influence of the scale parameter on the convergence rate of the
algorithm.

To give the specific format of the learning algorithm with the parameterized loss function, we give
the following notations correspondingly. We denote

Ex(f) = fz Vo (y = f(x)dp(x, ), (1.3)
and
fo =arg min &E,(f). (1.4)
feL2(px)

The kernel-based regularized off-line algorithm is the following optimization problem:

: A
S = arg min () + S/llx- (1.5)

Based on the random observations z = {(x;, y,)}thl, the approximate solution of the problem (1.5) is
obtained through the following learning process
T

1 A
o o - V,(y, — + ZIfI%.
17, = arg min o 2 O = fGx) + SlIfllk

It is easy to see that the gradient of the loss function V,; is given by

V Vol — fi(x)) = ——2— filx)

[i + (et

Along with the online algorithm (1.1), the kernel regularized online learning algorithm with the
parameterized loss function V,(r) is defined by

fi=0,

— = fi(xi)
Jrer = fi - Th(—\/ﬁlﬁ, +Af).

In this paper, we focus on the performance of the sequence {f; : + = 1,...,T + 1} produced by the
algorithm (1.6).

The remaining parts of this paper are organized as follows: we present the main results of this paper
in Section 2. The proofs of the main results are given in Section 3. Discussions and comparisons with
related works are given in Section 4. Conclusions and some questions for further study are mentioned
in Section 5.

In the present paper, we write A = O(B) if there is a constant C > 0 such that A < CB. We use E,[-]
to denote the expectation with respect to z. When its meaning is clear from the context, we use the
shorthand notation E[-].

(1.6)
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2. The main results

In this section, we present our main results about the performance of the algorithm (1.6), proofs are
given in Section 3.

2.1. The convergence of the learning sequence

Our first main result establishes the convergence of the sequence {f, : t = 1, ..., T + 1} in expectation,
under mild conditions on the stepsize.

Theorem 2.1. Let f7 be defined as in (1.5), and let {f; : t = 1,...,T + 1} be the sequence produced by

the algorithm (1.6), 1 > 0. If {n,} satisfies Y. n, = +co, lim n, = 0 and n, < .
=1 t—+00

<% then it holds that

2.2. Error analysis

Our second main result gives the explicit convergence rate of the last iterate by specifying the step
sizes in the algorithm (1.6).

Theorem 2.2. Let f7 be defined as in (1.5), and let {f; : t = 1,...,T + 1} be the sequence produced by
the algorithm (1.6). Forany0 < A <1,0< 6 < 1, taken, = %t‘e with C > A+ 4(k* + 1). Then, it holds
that

1-6 _nb-1 .
2l - f71E] < (Do) + —ng(clilg_)gl,g)exp (-7 + 1))+ B jf0 <<,
R0 + ) T, ife=1,

where Dy(1) = 242 C, = 4AMo(xk* + 1).

Corollary 2.1. Let f] be defined as in (1.5), and let {f; : t = 1, ..., T + 1} be the sequence produced by
the algorithm (1.6). For any 6 € (0,1),0 < @ < min{l — 0, 8}, take A = T~°. If the stepsize is chosen as
n, = %t‘e, then it holds that

g
B[Ifrer = TN| < Concus X 7 2.1)

where Cy oo 1S a constant depending only on 6, k, C and M.

Remark 1. The results given in Theorem 2.2 and Corollary 2.1 show that the scale parameter o can
effectively control the convergence rate of ||fr4; — f{llx, which is usually referred to as the sample
error. Depending on the circumstances, the sample error bound can be greatly improved by choosing
the parameter o properly. In fact, take o = 2 = T~®. Then by (2.1), we have E [ll fre1 — }‘L’ll%{] = O(T™)
which is better than the sample error bound O(T %) given in [9].

The results provided above mainly describe the convergence rate of the sample error. However,
in the studying the learning performance of learning algorithms, we are often interested in the excess
generalization error E,(fr11) — E,(f,-). Define

. A
K. = inf {E,() = Ea) + Sl ).
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which is often used to denote the approximation error, whose convergence is determined by the capacity
of Hy. We assume the K-functional satisfies the following decay

K(fr, ) = 0OF), 12— 0", (2.2)

with0 < < 1.
By combining the sample error with the approximation error, we obtain the overall learning rate
stated as follows.

