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Abstract: Determining the joint pricing and ordering policy is a challenging task for policy-makers 

dealing with perishable items. This research deals with the inventory coordination for a decaying 

commodity under a non-linear price-sensitive demand structure where the policy-maker completes the 

payment partially in advance, exploiting the multiple installments facility to control supply disruptions. 

Moreover, an inventory-out situation is incorporated to make the model more representative; shortages 

are backlogged partially through a variable rate in exponential form, depending on the customer 

waiting times. Though the formulated inventory coordination creates a highly complex optimization 

problem, the existence of the joint optimal pricing and ordering policy is explored by developing 
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several theoretical outcomes. Three numerical illustrations are adopted to ensure the effectiveness of 

the model in providing the joint optimal pricing and ordering policy for the decision manager. 

Furthermore, to visualize the concavity of the average profit of the policy manager, as well as to 

demonstrate the adequacy of the optimum condition, MATLAB software was utilized. Finally, 

sensitivity studies for known key parameters are done using graphic presentation and a few supportive 

guidelines for the manager are also shown. The inventory manager should motivate the supplier to 

allow a higher installment frequency to implement the prepayment regulation, thus reducing the capital 

cost against the prepayment amount. 

Keywords: EOQ; non-linear price-dependent demand; non-instantaneous decay items; advance 

payment; partial backlogged shortages 

Mathematics Subject Classification: 90B05 

 

1. Introduction 

Inventory control is a critical activity for a company organization in the domain of inventory 

management. Various realistic assumptions about inventory control characteristics like client demand, 

degradation rate, preservation, backordering (partial or complete) and so on are essential for successful 

inventory management. In addition, numerous business schemes (for example, advance payment, trade 

credit and price discount) are necessary to construct an accurate and realistic inventory model. 

Proper control of inventory is an essential task for a business organization. For proper inventory 

management, different realistic assumptions regarding customer demand, deterioration rate, 

preservation, stock-out scenario, etc., need to be properly adopted during inventory analysis. 

Furthermore, to ensure the applicability of inventory modeling in the practical competitive businesses, 

many practical business strategies (viz., advance payment, permissible delay in payment and price 

discount) are needed to be taken into account when developing the inventory model. In inventory 

modeling, client demand is quite crucial, as it controls the main characteristics for any type of product 

management scheme. Customer demand can be influenced by various factors, such as time, stock, 

product quality and price. Product price has a considerable effect on demand because the demand of a 

product always changes as the selling price of the product increases or decreases. Consequently, to 

introduce a product to the market, a producer must be aware of the client's needs, as well as the 

product's price. 

The success or failure of any practitioner in business largely depends on how they manage the 

stock of items. This activity becomes indispensable, especially when the items are perishable, because 

deteriorated items do not bring any revenue, as they increase the deterioration cost/opportunity cost 

for the practitioner. Moreover, not all items (for example, vegetables, fish and fruits) perish from the 

moment of storage, but after some time from the moment of storage, so they are known as non-

immediate/non-instantaneous perishable/decaying items in stock analysis. As a result, the ordering 

decision for perishable products ultimately measures the success or failure of any practitioner to a great 

extent. On the other hand, suppliers/manufacturers of perishable items are very aware of the orders of 

their customers (retailers), as any order cancellation can cause a dramatic loss to their business. 

Apparently, they impose a prepayment strategy for their customers (retailers) to control the order 

cancellations. Under this prepayment strategy, the practitioner pays the supplier/manufacturer a 
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percentage of the total acquisition price in advance, and the rest of the acquisition price is paid at the 

time of receiving the lot. However, the practitioner incurs an opportunity cost against the prepayment 

amount because they cannot earn any revenue before receiving the goods. Consequently, the following 

research question is raised: Is there any effect of prepayment strategy on the practitioner’s order policy 

for non-instantaneous decay items? Under this prepayment strategy, the inventory decisions for the 

perishable items become much more complicated when the client demand varies with respect to a 

variable selling price. To the best of the authors' knowledge, there is no research work on inventory 

control to help practitioners by providing the optimal order policy for non-instantaneous decay items 

under the conditions of prepayment strategies and non-linear price-sensitive client demand. With the 

ambition of proper stock management, this study, for the first time, investigates the consequences of a 

prepayment scheme on the practitioner’s ordering decision for non-instantaneous decay items while 

the customer demand changes non-linearly with respect to selling price. 

2. Literature review 

2.1. Price-dependent demand 

Realizing the consequences of selling price, several researchers in the stock management area 

have developed inventory models that take into account price-dependent demand rates. In general, 

consumer demand shows an upward trend when the unit selling price falls. Nagaraju et al. [20] 

developed a two-tier inventory system for price-dependent demand that uses both centralized and 

decentralized tactics to optimize lot size and inventory selections. Ghoreshi et al. [9] explored the 

impact of client demand for linear pricing on a practitioner's profit within a trade credit scheme for 

deteriorated items. Banerjee and Agrawal [2] investigated price-dependent demand and proposed joint 

discounting and ordering decisions for degraded products with a short shelf life. For deteriorating items, 

Chen et al. [3] developed an optimal pricing and replenishment method for when client demand varies 

due to the resultant impacts of stock amount, price and product storage time. Adopting both perfect 

and imperfect products from a production process, Ruidas et al. [28] formulated a production model 

focusing on price- and stock-related customer demand. Considering the impact of carbon emissions on 

the environment, Ruidas et al. [29] developed another production model for client demand that is 

related to linear pricing uses the selling price as a decision variable. Recently, Ruidas et al. [30,31] 

studied two other production models, adopting a price-sensitive customer demand. The non-linear 

price-related demand structures reflect the behavior of the clients more appropriately than the linear 

form. Pando et al. [21] considered the consequences of price in an exponential structure on client 

demand; they found the best pricing strategy for a retailer to maximize returns on stock management. 

By considering a non-linear price-sensitive demand structure instead of the linear form, San-José et al. 

[33] described the optimal pricing policy for a practitioner to minimize profit per unit time. To provide 

optimal pricing and inventory decisions as related to perishable items for practitioners, this study also 

investigated client demand structure as related to non-linear pricing. 

2.2. Non-instantaneous decay items 

During stock-in, every perishable product/commodity deteriorates or loses usefulness due to 

many factors, such as temperature, dryness, perishability, spoilage, vaporization and time. As a result, 
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the degradation effects play a significant role in inventory control system analysis. Ghare and Schreder 

[8], to our knowledge, were the first to use this approach to design an inventory modeling problem. 

Covert and Philip [4] improved this method by including two-parameter Weibull distributed 

degradation. Subsequently, several scholars conducted several studies based on static or variable 

degradation. Khan et al. [15] obtained closed-form optimal inventory policies for decay items, with 

the deterioration rate adopted as constant. Replacing the constant degradation rate by a time-varying 

degradation rate, Khan et al. [13] explored the best pricing and inventory decisions for a retailer, 

assuming expiration dates for perishable items. However, not all items (for example, vegetables, fish 

and fruits) perish from the moment of storage, but after some time from the moment of storage; they 

are are known as non-immediate/non-instantaneous perishable/decaying items in stock analysis. 

Ghoreshi et al. [9] explored the impact of client demand for a non-instantaneous decay rate on ordering 

decisions within a trade credit scheme. Yadav et al. [38] developed an inventory model for deteriorating 

electronic components within warehousing by using a genetic algorithm. Khan et al. [14] further 

investigated the effects of delayed decay initiation in a two-warehouse storage environment based on 

different decay initiation moments in different warehouses. Recently, Khan et al. [16] described a stock 

management scheme for non-instantaneous decay items under the conditions of an advance payment 

business scheme. However, these aforementioned authors assumed a constant or linear price-sensitive 

client demand structure while formulating the model. This study explores the non-instantaneous decay 

feature for perishable items under the conditions of non-linear price-sensitive demand for the first time. 

