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Abstract: Cryptocurrency is a digital currency and also exists in the form of coins. It has turned out as
a leading method for peer-to-peer online cash systems. Due to the importance and increasing influence
of Bitcoin on business and other related sectors, it is very crucial to model or predict its behavior.
Therefore, in recent, numerous researchers have attempted to understand and model the behaviors
of cryptocurrency exchange rates. In the practice of actuarial and financial studies, heavy-tailed
distributions play a fruitful role in modeling and describing the log returns of financial phenomena.
In this paper, we propose a new family of distributions that possess heavy-tailed characteristics. Based
on the proposed approach, a modified version of the logistic distribution, namely, a new modified
exponential-logistic distribution is introduced. To illustrate the new modified exponential-logistic
model, two financial data sets are analyzed. The first data set represents the log-returns of the Bitcoin
exchange rates. Whereas, the second data set represents the log-returns of the Ethereum exchange
rates. Furthermore, to forecast the high volatile behavior of the same datasets, we apply dual machine
learning algorithms, namely Artificial neural network and support vector regression. The effectiveness
of these models is evaluated against self exciting threshold autoregressive model.
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1. Introduction

In recent times, cryptocurrency and blockchain technology has gained the ability to revolutionize
economic phenomena worldwide. Over the past couple of years, a new fashion to make payments
via cryptocurrencies has arisen. It allows money/asset transfer across the globe without consulting a
centralized third party; see Phillip et al. [1], and Alzaatreh and Sulieman [2]. Since 2009, after the
introduction of Bitcoin into the financial market, numerous cryptocurrencies have been introduced.
Since 2014, around 4500 cryptocurrencies have been launched worldwide. Figure 1 shows the number
of cryptocurrencies from 2014 to the present.
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Figure 1. Number of available cryptocurrencies from 2014 to 2021.

Due to the increasing interest of investors in Bitcoin, it has attracted considerable attention in recent
years. There is a vast literature on Bitcoin, for example, (i) Ciaian et al. [3] implemented a regression
approach for predicting Bitcoin prices, (ii) Nuifiez et al. [4] performed a statistical analysis of Bitcoin,
(iii) Punzo and Bagnato [5] modeled the cryptocurrency return data by implementing the Laplace scale
mixtures, (iv) Ibrahim et al. [6] used different time series models for predicting the direction moment
of Bitcoin, (v) Hachicha and Hachicha [7] performed a comparative study of stochastic volatility
and MCMC (Markov Chain Monte-Carlo) algorithm using the Bitcoin stock market indexes, and (vi)
Livieris et al. [8] used a machine learning approach for cryptocurrency forecasting. For more studies
related to Bitcoin and other cryptocurrencies, we refer to Chkili et al. [9], Cebrian-Hernandez et al.
[10], Bazan-Palomino [11], Qin et al. [12], Ghabri et al. [13], Yan [14], Mahdi et al. [15], Liu et al.
[16], Naimy et al. [17], and Umar et al. [18].
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In this paper, we propose a new method for introducing new HT (heavy-tailed) distributions. The
proposed method can be implemented for modeling the HT financial and other related data sets. For
case studies, we analyze two data sets related to the log-returns of Bitcoin and Ethereum ERs (exchange
rates) based on the USA (United States of America) dollars.

Now, we introduce a new modfied exponential-X (for short “NME-X"") family of distributions. The
NME-X is introduced by combining the exponential model having PDF (probability density function)
k (1) = 7" with the T-X family method.

