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Abstract: This research provides an improved theoretical framework of the Kermack-McKendrick
system. By considering the general interference function and the polynomial perturbation, we give
the sharp threshold between two situations: the disappearance of the illness and the ergodicity of the
higher-order perturbed system. Obviously, the ergodic characteristic indicates the continuation of the
infection in the population over time. Our study upgrades and enhances the work of Zhou et al. (2021)
and suggests a new path of research that will serve as a basis for future investigations. As an illustrative
application, we discuss some special cases of the polynomial perturbation to examine the precision of
our outcomes. We deduce that higher order fluctuations positively affect the illness extinction time and
lead to its rapid disappearance.
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1. Introduction

Mathematical formulations play a central role in exploring and predicting the future of the
communicable diseases [1]. For example, in the case of the coronavirus disease and of course its
new mutations, many researchers have contributed to modeling the mechanisms of its spread and
providing scientific recommendations to control its expansion [2–5]. It should be noted that most of
the epidemiological models presented in these articles are an improved and adapted version of the SIR
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model [6]. This compartmentalized system was constructed by Kermack and McKendrick [7] and its
philosophy is based on the idea of subdividing individuals according to their different characteristics.
Explicitly, individuals are grouped into three main groups: susceptible class (C1), infected class (C2)
and permanently recovered class (C3). The transmit rates among these groups are determined by the
following dynamical system:

dC1(t) =
(
Θ − uC1(t) − bC1(t)C2(t)

)
dt,

dC2(t) =
(
bC1(t)C2(t) − (u + a + c)C2(t)

)
dt,

dC3(t) =
(
cC2(t) − uC3(t)

)
dt,

Ck(0) > 0, k = 1, 2, 3,

(1.1)

where Θ > 0 designates the inflow rate into C1, u > 0 indicates the normal death rate, b > 0 is the
dissemination rate of the epidemic, a > 0 is the mortality ratio due to the infection, and c > 0 is the
cure rate. We note that the above system is one of the most straightforward epidemiological models
used to depict the first wave of COVID-19 [8]. Lately, Zhou et al. [9] proposed a general version of
system (1.1) by including the pre-existing immunity presumption and the nonlinear incidence function
bC1(t)g

(
C2(t)

)
. By mandating certain conditions on g, they introduced the following system:

dC1(t) =
(
Θ − (u1 + z)C1(t) − bC1(t)g

(
C2(t)

))
dt,

dC2(t) =
(
bC1(t)g

(
C2(t)

)
− (u2 + a + c)C2(t)

)
dt,

dC3(t) =
(
zC1(t) + cC2(t) − u3C3(t)

)
dt,

Ck(0) > 0, k = 1, 2, 3,

(1.2)

where z is the pre-existing immunity rate, and u1, u2, u3 are respectively the normal mortality rates
of C1, C2, C3. The function g covers some functional responses, for instance, g

(
C2

)
= C2 [10],

g
(
C2

)
=

C2

m + C2
(m > 0) [11] and bg

(
C2(t)

)
= b −

bc

m + C2(t)
, where m > 0 is the media intrusion rate

and bc > 0 is the reduced active contact rate [12].
When dealing with epidemiological models, more characteristics can be considered such as cross-

individual overlap [13]. It is worth to point out that the choice of functional response affects the
prediction of illness behavior. Moreover, the previous setup of Zhou et al. [9] overlooks a large category
of incidence rates that are often used in the literature. In this research, we exhibit an enhanced SIR
illness system with an interference function that includes additional response examples (see Table 1).
In line with this setting, the system (1.2) can be rewritten as follows:

dC1(t) =
(
Θ − (u1 + z)C1(t) − bH

(
C1(t),C2(t)

)
C2(t)

)
dt,

dC2(t) =
(
bH

(
C1(t),C2(t)

)
C2(t) − (u2 + a + c)C2(t)

)
dt,

dC3(t) =
(
zC1(t) + cC2(t) − u3C3(t)

)
dt,

Ck(0) > 0, k = 1, 2, 3.

(1.3)

We presume that the general interference responseH ∈ C2(R+×R+,R+) verifies these two hypotheses:

• Assumption (a): There exists a constant ϱ > 0 such that for all C1,C2 ≥ 0,

∂H(C1,C2)
∂C2

≤ 0 ≤
∂H(C1,C2)
∂C1

≤ ϱ.
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• Assumption (b): lim
C2→0

sup
C1>0
{|H(C1,C2) −H(C1, 0)|} = 0.

The properties (a) and (b) are readily satisfied by the typical examples listed in Table 1.

Table 1. List of some prototypes of the general interference functionH .

Name Expression Source

Beddington-DeAngelis H
(
C1,C2

)
=

C1

1 +m1C1 +m2C2
(m1,m2 > 0) [14]

Crowley-Martin H
(
C1,C2

)
=

C1

(m1 + C1)(m2 + C2)
(m1,m2 > 0) [15]

Modified Crowley-Martin H
(
C1,C2

)
=

C1

1 +m1C1 +m2C2 +m3C1C2
(m1,m2,m3 > 0) [13]

Substantially, the infection mechanism is random in nature at all scales [16–20]. From the
attachment of the virus to the human cell to the encapsulation of repetitive genetic information, from
the shedding of new virions to the transmission of a second individual, from individual behavior to
global mobility, all the factors influence the diffusion of the infection and make it more uphill task
to foretell its conduct [21–23]. The stochastic approach offers considerable advantages in providing
insight into population dynamics under the said fluctuations [24–26]. To correctly describe this
randomness, a series of perturbed compartmental models with different assumptions that simulate
reality have been proposed [27–31]. Most of these models assume that random fluctuations can be
modeled by integrating Brownian motions into the deterministic formulation [32]. By selecting this
class of fluctuations in their linear shape, probabilistic systems are widely used in epidemiology to
analyze disease prevalence [33–35]. In these works, the primary focus was the investigation of some
biological long-run characteristics of the infection.