2.3. Backordering 

Due to volatility in the business markets, sometimes practitioners cannot fulfill the clients’ desires 

on time. As a result, practitioners encounter a stock-out situation. During this stock-out period, a 

portion of customers either waits for the arrival of new products or moves elsewhere to fulfill their 

desires. When all clients wait for the new products to arrive, the situation is called “full backordering”, 

which is not compatible for many perishable items. In addition, when only a portion of the customers 

wait to have their desires fulfilled, the situation is called “partial backordering”, which is more 

compatible with many practical business situations. For degrading products with time-varying demand 

and holding costs, Dutta and Kumar [6] described a partial backordering environment in an inventory 

procedure. Jaggi et al. [10] investigated the impact of inflation and the time value of money on an 

inventory management system by considering perishable goods and partially backlog shortages. Under 

the conditions of price-sensitive demand and inventory age-associated holding costs, Rastogi and 

Singh [25] established an inventory model for fluctuating degrading and partial backlog 

pharmaceutical products. Rahman et al. [23] established the concept of a preservation facility and 

created an inventory model to account for price-sensitive demand and partial backordering. 

Udayakumar et al. [36] investigated a partial backlog shortage scenario in a practitioner's stock 

management scheme, focusing on deteriorating products under constant demand. 

2.4. Advance payment 

For security of payment, advance payment is an essential method in inventory management. It is 

a business plan wherein a merchant orders a product by paying a part of the entire purchase price in 

equal installments before receiving the product, and the remaining amount is paid after receiving the 
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product. An advance payment strategy ensures payment, as well as timely delivery of products. 

However, the practitioner incurs an opportunity cost against the prepayment amount because they 

cannot earn any revenue before receiving the goods. Zhang [40] presented this notion in his model 

with a set per-payment cost. By combining advance payment with delayed payment, Zia and 

Taleizadeh [42] created an inventory model to achieve the best ordering strategy. Zhang et al. [41] 

investigated a two-stage supply chain system with an advance payment method. Li et al. [17] proposed 

a hybrid advance, cash and delay payment strategy, looking at cash flow analysis, for a degrading 

inventory system. Taleizadeh [35] further investigated the impact of advance payment conditions on 

the inventory systems. In addition, Khan et al. [11] proposed a two-warehouse inventory model under 

the conditions of an advance payment scheme, whereas Shaikh et al. [34] studied an advance payment 

inventory model with interval-valued inventory costs. Furthermore, Manna et al. [18] explored the 

prepayment method in an interval environment to handle uncertainty. Khan et al. [15] proposed a 

flexible prepayment scheme in accordance with the purchased quantity. Alshanbari et al. [1] investigated 

an advance payment system for degrading goods under the conditions of a capital cost reduction 

facility utilizing multiple installments. Duary et al. [5] proposed an inventory model with advance 

payment for a discount facility with a deteriorating item. To improve the financing efficiency 

through the supply chain, Pfohl and Gomm [22], Gelsomino et al. [7] and Xu et al. [37] conducted 

separate systematic literature review studies on supply chain financing. Recently, Marchi et al. [19] 

studied reverse factoring as a technique to improve cash flow in a supply chain. In order to clarify the 

research gaps of a prepayment mechanism under stock management, Table 1 is presented. 

2.5. Our contributions 

Table 1 reveals that only two studies [14,16] investigated the effects of a prepayment business 

strategy on ordering decisions for non-instantaneous decay items given a constant or time-sensitive 

client demand. However, they did not take into account the impacts of selling price on the clients’ 

behavior. To the authors’ best knowledge, there is no research work on inventory control to help 

practitioners by providing optimal ordering policies for non-instantaneous decay items under the 

conditions of prepayment strategies and price-sensitive client demand. The fundamental contribution 

of this study is to fill this research gap by designing an inventory model for a non-instantaneous decay 

item with non-linear price-dependent demand given an advance payment business policy. For the first 

time, this work investigates the consequences of a prepayment scheme on the practitioner’s ordering 

decision for non-instantaneous decay items given that the customer demand changes non-linearly with 

respect to selling price. Moreover, the backlog rate varies based on how long consumers have been 

waiting, whereas a multiple installment facility is adopted to reduce the capital cost in the prepayment 

amount. To maximize the average profit, the existence of the optimal replenishing and pricing policies 

for the practitioner are explored theoretically. In addition, MATLAB software has been used to provide 

the graphic illustration of the average profit’s concavity. 
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Table 1. Comparative assessment of prepayment regulation under non-linear price dependent demand. 

Authors 

Demand 
Payment method for 

acquisition cost 
Deterioration 

Shortag

e 

Backordering Objective function 

Constant

/ others 

Price-dependent 

in 

advan

ce 
cash Instantaneous 

Non-

instantaneous 
No 

Full

y 

Partially with 

a 

Cost 

Minimization 

Profit 

maximizatio

n 

Ghoreshi et al. 

[20] 
 Linear form  √  √ √   Variable rate  √ 

Zia and 

Taleizadeh [42] 
Constant  √    √   Fixed rate  √ 

Banerjee and 

Aggarwal [2] 
 Non-linear form  √  √ √ √    √ 

Li et al. [17]  
Exponential 

form 
√  √       √ 

Taleizadeh [35] Constant  √    √   Fixed rate √  

San-José et al. 

[32] 
 Logit form  √   √  √   √ 

Khan et al. [11] Constant  √  √  √   Fixed rate √  

Shaikh et al. [34] Constant  √  √  √   Fixed rate √  

Khan et al. [14] Constant  √   √ √   Fixed rate √  

Manna et al. [18]  Linear form √  √  √   Variable rate  √ 

Khan et al. [15] Constant  √       Fixed rate   √ 

Alshanbari et al. 

[1] 
 Linear form √ √ √  √   Variable rate  √ 

San-Jose et al. 

[32] 
 Non-linear form  √        √ 

Rahman et al. 

[24] 

Stock 

sensitive 
 √  √  √   Variable rate  √ 

Khan et al. [16] 
Time 

sensetive 
 √   √ √   Variable rate √  

Duary et al. [5] 
Time 

sensetive 
 √  √  √   Variable rate  √ 

Rezagholifam 

et al. [26] 

Inventor

y level 

sensitive 

Linear form  √  √      √ 

This study  Non-linear form √ √  √ √    Variable rate  √ 
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Finally, the results of varying various parameters in the proposed model are shown, leading to a 

useful conclusion and guidelines for the practitioner. 

The remainder of the study is delineated as follows. The problem definition, along with all of the 

necessary hypotheses and notations, is delivered in Section 3. Section 4 exposes the problem 

formulation of the described inventory procedure. All analytical outcomes are derived for the optimal 

polices in Section 5, while Section 6 delivers numerical illustrations to verify the described inventory 

procedure. Following the sensitivity analysis, several managerial insights are derived in Section 7. 

Finally, Section 8 points out the conclusions of the study, along with several future research lines. 