Corollary 2.2. Let E,(f) be the generalization error defined as in (1.3), {f; : t = 1,...,T + 1} be the
sequence produced by the algorithm (1.6). For 6 € (0,1),0 < @ < min{l — 6,6}, take A = T~“. If the
stepsize is chosen as n, = %t‘g, then it holds that

W

1
TP’

o
E[&x(fr+1) = Ex(f5)] = O( o + (2.3)
2
Now, we compare the performance of the algorithm (1.6) with that of the online kernel regularized
learning algorithm based on the least square loss.
In [22], the online kernel regularized learning algorithm with the least-square loss is researched,

and the learning rates are established under some assumptions. Namely, for0 << 1,0 <6 < %
there holds
_ B
E|&(fr) - 8(f)] = O(T°757) (2.4)
and for 1 53 <B< 1,0<6< ;ﬁ i,thereholds
_2pl
E|&(fra) - &(£,)| = O(T° %), 2.5)
2-1 51 | Bl 2pe
ForO <,B <1, we choose o = 775 with 0 < y < g Take A=T % %7 %7 and M=qast 77 %D
with £~ s 2ﬁ+lﬂ <6< ﬁfl + 2;61 By Corollary 2.2, we have
— O(T 30 FDpeh
E[Ex(fr+1) = Ex(fo)] = O(T7 517 3TH), (2.6)
1 3 S0 3 25-1 1 oo T,
And for 5 <8 < 1, we choose 0@ = A = T%# 17 %+ w1th0<6<2,6+1 Take 17, = 77177 e By
Corollary 2.2, we have that
Boso 1
E[&o(fre1) = Eo(f)] = O(T#7°757). 2.7

The rate (2.6) is better than (2.4), and (2.7) is better than (2.5). The analysis results illustrate that the
convergence rate of the algorithm (1.6) can be improved by choosing the parameter o appropriately.

3. Proofs
Lemma 3.1. Let {f, : t = 1,...,T + 1} be the sequence produced by the algorithm (1.6). If n, < A, then,
foranyt=1,.,T+1,it holds that
Ko
Ifillx < —. (3.1)

A
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Proof. We prove (3.1) by induction on ¢. The inequality (3.1) is true for t =

1 because of the

initialization condition f; = 0. Suppose the bound (3.1) holds for any ¢, and consider f,,;. The

iteration (1.6) can be rewritten as

— fi(x)
oo = S 2D g,
'1 +(yl_ft(xt))2
— X)
= (- dp)f, + —2 Jil: nK,,.

,1 + ()’1—ﬁ(xt))2

This implies that

ye — fi(xy)

[i & (bt |

fiatllx < (1= An)ll fllx + Kz

Since

v = filx)

| /1+(Yz—ﬁ(xr))2

Combined with the assumption || fillx < 7, we have

<o

Ifiville < (1 =m)lfillx + ko
< (1—/ln,)%+/<0'77,

Ko

= =

This completes the proof.

Lemma 3.2. Assume [ is defined as in (1.5). Then, for any f € H, it holds that

f YIS v = AT ST Px.
V4

=1
Vi+ ()

Proof. By Taylor formula, for any u,v € R, we have

Vo) = Vo) = Vo) =)+ 3V @)=,

where £ € R is between u and v.
Note that, V, (£) = —— > 0. Then,

Vo) = Vo) > V) —v) = =Y

L+ (2P
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Therefore, for any f, g € Hy, we have

Eo(f) = Ex(8)

jﬂaw F)dp - j\@@—gumm
Z
> jﬁ ~8) 4 - g(x)dp

[1 + (y g(x))2

f y—gx) Kdp),

/1 + (y g(x))z

= ([ -8 V&e(9)k- (3.8)

