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Abstract: In this study, the isogeometric boundary element method (IGBEM) based on non-uniform 

rational basis spline (NURBS) is used to perform shape design sensitivity and optimization of 

rotating three-temperature (3T) thermoelastic structures. During the optimization process, the shape 

design sensitivity within the IGBEM formulation was derived to include precise geometries and 

greater continuities. It was found through the application of the IGBEM that the shape design 

velocity has a significant effect on accuracy of the obtained shape design sensitivity. As a result, the 

developed shape design sensitivity analysis (SDSA) technique based on the considered IGBEM 

formulation outperforms the computational solution based on the traditional SDSA method. The 

isogeometric shape sensitivity and optimal design for a complicated three-temperature thermoelastic 

problem in rotating structures are investigated. The impact of rotation on the thermal stress 

sensitivity, optimal three-temperature, optimal displacement and optimal three temperature thermal 

stress distributions are established. It is shown that the SDSA derived using IGBEM is efficient and 

applicable for most three-temperature thermoelastic optimization problems. 
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1. Introduction 

Various aspects of engineering are coupled or interconnected with each other, including 

structural response, changes of temperature, fields of electromagnetic, and interactions of 

fluid-structure. In thermoelasticity, the heat conductivity of an elastic body is not affected by its 

deformation because the statement that the distortion of an elastic body does not change the heat 

conductivity is true. Extensive thermoplastic design efforts are common in plant design and nuclear 

industries, where thermomechanical coupling by chemical and atomic responses has a significant 

impact on practical devise analyses. Another demand for coupled thermoelasticity is practically 

evaluated resources [1], of which nonhomogeneous thermal and mechanical properties are depicted 

by the arrange role, i.e., design parameters, to oppose thermal stacking and maintain structural 

intensity. 

The combined shape plan and execution evaluation of mechanical components has been a focal 

point in CAD and CAE businesses to get the best and optimized designing arrangement, and the 

recently created isogeometric analysis (IGA) system by Hughes et al. [2] encourages consistent 

joining between building investigation and geometric representation by utilizing the same 

non-uniform rational basis spline (NURBS) premise capacities to parameterize the arrangement 

space. In areas where modern geometry representations are required, such as shell investigation [3,4], 

fluid-structure interaction [5,6], and shape plan optimization [6,7], isogeometric approaches have 

been used. The isogeometric method was used to investigate thermoelastic behavior, the 

thermomechanical gun dealings problem [8], and fabric dispersion of practically evaluated 

structures [9,10]. 

The boundary element strategy was created to decipher the supervising partial differential 

conditions as the boundary indispensably conditions of the relocation and footing areas over the 

boundary [11,12]. Several complicated thermoelastic problems have been established in the literature 

to solve such problems, numerical techniques, such as the boundary element method (BEM), have 

been investigated in the context of micropolar-thermoelasticity [13], carbon nanotube fiber 

reinforced composites [14], micropolar piezothermoelasticity [15], Micropolar 

Magne-to-thermoviscoelasticity [16], and Magneto-thermoviscoelasticity [17]. Fahmy also 

introduced new boundary element models for bioheat problems [18], Thermoelastic problems of 

Metal and Alloy Discs with Holes [19], Wave Propagation Problems of Anisotropic Fiber-Reinforced 

Plates [20], size-dependent thermopiezoelectric problems [21], three-temperature problems [22], and 

photothermal problems [23]. 

The use of IGBEM in shape optimization [24] may be a natural extension of IGA-based shape 

optimization considerations of References [6,25], in which precise geometric data is used and shape 

plan factors are streamlined. Furthermore, IGBEM-based optimization has greater ideal shape plan 

flexibility than IGA-based optimization. [26]. Since the mid-1980s, affectability studies and plan 

optimization of thermally coupled frameworks have been carried out [27]. Dems and Mroz [28] 

performed variational thermoelasticity sensitivity analysis using sizing and shape variables. Tortorelli 
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and Subramani [29] used the adjoint approach to analyze sensitivity for a coupled constitutive model. 

Optimization of shape and topology for problems of thermoelastic was introduced by Hou, Sheen [30] 

and Li, Steven [31]. The integral equation of boundary was used by Lee and Kwak [32] to examine 

optimization of shape design. The plan optimization of fabric dispersion for thermally stacked FGMs 

has been broadly considered owing to the design element of FGMs. Fang et al. [33] studied 

isogeometric boundary element analysis for two-dimensional thermoelasticity with variable 

temperature. Lieu and Lee [34] used the isogeometric approach to optimize practically reviewed 

structures while accounting for thermoelasticity. An et al. [35] investigated the implementation of 

isogeometric boundary element method for 2-D steady heat transfer analysis. 