Since 2017, a new form of stochastic systems has emerged where the story begins with the work
proposed by Liu and Jiang in [36]. By reason of the complexity of environmental changes, they
claimed that the relative linear order of the disturbance can be raised to the second. Based on this
assumption, scientific papers have proposed and analyzed various real systems with second-order
fluctuations [37, 38]. Recently, the autrhors of [9] suggested an enhanced type of perturbation in its
general representation. This frame generalizes the previously mentioned studies and offers a new line
of research. Motivated by their arguments, we consider the following polynomial perturbed system:

dC1(t) =

Deterministic part︷                                                      ︸︸                                                      ︷(
Θ − (u1 + z)C1(t) − bH

(
C1(t),C2(t)

)
C2(t)

)
dt+

Higher-order perturbation︷                    ︸︸                    ︷
N∑

h=0

q1hCh+1
1 (t)dW1(t),

dC2(t) =
(
bH

(
C1(t),C2(t)

)
C2(t) − (u2 + a + c)C2(t)

)
dt +

N∑
h=0

q2hCh+1
2 (t)dW2(t),

dC3(t) =
(
zC1(t) + cC2(t) − u3C3(t)

)
dt +

N∑
h=0

q3hCh+1
3 (t)dW3(t),

(1.4)

where W1(t), W2(t), W3(t) are independent Brownian motions defined on a filtered probability space
ΩE,P ≡ (Ω,E, {Et}t≥0,P) such that {Et}t≥0 follows the usual assumptions, and qkh > 0 (k = 1, 2, 3, h =
0, 1, 2, . . . ,N) are the high-order intensities of white noises.
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In [9], the authors indicated that the model (1.4) in the case of incidence bC1(t)g
(
C2(t)

)
and

polynomial perturbation is well-posed mathematically and biologically, then they treated its long-
run behavior. The problem is that they obtained two separate critical conditions for extinction and
stationarity which is not ideal when addressing epidemiological models. Moreover, they mention that
there was a large gap between the defined criteria; and the corresponding threshold value is still an open
question (for more details see the discussion part of [9]). Compared to the results presented in [9], in
this article, we address the said problem from a global angle by considering an epidemic model with
a general incidence function. Taking the latter into account makes the analysis very complex, which
has prompted us to innovate alternative techniques. By adding the polynomial perturbation, we present
the acute threshold value between stationarity and extinction of the infection, which offers an excellent
insight into the possible scenarios of epidemic status in a given population.

Technically, we introduce an analytical method based on some long-term characteristics of an
auxiliary boundary equation [39]. By using the ergodic theorem and the stochastic comparison lemma,
we establish the well-defined threshold between stationarity and infection extinction. Our method
differs from the one used in [9] by using the mutually exclusive possibilities lemma and other analytical
tools. Specifically, we focus on the long-term characteristics of the Markov process D(t) that verifies

dD(t) =
{
Θ − (u1 + z)D(t)

}
dt +

N∑
h=0

q1hDh+1(t)dW1(t),

D(0) = C1(0).

(1.5)

In accordance with Lemma 5 of [9], D admits the following single stable distribution:

πD(y) = CD

 N∑
h=0

q1hyh+1(t)

−2

exp

2
∫ y

Θ
u+z

(
Θ − (u1 + z)τ

)  N∑
h=0

q1hτ
h+1(t)

−2

dτ

,
where CD is a specific constant that verifies

∫
R+

πD(y)dy = 1. From the probabilistic comparison

result [40], we can compare the processes D and C1 as follows: D(t) ≥ C1(t) almost surely (a.s.).

Furthermore, the time average of D(t) converges almost surely to
∫
R+

yπD(dy) as t → ∞. In accordance

with the above results, we clearly state that the present work aims to prove that the following quantity

T Σ◦ = b

∫
R+

H
(
y, 0

)
πD(dy) − (u2 + a + c) − 0.5q220

is the sharp threshold between the disappearance of the illness and the ergodic characteristic of the
system (1.4), and its sign provides a stellar overview of the potential scenarios of the epidemic situation.
In other words, this article proposes a nice generalization of the article [9] and presents a new treatment
applicable to other complex models. Importantly, we show numerically that the extreme amount of
disturbance reduces the disease extinction time.

The rest of the paper is organized as follows: In Section 2, we show that the disappearance scenario
occurs when T Σ◦ < 0. In Section 3, we prove that the scenario of the ergodicity of system (1.4) occurs
when T Σ◦ > 0. In Section 4, we verify numerically the correctness of our outcomes. Finally, we
conclude this paper in Section 5 with a discussion.
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2. Scenario 1: disease disappearance

This section aims to exhibit the criterion for the demise of the infection.

Theorem 2.1. The disappearance of the disease occurs if T Σ◦ < 0.

Proof. By employing Itô’s lemma for drift-diffusion processes [41], we obtain

d ln C2(t) =

bH(
C1(t),C2(t)

)
− (u2 + a + c) − 0.5

 N∑
h=0

q2hCh
2(t)

2 dt +
N∑

h=0

q2hCh
2(t)dW2(t).