By (i) of Lemma 5.1 in [23], we know &,(f) is a convex function on Hy. And || f |I§( is a strictly convex

function on Hy. Then, Q,(f) = E,(f)+ %llfll%< is a convex function on H. Based on (ii) of Lemma 5.1
in [23], we have

e}
Il

Vi Qo (f) ly=rr
Vo (f) lp=pr +AST

f VI o age 3.9)

} f/l(x) 2
—)

Taking inner product with f — f7 on both sides of the above formula, we get

0 = (- f I Ko AFF S~ Fx

= ORI,

=7
L+ (A

f y—=fi () (f/{f(x)_f(x))dp+/l<f/lo—’f_f/?>[<'

/ )fl

This proves our conclusion. O

Lemma 3.3. Let f{ be defined as in (1.5). For any f € Hg, we denote Q,(f) = E,(f) + %llfll%(. Then,
it holds that

A
ﬂf<ﬁﬁs9Aﬂ—QAﬁ)

Proof. For any f € Hg, we define a functionfy = f7 + 6(f — f7),0 € [0, 1]. Then, fo = f7 and
fay = f- Denote F(0) = Qu(fio) = [, Voy — fio(x)dp + 3| figll%. then F(1) = Qu(f), F(0) = Qo (7).
Since V,, is differentiable, as a function of 6, F(0) is differentiable. And for any 6 € [0, 1], we have

F,(H) _ lim F(@+ A6)— F(0)
AG—0 INCj
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e Qo) = Qo)

260 NG,
= lim — ( f (Vo5 = fionsnr@) = Vo = fin @) dp + Sl fisran s = Sllfioll2
26-0 A\ J, 2 2
= tim ol [ 0= o) = 800 = F70) = Voo = ) do
+50Wfin + 867 = £ = Wfinl) (3.10)
By the median value theorem, there holds
Vo (3 = fin(0) = 80CFC0) = FTCN) = Vol = fin(0)) = 88V EST () — F(0), (3.11)

where £ € (y — fi(x)) — A0(f(x) = f7(2),y = fio)(x)).
This in connection with || fg, + 20(f — D% = [lfwllx = 286 = f7, fio)x + (ROPIIf = fDI
according to (3.10), tells us that

, , A
F©) = lim( fz VoOUT () = FONdp + A = fT fiodie + 5800f = F1I)

L Vo = fioCONST (X) = fF()dp + A f = f7 fio)x

f Vo (0 = £7(0) + 6(f7 () = £(0) (f7 () = f()dp + Af = f7. f +6(f = fio))x
VA

f V(- fL ) +0(f7 (x) — f(x) (fy (x) — f(x))dp
Z
+Af = 7, Pk + 0Allf — £z (3.12)

By Lemma 3.2, we see that

y= (%)

Mf= P = - (7 = )
o =
= -~ [ Voo srenure - fend. (3.13)
V4

On the other hand, since V(1) is a convex function in R, by discussions in [24], we know that
Vo (v = f7(0)) + 0(f7 () = f(0) = Vo (v = TN (%) = £(x)) = 0. (3.14)
Therefore, for 6 € (0, 1), we have
F®) = fz (Vo = 7)) + 0F7 () = f(x)) = Voo = £700)) (fF () = f(x))dp + A6 = £ IIk
> 01 f - f7llx- (3.15)

By the definition of f7, we know that F(6) > F(0) = Q. (f7), 6 € [0, 1]. Therefore, (3.14) implies
that

1
Q. (f) - Qu(f) = F(1)-F(0) = fo F (6)d6

AIMS Mathematics Volume 7, Issue 11, 20066-20084.
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\%

1
f A0llf - £7|I%d6
0
1
= Alf - fllk f 6dé
0
A
= Enf—ﬁ’ni-

The proof is completed. O

Lemma 3.4. Let f] be defined as in (1.5), {f; : t = 1,..,T + 1} be the sequence produced by the
algorithm (1.6), if A > 0, n, < 1, then

_3,

Ee,...r [Ilfran = £7IE]
T r 2Mo T

< 4’0’ 2 1—An)+ —— 1 —an,). 3.16
;m j];[l< m+ ]_1[< ) (3.16)