3. Problem definition 

Consider a business situation in which a practitioner who stocks a non-instantaneous decay item 

from a supplier to satisfy a portion of the future client desires given that the clients’ behavior varies 

non-linearly with respect to selling price. Due to the perishable nature of the item, the supplier does 

not want to face cancellation or postponement of any order from the practitioner, as any order 

cancellation or postponement would cause a dramatic loss to their business. To prevent order 

cancellation or postponement, the supplier imposes a business scheme known as a prepayment 

mechanism. With this arrangement, the practitioner has to confirm the order by paying a percentage of 

the acquisition cost in advance, and the remaining percentage is to be paid at the time of receipt of the 

order. In addition, the practitioner incurs an opportunity cost against the prepayment amount because 

they cannot earn any revenue before receiving the goods. The main purpose of this study is to provide 

a complete decision framework for the practitioner by establishing optimal pricing and ordering 

decisions for a non-instantaneous decay item under a prepayment business contract to maximize the 

average profit. 

The following suppositions and notations are used to build the inventory model. 

3.1. Hypotheses 

(i) Nonlinear price-dependent demand is taken into account while developing the model. More 

precisely, the mathematical form of the demand structure is taken as 𝐷(𝑝) = 𝑎𝑝−𝑏, where 0a   and 
1b 

 [36]. The parameter a  reveals the highest possible customer demand without any effect of price, 

and the parameter b  measures the reduced customer demand after taking into account the 

consequences of price. 

(ii) The deterioration starts after the dt  unit of time from the moment of storage, while the rate 

of deterioration (0 1)  
 is constant during the deterioration occurring period. The deterioration 

starting moment, dt , can be assessed from past experiences and by using the maximum likelihood 

technique. In this study, for simplicity, the value of dt  is assumed as a known constant such that 

10 dt t 
, where 1t  denotes the time point when stock becomes zero level [36]. 

(iii) Any deteriorated product is neither replaceable nor reparable [20]. 

(iv) The horizon of inventory planning is unlimited and the lead time is M  unit of time, where 

the value of M  is known and offered by the supplier [16]. 
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(v) The practitioner has to confirm the order by paying a percentage K  of the acquisition cost 

in advance with the help of n  equal installments, and the remaining percentage is to be paid at the 

time of receipt of the order [16]. 

(vi) A stock-out situation is encountered by the practitioner and a variable backlogging rate (in 

exponential form) is taken into consideration based on the customer waiting times. Mathematically, 

this rate is represented as 
xe −
, where x

 denotes the waiting time of the consumers and 0 
 is 

the backlogging parameter [39]. 

3.2. Notation 

4. Problem derivation 

Initially, an order is placed by the retailer with (𝑆 + 𝑅) units of a sole item by reimbursing a certain 

Notation Unit Description 

A  $/order Replenishment cost 

a  Constant Demand parameter ( 0a  ) 

b  Constant Demand parameter ( 0b  ) 

pC
 

$/unit Purchase cost 

h  
$/unit/unit of 

time 
Holding cost 

sC
 

$/unit/unit of 

time 
Shortage cost 

dC
 

$/unit/unit of 

time 
Deterioration cost 

1C
 

$/unit/unit of 

time 
Lost sale cost 

( )I t  Units Level of inventory any time t  

  Constant Deterioration rate 
(0 1) 

 

  Constant Backlogging parameter 
( 0) 

 

M  Unit of time Lead time 

n  Constant Installment number to prepay 

K  Constant 
Fraction of the acquisition price to prepay 

( [0,1])K 
 

dt
 

Unit of time Time at which deterioration starts 

R  Units Backlogged units 

S  Units Maximum inventory level 

X̂  $/cycle Total cyclic cost 

X  $/cycle Total cyclic profit 

1 2( , , )TP p t t
 $/unit of time Total profit per unit of time 

Decision variables 

𝑝 $/unit Pre-unit selling price 

𝑡1 Unit of time Time point when stock becomes zero level 

𝑡2 Unit of time Shortage period 
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part K  of the purchase cost with n  equal several part payment facility within the receiving time 𝑀, 

and the products are received after the payment of all of the remaining amount of the purchase price 

at time 𝑡 = 0. Then, 𝑅 units are utilized instantly to satisfy the backlogged demand and the level of 

inventory becomes 𝑆 (see Figure 1). 

 

Figure 1. Graphic representation of inventory and paying mechanism. 

The governing differential equations are as follows:  

( )
( ), 0 d

dI t
D p t t

dt
= −  

,       (1) 

1

( )
( ) ( ), ,d

dI t
I t D p t t t

dt
+ = −  

       (2) 

1 2( )
1 1 2

( )
( ) ,t t tdI t

D p e t t t t
dt

− + −= −   +
,      (3) 

with the initial conditions ( )I t S=  at 0,t =  ( ) 0I t =
 at 1t t=

 and 1 2( ) atI t R t t t= − = +
. 

Using the initial condition of inventory level at 0,t =  from Eq (1), one has 

( ) ( )I t D p t S= − +
.           (4) 

The inventory level for 1( , ]dt t t
, given Eq (2) with ( ) 0I t =

 at 1t t=
, is 

 1( )( )
( ) 1t tD p

I t e



−= −
.         (5) 

The shortage level for 𝑡 ∈ (𝑡1, 𝑡1 + 𝑡2], given Eq (3) with 𝐼(𝑡) = −𝑅 at 𝑡 = 𝑡1 + 𝑡2, is 

 

Inventory 

Time 
0 

} 

 
  

 

Lot sales 

 

 

 

} 
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 1 2( )( )
( ) 1 t t tD p

I t e R



− + −= − −
.         (6) 

The continuity property of the inventory level at dt t=
, as according to Eqs (4) and (5), provides 

 1( )( )
( ) 1dt t

d

D p
S D p t e





−
= + −

.        (7) 

Again, the continuity property of the inventory level at 1t t=
, given Eqs (5) and (6), delivers 

( )2
( )

1 tD p
R e 



−= −
.        (8) 

For a single business period, the practitioner bears the following costs: 

Ordering cost A= : 

Carrying cost of inventory 

1

0
( ) ( )

d

d

t t

t
h I t dt h I t dt= +     1 1

2
( ) ( )

12

( ) ( ) ( )
1 ( ) 1

2
d dt t t td d

d

D p t t D p hD p
h e e t t

  
 

− −
  

= + − + − − − 
   . 

Shortage cost 

1 2

1

( )
t t

b t
C I t dt

+
= −  ( )2 2

22

( )
1 t tbC D p

e t e 


− −= − −
. 

Purchase cost 

( )PC S R= +
  ( )1 2( )1 1

( ) 1 1dt t t
P dC D p t e e

 

 

− − 
= + − + − 

  . 

Capital cost 

( )
(1 2 ... ) P

C

KC S RM
I n

n n

+ 
= + + + 

   

  ( )1 2( )( 1) 1 1
( ) 1 1

2
dt t t

C P d

n
I MKC D p t e e

n

 

 

− −+  
= + − + − 

  . 

Lost sale cost 

( )( )
1 2

1 2

1

1 1

t t
t t t

t

C e Ddt


+
− + −

= − ( )2

1 2

1
( ) 1 tC D p t e 



− 
= − − 

  . 

As a result, the total cyclic cost for the practitioner is 
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ordering cost carrying cost shortage cost
ˆ

purchasecost capital cost lost salecost
X

 + + 
=  

+ + +    

    ( )

  ( ) ( )

1 1 2 2

1 2 2

2
( ) ( )

1 22 2

( )
1 2

( ) ( ) ( )( )
1 ( ) 1 1

2

( 1) 1 1 1
1 ( ) 1 1 ( ) 1 .

2

d d

d

t t t t t td d b
d

t t t t
C P d

D p t t D p C D phD p
A h e e t t e t e

n
I MK C D p t e e C D p t e

n

   

  

 
  

  

− − − −

− − −

  
= + + − + − − − + − − 

  

+     
+ + + − + − + − −    
       

The sales revenue for the practitioner within a single business period is 

1 1 2

1 2

1

( )

0

( ) ( )

t t t

t t t

t

p D p dt D p e dt

+

− + −
 

+ 
  
  ( )2

1

1
( ) 1 tpD p t e 



− 
= + − 

  . 