In this paper, a new isogeometric boundary element method (IGBEM) based on non-uniform 

rational basis spline (NURBS) is developed to perform shape design sensitivity and optimization of 

rotating three-temperature (3T) thermoelastic structures. The isogeometric shape sensitivity and 

optimal design for a complicated three-temperature thermoelastic problem in rotating structures are 

investigated. The shape design sensitivity analysis (SDSA) derived using IGBEM is shown to be 

efficient and applicable to most three-temperature thermoelastic optimization problems. Using the 

IGBEM in the design of thermos-mechanical structures allow for accurate thermal boundary 

representation as well as simple design parameterization for optimization. We primarily focus on 

developing the continuum-based shape affectability condition of coupled thermoelastic conditions 

and demonstrating the optimization results of viable appropriateness utilizing the inferred equation, 

utilizing these benefits within the optimization strategy. Derivation and verification of thermoelastic 

structure sensitivity using a continuum-based coupled shape design within the IGBEM was described, 

the derived sensitivity formula was used to solve the coupled thermos-mechanical optimization 

problem. The IGBEM approach based on NURBS was discussed. The affectability of an 

isogeometric shape plan is then determined using a boundary fundamental condition for considered 

thermoelastic problem. Rotation influences on the thermal stress 𝜎11  sensitivity, 

optimal  3𝑇 distribution 𝜃 , optimal displacement 𝑢 , and optimal 3𝑇  thermal stress 𝜎11  are 

presented graphically. Numerical results demonstrate the validity, accuracy, and efficiency of the 

proposed technique. 

2. NURBS basis function 

The response field in the IGBEM is approximated using the unchanged premise functions that are 

utilized to describe the geometry within CAD. Due to the employ of NURBS premise functions, which 

are based on B-splines, the IGBEM has various focal points over the usual BEM, including geometric 

precision and ease of refinement. Let a one-dimensional tie vector Ξ which contains a collection of ties 

ξi can be written as 

Ξ = {𝜉1, 𝜉2, ⋯ , 𝜉𝑛+𝑝+1},         (1) 

where 𝑛 and 𝑝 are points of control number, and the function of basis order, respectively. 

A basis function of NURBS 𝑅𝑖
𝑝(𝜉) is defined as 𝑅𝑖

𝑝(𝜉) =
𝑁𝑖

𝑝(𝜉)𝑤𝑖

∑  𝑛
𝑗=1  𝑁𝑗

𝑝(𝜉)𝑤𝑗
. 

The definition of 𝑁𝑖
0(𝜉) functions is, recursively 
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𝑁𝑖
0(𝜉) = {

1 if 𝜉𝑖 ≤ 𝜉 < 𝜉𝑖+1

0 otherwise
,  (𝑝 = 0),      (2) 

and 

𝑁𝑖
𝑝(𝜉) =

𝜉−𝜉𝑖

𝜉𝑖+𝑝−𝜉𝑖
𝑁𝑖

𝑝−1(𝜉) +
𝜉𝑖+𝑝+1−𝜉

𝜉𝑖+𝑝+1−𝜉𝑖+1
𝑁𝑖+1

𝑝−1(𝜉),  (𝑝 = 1,2,3, … ).   (3) 

In general, the IGBEM, which employs higher-order premise functions, yields higher levels of 

normality than the standard BEM. A NURBS bend is characterized by the summation of 𝑛 sets of the 

𝑝-th-order NURBS premise function R𝑙
𝑝

(𝜉) multiplied by the matching control point 𝐁𝑖 [36–38]. 

Over each specific knot, the developed NURBS basis functions have relative invariance and (𝑝−1) 

incessant differentiability, where 𝑝 is the arrangement of the fundamental polynomial. If the knots are 

repeated 𝑘-times, the continuity of NURBS basis functions decreases by 𝑘. 

3. BEM solution of three temperature field 

The three-temperature radiation heat transfer equations can be expressed as 

𝐶𝑣𝑒
𝜕𝜃𝑒(𝑟,𝜏)

𝜕𝜏
−

1

𝜌
∇[𝕂𝑒∇𝜃𝑒(𝑟, 𝜏)] = −𝕎𝑒𝑖(𝜃𝑒 − 𝜃𝑖) − 𝕎𝑒𝑟(𝜃𝑒 − 𝜃𝑟),  (4) 

𝐶𝑣𝑖
𝜕𝜃𝑖(𝑟,𝜏)

𝜕𝜏
−

1

𝜌
∇[𝕂𝑖∇𝜃𝑖(𝑟, 𝜏)] = 𝕎𝑒𝑖(𝜃𝑒 − 𝜃𝑖),      (5) 

𝐶𝑣𝑟
𝜕𝜃𝑟(𝑟,𝜏)

𝜕𝜏
−

1

𝜌
∇[𝕂𝑟∇𝜃𝑟(𝑟, 𝜏)] = 𝕎𝑒𝑟(𝜃𝑒 − 𝜃𝑟).     (6) 

In which 

𝐶𝑣𝛼 = {

𝑐𝑒      𝛼 = 𝑒
𝑐𝑖       𝛼 = 𝑖

𝑐𝑟𝜃𝑟
3  𝛼 = 𝑟

 and 𝕂𝛼 = {

𝔸𝑒𝜃𝑒
5/2

      𝛼 = 𝑒

𝔸𝑖𝜃𝑖
5/2

      𝛼 = 𝑖

𝔸𝑟𝜃𝑟
3+𝔹     𝛼 = 𝑟

, 

where 𝜌 is the material density, 𝜃 = 𝜃𝑒 + 𝜃𝑖 + 𝜃𝑟, is the total temperature, 𝕎𝑒𝑖 = 𝜌𝔸𝑒𝑖𝜃𝑒
−2/3

 and 

𝕎𝑒𝑟 = 𝜌𝔸𝑒𝑟𝜃𝑒
−1/2

 are energy exchanging coefficients, and 𝑐𝛼 (𝛼 = 𝑒, 𝑖, 𝑟) are constants. 