Furthermore, there holds

Eey...r [Ilfran = 1% ]

T T
< 4K’o? Z 177 exp {—/l Z nj} +

=1 j=t+l

oM d
ﬂo-exp {—/lZnt}. (3.17)

t=1
Proof. According to the algorithm (1.6), we know

Vi = fi(x:)

Ifer = £7I% = If = £7N% + 2llAf — K, %
,1 + (yr_ft(xt))Z
— fi(x) .
+2n; </1ft S J f; ; K..fi -1
Ye—Jt\Xt)\2
A1+ (=) «
o - (X)
Ui = FOIR + RIS, — —2 ) e e
/1 + (Yt—fz(Xz))Z
+2n,A, (3.18)

where A = (Af — —2=l&) g g0 .
<ft \/@xtﬁ ftK

By using the inequality {a,b — a)x < 3(|1bl% — llall}), a,b € Hy, witha = f,,b = f, we have

o Ye = Ji(x1) o >
A = A ts - Jt - er’ —Jt
<f b f>K < ’1+()’1—ﬁ(xt))2 ! f
o K
A r = Jil X
< SO0 -y - 2Lk, gy - )

Yi—fi(x) \2
VI =) B

AIMS Mathematics Volume 7, Issue 11, 20066-20084.
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Vi = Jfi(xp)

Ye—fi(x)\2
1+ (L)

A
< ST % = W% + Ve = 7 (x)) = Ve — fi(x))

A
= 30 HI A (7 (x) = fi(x)

A A
- (Vg<y, - fTGa) + ST ||%{) = (Va<yt — ) + §||ﬁ||§<). (3.19)

Since f; depends on {z, ..., z,_1} but not on z,, it follows that

A

B o) < B [B[(Volr = 7000 + SR = (Voo = o + 511G )|

A A
EolF7) + ST = Burc | 8o + SRR (3:20)

Combining (3.18) with (3.20), we have
Y — ft(xt)

, 1+ ()’t—ft(xr) )2

A A
20y [(E(LD) + SITIR) = Eo(F) + SIAIR)]

B, o lfir = fONE] < Boo S = fOIR) + 7B, A — K. |%]

o Y — f(X)
= Eopon llfs = FUIG] + B, o I - ———K,IIX]
,1 + (yt—ft(xt))Q
+2n,(Q-(f7) — Qo (1)) (3.21)
According to Lemma 3.3, we know
o /l o (12
Q,(f)) — Qs (f) < _Ellﬁ = fillg- (3.22)
Therefore, (3.21) implies that
Ezl ..... zf[”ft+1 - ff”%{]
o - ()C)
< Bl = O]+ B[S — —2 D g e
,1 + ()’t—fr(xr))z
_277th1 ..... Z;—l[”.fl - f,?”%{]
- = fix)
= (= By (Ifs = FOIR] + 2B, [l — —2 Ji% K. lIx]. (3.23)

, 1+ (y/—J;x_(Xz) )2

By Lemma 3.1, we know

s -

Vi = fi(x:) Vi = fi(x:) ‘ 2
“ + (M)z [1 + ()’r—fr(xr))z

AIMS Mathematics Volume 7, Issue 11, 20066-20084.
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Substituting (3.24) into (3.23), we obtain

E., . lllfic = f7IE] < (L= A B, . [Ilf = 7] + dton?.

Applying the relation iteratively fort = 7,7 — 1,..., 1, we have

EZ],‘..,ZT[”fT+l - ff”%{]
< (1= npE.,. oo [lfr — fTIK] + 430 n;

< (1= p)((( = Agr))Byy o[l = FTIE] + 48507 ) + 480,

T T T
<do? Yo [ [ =anp)+ [ [ - anEllf - 71
t=1 =1

Jj=t+1

T
Denote [] (1 —An;) = 1. From the definition of /7, we see that
j=T+1

A
Ellff 12 < &,(0) < Mo,

This in connection with the initialization condition f; = 0, it follows that

T T T
Bey o llfra = fIRT <40 Yt [ [ =y + [ ] - andB[IA71 ]
t=1

t=1 Jj=t+1
T T T
2Mo
sace? ) o | [ -anp+ == [a-an.
=1 j=t+1 =1

This shows (3.16). (3.17) follows from (3.16) and the inequality 1 — u < e™ for any u > 0.