In line with the probabilistic comparison lemma, we conclude that

d ln C2(t) ≤

bH(
D(t), 0

)
− (u2 + a + c) − 0.5

 N∑
h=0

q2hCh
2(t)

2 dt +
N∑

h=0

q2hCh
2(t)dW2(t). (2.1)

After that, we make two operations on both sides of (2.1): integration from 0 to t and division by t,
then the result is

t−1 ln C2(t) − t−1 ln C2(0) ≤ t−1
b

∫ t

0
H

(
D(τ), 0

)
dτ − (u2 + a + c)

+ t−1

∫ t

0

N∑
h=0

q2hCh
2(τ)dW2(τ) − 0.5

∫ t

0

 N∑
h=0

q2hCh
2(τ)

2

dτ

︸                                                                ︷︷                                                                ︸
=G(t)

. (2.2)

The next step is based on the use of the exponential inequality for martingales [41], which leads to

P

 sup
t∈[0,T1]

∫ t

0

N∑
h=0

q2hCh
2(τ)dW2(τ) − 0.5α1

∫ t

0

 N∑
h=0

q2hCh
2(τ)

2

dτ

 > 2 ln T1

α1

 ≤ T−2
1 ,

for all 0 < α1 < 1 and T1 > 0. From the Borel-Cantelli result [41], we assure the existence of
T1,ω = T1(ω), ∀ω in Ω, such that∫ t

0

N∑
h=0

q2hCh
2(τ)dW2(τ) ≤

2 ln T1

α1
+ 0.5α1

∫ t

0

 N∑
h=0

q2hCh
2(τ)

2

dτ

holds for all T1 ≥ T1,ω and T1 − 1 < t ≤ T1 a.s. Therefore,

t−1G(t) ≤
2 ln T1

α1t
+ t−10.5α1

∫ t

0

 N∑
h=0

q2hCh
2(τ)

2

dτ − t−10.5
∫ t

0

 N∑
h=0

q2hCh
2(τ)

2

dτ

≤
2 ln T1

α1(T1 − 1)
− t−10.5(1 − α1)

∫ t

0

 N∑
h=0

q2hCh
2(τ)

2

dτ

≤
2 ln T1

α(T1 − 1)
− 0.5(1 − α1)q220.
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By taking the limitsup on two sides of (2.2), we infer that

lim sup
t→∞

t−1 ln C2(t) ≤ blim
t→∞

t−1
∫ t

0
H

(
D(τ), 0

)
dτ − (u2 + a + c) + lim

t→∞
t−1G(t)

≤ b

∫
R+

H
(
y, 0

)
πD(dy) − (u2 + a + c) + lim

T1→∞

2 ln T1

α(T1 − 1)
− 0.5(1 − α1)q220

= b

∫
R+

H
(
y, 0

)
πD(dy) − (u2 + a + c) − 0.5(1 − α1)q220 a.s.

We let α1 tends to 0+, then the obtained result is

lim sup
t→∞

t−1 ln C2(t) ≤ T Σ◦ < 0 a.s.

That implies the stochastic extinction lim
t→∞

C2(t) = 0 a.s. In other words, the class of individuals carrying
the infection will disappear. □

3. Scenario 2: the ergodicity of the model (1.4)

This section introduces a new approach to establish the criterion of the ergodicity of our probabilistic
system (1.4).

Theorem 3.1. The single ergodic stable distribution of the probabilistic model (1.4) exists if T Σ◦ > 0.

Proof. In order to reduce notations and provide clear mathematical writing, we set N∑
h=0

q2hCh
2(t)

2

=

2N∑
h=0

 ∑
n+m=h

q2nq2m

︸          ︷︷          ︸
ph

Ch
2(t) =

2N∑
h=0

phCh
2(t).

The Itô differential operator L associated with the stochastic equation of C2(t) is given by

L
(
− ln C2(t)

)
= −bH

(
C1(t),C2(t)

)
+ (u2 + a + c) + 0.5

 N∑
h=0

q2hCh
2(t)

2

= −bH
(
D(t), 0

)
+ bH

(
D(t), 0

)
− bH

(
C1(t), 0

)
+ bH

(
C1(t), 0

)
− bH

(
C1(t),C2(t)

)
+ (u2 + a + c) + 0.5q220 + q20q21C2(t) + 0.5

2N∑
h=2

phCh
2(t).

From Assumption (a), we have

L
(
− ln C2(t)

)
≤ −bH

(
D(t), 0

)
+ (u2 + a + c) + 0.5q220 + bϱ

(
D(t) − C1(t)

)
+ bH

(
C1(t), 0

)
− bH

(
C1(t),C2(t)

)
+ q20q21C2(t) + 0.5

2N∑
h=2

phCh
2(t). (3.1)
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Now, the application of L on
(

ln D(t) − ln C1(t)
)

gives

L
(

ln D(t) − ln C1(t)
)
≤ A

(
D−1(t) − C−1

1 (t)
)
+ bH

(
C1(t),C2(t)

)
C2(t)C−1

1 (t)

− 0.5

 N∑
h=0

q1hDh(t)

2

+ 0.5

 N∑
h=0

q1hCh
1(t)

2

.

Since D(t) ≥ C1(t) a.s., we obtain

L
(

ln D(t) − ln C1(t)
)
≤ −q10q11

(
D(t) − C1(t)

)
+ bϱC2(t). (3.2)

We define the function Φ(t) as follows:

Φ(t) = − ln C2(t) +
bϱ

q10q11

(
ln D(t) − ln C1(t)

)
.

Based on (3.1) and (3.2), we get

LΦ(t) ≤ −bH
(
D(t), 0

)
+ (u2 + a + c) + 0.5q220 +

(
q20q21 +

b2ϱ2

q10q11

)
C2(t)

+ 0.5
2N∑
h=2

phCh
2(t) + bH

(
C1(t), 0

)
− bH

(
C1(t),C2(t)

)
. (3.3)

We add and subtract at the same time the quantity b
∫
R+

H(y, 0)πD(dy) in (3.3) as follows:

LΦ(t) ≤ −b
∫
R+

H(y, 0)πD(dy) + (u2 + a + c) + 0.5q220 + b

(∫
R+

H(y, 0)πD(dy) −H
(
D(t), 0

))
+

(
q20q21 +

b2ϱ2

q10q11

)
C2(t) + 0.5

2N∑
h=2

phCh
2(t) + bH

(
C1(t), 0

)
− bH

(
C1(t),C2(t)

)
.