Consider a random variable, say 7, with PDF k (¢), where T € [my, 7] for —co < 1y < m, < 0. Let
X be a random variable with CDF (cumulative distribution function) expressed by W (x; A) depending
on the parameter vector A. Let suppose that F [W (x;A)] be a function of CDF of X, satisfying the
following conditions

(i) F[W(x;A)] € [my, 7],
(i) F[W (x;A)] is differentiable and monotonically increasing,
(iii) F[W (x;A)] > myas x —» —co and F [W (x;A)] — m, as x — oo,

Then, according to Alzaatreh et al. [19], the CDF of the T-X distributions approach is defined by

FIW(x;A)]
M (x;A) :f k(1) dt, x € R, (1.1)

m

where F [W (x;A)] satisfies the above conditions presented in (i)—(iii). Corresponding to Eq (1.1), the
PDF of the T-X distributions is given by

m(x;A) = {%F (W (x; A)]}k{F [W(x;A)]}, x €eR.

Now, using k (f) = ¢ and replacing F [W (x;A)] = % in Eq (1.1), we get the CDF of the
NME-X family, given by

_BWxb)
B+ W (AN

where, W (x;A) = 1 — W (x; A) is the SF (survival function) of the baseline model.

Based on our study of the literature, the new method defined in Eq (1.2) has not been proposed/used
so far. This is one of the key motivations of this work. Henceforth, using the proposed method
numerous new distributions can also be introduced for data modeling in different sectors. The PDF
m (x; 8, A) corresponding to Eq (1.2) is given by

M@xB,A) =1- B>0,x€eR, (1.2)

2 .
m(x;B,A) = ﬁWuAJ3w+2—WuAﬂ, B>0,xeR, (1.3)

[B+ W (x;A)]
where LW (x;A) = w (x;A).
Corresponding to Eq (1.2) and (1.3), the SF S (x;8,A) = 1 — M (x;3,A) and hazard function (HF)

h(x;B,A) = li”/f;(f ’ﬁA’L), are given, respectively, by
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BW (x; A)
S(upA) = 202 0,x€R,
(x;8,A) B WAL B>0,x€
and
h(x:B,A) = w5 A) [B+2 - W (xA)].

W (A [B+W(x;A)]

In this paper, we implement the proposed approach in Eq (1.2) and introduce a new
modified/extended version of the logistic distribution, namely, a new modified exponential-logistic
(NME-Logistic) model. The next section offers the CDF, PDF, SF, and HF of the NME-Logistic
model. Furthermore, different PDF behaviors of the NME-Logisticmodel are also presented in the
same section.

2. A NME-logistic distribution

Consider the CDF W (x;A) and PDF w(x;A) of the two parameters (1> 0,n > 0) logistic
distribution given by

1

W A) = ———,
1+ e )

xeR,npeR,1eR", 2.1

and

w(x;A) = xeR,npeR, 1R,

respectively, where A = (¢, ). Using Eq (2.1) in Eq (1.2), we get the CDF of the NMExp-Weibull
model given by

#(1- =)

b+ —tem|

MxB,A) =1- xeR,peR,ABER", (2.2)

with PDF

m(x;B,A) = B+2-— xeR. (2.3)

o+t | Pl

Different plots for PDF of the NME-Logistic model are illustrated in Figure 2. The PDF plots of
the NME-Logistic model are obtained for n = 4, 4 = 1.5, and different values of .
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Figure 2. Different plots of m (x; 8, A) for ¢ = 1.4, ¢ = 0.5, and different values of 3.
Furthermore, the SF and HF of the NME-logistic model are given by

ﬁz (1 B ]+eéxﬂ_n))
2 9
[ﬂ * l+e_%x/lﬂ)]

S (xB.A) = x€R,

and

respectively.
3. The HT charachteristics of the NMExp-X family

Here, we mathematically prove that the NMExp-X distributions possess the HT characteristics.