3.1. Proof of Theorem 2.1

Proof. 1t is easy to see that

T

T
[ Ja-wm)<exp{=a) n) >0 (T - +e).

=1 =1
It implies that, for any € > 0, there exists some 7} € N such that

T

[a-an)<e

=1

whenever T > T}.

(3.25)

And according to the assumption lim 7, = 0, we know that there exists some #(¢) € N such that

t—+00

n, < Ag, for every t > t(g). Furthermore, we have

T T T T
Yon[la-mp < ae Y on[]a-amp
t=t(e)+1 j=t+1 t=t(e)+1 j=t+1

AIMS Mathematics Volume 7, Issue 11, 20066-20084.
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T

| [ -amp

t=t(g)+1 j=t+1

I
o

M=~
&

T
(== | Ja- ﬂn;))

j=t+1

T
n(l—ﬂnj)—]—[(l—ﬂm]

Jj=t+1

s(( ]_[ (1-n)) - ]—[ (1= An,)
j=t(e)+2

j=t(e)+1

T T
([]a-mp- ] a-wm

Il Il

™ ™
DM~ s~
T —/—//

+

j=H&)+3 j=1(&)+2
+
+ ( H (1= any) - ]—[u - 1))

Jj=T+1
= &1 ]—[ (1-an))

j=t(e)+1

< & (3.26)

Since #(¢e) is fixed, there exists some 7, € N such that, for every T > T5, it holds that

Moz Yozt

j=t(e)+1 j=te)+1

So, for any 1 <t < t(g), we have

T T T e
]_[(1 — A1) < expi- Z A7) < expf- .Z ) < .
Jj=t+1 Jj=t+1 Jj=t(e)+1

Hence
t(e) T (&)

Zn,]—[(l— ) < )Z <s. (3.27)

Jj=t+1

From (3.26) and (3.27), we know that for any & > 0, there exists some 7, € N such that

T t(e) T
Zn ﬂa — ) = Zq, ]—[(1 —Anj) + Z n ﬂ(l —Ap) < e+e=2e, (3.28)
t=1 Jj=t+1 =1 Jj=t+1 t=t(e)+1 j=t+1

whenever T > T,. Let T' = max{T}, T»}, then by (3.16), (3.26) and (3.27) we have

2Mo
A [”fT+1 - ff—”%(] < (8/(20-2 + 2 )€,

when T > T'. Thus we complete the proof of Theorem 2.1. O

AIMS Mathematics Volume 7, Issue 11, 20066-20084.



20078

3.2. Proof of Theorem 2.2
Proof. By (3.21), we know

Vi = Ji(xp)

’1 + (yt_fl(xl) )2

w202, (800 + SUATIG) - (8- + SIAR)| - 329)

th”%(]

E...ollfir = F7IR] < Bepa, |1 = A7 | + 07Be AL -

From the inequality |la — bI[% < 2|lall% + 2||b|[%, we have

v = filxp) Kx,”%( < 2/12||ﬁ||%( " 2| yi = fi(x)

/1 + ()‘z—f}(xz))z ,1 + (yx—f}(xt))z
I + 26202 (41 + (y’_Tf’(’”))2 -1) (3.30)

IAf; - FIK Ol

On the other hand, for any r € R, it holds that |—’ |2 < 20'2(—“72”2 —1) = 2V,(r). This implies that
Vi+(2)2 o
- filx) g
A L S AR 1e0)) (3.31)

, 1+ ()’t—fr(xr) )2

Combining (3.30) with (3.31), we get

ye = fi(xp)

/ 1+ (yt_ft(xt) )2

lAf: = K lIx < 43V = fi(x)) + 2280 fillx

< 4PV (y, — fi(x) + 24lIflI%
A
:M%H%—ﬁum+4X?Mﬁ
A
< 40+ D(Vo by = fiCx) + SIAIR). (3-32)