To eliminate the term associated with C2(t), we set

ΦΘ(t) = − ln C2(t) +
bϱ

q10q11

(
ln D(t) − ln C1(t)

)
+ ΘC2(t),

where the positive constant Θ verifies

Θ(u2 + a + c) ≥
(
q20q21 +

b2ϱ2

q10q11

)
.

The application of L on ΦΘ(t) gives
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LΦΘ(t) ≤

=−T Σ◦︷                                                     ︸︸                                                     ︷
−b

∫
R+

H(y, 0)πD(dy) + (u2 + a + c) + 0.5q220 +b

(∫
R+

H(y, 0)πD(dy) −H
(
D(t), 0

))
+ ΘbH

(
C1(t),C2(t)

)
C2(t) + 0.5

2N∑
h=2

phCh
2(t) + bH

(
C1(t), 0

)
− bH

(
C1(t),C2(t)

)
.

In the same vein, we apply L on the function ζ−1(1 + C1(t)
)ζ
+ ζ−1Cζ2(t), ζ ∈ (0, 1), then

L
(
ζ−1(1 + C1(t)

)ζ
+ ζ−1Cζ2(t)

)
=

(
1 + C1(t)

)ζ−1
(
Θ − (u1 + z)C1(t) − bH

(
C1(t),C2(t)

)
C2(t)

)
+ 0.5(ζ − 1)

(
1 + C1(t)

)ζ−2

 N∑
h=0

q1hCh+1
1 (t)

2

+ Cζ−1
2 (t)

(
bH

(
C1(t),C2(t)

)
C2(t) − (u2 + a + c)C2(t)

)
+ 0.5(ζ − 1)Cζ−2

2 (t)

 N∑
h=0

q2hCh+1
2 (t)

2

.

Accordingly, we derive that

L
(
ζ−1(1 + C1(t)

)ζ
+ ζ−1Cζ2(t)

)
≤ A − 0.5(1 − ζ)q211Cζ+2

1 (t) + bϱC1(t)Cζ2(t)

−
(
(u2 + a + c) + 0.5(1 − ζ)q220

)
Cζ2(t)

+ (1 − ζ)q20q21Cζ+1
2 (t) − 0.5(1 − ζ)q221Cζ+2

2 (t)

− 0.5(1 − ζ)
2N∑
h=2

phCh+ζ
2 (t)

≤ Θ − 0.5(1 − ζ)q211Cζ+2
1 (t) + bϱ(ζ + 1)−1Cζ+1

1 (t)

+ bϱζ(ζ + 1)−1Cζ+1
2 (t) − 0.5(1 − ζ)q221Cζ+2

2 (t)

− 0.5(1 − ζ)
2N∑
h=2

phCh+ζ
2 (t).

Now, we define a new function ΦΘ,ζ as follows:

ΦΘ,ζ
(
C1(t),C2(t)

)
= SΦΘ(t) + ζ−1(1 + C1(t)

)ζ
+ ζ−1Cζ2(t),

where S > 0 satisfies that −ST Σ◦ +Z + 2 ≤ 0 andZ is given by

Z = max
{

sup
(C1,C2)∈R2

+,⋆

{
Θ + bϱ(ζ + 1)−1Cζ+1

1 (t) − 0.25(1 − ζ)q211Cζ+2
1 (t) + bϱζ(ζ + 1)−1Cζ+1

2 (t)

− 0.25(1 − ζ)q221Cζ+2
2 (t) + 0.5

2N∑
h=2

phCh
2(t) − 0.5(1 − ζ)

2N∑
h=2

phCh+ζ
2 (t)

}
, 1

}
.
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Clearly, the function ΦΘ,ζ reaches its minimum value at a point (Cℓ1,C
ℓ
2). For this reason, we will

consider a new non-negative function defined as follows:

ΦΣΘ,ζ
(
C1(t),C2(t)

)
= SΦΘ(t) + ζ−1(1 + C1(t)

)ζ
+ ζ−1Cζ2(t) − ΦΘ,ζ(Cℓ1,C

ℓ
2).

From the above calculation, we obtain

LΦΣΘ,ζ(t) ≤ −ST Σ◦ + SΘbϱC1(t)C2(t) + bS
(
H

(
C1(t), 0

)
−H

(
C1(t),C2(t)

))
+ 0.5

2N∑
h=2

phCh
2(t)

+ Θ − 0.5(1 − ζ)q211Cζ+2
1 (t) + bϱ(ζ + 1)−1Cζ+1

1 (t) + bϱζ(ζ + 1)−1Cζ+1
2 (t)

− 0.5(1 − ζ)q221Cζ+2
2 (t) − 0.5(1 − ζ)

2N∑
h=2

phCh+ζ
2 (t) + b

(∫
R+

H(y, 0)πD(dy) −H
(
D(t), 0

))
= Ψ

(
C1(t),C2(t)

)
+ b

(∫
R+

H(y, 0)πD(dy) −H
(
D(t), 0

))
.