3.1. The regularly varying tail behavior

The RVTB (regularly varying tail behavior) plays a curial role to identify HT distributions. In this
subsection, we derive the RVTB of the NMExp-X family. As per the results of Karamata’s theorem
Seneta [20], in terms of SF W(x; A), we have
Theorem 1. If S(x;A) = 1 — W(x;A) is a RVF (regularly varying function), then S (x;8,A) = 1 —
M(x;B,A) is also a RVFE.
Proof. Assume lim,_,, i%if;
we have

= g(k) is finite but nonzero for every a > 0. By incorporating Eq (1.2),
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S kx.8) _FIL-WkeA]  [B+W (A
SBA B+ WhknAP T BIL-WkA)L
S (kx:.8) _ [1=Wkn A [B+W (x; AT
SBA) — N-WxA] ~ [+ WkxA)]
Applying lim,_,, on both sides, we get

S kxfA) _ [ - WknA)] B+ W (x;A)]

=1l . 3.1
Dn SWAA) e [I-WEA] B+ W ke A G-b
Since lim,_,., W (x;A) = 1. So, from Eq (3.1), we have
o SERBA) 1= WkaA)] [+ W (M)
=0 S (A xoe [I=WEA] 7 [+ W (koo A
S (ke A) _ 1= Wkad)] | [B+W (i A)]
o0 S (GBA) w0 [I=W A 7 [+ W (oA
S (kx:A) . [1=WkxA)] _[B+1]
SR AR T W] el
S (kpA) _ S kA
o S (GRA) e S (GA)
S (kx;BA)
lim SN g (k). (3.2)

The expression provided in Eq (3.2) is finite but nonzero for every k > 0. Therefore, S (x;5,A) is a
RVE

3.2. The regular variational result

Let’s assume that the distribution of X has a power-law behavior, then we have

SxA)=1-W(xA) =PX>x)~x"

Using the results of Karamata’s characterization theorem, we can write S (x;5,A) as

S (x;8,A) = x*L(x),
where L(x) is a SVFE. Note that

B - W (xA)]
S (x;8,A) = . 3.3
G388 = T (3.3)

Since 1 — W (x;A) ~ x4 Therefore, from Eq (3.3), we get

ﬁZx—/l

B+ x

S (x;8,A) =
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S (x;8,A) = x'L(x),

where L(x) = ﬁ. So, if we can show that L(x) is a SVF, then the RVTB obtained is true. For all
A > 0, we must show that

L(kx)
=1. 34
By carrying out the computation, we have
2
ko _ g (B

L()C) - (ﬁ+ (kx)_/l)z ﬂZ

L) _ (B+ )
L (g an™)

Applying lim,_,., on both sides, we get

L o (Bre)

im = _ (3.5)
x—o0 L(X) X—00 (ﬁ + (kx)—/l)z

Since, x — oo, then lim,_, X—IA =0, and lim,_, ﬁ = 0. Therefore, from Eq (3.5), we obtain
L 2
im (kx) = ﬁ— ,
oo L) PP
which leads to the proof of Eq (3.4), given by

L(kx)
s L(x)

4. Analyzing the cryptocurrency data sets

In this section, we implement the NME-logistic distribution for analyzing two real-life data taken
from the finance sector. The first data set represents the log-returns of the daily Bitcoin ERs. Whereas,
the second data set represents the log-returns of the daily Ethereum ERs.

We fit the NME-logistic distribution to the daily Bitcoin and Ethereum ERs and compare its fitting
results with the logistic and Gumble distributions. The SFs corresponding to the competing models are
given by

e Logistic distribution
e‘(%)

SxA4,n) = ———s,
1+

xe€R,neR, 1R,
and
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e Gumble distribution
S (x;4,n) = l—exp{—e‘(¥)}, xeR,neR,A€R",

respectively.

To figure out analytically which competing distribution provides the close fit to the Bitcoin ERs
data, three goodness of fit tests such as (i) Anderson—Darling (AD) test, (ii) Cramér—von Mises (CVM)
test, and (iii) Kolmogorov—Smirnov (KS) test, were considered. Besides these tests, the p-value of the
competing models has also been calculated.

4.1. Analyzing the Bitcoin ERs data

In this subsection, we analyze the log-returns of the Bitcoin ERs data using the NME-
logistic distribution and the other competing distributions. The data set is available at https://
coinmarketcap.com/currencies/bitcoin/. The considered data set represents the daily Bitcoin
ERs based on the USA dollars from June 30, 2014, to June 30, 2022.