Substituting (3.32) into (3.29), we get

Ezl,...,z,[”ﬁﬂ - ff”%{]
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A A
+ 20, o [(E(FT) + S %) = (Ex(f) + Elllelé)] + 40 + D E4(0)

1
<E., . = fIE]+ 20,0 =263 + Dn)E,, . [(ET) + Ellfj’ %) — (E(f) + Ellleli)]
+4(* + DMon! = E., . [If, = f7l%] + B+ 4(* + Mo, (3.33)

where
B =2n,(1 -2 + Dn)E,, .. [(Ex(f} )+—||f4 %) — (Ex(f) + ||fz||§<)]-

Based on the assumptions about 77, we know that 1 — 2(x* + 1)i5, > 1. And by Lemma 3.3, we know

= 2
o % 0112 A 2 A o112
E... . .oal&(fD) + EHf,l Ix) = (Ea(fD) + EllftIIK)] < —Ellfz - fllk-

This implies that

An,
B < —
-2
Combining (3.33) with (3.34), we obtain

=B, o, Ifi = SR (3.34)

A
E, ollfier = [Tl < (1 - %)Ezl ..... i lIfs = fTIER] + 4Ma? (2 + Dy (3.35)
Denote C, = 4Ma?(k* + 1). Fort = T, T — 1,..., 1, we apply the relation iteratively. Then we have

..... o llfren = f711]

A
< (1= Znm)Bey o lfr = £7 121+ Cor>

A A
< (1= 500 (1= S000Bey ey sy = S+ Corey ) + o

2
A A A
= (1= 500 = Znr-0Bx e lllfr1 = ST+ (1 - Ennc,,n%_] + Con
/l /1 /l o112 2 /l 2 2
< (1= 5001 = Snr-1) ((1 = 2By e lllfra = £ + cgnm) + (1= Sn0Cotry + Coy
A A A
< (=S = Znr-0) -+ (U= Zn0(ELf = f7 121+ Com})
T T
=C, y [ ]a- —77/) + ]_[a - —m)Enm 2]
=1 j=t+1

T
<Gy m|]a- n,>+ ﬂ(l——nt) (3.36)

T T T
. P! P
E.,. a1 — f713] < Cs Z] 7 expl=3 ];1 i)+ == expl -3 Z} (3.37)

AIMS Mathematics Volume 7, Issue 11, 20066-20084.



20080

Denote

oM A w 1w a
—— expl-5 Zl mb = Do) expl=5 Zl nik = Do) expi— Z

t=1

I]:

and

T
L =C, Z( t)exp——Z] :E—Z exp——Z]
t=1

j=t+1 j=t+1

Then, by (3.37) and the assumptions about the stepsize 7r;, we know

By orllfror = fTIRI < I + Do (3.38)

Now, we estimate /; and I, respectively. By Lemma 4 of [9], we obtain the following estimate of I

D, () exp{-£ 2T + 1)), if0<6<1,
I < () exp{ 310 ( )L if (3.39)
D (AT + 1)72c, iff=1.
On the other hand, by Lemma 5.10 of [23] with v = 2(:’ s = 6, we have
i T A —(19{;)‘2,9 s exp{— ALz (T + 1) Lif 0 <6< 1,
t exp——Z] } < 2C
t=1 j=t+1 1—% (T + 1) ZC’ lf =1

So,

T T-

Zt‘zgexp{—— Z ]_Q}SZ Y exp{— Z F + T7% expl—=—= Z i

=1 Jj=t+1 t= ] T+1

T-1 /l T
-26 .—0 -26
=)t == +T
expl—is 3 7
t=1 j=t+1
1
B 36;; + L exp{— AT+ D)+ T, if0<f<1,
(T +1) ©+T2 ifo=1.
Furthermore, we have the following estimate of I,
Co (36C A(1-20-1) .
i S (3 + Zor Hexp{ CERT DT T, if0<0<1, (3.40)
s (LT T, ife=1