Consequently, the profit for the practitioner within a single business period is 

𝑋 = 𝑝𝐷(𝑝) {𝑡1 +
1

𝛿
(1 − 𝑒−𝛿𝑡2)} − 𝐴 − ℎ {

𝐷(𝑝)𝑡𝑑
2

2
+

𝑡𝑑𝐷(𝑝)

𝛼
{𝑒𝛼(𝑡1−𝑡𝑑) − 1}} 

−
ℎ𝐷(𝑝)

𝛼2
{𝑒𝛼(𝑡1−𝑡𝑑) − 𝛼(𝑡1 − 𝑡𝑑) − 1} −

𝐶𝑏𝐷(𝑝)

𝛿2
(1 − 𝑒−𝛿𝑡2 − 𝛿𝑡2𝑒

−𝛿𝑡2) 

−{1 +
(𝑛 + 1)

2𝑛
𝐼𝐶𝑀𝐾}𝐶𝑃𝐷(𝑝) [𝑡𝑑 +

1

𝛼
{𝑒𝛼(𝑡1−𝑡𝑑) − 1} +

1

𝛿
(1 − 𝑒−𝛿𝑡2)] − 𝐶1𝐷(𝑝) {𝑡2 −

1

𝛿
(1 − 𝑒−𝛿𝑡2)}. 

Finally, the optimization problem for the entire system takes the form 

Maximize
1 2

1 2

( , , )
X

TP p t t
t t

=
+ ,        (9) 

which is subject to 1 10 , 0dt t t  
 and 

2 0.t 
 

5. Theoretical derivation 

To compute the optimum solution of Problem (9), the first-order partial derivatives of 1 2( , , )TP p t t  

with respect to 1,p t
 and 2t  should be calculated as 

( ) ( )

 1 1

1

( ) ( )

1 2

2
( )1 1 21 2

1
( , , ) ( )

( 1)
1

2

d d

d

t t t t

d

t t

C P

h
p ht e e

TP p t t X D p

nt t tt t I MK C e
n

 





− −

−

 
− − − 

 = − +
+ +   + − +     ,     (10)  
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( ) ( )

( )2 2 2

2

2 1

1 2

2

2 1 21 2

1
( , , ) ( )

( 1)
1

2

t t t

b

t

C P

pe C t e C e
TP p t t X D p

nt t tt t I MK C e
n

  



− − −

−

 − − −
 

= − +  +  ++ − +  
        (11) 

and
 

𝜕𝑇𝑃(𝑝, 𝑡1, 𝑡2)

𝜕𝑝
 

=
𝑎𝑏𝑝−(𝑏+1)

(𝑡1+𝑡2)

[
 
 
 
 
 𝑝 (

1

𝑏
− 1) {𝑡1 +

1

𝛿
(1 − 𝑒−𝛿𝑡2)} + ℎ {

𝑡𝑑
2

2
+

𝑡𝑑

𝛼
{𝑒𝛼(𝑡1−𝑡𝑑) − 1}} +

ℎ

𝛼2 {𝑒𝛼(𝑡1−𝑡𝑑) − 𝛼(𝑡1 − 𝑡𝑑) − 1}

+
𝐶𝑏

𝛿2 (1 − 𝑒−𝛿𝑡2 − 𝛿𝑡2𝑒
−𝛿𝑡2) + {1 +

(𝑛+1)

2𝑛
𝐼𝐶𝑀𝐾}𝐶𝑃 [𝑡𝑑 +

1

𝛼
{𝑒𝛼(𝑡1−𝑡𝑑) − 1} +

1

𝛿
(1 − 𝑒−𝛿𝑡2)]

+𝐶1 {𝑡2 −
1

𝛿
(1 − 𝑒−𝛿𝑡2)} ]

 
 
 
 
 

.(12) 

The optimality is explored in two ways. First, the optimum replenishing policy is explored for a given 

𝑝 > 0. For this purpose, the necessary conditions from Eqs (10) and (11) are 

( )  1 1 1( ) ( ) ( )

1 2

( 1)
( ) 1 1

2
d d dt t t t t t

d C P

h n
D p t t p ht e e I MK C e X

n

  



− − − + 
+ − − − − + =  

      (13) 

and 

( ) ( )2 2 2 2

1 2 2 1

( 1)
( ) 1 1

2

t t t t

b C P

n
D p t t pe C t e C e I MK C e X

n

   − − − − + 
+ − − − − + =  

   .   (14) 

Since the right-hand sides of both Eqs (13) and (14) are the same, one can find 

( )( )

 

2 2 2

1 1 1

2 1

( ) ( ) ( )

( 1)
1 1

2

( 1)
1 1 .

2
d d d

t t t

b C P

t t t t t t

d C P

n
C t e p C e I MK C e

n

h n
ht e e I MK C e

n

  

  



− − −

− − −

+ 
+ + − + + 

 

+ 
= + − + + 

       (15) 

From Eq (14), one can write
 

𝐷(𝑝)(𝑡1 + 𝑡2) [𝑝𝑒−𝛿𝑡2 − 𝐶𝑏𝑡2𝑒
−𝛿𝑡2 − 𝐶1(1 − 𝑒−𝛿𝑡2) − {1 +

(𝑛 + 1)

2𝑛
𝐼𝐶𝑀𝐾}𝐶𝑃𝑒−𝛿𝑡2] 𝑝𝐷(𝑝) {𝑡1

+
1

𝛿
(1 − 𝑒−𝛿𝑡2)} − 𝐴 

−ℎ {
𝐷(𝑝)𝑡𝑑

2

2
+

𝑡𝑑𝐷(𝑝)

𝛼
{𝑒𝛼(𝑡1−𝑡𝑑) − 1}}

−
ℎ𝐷(𝑝)

𝛼2
{𝑒𝛼(𝑡1−𝑡𝑑) − 𝛼(𝑡1 − 𝑡𝑑) − 1}

−𝐶𝑏𝐷(𝑝)

𝛿2
(1 − 𝑒−𝛿𝑡2 − 𝛿𝑡2𝑒

−𝛿𝑡2) 

−{1 +
(𝑛 + 1)

2𝑛
𝐼𝐶𝑀𝐾}𝐶𝑃𝐷(𝑝) [𝑡𝑑 +

1

𝛼
{𝑒𝛼(𝑡1−𝑡𝑑) − 1} +

1

𝛿
(1 − 𝑒−𝛿𝑡2)] 
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−𝐶1𝐷(𝑝) {𝑡2 −
1

𝛿
(1 − 𝑒−𝛿𝑡2)}.               (16) 

 

The first-order derivative of the left-hand side of Eq (15) with respect to 2t  is 

[𝐶𝑏(1 − 𝛿𝑡2) + (𝑝 + 𝐶1)𝛿 − {1 +
(𝑛+1)

2𝑛
𝐼𝐶𝑀𝐾}𝐶𝑃𝛿] 𝑒−𝛿𝑡2. 

Consequently, the left-hand side of Eq (15) is continuous; it increases for all 𝑡2 ∈ [0, 𝑡~2] and decreases 

for all 𝑡2 ∈, where 

𝑡~2 =
𝐶𝑏+(𝑝+𝐶1)𝛿−{1+

(𝑛+1)

2𝑛
𝐼𝐶𝑀𝐾}𝐶𝑃𝛿

𝐶𝑏𝛿
. 