Now, we define five sets:

Ja,a⋆ =
{(

C1(t),C2(t)
)
∈ R2,⋆

+ | a ≤ C1(t) ≤ a−1, a⋆ ≤ C2(t) ≤ a−1
⋆

}
,

Ja,1 =
{(

C1(t),C2(t)
)
∈ R2,⋆

+ | 0 < C1(t) < a
}
,

Ja⋆,2 =
{(

C1(t),C2(t)
)
∈ R2,⋆

+ | 0 < C2(t) < a⋆
}
,

Ja,3 =
{(

C1(t),C2(t)
)
∈ R2,⋆

+ | C1(t) > a−1
}
,

Ja⋆,4 =
{(

C1(t),C2(t)
)
∈ R2,⋆

+ | C2(t) > a−1
⋆

}
.

Here, R2,⋆
+ = {(x, y) : x > 0, y > 0}, a⋆ = min{a◦, a}, where a◦ > 0 verifies (3.9), and a > 0 is chosen

carefully such that

SΘbϱa + bS ϱa +
ζSΘbϱa
ζ + 2

(
2SΘbϱa

0.25(ζ + 2)(1 − ζ)q221

)2ζ−1

− 1 ≤ 0, (3.4)

SΘbϱa +
ζSΘbϱa
ζ + 2

(
2SΘbϱa

0.25(ζ + 2)(1 − ζ)q211

)2ζ−1

− 1 < 0, (3.5)

−ST Σ◦ +U − 0.25(1 − ζ)q211a−ζ−2 + 1 ≤ 0, (3.6)
−ST Σ◦ +U − 0.25(1 − ζ)q221a−ζ−2 + 1 ≤ 0, (3.7)

where

U = sup
(C1,C2)∈R2,⋆

+

{
0.5SΘbϱC2

1(t) + 0.5SΘbϱC2
2(t) + S bϱC1(t) + Θ + bϱ(ζ + 1)−1Cζ+1

1 (t)

+ bϱζ(ζ + 1)−1Cζ+1
2 (t) − 0.25(1 − ζ)q211Cζ+2

1 (t) − 0.25(1 − ζ)q221Cζ+2
2 (t)

+ 0.5
2N∑
h=2

phCh
2(t) − 0.5(1 − ζ)

2N∑
h=2

phCh+ζ
2 (t)

}
.
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Plainly, Jc
a,a⋆ = R

2,⋆
+ \ Ja,a⋆ = Ja,1 ∪ Ja⋆,2 ∪ Ja,3 ∪ Ja⋆,4. In the following, we will verify that

Ψ
(
C1(t),C2(t)

)
+ 1 ≤ 0, (3.8)

for any
(
C1(t),C2(t)

)
∈ Jc

a,a⋆ which is equivalent to showing it on Ja,1, Ja⋆,2, Ja,3 and Ja⋆,4,
respectively. For this reason, we have the following situations:

(1) Assume that
(
C1(t),C2(t)

)
∈ Ja,1. From (3.4), we obtain

Ψ
(
C1(t),C2(t)

)
≤ −ST Σ◦ + SΘbϱa + bS ϱa + SΘbϱaC2

2(t) − 0.25(1 − ζ)q211Cζ+2
1 (t)

+ 0.5
2N∑
h=2

phCh
2(t) + Θ + bϱ(ζ + 1)−1C1(t)ζ+1 + bϱζ(ζ + 1)−1Cζ+1

2 (t)

− 0.25(1 − ζ)q221Cζ+2
2 (t) − 0.25(1 − ζ)q221Cζ+2

2 (t) − 0.5(1 − ζ)
2N∑
h=2

phCh+ζ
2 (t)

≤ −ST Σ◦ +Z + SΘbϱa + bS ϱa +
ζSΘbϱa
ζ + 2

(
2SΘbϱa

0.25(ζ + 2)(1 − ζ)q221

)2ζ−1

≤ −1.

(2) Here, we use the uniform continuity at C2 = 0 of the function H
(
C1(t),C2(t)

)
. By

Assumption (b), ∃a◦ > 0 such that as 0 < C2 ≤ a◦,

SΘbϱa +
ζSΘbϱa
ζ + 2

(
2SΘbϱa

0.25(ζ + 2)(1 − ζ)q211

)2ζ−1

+ bS
(
H

(
C1(t), 0

)
−H

(
C1(t),C2(t)

))
< 1. (3.9)

Consequently, if C2 < a⋆ = min{a◦, a}, we get from (3.5) that

Ψ
(
C1(t),C2(t)

)
≤ − ST Σ◦ + SΘbϱa + SΘbϱaC2

1(t) − 0.25(1 − ζ)q211Cζ+2
1 (t) + 0.5

2N∑
h=2

phCh
2(t) + Θ

+ bS
(
H

(
C1(t), 0

)
−H

(
C1(t),C2(t)

))
+ bϱ(ζ + 1)−1C1(t)ζ+1 + bϱζ(ζ + 1)−1Cζ+1

2 (t)

− 0.25(1 − ζ)q221Cζ+2
2 (t) − 0.5(1 − ζ)

2N∑
h=2

phCh+ζ
2 (t)

≤ − ST Σ◦ +Z + SΘbϱa +
ζSΘbϱa
ζ + 2

(
2SΘbϱa

0.25(ζ + 2)(1 − ζ)q211

)2ζ−1

+ bS
(
H

(
C1(t), 0

)
−H

(
C1(t),C2(t)

))
≤ − 1.

(3) Assume that
(
C1(t),C2(t)

)
∈ Ja,3. From (3.6), we have

Ψ
(
C1(t),C2(t)

)
≤ −ST Σ◦ − 0.25(1 − ζ)q211Cζ+2

1 (t) + 0.5SΘbϱC2
1(t) + 0.5SΘbϱC2

2(t) + S bϱC1(t)

+ Θ + bϱ(ζ + 1)−1C1(t)ζ+1 + bϱζ(ζ + 1)−1Cζ+1
2 (t) − 0.25(1 − ζ)q211Cζ+2

1 (t)
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− 0.25(1 − ζ)q221Cζ+2
2 (t) + 0.5

2N∑
h=2

phCh
2(t) − 0.5(1 − ζ)

2N∑
h=2

phCh+ζ
2 (t)

≤ −ST Σ◦ +U − 0.25(1 − ζ)q211a−ζ−2

≤ −1.