According to Fahmy et al. [17], the three-temperature heat conduction Eqs (4)–(6) may be written 

as 

∇[𝕂𝛼∇𝜃𝛼(𝑟, 𝜏)] + 𝕎̅̅̅(𝑟, 𝜏) = 𝑐𝛼𝜌𝛿1
𝜕𝜃𝛼(𝑟,𝜏)

𝜕𝜏
,      (7) 

where 

𝕎̅̅̅(𝑟, 𝜏) = {

−𝜌𝕎𝑒𝑖(𝜃𝑒 − 𝜃𝑖)– 𝜌𝕎𝑒𝑟(𝜃𝑒 − 𝜃𝑟), 𝛼 = 𝑒, 𝛿1 = 1

𝜌𝕎𝑒𝑖(𝜃𝑒 − 𝜃𝑖),                                      𝛼 = 𝑖, 𝛿1 = 1

𝜌𝕎𝑒𝑟(𝜃𝑒 − 𝜃𝑟),                                      𝛼 = 𝑟, 𝛿1 = 𝑇𝑟
3

.   (8) 

The unit mass total energy is given by 

𝑃 = 𝑃𝑒 + 𝑃𝑖 + 𝑃𝑟 , 𝑃𝑒 = 𝑐𝑒𝜃𝑒 , 𝑃𝑖 = 𝑐𝑖𝜃𝑖 , 𝑃𝑟 =
1

4
𝑐𝑟𝜃𝑟

4.     (9) 
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The considered conditions can be composed as 

𝜃𝛼(𝑥, 𝑦, 0) = 𝜃𝛼
0(𝑥, 𝑦) = 𝑔1(𝑥, 𝜏).       (10) 

𝕂𝛼
𝜕𝜃𝛼

𝜕𝑛
|

Γ1

= 0, 𝛼 = 𝑒, 𝑖, 𝜃𝑟|Γ1
= 𝑔2(𝑥, 𝜏).      (11) 

𝕂𝛼
𝜕𝜃𝛼

𝜕𝑛
|

Γ2

= 0, 𝛼 = 𝑒, 𝑖, 𝑟.         (12) 

Using the fundamental solution which satisfies the following equation 

𝐷∇2𝜃𝛼 +
𝜕𝜃𝛼

∗

𝜕𝑛
= −𝛿(𝑟 − 𝑝𝑖)𝛿(𝜏 − 𝑟), 𝐷 =

𝕂𝛼

𝜌𝑐
,      (13) 

where 𝑝𝑖 are singular points. 

The transient heat conduction can be written as 

𝐶𝜃𝛼 =
𝐷

𝕂𝛼
∫ ∫ [𝜃𝛼𝑞∗ − 𝜃𝛼

∗𝑞]
𝑆

𝜏

𝑂
𝑑𝑆𝑑𝜏 +

𝐷

𝕂𝛼
∫ ∫ 𝑏

𝑅
𝜃𝛼

∗𝜏

𝑂
𝑑𝑅𝑑𝜏 + ∫ 𝜃𝛼

𝑖 𝜃𝛼
∗|

𝜏=0𝑅
𝑑𝑅,  (14) 

which can be expressed as follows 

𝐶𝜃𝛼 = ∫ [𝜃𝛼𝑞∗ − 𝜃𝛼
∗𝑞]𝑑𝑆

𝑆
− ∫

𝕂𝛼

𝐷𝑅

𝜕𝜃𝛼
∗

𝜕𝜏
𝜃𝛼𝑑𝑅.      (15) 

Let us assume that the time temperature derivative may be approximated as 

𝜕𝜃𝛼

𝜕𝜏
≅ ∑ 𝑓𝑗(𝑟)𝑗𝑎𝑗(𝜏)𝑁

𝑗=1 ,          (16) 

where 𝑓𝑗(𝑟) are known functions and 𝑎𝑗(𝜏) are unknown coefficients. 

Suppose that 𝜃𝛼
𝑗
 is a solution of 

∇2𝜃𝛼
𝑗

= 𝑓𝑗 .           (17) 

Thus, Eq (15) can be written as 

𝐶𝜃 = ∫ [𝜃𝛼𝑞∗ − 𝜃𝛼
∗𝑞]𝑑𝑆

𝑆
+ ∑ 𝑎𝑗(𝜏)𝐷−1𝑁

𝑗=1 (𝐶𝜃𝛼
𝑗

− ∫ [𝜃𝛼
𝑗
𝑞∗ − 𝑞̂𝑗𝜃𝛼

∗]𝑑𝑆
𝑆

),  (18) 

where 

𝑞̂𝑗 = −𝕂𝛼
𝜕𝜃̂𝛼

𝑗

𝜕𝑛
          (19) 

and 

𝑎𝑗(𝜏) = ∑ 𝑓𝑗𝑖
−1𝑁

𝑖=1
𝜕𝜃(𝑟𝑖,𝜏)

𝜕𝜏
         (20) 

where 𝑓𝑗𝑖
−1 are defined as [33]. 
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{𝐹}𝑗𝑖 = 𝑓𝑗(𝑟𝑖).          (21) 