Consequently, the left-hand side of Eq (15) has a maximum at 𝑡~2, and the maximum is 

( )

( )1

( 1)
1

2

1 1 1

( 1)

2

b C P

b

n
C p C I MK C

n

Cb
P C P

Cn
p C C I MKC p C p C e

n

 




+ 
+ + − + 

 
−+   

+ + − − + + +   
    . 

Regarding the right-hand side, the right-hand side of Eq (15) is increasing for all 1 [ , )dt t 
 
and tends 

to infinity when 1t →
. As a result, there exists a unique 𝑡~1 ∈ such that 

ℎ𝑡𝑑𝑒𝛼(𝑡~1−𝑡𝑑) +
ℎ

𝛼
{𝑒𝛼(𝑡~1−𝑡𝑑) − 1} + {1 +

(𝑛 + 1)

2𝑛
𝐼𝐶𝑀𝐾}𝐶𝑃𝑒𝛼(𝑡~1−𝑡𝑑)(𝑝 + 𝐶1)𝛿 {𝐶𝑃 +

(𝑛 + 1)

2𝑛
𝐼𝐶𝑀𝐾𝐶𝑃 − 𝑝 − 𝐶1} 

+(
𝐶𝑏

𝛿
+ 𝑝 + 𝐶1)𝑒

−𝐶𝑏+(𝑝+𝐶1)𝛿−{1+
(𝑛+1)

2𝑛 𝐼𝐶𝑀𝐾}𝐶𝑃𝛿

𝐶𝑏 . 

Moreover, there exists a unique 1 [ , )dt t 
  for any 𝑡2

′ ∈ (0, 𝑡~2)  such that Eq (15) is maintained. 

Similarly, for any given 𝑡2
′ ∈ (𝑡~2, ∞), there exists a unique 1 [ , )dt t 

 such that Eq (15) is maintained. 

As a result, 1t  can be computed in terms of 2t  uniquely, and the expression of 1t  in terms of 2t , 

given Eq (15), is 

( )( )2 2 2

2 1

1

( 1)
1 1

1 2
ln

( 1)
1

2

t t t

b C P

d

d C P

n h
C t e p C e I MK C e

n
t t

h n
ht I MK C

n

  







− − − + 
+ + − + + +  

  = +
+  

+ + +     .    (17) 

Let us define the auxiliary function from Eq (16) as 

𝛹(𝑡2) = 𝐷(𝑝)(𝑡1 + 𝑡2) [𝑝𝑒−𝛿𝑡2 − 𝐶𝑏𝑡2𝑒
−𝛿𝑡2 − 𝐶1(1 − 𝑒−𝛿𝑡2) − {1 +

(𝑛 + 1)

2𝑛
𝐼𝐶𝑀𝐾}𝐶𝑃𝑒−𝛿𝑡2]

− 𝑝𝐷(𝑝) {𝑡1 +
1

𝛿
(1 − 𝑒−𝛿𝑡2)} 

+𝐴 + ℎ {
𝐷(𝑝)𝑡𝑑

2

2
+

𝑡𝑑𝐷(𝑝)

𝛼
{𝑒𝛼(𝑡1−𝑡𝑑) − 1}} +

ℎ𝐷(𝑝)

𝛼2
{𝑒𝛼(𝑡1−𝑡𝑑) − 𝛼(𝑡1 − 𝑡𝑑) − 1} + 𝐶1𝐷(𝑝) {𝑡2 −

1

𝛿
(1 − 𝑒−𝛿𝑡2)} 
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+
𝐶𝑏𝐷(𝑝)

𝛿2 (1 − 𝑒−𝛿𝑡2 − 𝛿𝑡2𝑒
−𝛿𝑡2) + {1 +

(𝑛+1)

2𝑛
𝐼𝐶𝑀𝐾}𝐶𝑃𝐷(𝑝) [𝑡𝑑 +

1

𝛼
{𝑒𝛼(𝑡1−𝑡𝑑) − 1} +

1

𝛿
(1 − 𝑒−𝛿𝑡2)].  (18) 

The first-order derivative of 2( )t  with respect to 2t  is 

( )

( ) ( )

2 2 2 2

2 2 2 2 2

2

2 1
2 1

2 2

1 2 2 1

(1

2

( ) ( 1)
( ) 1 1 1

2

( 1)
( ) 1

2

( ) ( )

t t t t

b C P

t t t t t

b C P

t

d

d t dt n
D p pe C t e C e I MK C e

dt dt n

n
D p t t pe C e t e C e I MK C e

n

dt
pD p e ht D p e

dt

   

    



   

− − − −

− − − − −

−

   + 
= + − − − − +    

   

 + 
+ + − − − − + +  

  

 
− + + 

 
 

 

1 1

12 2 2

) ( )1 1

2 2

( ) 1
2 1

2

( )
1

( 1)
( ) 1 ( ) ( ) 1 ,

2

d d

d

t t t t

t tt t t

b C P

dt dthD p
e

dt dt

dtn
C D p t e I MK C D p e e C D p e

n dt



  



− −

−− − −

+ −

 + 
+ + + + + −   

     

i.e., 

( ) ( ) ( ) 22
1 2 2 1

2

( ) ( 1)
( ) 1 1

2

t

b C P

d t n
D p t t C t p C I MK C e

dt n

   −  + 
= − + − + + − +  

   .   (19) 

Now, the existence of the optimal replenishing policy can be observed from the following theorem: 

Theorem. For any 𝑝 > 0, 

(a) if 𝛹(𝑡~2) < 0, then the optimal point (𝑡1
∗, 𝑡2

∗) is unique and maximizes 𝑇𝑃(𝑡1, 𝑡2|𝑝) given 𝑡2 ∈

(0, 𝑡~2). 

(b) if 𝛹(𝑡~2) ≥ 0, the optimal value of 𝑡2 is 𝑡2
∗ → ∞. 

Proof. See Appendix. 

For any 0p   , Theorem (a) shows that, if 𝛹(𝑡~2) < 0 , then 𝑇𝑃(𝑡1, 𝑡2|𝑝)  holds its global 

maximum value at the single point (𝑡1
∗, 𝑡2

∗), where 𝑡2 ∈ (0, 𝑡~2). Now, at the point (𝑡1
∗, 𝑡2

∗), from 

Eq (14), one can find 

( )
* * * *
2 2 2 2* *

1 2 2 1

( 1)
( , ) ( ) 1 1

2

t t t t

b C P

n
TP t t p D p pe C t e C e I MK C e

n

   − − − − + 
= − − − − +  

   . 

Again, Theorem (b) shows that, if 𝛹(𝑡~2) ≥ 0, then 
*

2t →
. Then, from Eq (17), one can compute 

1
*

1

1
ln

( 1)
1

2

d

d C P

h
p C

t t
h n

ht I MK C
n






 
+ + 

 = +
+  

+ + +      

and 𝑙𝑖𝑚
𝑡2
∗→∞

𝑇𝑃(𝑡1
∗, 𝑡2

∗|𝑝) = −𝐶1𝐷(𝑝). This yields that the given 𝑝 > 0 provides a negative profit; hence, this 

𝑝 > 0 is unstable and it should be improved. 