(4) Assume that
(
C1(t),C2(t)

)
∈ Ja⋆,4. From (3.7), we get

Ψ
(
C1(t),C2(t)

)
≤ −ST Σ◦ − 0.25(1 − ζ)q221Cζ+2

2 (t) + 0.5SΘbϱC2
1(t) + 0.5SΘbϱC2

2(t) + S bϱC1(t)

+ Θ + bϱ(ζ + 1)−1C1(t)ζ+1 + bϱζ(ζ + 1)−1Cζ+1
2 (t) − 0.25(1 − ζ)q211Cζ+2

1 (t)

− 0.25(1 − ζ)q221Cζ+2
2 (t) + 0.5

2N∑
h=2

phCh
2(t) − 0.5(1 − ζ)

2N∑
h=2

phCh+ζ
2 (t)

≤ −ST Σ◦ +U − 0.25(1 − ζ)q221a−ζ−2

≤ −1.

In summary, the assertion (3.8) is obtained. On the other hand, we can easily show that ∃O > 0 such
that Ψ

(
C1,C2

)
≤ O, for all

(
C1,C2

)
∈ R2,⋆

+ . Accordingly, we get∫ t

0
E
(
Ψ
(
C1(τ),C2(τ)

))
dτ + S ϱE

( ∫ t

0

∫ ∞

0
H(y, 0)πD(dy)dτ −

∫ t

0
H

(
D(τ), 0

)
dτ

)
≥

∫ t

0
E
(
LΦΣΘ,ζ(t)

(
C1(τ),C2(τ)

))
dτ

=E
(
ΦΣΘ,ζ(t)

(
C1(t),C2(t)

))
− E

(
ΦΣΘ,ζ(t)

(
C1(0),C2(0)

))
≥ − E

(
ΦΣΘ,ζ(t)

(
C1(0),C2(0)

))
.

By using the ergodic property of D(t), we conclude that

0 ≤ lim inf
t→∞

t−1
∫ t

0

(
EΨ

(
C1(τ),C2(τ)

)
1{

(C1(τ),C2(τ))∈Jc
a,a⋆

} + EΨ(
C1(τ),C2(τ)

)
1{

(C1(τ),C2(τ))∈Ja,a⋆

}) dτ

≤ lim inf
t→∞

t−1
∫ t

0

(
− P

(
(C1(τ),C2(τ)) ∈ Jc

a,a⋆

)
+ OP

(
(C1(τ),C2(τ)) ∈ Jϵ,ϵ⋆

))
dτ

= −1 + (1 + O)lim inf
t→∞

t−1
∫ t

0
P
(
(C1(τ),C2(τ)) ∈ Ja,a⋆

)
dτ.

Consequently,

lim inf
t→∞

t−1
∫ t

0
P
((

C1(τ),C2(τ)
)
∈ Za,a⋆

)
dτ ≥ (1 + O)−1 > 0.

Hence,

lim inf
t→∞

t−1
∫ t

0
P
((

C1(0),C2(0),C3(0)
)
; τ,Ja,a⋆

)
ds > 0, ∀

(
C1(0),C2(0),C3(0)

)
∈ R3,⋆

+ ,

where R3,⋆
+ = {(x, y, z) : x > 0, y > 0, z > 0}. From Lemma 3.2 of [42] and also the mutually exclusive

possibilities lemma [43], we confirm the existence of a single invariant distribution πΣ. □
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Remark 3.1. From Theorem 3.1 of this paper and also Theorem 2.6 of [44], we can deduce interesting
indications on the stochastic permanence of the Markovian processes C1, C2 and C3. Explicitly, we
obtain that

lim
t→∞

t−1
∫ t

0
C1(τ)dτ =

∫
R3,⋆
+

c1π
Σ(dc1, dc2, dc3) < ∞,

lim
t→∞

t−1
∫ t

0
C2(τ)dτ =

∫
R3,⋆
+

c2π
Σ(dc1, dc2, dc3) < ∞,

lim
t→∞

t−1
∫ t

0
C3(τ)dτ =

∫
R3,⋆
+

c3π
Σ(dc1, dc2, dc3) < ∞.

By way of illustration, this indicates the persistence of the infection over time.

4. Numerical verification

In this section, we exhibit some simulations to shed some light on the exactitude of our global
threshold. For that purpose, we present three situations of system (1.4), and in each case, we explore
the complex long-run behavior of the illness. We will consider general saturated interference function
introduced in Table 1. The model parameters are theoretically selected according to well audit the
outcomes of this paper. By using the high-order discrete Milstein method, the associated discretization
equations of our system are directly obtained as follows:

C1,k+1 = C1,k +
[
Θ − (u1 + z)C1,k − bH

(
C1,k,C2,k

)
C2,k

]
∆t +

N∑
h=0
q1hCh+1

1,k

√
∆tξk

+1
2

(
N∑

h=0
q1hCh+1

1,k

) (
N∑

h=0
q1h(h + 1)Ch

1,k

)
(ξ2 − 1)∆t,

C2,k+1 = C2,k +
[
bH

(
C1,k,C2,k

)
C2,k − (u2 + a + c)C2,k

]
∆t +

N∑
h=0
q2hCh+1

2,k

√
∆tζk

+1
2

(
N∑

h=0
q2hCh+1

2,k

) (
N∑

h=0
q2h(h + 1)Ch

2,k

)
(ζ2 − 1)∆t,

C3,k+1 = C3,k +
[
zC1,k + cC2,k − u3C3,k

]
∆t +

N∑
h=0
q3hCh+1

3,k

√
∆tαk

+1
2

(
N∑

h=0
q3hCh+1

3,k

) (
N∑

h=0
q3h(h + 1)Ch

3,k

)
(α2 − 1)∆t,

where the time increment ∆t > 0. ξk, ζk and αk are three independent random variables which follow
the Gaussian distribution N(0, 1). (C1,k,C2,k,C3,k) is the corresponding value of the k-th iteration.