From Eqs (18) and (20), we obtain 

𝐶𝜃̇𝛼 + 𝐻𝜃𝛼 = 𝐺𝑄,         (22) 

where 

𝐶 = −[𝐻𝜃𝛼 − 𝐺𝑄̂]𝐹−1𝐷−1,       (23) 

with 

{𝜃}
𝑖𝑗

= 𝜃𝑗(𝑥𝑖),          (24) 

{𝑄̂}
𝑖𝑗

= 𝑞̂𝑗(𝑥𝑖).          (25) 

Now, we interpolate the functions 𝜃𝛼 and 𝑞 as 

𝜃𝛼 = (1 − 𝑇)𝜃𝛼
𝑚 + 𝑇𝜃𝛼

𝑚+1,        (26) 

𝑞 = (1 − 𝑇)𝑞𝑚 + 𝑇𝑞𝑚+1,        (27) 

where 0 ≤ 𝑇 =
𝜏−𝜏𝑚

𝜏𝑚+1−𝜏𝑚 ≤ 1. 

Differentiation of (26) yields 

𝜃̇𝛼 =
𝑑𝜃𝛼

𝑑𝑇

𝑑𝑇

𝑑𝜏
=

𝜃𝛼
𝑚+1−𝜃𝛼

𝑚

𝜏𝑚+1−𝜏𝑚 =
𝜃𝛼

𝑚+1−𝜃𝛼
𝑚

∆𝜏𝑚 .      (28) 

Substitution of Eqs (31)–(33) into Eq (27), yields 

(
𝐶

∆𝜏𝑚 + 𝑇𝐻) 𝜃𝛼
𝑚+1 − 𝑇𝐺𝑄𝑚+1 = (

𝐶

∆𝜏𝑚 − (1 − 𝑇)𝐻) 𝜃𝛼
𝑚 + (1 − 𝑇)𝐺𝑄𝑚,  (29) 

which can be written as 

𝕒Χ = 𝕓.           (30) 

Because the successive over-relaxation (SOR) method requires less memory than the Jacobi and 

Gauss-Seidel iterative methods [38], it was efficiently implemented to solve the resulting linear 

algebraic systems. 

4. BEM solution of displacement field 

Figure 1 illustrates the case of considered model in an open domain Ω that is bounded by a closed 

surface Γ , The boundaries existing of the mechanical and thermal are independently on Ω . 

Temperature Γ𝜃
0, flux Γ𝜃

1, and convection Γ𝜃
2. boundaries are thermal boundaries. Displacement Γ𝐷 

and traction Γ𝑁. boundaries are mechanical boundaries. In addition, the boundaries are independent. 
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The properties of considered model material in domain Ω are supposed to be isotropic and elastic, as 

well as temperature independent. 

 

Figure 1. Boundary problem of thermoelasticity. 

The internal heat production rate Q and the next thermal boundary conditions apply to the body: 

A endorsed temperature 𝜃0 on Γ𝜃
0, a endorsed heat flux 𝐪̅ on Γ𝜃

1, and an surrounding temperature 

𝜃∞  on the convection boundary Γ𝜃
2 . In addition, a body power strength  𝐛  as well as the next 

mechanical boundary conditions apply to the body: A endorsed displacement 𝐮̅ on Γ𝐷 and a endorsed 

traction 𝐭 ̅ on Γ𝑁. 

The equilibrium equation is 

𝜎𝑖𝑗,𝑗 + 𝑏𝑖 = 0 in Ω.         (31) 

The boundary conditions are 

𝑢𝑖 = 𝑢‾ 𝑖 𝑜𝑛 𝛤𝐷 ,          (32) 

and 

𝑡𝑖 = 𝜎𝑖𝑗𝑛𝑗 = 𝑡‾𝑖 on Γ𝑁.         (33) 

Suppose that the stress-strain relation in thermoelasticity is weakly coupled and is stated as 

𝜎𝑖𝑗 = 2𝜇 [𝜀𝑖𝑗 +
1

1−2𝑣
𝜀𝑘𝑘𝛿𝑖𝑗] −

𝐸

1−2𝜈
𝛼𝜃𝛿𝑖𝑗 .      (34) 

With 𝜃 (𝜃 = 𝜃𝑒 + 𝜃𝑖 + 𝜃𝑟) is the total temperature calculated from section 3, 𝜇, 𝜀𝑖𝑗, 𝛿𝑖𝑗, 𝜈, 𝐸 

and 𝛼 are shear modulus, strain tensor, Kronecker delta, Poisson's ratio, Young's modulus, and 

thermal expansion coefficient, respectively. 

The solution 𝐮* should satisfy the following: 

𝜎𝑖𝑗,𝑗(𝐮∗) = −𝛿(𝐱 − 𝐱̂)𝑒𝑖 ,         (35) 

𝑢𝑖
∗ = 𝑈𝑖𝑗𝑒𝑗 ,           (36) 

𝜎𝑖𝑗(𝐮∗)𝑛𝑗 = 𝑇𝑖𝑗𝑒𝑖 ,         (37) 

here 𝑒𝑖 represents a unit vector. 