Now, the unique optimal selling price per unit is computed after analyzing its existence. For any 
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𝑡1
∗ > 𝑡𝑑  and 𝑡2

∗ > 0 , taking the first-order derivative with respect to p   and performing some 

simplifications, the necessary condition to compute 𝑝∗ is 

( )

( )

( ) ( )

   

*

2

* * *

2 2 2

* *

1 1

* * *
1 2 2

* *
1 2

*1
2 22

2
( ) ( ) *

12* *
1 2

( , ) 1( 1)
( ) ( ) 1

2

1 1

( )
1 ( ) 1

2

1

d d

t

P P C

t t tb

t t t td d
d

dTP p t t t en
D p D p p C C I MK

dp n t t

C C
e t e t e

t tD p h
h e e t t

t t



  

 





 



 

−

− − −

− −

 
− − +    

= + − − +    
  +    

− − − − −

   
− + − + − − − 

+   

+  
*

1( ) *
1

0

( 1) 1 ( 1)
1 1

2 2
dt t

C P d C P

n n
I MK C t e I MK C t

n n





−

 
 
 
 

= 
 
 

+ +      + + − − +            .  (20) 

Since 

 
*

1( ) *
1

( 1) 1 ( 1)
1 1 1

2 2
dt t

C P d C P

n n
I MK C t e I MK C t

n n





−+ +     
+ + − − +    

       

* 2 * 2 *
1 1 1

( 1) 1 1
1 1 ( ) ( ) ... 1 0

2 2
C P d d d

n
I MK C t t t t t t

n
 



+     
= + + + − + − + − −     
     , 

* *

2 2

21 0t te t e − −− − 
, 

*

2*
21 0tt e  −− − 

, 
*

1( )
1dt t

e
 −

−  

and 

*

1( ) *
1( ) 1 0dt t

de t t
 −

− − − 
, 

the coefficient of 
𝐷′(𝑝)

(𝑡1
∗+𝑡2

∗)
 is always positive. In addition, 𝐷′(𝑝) = −𝑎𝑏𝑝−(𝑏+1)  is negative always. 

Consequently, the necessary condition (i.e., Eq (20)) is solvable for 𝑝 if 

( 1)
( ) ( ) 0

2
P P C

n
D p D p p C C I MK

n

+ 
+ − −  

  , 

that is, 

( 1)
(1 ) 1 0

2
P C

n
p b bC I MK

n

+ 
− + +  

   

as 

( ) ( ) ( )

* *

2 2* *
2 2

* * * * * *
1 2 1 2 1 2

1 1
1 0

t tt e t e

t t t t t t

 

 

− −− − −
+ = + 

+ + +
. 
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Furthermore, if the per unit gross profit including the capital cost 

( 1)
( )

2
P P C

n
D p p C C I MK

n

+ 
− − 

   

is strictly concave in p  , then its derivative 

( 1)
( ) ( )

2
P P C

n
D p D p p C C I MK

n

+ 
+ − − 

    is strictly 

decreasing; hence, 

( 1)
2 ( ) ( ) 0

2
P P C

n
D p D p p C C I MK

n

+ 
 + − −  

  . 

As a result, the second-order derivative with respect to 𝑝is 

( )

( )

( ) ( )

 

*

2

* * *

2 2 2

* *

1 1

2 * * *
1 2 2

2 * *
1 2

*1
2 22

2
( ) ( )

2* *
1 2

( , ) 1( 1)
2 ( ) ( ) 1 1

2

1 1

( )
1 (

2
d d

t

P C

t t tb

t t t td d

d TP p t t t en
D p D p p C I MK

ndp t t

C C
e t e t e

t tD p h
h e e

t t



  

 





 



 

−

− − −

− −

 
  − − +    

 = + − + +     
  +    

− − − − −

   
− + − + − 

+   
 

 
*

1

*
1

( ) *
1

) 1 0.

( 1) 1 ( 1)
1 1 1

2 2
d

d

t t
C P d C P

t t

n n
I MK C t e I MK C t

n n





−

 
 
 
 

− −  
 
 

+ +      + + + − − +              (21) 

Therefore, a single selling price 
*p  can be found which maximizes the total profit of the practitioner. 

In addition, the selling price 𝑝 which satisfies the equation 

( 1)
(1 ) 1 0

2
P C

n
p b bC I MK

n

+ 
− + + = 

   

is the lower bound of the optimal selling price (say, lp
). As a result, 

( 1)
1

2

1

P C

l

n
bC I MK

n
p

b

+ 
+ 

 =
− . 

Summarizing the theoretical outcomes, the following algorithm is established to achieve the 

optimal solution for the retailer.  
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Algorithm 

Step 1: Input the values of known parameters. 

Step 2: 

Start with setting 
1j =

  and 

( )

( 1)
1

2

1

P C
j

n
bC I MK

n
p p

b

+ 
+ 

 = =
−  , which is the solution of 

( 1)
(1 ) 1 0

2
P C

n
p b bC I MK

n

+ 
− + + = 

  . 

Step 3: 
Put 

( )jp
 and 𝑡~2 =

𝐶𝑏+(𝑝(𝑗)+𝐶1)𝛿−{1+
(𝑛+1)

2𝑛
𝐼𝐶𝑀𝐾}𝐶𝑃𝛿

𝐶𝑏𝛿
 into Eq (15) to compute the corresponding value 

of 1t , that is, 𝑡~1. Utilizing these values, given Eq (18), find the value of 𝛹(𝑡~2). 

Step 4: 
If 𝛹(𝑡~2) < 0, then go to Step 5; otherwise, set 

( 1) ( )j jp p + = +
, where   is a sufficiently small 

positive number, and go to Step 3 after updating j  by 1j + . 

Step 5: 
From Eq (18), find the value of 

*

2t  by solving 2( ) 0t = . Determine the corresponding 
*

1t  from 

Eq (15) and then go to Step 5. 

Step 6: 
Compute the value of p  from Eq (20). Set 

( 1)jp p+ =
. 

Step 7: 

If 

( 1) ( 1)j jp p+ +−
 is sufficiently small, go to Step 8; otherwise, set 

1j j= +
 and go to Step 3. 

Step 8: 

Report the optimal solution:
 

* ( 1)jp p +=
, 

*

1t  and 
*

2t  with the maximum profit 
( )* * *

1 2, ,TP p t t
. 

Step 9: End 

In the next section, we illustrate the described model by solving three numerical examples. 

6. Numerical illustration 

Utilizing the solution algorithm in the previous section, three numerical examples were solved 

while LINGO 18 software was used to solve all the necessary equations during the implementation of 

the algorithm. In addition, MATLAB software was used to illustrate the concavity of the objective 

function by using the same numerical case to evaluate the applicability of the suggested model. 

Example 1. Let $200A = /order, 3500a = , 1.5b = , 
$30pC =

/unit, 1 $10C =
/unit, 

$1hC =
/unit, 

0.05 =  , 0.4 =  , 0.25M =   months, 20n =  , 
0.01cI =

 /$/month, 0.4K =  , 
0.2dt =

  month and 

$15sC =
 /unit. Therefore, adopting the algorithm, the optimal solutions for this example are 

* 115.8991p =  , 
*

1 6.5999t =
  months, 

*

2 0.3964t =
  months, 

* 21.7184S =   units, 
* 1.0284R =  

units, 
* 22.7468Q =

 units and 
* * *

1 2( , , ) $187.2284TP p t t = . 

The concavity of the objective function for Example 1 is shown pairwise with respect to the 
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independent decision variables ( p , 1t  and 2t ) in Figures 2–4. 

 

Figure 2. Concavity of the average profit function with respect to p  and 1t . 

 

Figure 3. Concavity of the average profit function with respect to p  and 2t . 



19812 

 

AIMS Mathematics  Volume 7, Issue 11, 19794–19821. 

 

Figure 4. Concavity of the average profit function with respect to 1t  and 2t . 