4.1. Linear disturbance case (N = 0)

In this example, we will deal with the following stochastic system:

dC1(t) =
(
Θ − (u1 + z)C1(t) −

bC1(t)C2(t)
1 +m1C1(t) +m2C2(t)

)
dt + q10C1(t)dW1(t),

dC2(t) =
( bC1(t)C2(t)
1 +m1C1(t) +m2C2(t)

− (u2 + a + c)C2(t)
)
dt + q20C2(t)dW2(t),

dC3(t) =
(
zC1(t) + cC2(t) − u3C3(t)

)
dt + q30C3(t)dW3(t),

C1(0) = 0.5, C2(0) = 0.3, C3(0) = 0.2,

(4.1)
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associated with the following auxiliary process:

dD(t) =
(
Θ − (u1 + z)D(t)

)
dt + q10D(t)dW1(t), D(0) = 0.5.

We choose Θ = 0.23, u1 = 0.2, u3 = 0.19, z = 0.02, u2 = 0.2, m1 = 0.1, m2 = 0.1, a = 0.2, c = 0.02,
q10 = 0.11, q20 = 0.112 and q30 = 0.1. By setting b = 0.4 and considering a large time T , we get

T Σ◦ = lim
T→∞

T−1
∫ T

0

bD(τ)
1 + m1D(τ)

dτ − (u2 + a + c) − 0.5q220 � −0.0478 < 0.

From Theorem 2.1, we can infer the disappearance of the illness. Numerically, it can be seen in Figure 1
that the disease disappears after 230 days in the population with a strong permanence of classes 1 and 3.
Now, we select b = 0.55 to switch from the case of extinction to the case of persistence. Then,

T Σ◦ = lim
T→∞

T−1
∫ T

0

bD(τ)
1 + m1D(τ)

dτ − (u2 + a + c) − 0.5q220 � 0.0879 > 0.
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Figure 1. Computer illustration of the trajectories of the probabilistic model (4.1) with linear
white noise.

In accordance with Theorem 3.1, we infer that the properties of stationarity and ergodicity hold.
From Figure 2, we offer a good illustration of these two statistical characteristics. Clearly, in this
situation, the continuation of all classes is strongly happening which is depicted in Figure 3.
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Figure 2. The 3D graphs and associated upper views of the joint probability density at time
t = 600 of the classes C1, C2 and C3.
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Figure 3. Computer simulation of the solution of the stochastic model (4.1) with linear white
noises.

4.2. Quadratic disturbance case (N = 1)

In this example, we deal with the following stochastic system:

dC1(t) =
(
Θ − (u1 + z)C1(t) −

bC1(t)C2(t)
1 +m1C1(t) +m2C2(t)

)
dt + q10C1(t)dW1(t) + q11C2

1(t)dW1(t),

dC2(t) =
( bC1(t)C2(t)
1 +m1C1(t) +m2C2(t)

− (u2 + a + c)C2(t)
)
dt + q20C2(t)dW2(t) + q21C2

2(t)dW2(t),

dC3(t) =
(
zC1(t) + cC2(t) − u3C3(t)

)
dt + q30C3(t)dW3(t) + q31C2

3(t)dW3(t),

C1(0) = 0.5, C2(0) = 0.3, C3(0) = 0.2,
(4.2)

associated with the following auxiliary process:

dD(t) =
(
Θ − (u1 + z)D(t)

)
dt + q10D(t)dW1(t) + q11D2(t)dW1(t), D(0) = 0.5.

For the comparison objective, we keep the same parameter values as the first case and we select q11 =

0.022, q21 = 0.013 and q31 = 0.011. As the above case, we select b = 0.4. Then, we get

T Σ◦ = lim
T→∞

T−1
∫ T

0

bD(τ)
1 + m1D(τ)

dτ − (u2 + a + c) − 0.5q220 � −0.0520 < 0.
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Apparently, the condition of Theorem 2.1 holds. Numerically, the extinction phenomenon of the illness
is illustrated in Figure 4. Classes 1 and 3 still persist. Now, we choose b = 0.55 to move from the case
of extinction to the case of persistence. Then,

T Σ◦ = lim
T→∞

T−1
∫ T

0

bD(τ)
1 + m1D(τ)

dτ − (u2 + a + c) − 0.5q220 � 0.0896 > 0.
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Figure 4. Computer simulation of the trajectories of the probabilistic model (4.2) with
quadratic white noises.

Based on Theorem 3.1, The last value implies that the system (4.2) admits a stable distribution.
From Figure 5, we get an insight into the stationarity of the model (4.2). Furthermore, we offer Figure 6
to clarify the continuation of all classes C1, C2 and C3.
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Figure 5. The 3D graphs and associated upper views of the joint probability density at time
t = 600 of the classes C1, C2 and C3.
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Figure 6. Computer illustration of the solution of the probabilistic model (4.2) with quadratic
white noises.