𝑈𝑖𝑗(𝐱, 𝐱̂) =
1

8𝜋𝜇(1−𝜈)
[(3 − 4𝑣) ln

1

𝑟
𝛿𝑖𝑗 + 𝑟,𝑖𝑟,𝑗],     (38) 
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and 

𝑇𝑖𝑗(𝐱, 𝐱̂) = −
1

4𝜋(1−𝜈)𝑟
[

∂𝑟

∂𝑛
[(1 − 2𝜈)𝛿𝑖𝑗 + 2𝑟,𝑖𝑟𝑗] + (1 − 2𝑣)(𝑛𝑖𝑟,𝑗 − 𝑛𝑗𝑟,𝑖)],  (39) 

with 𝑟 =∥ 𝒙̂ − 𝒙 ∥ is the distance function. The mechanical problem boundary integral equations 

can be written accordingly using the fundamental solution: 

𝑢𝑗(𝐱̂) + ∫  
Γ

𝑇𝑖𝑗(𝐱, 𝐱̂)𝑢𝑖𝑑Γ

= ∫  
Γ

𝑡𝑖𝑈𝑖𝑗(𝐱, 𝐱̂)𝑑Γ +
𝐸𝛼

1−2𝑣
∫  

Ω
𝑈𝑖𝑗,𝑖(𝐱, 𝐱̂)𝜃𝑑Ω + ∫  

Ω
𝑏𝑖𝑈𝑖𝑗𝑑Ω.

    (40) 

Using a Galerkin vector, Eq (40) can be rewritten as 

𝑢𝑗(𝐱̂) + ∫  
Γ

 𝑇𝑖𝑗(𝐱, 𝐱̂)𝑢𝑖𝑑Γ − ∫  
Γ

 𝑃‾𝑗(𝐱, 𝐱̂)𝜃(𝐱)𝑑Γ

= ∫  
Γ

  𝑡𝑖𝑈𝑖𝑗(𝐱, 𝐱̂)𝑑Γ + ∫  
Γ

 𝑞𝑛𝑄‾𝑗(𝐱, 𝐱̂)𝑑Γ + ∫  
Ω

 𝑏𝑖𝑈𝑖𝑗𝑑Ω.
     (41) 

A two-dimensional problem has the following fundamental solutions: 

𝑃‾𝑖(𝐱, 𝐱̂) =
𝛼(1+𝜈)

4𝜋(1−𝑣)
{[ln (

1

𝑟
−

1

2
) 𝑛𝑖 − 𝑟,𝑖𝑟,𝑘𝑛𝑘]}     (42) 

and 

𝑄‾𝑖(𝐱, 𝐱̂) = −
(1+𝑣)

4𝜋𝑘(1−𝜈)
𝛼𝑟𝑟,𝑖 [ln (

1

𝑟
) −

1

2
].      (43) 

Integral characters [39] for fundamental solutions of the singular integral at were utilized, as well as 

the transformation method. In Eq (41), we can write the regularized boundary integral equations as 

follows: 

∫  
Γ

𝑇𝑖𝑗(𝐱, 𝐱̂){𝑢𝑖(𝐱) − 𝑢𝑖(𝐱̂)}𝑑Γ − ∫  
Γ

𝑃̅𝑗(𝐱, 𝐱̂)𝜃(𝐱)𝑑Γ

= ∫  
Γ

𝑡𝑖𝑈𝑖𝑗(𝐱, 𝐱̂)𝑑Γ + ∫  
Γ

𝑞𝑛𝑄̅𝑗(𝐱, 𝐱̂)𝑑Γ + ∫  
Ω

𝑏𝑖𝑈𝑖𝑗𝑑Ω.
    (44) 

Isoparametric mapping, based on 𝑝𝑡ℎ order NURBS basis functions, is a technique for expressing 

geometric point and response as follows: 

𝑞𝑛(𝚵) = ∑  𝐶𝑃𝑇
𝐼=1 𝑅𝐼

𝑝(𝚵)𝑤𝐼 ,        (45) 

𝐮(𝜉) = ∑  𝐶𝑃
𝐼=1 𝑅𝐼

𝑝(𝜉)𝐲𝐼        (46) 

and 

𝐭(𝜉) = ∑  𝐶𝑃𝑇
𝐼=1 𝑅𝐼

𝑝(𝜉)𝐳𝑰,        (47) 

with 𝐯𝐼 is a coefficient of temperature, 𝑤𝐼 is a coefficient of normal flux, 𝐲𝐼 is a coefficient of 

displacement, 𝐳𝑰 is a coefficient of traction, 𝐶𝑃 is control points number, and 𝐶𝑃𝑇 is normal 

fluxes number. Finally, for simplicity, Eqs (27) and (28) are discretized in a form of matrix using 

NURBS based basis functions. 

𝐇𝐼
𝑁𝐲𝐼 − 𝐻̅𝐼

𝜃𝐇
¯

𝐼
𝜃𝐯𝐼 = 𝐆𝐼

𝐷𝐳𝐼 + 𝐺̅𝐼
𝜃𝐰𝐼

.       (48) 
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Therefore, the algebraic equation can be solved by combining Eqs (34) and (35): 

𝐇𝐼𝐮𝐼 = 𝐆𝐼𝐭𝐼 ,          (49) 

where 

𝐇𝐼 = [
𝐇𝐼

𝑁 −𝐇̅𝐼
𝜃

𝟎 𝐇𝐼
𝜃

],         (50) 

𝐆𝐼 = [𝐆𝐼
𝐷 𝐆𝐼

𝜃

𝟎 𝐆𝐼

],         (51) 

𝐮𝐼 = [
𝐲𝐼

𝐯𝐼
],           (52) 

𝐭𝐼 = [
𝐳𝐼

𝐰𝐼
],           (53) 

where 

𝜉𝑖
′ =

𝜉𝑖+1+𝜉𝑖+2+⋯𝜉𝑖+𝑝

𝑝
, 𝑖 = 1,2, … , 𝑛 − 1.      (54) 

5. BEM for design optimization of isogeometric shape 

Recall that we can simplify the thermoelasticity problem by not including the heat generator and 

the body intensity force, thereby revealing the fundamental solution in Eqs (42) and (43). 