Example 2. Let $250A = /order, 2500a = , 1.2b = , 
$35pC =

/unit, 1 $10C =
/unit, 

$1hC =
/unit, 

0.05 =  , 0.4 =  , 0.5M =   months, 20n =  , 
0.01cI =

 /$/month, 0.5K =  , 
0.5dt =

  month and 

$15sC =
 /unit. Hence, adopting the algorithm, the optimal solutions for this example are 

* 266.3658p =  , 
*

1 6.8282t =
  months, 

*

2 0.1985t =
  months, 

* 24.4005S =   units, 
* 0.5862R =  

units, 
* 24.9867Q =

 units and 
* * *

1 2( , , ) $645.4862TP p t t = . 

Example 3. Let $250A =  /order, 2200a =  , 1.4b =  , 
$55pC =

 /unit, 1 $15C =
 /unit, 

$1.5hC =

/unit, 0.07 =  , 0.5 =  , 0.8M =   months, 25n =  , 
0.05cI =

 /$/month, 0.45K =  , 
0.4dt =

 

months and 
$17sC =

/unit. Then, adopting the algorithm, the optimal solutions for this example are 
* 283.5804p =  , 

*

1 8.5979t =
  months, 

*

2 0.5030t =
  months, 

* 9.2970S =   units, 
* 0.3604R =  

units, 
* 9.6574Q =

 units and 
* * *

1 2( , , ) $135.6230TP p t t =
. 

7. Sensitivity analysis 

This section deals with the variation patterns of optimal policies 
* * * * *

1 2, , , ,p t t S R
,
 
along with the 

profit per unit of time due to the changes of the original value of the key parameters in Example 1. 

This process is conducted by altering only a single parameter at a time from -20% to +20% and keeping 

the values of the rest of the parameters as the same. The corresponding computational results are 

illustrated graphically in Figures 5–8. 



19813 

 

AIMS Mathematics  Volume 7, Issue 11, 19794–19821. 

 

Figure 5. Percent change with respect to a. 

 

Figure 6. Percent change with respect to b. 

 

Figure 7. Percent change with respect to pC
. 
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Figure 8. Percent change with respect to A . 

From the sensitivity analysis in Figure 5, it is concluded that the profit per unit time (𝑇𝑃) is equally 

sensitive, whereas the positive stock period (𝑡1) and stock-out period (𝑡2) are relatively responsive and 

the initial stock (𝑆) and highest shortage (𝑅) are less responsive for changing the value of 𝑎. The 

optimal selling price for the retailer falls gradually when the demand parameter 𝑎 increases. Though 

the optimal selling price decreases, the maximum profit per unit of time increases. This observation 

suggests that the decision manager should implement some effective marketing strategies (for example, 

attractive advertising campaigns) to increase potential market demand and then reduce the selling price 

slightly.  

According to Figure 6, the profit per unit time (𝑇𝑃) and stock-out period 𝑡2 are highly responsive, 

whereas the positive stock period (𝑡1 ), initial stock (𝑆 ) and highest shortage level (𝑅 ) are equally 

responsive in terms of altering the value of the price-sensitive parameter 𝑏. The variation of the price-

sensitive parameter (𝑏)  reveals the dramatic consequences on the stock-out period. When the 

parameter 𝑏  increases, the client demand decreases; hence, the manager stocks a relatively small 

amount. As a result, the stock-out period increases significantly. On the other hand, the profit of the 

retailer falls as client demand falls considerably when the parameter 𝑏 increases. 

Figure 7 exposes that profit per unit of time (𝑇𝑃) is equally sensitive, while both the initial stock 

(𝑆) and maximum shortage level (𝑅) are highly sensitive with respect to the variation of the per unit 

acquisition price (𝐶𝑝). On the another hand, the positive stock period (𝑡1) and stock-out period (𝑡2) are 

relatively sensitive when 𝐶𝑝 increases or decreases. The optimal selling price for the retailer increases 

when the per unit acquisition price increases. However, the profit per unit time decreases. In this case, 

increasing the per unit selling price does not ensure an increase of the profit. This outcome suggests 

that the decision manager should negotiate the per unit acquisition price with the supplier. Moreover, 

when the per unit acquisition price (𝐶𝑝) rises, the selling price (𝑝) also increases; hence, the client 

demand 𝐷(𝑝) falls considerably. As a result, both the initial stock (𝑆) and maximum shortage level (𝑅) 

falls when the per unit acquisition price increases. 

Figure 8 indicates that the profit per unit of time (𝑇𝑃) has only negative consequences due to the 

variation of the ordering cost per order (𝐴), while all of the rest (independent and dependent) of the 

decision variables have positive impacts with respect to the changes of 𝐴. When the ordering cost 

increases, the decision manager purchases more quantities so that the ordering cost against each unit 

falls and, therefore, the stock-in period (𝑡1) and entire cycle length increase. To face a higher ordering 

cost per order, the decision manager sets up a higher selling price for each unit. In this case, though 
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the unit selling price increases, the profit per unit time decreases. 

Taking into account the behavior with respect to the variations of the inventory parameters, the 

following management insights have been drawn for the inventory manager. 

(a) As both the demand parameters (𝑎 and 𝑏) have the greatest consequences for the manager’s 

profit per unit of time, the decision manager should implement some effective marketing strategies 

(for example, attractive advertising campaigns) to increase potential market demand and then reduce 

the selling price slightly. 

(b) Though the optimal selling price for the retailer increases, the profit per unit time decreases 

when the per unit acquisition price increases. In this case, increasing the per unit selling price does not 

ensure an increase of the profit. This outcome suggests that the decision manager should negotiate the 

per unit acquisition price with the supplier. 

(c) When the ordering cost for placing every order increases, the decision manager should 

purchase more quantities so that the ordering cost against each unit decreases. 

(d) As 

  ( )1 2( )( 1) 1 1
( ) 1 1 0

2
dt t t

C P d

dTP n
I K C D p t e e

dM n

 

 

− −+   
= − + − + −    

    , 

the inventory manager’s profit is strictly decreasing with respect to the allowed lead time from the 

supplier. When the lead time (𝑀) increases, the inventory manger’s capital cost or opportunity cost 

from the prepayment amount increases; hence, the profit per unit of time falls. This observation 

suggests that the decision manager should negotiate the lead time with the supplier. 

(e) Since 

  ( )1 2( )( 1) 1 1
( ) 1 1 0

2
dt t t

C P d

dTP n
I M C D p t e e

dK n

 

 

− −+   
= − + − + −    

    , 

the profit per unit of time is strictly decreasing when the fraction of the acquisition price to prepay 

increases. When the fraction of the acquisition price to prepay (𝐾) increases, the inventory manger’s 

capital cost or opportunity cost from the prepayment amount increases; hence, the profit per unit of 

time decreases. Therefore, the decision manager should negotiate with the supplier to reduce the 

fraction of the acquisition price for prepayment. 

(f) As 

  ( )1 2( )

2

( ) 1 1
1 1 0

2

dt t tC P
d

I KC D pdTP
t e e

dn n

 

 

− − 
= + − + −  

  , 

the profit per unit of time shows an upward trend when the installment frequency increases. A higher 

installment number for prepayment helps the manager to reduce the capital cost or opportunity cost 

against the prepayment amount. Consequently, the inventory manger should motivate the supplier to 

allow a higher installment frequency to implement the prepayment regulation.  
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8. Conclusions 

In this study, a stock control system was investigated for degrading products with non-linear 

price-dependent client demand and advanced payment regulations with a multiple installment plan 

given exponential partial backordering. To achieve the optimal joint pricing and replenishment 

schedule for the retailer, some important characteristics were explored. The nature of the decision 

variables in the formulated inventory problem is complex; hence, the optimal values of these variables 

cannot be obtained via a simple algebraic approach. As a result, the optimal pricing and replenishment 

scheduling are achieved by employing a numerical technique in an algorithmic manner. Three 

numerical examples were used to ensure the efficacy of the algorithm; the concavity of the average 

profit function was then visually shown pairwise with respect to the decision variables by using 

MATLAB software. To obtain management insights into optimal policies, the impacts of key 

parameters were explored by altering the values of these parameters in an inventory problem. Precisely, 

the decision manager should implement some effective marketing strategies (for example, attractive 

advertising campaigns) to increase potential market demand and then reduce the selling price slightly 

in order to increase the profit per unit of time. When the ordering cost for placing every order increases, 

the decision manager should purchase more quantities so that the ordering cost against each unit 

decreases. The inventory manager should motivate the supplier to allow a higher installment frequency 

to implement the prepayment regulation so that the capital cost or opportunity cost against the 

prepayment amount is reduced and, hence, the profit per unit of time is increased. Moreover, to 

increase the profit, the decision manager should negotiate with the supplier to reduce both the lead 

time and fraction of the acquisition price for accomplishing the prepayment. 