Since T7% < T7% and 1 < C, the conclusion can be established by combining (3.38) with (3.39)
and (3.40). O
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3.3. Proof of Corollary 2.1
Proof. For 6 € (0,1),0 < @ < min{l — 6,60}, by Theorem 2.2 with 4 = T~%, we have

E [Ifre1 - f71IR]

36M(C+1) 11 epd A0 2 o), 3OMEC A D)
C2(1 - 6)2'-¢ 2C(1 - 6) c

Since for any v > 0,c > 0,1 > 0, there exists L > 0 such that exp{—cT”} < LT, and hence the
first term on the right-hand side of (3.41) decays in the form of O(7;) for any large n > 0. However,
the second term on the right-hand side of (3.41) is bounded by O(57=). Consequently, there exists a
constant Cy; ¢, depending only on 6, k, C and M such that

< O'(ZMT" + (3.41)

(oA
B [Ilfra = S| < Concws X -

The proof is completed. O

3.4. Proof of Corollary 2.2

Proof. According to the median value theorem, there exists &€ between y — f7,1(x) and y — f ~(x) such
that

Voy = fra(x) = Vo = faor(0) =Vl fra1(x) = fae ()l

:L |fT+1(x) - f/l’fT(x)|

SO’|fT+1(X) - f/l,O'(x)|~

Then, we have

Exlfri) = Eolfi) < f Vo = Fre1(0) = Vo = fuo()|dp(x, )
z

<o f 'fT+l(x) = fac()|dp(x, y)
z
< kollfrer = faollk- (3.42)

And we get

8()'(fT+1) - 80’(f0’) < (80'(fT+1) - 80'(f/1,0')) + 80’(f/1,0’) - 80’(f0’)
< KO-”fT+1 - f/l,(r”K + 80'(f/l,0') - 80'(f0')

A
< k0l = fallc + Eolfr) = Eolf) + Sl faolis
A
= k7 llfrer = fuollk + inf {E:() = Eo(f) + Flfuslly)

= ko'l fr+1 — faollk + K(fe, .

Combined which with Corollary 2.1 and the assumption 2.2, the desired result follows.
O

AIMS Mathematics Volume 7, Issue 11, 20066-20084.



20082

4. Discussions

e Most studies of online learning algorithms focus on the convergence in expectation (for
example [8—10,25]). However, these results were established based on some fixed loss functions, such
as the least-square loss function (see e.g., [9,22]). Our results are established based on a parameterized
loss function with a scale parameter o. The analysis results in Section 2 show that the scale parameter
o can effectively control the convergence rate of the learning algorithm, and a better convergence rate
is obtained. On the other hand, the previous researches on online learning algorithms rely on integral
operator theory (see [25]), this paper establishes the error bounds for the learning sequence by applying
the convex analysis method. Convex analysis method has been widely used in various research fields,
for example, in the analysis of machine learning algorithms (see e.g., [21,23,26] ) and the studies of
discrete fractional operators (see e.g., [27,28]), and it has been proved to be a very effective analysis
method.

e In [23], the online pairwise regression problem with the quadratic loss is researched. Different
from the reference [23], in this paper, we use the parameterized loss function for the pointwise learning
model, which has a wider range of applications than the pairwise learning model. It is known that deep
convolution networks can increase approximation order (see e.g., [29-32]),then it is hopeful that the
convergence rate provided in this paper can be improved by choosing the deep neural network method.

5. Conclusions

In the present paper, we analyze the learning performance of the kernel regularized online algorithm
with a parameterized loss. The convergence of the learning sequence is proved and the error bound
is provided in the expectation sense by using the convex analysis method. There are some questions
for further study. In this paper, we focus on the theoretical analysis of the kernel regularized online
algorithm with a parameterized loss V.. However, there is still a gap between theoretical analysis
and the optimization process of empirical risk minimization based on a parameterized loss. In the
future study, it would be interesting to apply the online learning algorithm based on V., to solve some
practical problems and construct an effective solution method. In addition, we mainly analyze the
sample error in this paper, and the approximation error is represented by K-functional. How to make a
more accurate analysis of the approximation error and further study the influence of the scale parameter
o on the approximation error still need to be further studied.
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