∫  
Γ

 𝑇𝑖𝑗(𝐱, 𝐱̂){𝑢𝑖(𝐱) − 𝑢𝑖(𝐱̂)}𝑑Γ − ∫  
Γ

 𝑃‾𝑗(𝐱, 𝐱̂)𝜃(𝐱)𝑑Γ

= ∫  
Γ

  𝑡𝑖𝑈𝑖𝑗(𝐱, 𝐱̂)𝑑Γ + ∫  
Γ

 𝑞𝑛𝑄‾𝑗(𝐱, 𝐱̂)𝑑Γ,
    (55) 

where 

𝐮̇ = 𝐮′ + ∇𝐮𝑇𝐕,          (56) 

𝐭̇ = 𝐭′ + ∇𝐭𝑇𝐕          (57) 

and 

𝑟̇ = 𝑟′ + ∇𝑟𝑇𝐕.          (58) 

Now, we can write Eq (55) as 

[∫  
Γ

 𝑇𝑖𝑗(𝐱, 𝐱̂){𝑢𝑖(𝐱) − 𝑢𝑖(𝐱̂)}𝑑Γ]
′

− [∫  
Γ

 𝑃‾𝑖(𝐱, 𝐱̂)𝜃(𝐱)𝑑Γ]
′

= [∫  
Γ

 𝑈𝑖𝑗(𝐱, 𝐱̂)𝑡𝑖(𝐱)𝑑Γ]
′

+ [∫  
Γ

 𝑄‾𝑖(𝐱, 𝐱̂)𝑞𝑛(𝐱)𝑑Γ]
′     (59) 

where 
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[∫  
Γ

 𝑇𝑖𝑗(𝐱, 𝐱̂){𝑢𝑖(𝐱) − 𝑢𝑖(𝐱̂)}𝑑Γ]
′

= ∫  
Γ

 𝑇𝑖𝑗(𝐱, 𝐱̂){𝑢𝑖(𝐱) − 𝑢𝑖(𝐱̂)}𝑉𝑘,𝑠𝑠𝑘𝑑Γ

+ ∫  
Γ

  [𝑇̇𝑖𝑗(𝐱, 𝐱̂){𝑢𝑖(𝐱) − 𝑢𝑖(𝐱̂)}]𝑑Γ

+ ∫  
Γ

 𝑇𝑖𝑗(𝐱, 𝐱̂)𝑢̇𝑖(𝐱)𝑑Γ − ∫  
Γ

 𝑇𝑖𝑗(𝐱, 𝐱̂)𝑢̇𝑖(𝐱̂)𝑑Γ,

    (60) 

[∫  
Γ

 𝑃‾𝑗(𝐱, 𝐱̂)𝜃(𝐱)𝑑Γ]
′

= ∫  
Γ

  {𝑃‾̇𝑗(𝐱, 𝐱̂)𝜃(𝐱) + 𝑃‾𝑗(𝐱, 𝐱̂)𝜃̇(𝐱)}𝑑Γ

+ ∫  
Γ

 𝑃‾𝑗(𝐱, 𝐱̂)𝜃(𝐱)𝑉𝑘,𝑠𝑠𝑘𝑑Γ,
   (61) 

[∫  
Γ

  𝑡𝑖𝑈𝑖𝑗(𝐱, 𝐱̂)𝑑Γ]
′

= ∫  
Γ

{𝑡𝑖𝑈𝑖𝑗(𝐱, 𝐱̂)𝑉𝑘,𝑠𝑠𝑘 + 𝑡̇𝑖𝑈𝑖𝑗(𝐱, 𝐱̂) + 𝑡𝑖𝑈̇𝑖𝑗(𝐱, 𝐱̂)}𝑑Γ,  (62) 

[∫  
Γ

 𝑄‾𝑗(𝐱, 𝐱̂)𝑞𝑛(𝐱)𝑑Γ]
′

= ∫  
Γ

  {𝑞̇𝑛𝑄‾𝑗(𝐱, 𝐱̂) + 𝑞𝑛𝑄‾̇𝑗(𝐱, 𝐱̂) + 𝑞𝑛𝑄‾𝑗(𝐱, 𝐱̂)𝑉𝑘,𝑠𝑠𝑘}𝑑Γ.  (63) 

Appendix and References [40,41] provide more information on the material derivative formulae. 