This work considers the installment frequency as an input parameter to complete the prepayment 

without incurring any cost against each installment, which is a limitation of this study. Therefore, an 

interesting extension of this work would be to investigate the optimal installment frequency for the 

retailer. 

No effect of product storage time on client demand was considered while developing the model. 

However, the behavior of clients depends not only on the unit selling price, but also on the storage 

period of the deteriorating products. Hence, another immediate future line of this study is to investigate 

the combined effects of price and time on the demand structure, either in additive or multiplicative 

form. It might also be an interesting expansion of a model without shortage to loosen the zero-ending 

situation by using a non-ending inventory model. 
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Appendix 

Proof of the theorem. 

(a) Since 𝐶𝑏(1 − 𝛿𝑡2) + 𝛿(𝑝 + 𝐶1) − 𝛿 {1 +
(𝑛+1)

2𝑛
𝐼𝐶𝑀𝐾}𝐶𝑃 is positive for all 𝑡2 ∈ and negative for 

all 𝑡2 ∈ (𝑡~2, ∞), Eq (19) reveals that 𝛹(𝑡2) is strictly decreasing for all 𝑡2 ∈ and increasing for all 𝑡2 ∈

(𝑡~2, ∞). As a result, 𝛹(𝑡2) has a minimum at 𝑡2 = 𝑡~2,
 
and the minimum is 𝛹(𝑡~2). First, the interval 

[0, 𝑡~2] is considered. When 𝑡2 = 0, Eq (17) shows that 𝑡1 < 𝑡𝑑, which contradicts the restriction 𝑡1 ≥

𝑡𝑑. As a result, when 𝑡2 = 0, 𝑡1 = 𝑡𝑑. Thus, one has 

2( ) ( 1)
(0) 1 ( ) 0

2 2

d
C P d

D p t n
A h I MK C D p t

n

+ 
 = + + +  

  . 

Because 𝛹(𝑡2) is strictly decreasing for all 𝑡2 ∈, under the condition of 𝛹(𝑡~2) < 0, the intermediate 

value theorem ensures a unique solution 𝑡2 ∈ (0, 𝑡~2) such that 𝛹(𝑡2
∗) = 0. Now, exploiting 

( ) ( )2 1

( 1)
1 1 0

2
b C P

n
C t p C I MK C

n
  

+ 
− + + − +  

   

for all 𝑡2 < 𝑡~2, one has 

( ) ( ) ( )
* * *
1 1 1

* *
1 2 1 2

2

1 2 ( ) ( ) ( )

2 * *
1 1 2, ,

( , ) ( ) ( 1)
1 0

2
d d dt t t t t t

d C P

t t t t

TP t t p D p n
ht e he I MK C e

t nt t

   − − −

=

  + 
= − + +   

 +   
, 

( ) ( ) ( )
( ) ( )

*
2

* *
1 2 1 2

2

1 2 *

2 12 * *
2 1 2, ,

( , ) ( ) ( 1)
1 1 0

2

t

b C P

t t t t

TP t t p D p n
C t p C I MK C e

t nt t

   −

=

  + 
= − − + + − +   

 +   
. 

And, 

( ) ( ) ( ) ( )* * * *
1 2 1 2 1 2 1 2

2 2

1 2 1 2

1 2 2 1, , , ,

( , ) ( , )
0

t t t t t t t t

TP t t p TP t t p

t t t t
= =

 
= =

   
. 

Therefore, the determinant of the Hessian matrix at (𝑡1
∗, 𝑡2

∗) is 

{𝐷(𝑝)}2𝑒−𝛿𝑡2
∗

(𝑡1
∗+𝑡2

∗)2
[𝛼ℎ𝑡𝑑𝑒𝛼(𝑡1

∗−𝑡𝑑) + ℎ𝑒𝛼(𝑡1
∗−𝑡𝑑)𝛼 {1 +

(𝑛+1)

2𝑛
𝐼𝐶𝑀𝐾}𝐶𝑃𝑒𝛼(𝑡1

∗−𝑡𝑑)] [
𝐶𝑏(1 − 𝛿𝑡2

∗) + (𝑝 + 𝐶1)𝛿

− {1 +
(𝑛+1)

2𝑛
𝐼𝐶𝑀𝐾}𝐶𝑃𝛿

] > 0. 

Since the first and second principal minors of the Hessian matrix are negative and positive, respectively, 

(𝑡1
∗, 𝑡2

∗) is the optimal solution. 

Again, the interval is considered now. Because 2( )t
 is increasing for all 𝑡2 ∈ (𝑡~2, ∞), there are 

two possible cases corresponding to the condition 𝛹(𝑡~2) < 0, namely, (i) there is no 𝑡2 ∈ (𝑡~2, ∞) such 

that 
2( ) 0t = , and (ii) there is a single point 2̂t  in the interval (𝑡~2, ∞) such that 

2̂( ) 0t = . For the 

first possibility, the optimal solution for 2t   does not exist. On the another hand, for the second 

possibility, the determinant of the Hessian matrix at (𝑡1
∗, 𝑡2

∗) becomes negative as 
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( ) ( )2 1

( 1)
1 1 0

2
b C P

n
C t p C I MK C

n
  

+ 
− + + − +  

   

for all 𝑡2 > 𝑡~2. As a result, the point (𝑡1
∗, 𝑡2

∗) is not the optimal solution. 

(b) Because 2( )t
 has a global minimum at 𝑡2 = 𝑡~2, 2( )t  is always positive for all 2t  given 

the condition 𝛹(𝑡~2) > 0 . Now, exploiting Eqs (11) and (18), one has 
𝜕𝑇𝑃(𝑡1,𝑡2|𝑝)

𝜕𝑡2
=

𝛹(𝑡2)

(𝑡1+𝑡2)2
> 0 . This 

highlights that 𝑇𝑃(𝑡1, 𝑡2|𝑝) has a higher value for higher values of 2t . Therefore, 𝑇𝑃(𝑡1, 𝑡2|𝑝) achieves 

the maximum value at the point 𝑡2
∗ → ∞ . Again, when 𝛹(𝑡~2) = 0 , 

𝜕𝑇𝑃(𝑡1,𝑡2|𝑝)

𝜕𝑡2
|
𝑡2=𝑡~2

= 0 . Since 

𝑇𝑃(𝑡1, 𝑡2|𝑝)
 
is increasing in both the intervals (0, 𝑡~2) and (𝑡~2, ∞)

 
in this case, the point 𝑡2 = 𝑡~2 is an 

inflection point; hence, 𝑇𝑃(𝑡1, 𝑡2|𝑝) achieves the maximum value at the point 𝑡2
∗ → ∞. 

This completes the proof. 
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