4.3. Cubic disturbance case (N = 2)

In this part, we numerically prove that T Σ◦ is the sill of the system (1.4) in the special case of cubic
perturbation. So, we firstly introduce this probabilistic model:

dC1(t) =
(
Θ − (u1 + z)C1(t) −

bC1(t)C2(t)
1 +m1C1(t) +m2C2(t)

)
dt + q10C1(t)dW1(t)

+q11C2
1(t)dW1(t) + q12C3

1(t)dW1(t),

dC2(t) =
( bC1(t)C2(t)
1 +m1C1(t) +m2C2(t)

− (u2 + a + c)C2(t)
)
dt + q20C2(t)dW2(t)

+q21C2
2(t)dW2(t) + q22C3

2(t)dW2(t),
dC3(t) =

(
zC1(t) + cC2(t) − u3C3(t)

)
dt + q30C3(t)dW3(t) + q31C2

3(t)dW3(t) + q32C3
3(t)dW3(t),

C1(0) = 0.5, C2(0) = 0.3, C3(0) = 0.2,
(4.3)

associated with the following auxiliary process:

dD(t) =
(
Θ − (u1 + z)D(t)

)
dt + q10D(t)dW1(t) + q11D2(t)dW1(t) + q12D3(t)dW1(t), D(0) = 0.5.
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Here, we select q12 = 0.014, q22 = 0.0135, q32 = 0.012 and we keep the other coefficient values as the
above two cases. Again, if we select b = 0.4, then the result is

T Σ◦ = lim
T→∞

T−1
∫ T

0

bD(τ)
1 + m1D(τ)

dτ − (u2 + a + c) − 0.5q220 � −0.0616 < 0.

Theoretically, we have the disappearance of the illness according to Theorem 2.1. It remains to verify
it numerically. From Figure 7, the disease will clear up in about 70 days with long-term persistence of
categories 1 and 3. Now, we opt b = 0.55. Then,

T Σ◦ = lim
T→∞

T−1
∫ T

0

bD(τ)
1 + m1D(τ)

dτ − (u2 + a + c) − 0.5q220 � 0.0905 > 0.
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Figure 7. Trajectories of the probabilistic model (4.3) with cubic white noises.

From Theorem 3.1, we establish that there is a single stable distribution for (4.3) which is depicted
in Figure 8. The persistence of all classes is depicted in Figure 9.
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Figure 8. The 3D graphs and associated upper views of the joint probability density at time
t = 600 of the classes C1, C2 and C3.
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Figure 9. Computer simulation of the solution of the probabilistic model (4.3) with cubic
white noises.

5. Conclusions

Mathematical formulation plays a major role in understanding epidemics and also in supporting
public health decision-making. The regularly used models provide deterministic predictions, that is
to say, a strict behavior of the system studied, thus ignoring individual and environmental variations.
Actually, we group these unpredictable variations under the name of stochasticity (or randomness),
and the present study is devoted to the analysis of an epidemic strewing under heavy stochasticity.
The non-linearity and the complexity of the fluctuations pushed us to consider a general form of the
probabilistic part. Focusing on these motivations, we have offered an improved generalization of the
recent paper [9]. In the following, we present our substantial enhancements of the mentioned research.

⋆ In [9], the authors considered a nonlinear prevalence function of the form: bC1(t)g
(
C2(t)

)
. This

type of function has certain limitations and is not suitable for covering certain well-known
functional responses. By assuming mutual interference between classes C1 and C2, we have
proposed a general functionH which includes all the existing functional incidences.

⋆ In [9], the authors presented two distinct criteria to classify the asymptotic attitude of system (1.4)
with the incidence function bC1(t)g

(
C2(t)

)
. Explicitly, they obtained the following results:
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(1) The sufficient condition of the disease disappearance is

RC
0 = bg

′

(0)
∫
R+

yπD(dy) −
(
u2 + a + c + 0.5q220

)
< 0.

(2) The sufficient condition of the ergodicity is

RS
0 = Θbg

′

(0) −

u1 + z + 0.5q210 +

2N∑
h=1

h+1

√
22h−1

∑
i+ j=h

q1iq1 jΘh

 (u2 + a + c + 0.5q220

)
> 0.

However, in this article, we have unified the criterion of the above-mentioned characteristics by
providing the following acute threshold value:

T Σ◦ = b

∫
R+

H
(
y, 0

)
πD(dy) − (u2 + a + c) − 0.5q220.

Specifically,

(1) The condition of the disease disappearance is T Σ◦ < 0.
(2) The condition of the ergodicity is T Σ◦ > 0.

As a special case, we mention that the sharp threshold of the perturbed model studied in [9] is
exactly RC

0 .

Numerically, we have chosen the first three values of h, that are, linear, quadratic and cubic
perturbations. In all cases, we have confirmed that T Σ◦ is the global sill among disappearance of
infection and ergodicity. From Figure 10, we infer that when we raise the perturbation order, the illness
disappears swiftly. This indicates that the intense environmental variations have a negative effect on
the illness duration. This remark requires further theoretical clarification and explanation. We will deal
with this interesting question in our future work.

Some fascinating topics deserve more attention. For example, we can consider our model with
fractal-fractional differentiation. This framework is an attractive branch of applied mathematics that
deals with derivatives and integrals of non-integer order. Due to its amazing features, it is preferred
for describing and simulating real-world problems in various fields such as biological mechanisms,
material science, hydrological modeling, economic phenomena. We will address this idea in our future
work.
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Figure 10. Stochastic paths of infected class C2 in the case of N = 3 (q13 = 0.0116, q23 =

0.012, q33 = 0.0108); in the case of N = 4 (q14 = 0.016, q24 = 0.024, q34 = 0.038) and in
the case of N = 5 (q15 = 0.06, q25 = 0.08, q35 = 0.017). The other coefficients are selected
above.
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