Using Eqs (55)–(58), we can rewrite (54) as follows: 

∫  
Γ

𝑇𝑖𝑗(𝐱, 𝐱̂){𝑢̇𝑖(𝐱) − 𝑢̇𝑖(𝐱̂)}𝑑Γ − ∫  
Γ

𝑡̇𝑖𝑈𝑖𝑗(𝐱, 𝐱̂)𝑑Γ − ∫  
Γ

𝑃̅𝑖(𝐱, 𝐱̂)𝜃̇(𝐱)𝑑Γ − ∫  
Γ

𝑞̇𝑛𝑄̅𝑖(𝐱, 𝐱̂)𝑑Γ

= − ∫  
Γ

𝑇̇𝑖𝑗(𝐱, 𝐱̂){𝑢𝑖(𝐱) − 𝑢𝑖(𝐱̂)}𝑑Γ − ∫  
Γ

𝑇𝑖𝑗(𝐱, 𝐱̂){𝑢𝑖(𝐱) − 𝑢𝑖(𝐱̂)}𝑉𝑘,𝑠𝑠𝑘𝑑Γ

+ ∫  
Γ

𝑃̇̅𝑖(𝐱, 𝐱̂)𝜃(𝐱)𝑑Γ + ∫  
Γ

𝑃̅𝑖(𝐱, 𝐱̂)𝜃(𝐱)𝑉𝑘,𝑠𝑠𝑘𝑑Γ + ∫  
Γ

𝑡𝑖𝑈̇𝑖𝑗(𝐱, 𝐱̂)𝑑Γ

+ ∫  
Γ

𝑡𝑖𝑈𝑖𝑗(𝐱, 𝐱̂)𝑉𝑘,𝑠𝑠𝑘𝑑Γ + ∫  
Γ

𝑞𝑛𝑄̇̅𝑖(𝐱, 𝐱̂)𝑑Γ + ∫  
Γ

𝑞𝑛𝑄̅𝑖(𝐱, 𝐱̂)𝑉𝑘,𝑠𝑠𝑘𝑑Γ.

 (64) 

By using isogeometric discretization, we can write Eqs (59) and (60) in a matrix form as 

𝐇𝐼𝐮̇𝐼 − 𝐆𝐼 𝐭̇𝐼 = −𝐇𝐼𝐮𝐼 − 𝐇𝐼
𝑉𝐮𝐼 + 𝐆̇𝐼𝐭𝐼 + 𝐆𝐼

𝑉𝐭𝐼 .     (65) 

6. Design parameterization with h-refinement 

The h-refinement technique is used for adding control points by using the following formula: 

𝐁𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖; 𝑤𝑖), 𝑖 = 1, … , 𝑛       (66) 

and its proposed control points are stated as 

𝐁𝑖
𝑤 = (𝑤𝑖𝑥𝑖 , 𝑤𝑖𝑦𝑖 , 𝑤𝑖𝑧𝑖 , 𝑤𝑖).       (67) 

If a new knot 𝜉 ∈ [𝜉𝑘 , 𝜉𝑘+1) is inserted as 

Ξ̃ = {𝜉1, 𝜉2, … , 𝜉𝑘 , 𝜉, 𝜉𝑘+1, … , 𝜉𝑛+𝑝, 𝜉𝑛+𝑝+1},    (68) 

the position of fresh control points is upgraded by the next equation: 

𝐁̃𝑖
𝑤 = 𝛼𝑖𝐁𝑖

𝑤 + (1 − 𝛼𝑖)𝐁𝑖−1
𝑤 ,        (69) 
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where 

𝛼𝑖 = {

1 𝑖 ≤ 𝑘 − 𝑝
𝜉̃−𝜉𝑖

𝜉𝑖+𝑝−𝜉𝑖
𝑘 − 𝑝 + 1 ≤ 𝑖 ≤ 𝑘

0 𝑘 + 1 ≤ 𝑖

.      (70) 

7. Numerical results and discussion 

The parallelepiped shape radiator for a loop heat pipe (LHP) of a titanium Ti6Al4V as shown in 

Figure 2 is optimized for space nuclear power system like the one considered in Hartenstine et al. [25], 

𝐿 = 305 mm and ℎ = 26.2 mm, where two pipes enter the radiator symmetrically and exit after three 

folds from the same side. Also, the order of basis functions considered in the calculation is 𝑝 = 3. 

 

Figure 2. Geometry of the considered radiator model. 

We selected a quarter of the cross-section 𝐴  for the radiator considered model. Thermal 

boundary conditions made of incoming heat 𝑸 on the upper side and fixed temperature 𝜃 inside the 

pipes. 

By considering the relationship between the solution of one-temperature heat conduction model 

(θ) and the solution of three-temperature heat conduction model (𝜃𝛼) [14], the 3T distribution 𝜃 

becomes 

𝜃 = 𝜃𝛼Summation − 𝜃𝛼Average 

where 

𝜃𝛼Summation = 𝜃𝑒 + 𝜃𝑖 + 𝜃𝑟 and 𝜃𝛼Average =
𝜃𝑒 + 𝜃𝑖 + 𝜃𝑟

3
. 

Now, we can write the considered optimization problem as follows: 

(I) According to the objective function 𝜃 based on 𝜃𝛼 subjected to (10)–(12), we obtain the optimal 

3T distribution 𝜃 as in Figures 3 and 4 below. 
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(II) According to the objective function 𝒖*  subjected to (35)–(37), we obtain the optimal 3T 

displacement 𝒖 as in Figures 5 and 6  below. 

(III) According to (I) and (II), we can calculate the optimal 3𝑇 thermal stress 𝜎11 as in Figures 7 and 

8 below. 

The design and nondesign domains must be defined first in the optimization process. In almost all 

applications, the heat pipes are installed in a sandwich panel with a honeycomb structure at the core. 

Using the proposed coupled topology optimization algorithm, the honeycomb structure is filled with a 

single isotropic material for the radiator redesign (design domain). However, the dimensions of the 

cross section, radiator, and heat pipes remain unchanged. A titanium alloy Ti6Al4V with the 

thermoelastic properties listed in Table 1 was considered for the redesign and production of the 

component. It is possible to see that there are eight holes in each section. They are symmetric about 

both axes of the rectangular section. The radius 𝑅 = 9 mm of the pipe is constant all over the 

radiator. Each fold has radius 𝑟 = 12, resulting in a distance between the pipes within the domain of 

𝑑 = 24 mm. 

Table 1. Considered material Ti6Al4V properties. 

Material 𝑬 𝝂 𝝆 𝒌 𝜶 

Ti6Al4V 113.8 GPa  0.342 4430 kg/m3 6.7 W/mK 9e–6 1/K 

 

Figures 9 and 10 show the effect of rotation on the 𝟑𝑻 thermal stress 𝝈𝟏𝟏 sensitivity distribution 

along 𝒙-axis 

 

Figure 9. Variation of the 𝟑𝑻 thermal stress 𝝈𝟏𝟏 sensitivity along 𝒙-axis in the non-rotating case. 
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Figure 10. Variation of the 𝟑𝑻 thermal stress 𝝈𝟏𝟏 sensitivity along 𝒙-axis in the rotating case. 

Figures 3 and 4 show the effect of rotation on the optimal 3T distribution θ along 𝑥-axis. 

 

Figure 3. Optimal 𝟑𝑻 𝐝𝐢𝐬𝐭𝐫𝐢𝐛𝐮𝐭𝐢𝐨𝐧 𝜃 along 𝒙-axis in the non-rotating case. 

 

Figure 4. Optimal 𝟑𝑻 distribution 𝜃 along 𝒙-axis in the rotating case. 

Figures 5 and 6 show the effect of rotation on the optimal displacement 𝒖 distribution along 

𝑥-axis. 
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Figure 5. Optimal displacement 𝒖 distribution along 𝒙-axis in the non-rotating case. 

 

Figure 6. Optimal displacement 𝒖 distribution along 𝒙-axis in the rotating case. 

Figures 7 and 8 show the effect of rotation on the optimal thermal stress 𝝈𝟏𝟏 distribution along 

𝑥-axis. 

 

Figure 7. Optimal 𝟑𝑻 thermal stress 𝝈𝟏𝟏 distribution along 𝒙-axis in the non-rotating case. 

 

Figure 8. Optimal 𝟑𝑻 thermal stress 𝝈𝟏𝟏 distribution along 𝒙-axis in the rotating case. 

Figures 11 shows the variations of the special case 𝟑𝑻 thermal stress sensitivity along 𝒙-axis for 

BEM [42–45], lattice Boltzmann method (LBM) of Yin and Zhang [46] and finite element method 

(FEM) of Soliman and Fahmy [47]. It is clear from this figure that the BEM results of the proposed 

technique are in excellent agreement with the LBM and FEM, thus confirming the validity and 

accuracy of our proposed technique. 
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Figure 11. Variation of the 𝟑𝑻 thermal stress 𝝈𝟏𝟏 sensitivity along 𝒙-axis in the rotating case. 

Table 2 shows a comparison of the computer resources needed to perform special case of 

sensitivity analysis and optimization of rotating three-temperature thermoelastic structures using 

BEM [42–45], lattice Boltzmann method (LBM) of Yin and Zhang [46] and finite element method 

(FEM) of Soliman and Fahmy [47]. It can be seen from this table that the proposed BEM is more 

accurate and efficient than the LBM and FEM. 

Table 2. Comparison of computer resources required for BEM, LBM and FEM. 

 FEM [47] LBM [46] BEM [42-45] 

CPU time (min) 24 20 2 

Memory (MB) 22 18 1 

Disc space (MB) 34 28 0 

Accuracy of results (%) 2.1 1.8 1.1 

8. Conclusions 

In this study, the isogeometric boundary element method (IGBEM) based on non-uniform 

rational basis spline (NURBS) is used to perform sensitivity analysis and optimization of rotating 

three-temperature thermoelastic structures. To include precise geometries and greater continuities, we 

derive a shape design sensitivity equation within the isogeometric boundary element method 

formulation. In the considered boundary element technique, the shape design velocity field is divided 

into normal and tangential components, which has a significant effect on the accuracy of shape design 

sensitivity. As a result, the developed isogeometric SDSA technique based on the considered boundary 

element formulation outperforms the traditional DSA method's computational solution. In rotating 

structures, the isogeometric shape sensitivity and the optimal design for a complex 3T thermoelastic 

problem are established. The impact of rotation on thermal stress sensitivity, optimal 

three-temperature, optimal displacement, and optimal thermal stress distributions is investigated. The 
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SDSA derived from IGBEM is shown to be efficient and applicable for most three-temperature 

thermoelastic optimization problems. 

The accuracy of the proposed method has been confirmed by comparing the obtained results with 

the lattice Boltzmann method (LBM) results and finite element method (FEM) results. The 

performance of the proposed method has been confirmed. 
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Appendix 

The fundamental solutions material and derivatives are derived, as follows: 
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