The log-returns of the daily Bitcoin ERs, r,, is obtained as r, = log(P;) — log (P,—;), where P,
represents the exchange rate at time ¢. The summary statistics (SS) of log returns of the Bitcoin ERs
are X = —0.0014, mininum = —-0.1740, 0, = —-0.0222, @, = 0.0003, O3 = 0.0188, maximum = 0.1358,
variance = 0.0013, range = 0.3098, skewness = —0.3939, and kurtosis = 5.2472. Some basic plots of
the daily Bitcoin ERs are presented in Figure 3.
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Figure 3. Some basic plots of the daily Bitcoin ERs.

AIMS Mathematics Volume 7, Issue 10, 18031-18049.


https://coinmarketcap.com/currencies/bitcoin/.
https://coinmarketcap.com/currencies/bitcoin/.

18039

Corresponding to the Bitcoin ERs data, the MLE (flMLE, NMmLE, ,@MLE) results of the fitted models are
reported in Table 1. Whereas, the values of AD, CVM, KS, and p-value are obtained in Table 2. Based
on the reported results in Table 2, it is obvious that the NME-Logistic model provides a close fit to the
Bitcoin ERs data.

Table 1. The values of 7y, Aye, and BMLE of the fitted models for the Bitcoin ERs data.

Model fmLe AMLE Bure
NME-Logistic 0.0269 0.0197 0.8200
Logistic -0.0021 0.0214 -
Gumbel 0.1932 0.1076 -

Table 2. The values of analytical measures of the fitted models for the Bitcoin ERs data.

Model CVM AD KS p-value
NME-Logistic 0.0690 0.3808 0.0364 0.7445
Logistic 0.1321 0.7310 0.0654 0.1011
Gumbel 0.3876 0.9765 0.1075 0.0953

Besides the numerical illustration of the fitted models, a visual comparison of the fitted models is
also provided. For the visual illustration, the plots of fitted the PDFs (Figure 4), CDFs, and Kaplan-
Meier (KM) survival plots (Figure 5) are considered. Based on the visual illustration provided in
Figures 4 and 5, it is clear that the NME-Logistic model provides a close fit to the Bitcoin ERs data.
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Figure 4. The plots of the fitted PDFs of the NME-Logistic, logistic and Gumble models for
the Bitcoin ERs data.
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Figure 5. The plots of the fitted CDFs and SFs of the NME-Logistic, logistic and Gumble
distributions for the Bitcoin ERs data.

4.2. Analyzing the Ethereum ERs data

Here, we implement the NME-logistic distribution to analyze the log-returns of the Ethereum
ERs data set. The Ethereum ERs data is available at https://www.google.com/finance/quote/
ETH-USD. The second data set represents the daily Ethereum ERs based on the USA dollars from June
30, 2017, to June 30, 2022. The SS of the log-returns of the Ethereum ERs are X = —0.0019, mininum

-0.1777, Q; = —0.0274, Q, = 0.0006, Q3 = 0.0243, maximum = 0.1258, variance = 0.0020, range

= 0.3036, skewness = —0.3096, and kurtosis = 4.0979. Some key plots of the daily Ethereum ERs are

provided in Figure 6.
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Figure 6. Some basic plots of the daily Ethereum ERs.
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Using the Ethereum ERs data set, the values ;IMLE,ﬁMLE, and BMLE are presented in Table 3.
Whereas, the values of AD, CVM, KS and p-value of the fitted distributions are obtained in Table 4.
From the numerical results in Table 4, it is clear that the NME-Logistic distribution provides the best
fit for the Ethereum ERs data.

Table 3. The values of 7, g, Ayg, and ,@MLE of the fitted models for the Ethereum ERs data.

Model fmLe AMLE Bure
NME-Logistic 0.0577 0.0272 0.3193
Logistic -0.0008 0.0246 -
Gumbel 0.1264 0.0907 -

Table 4. The values of analytical measures of the fitted models for the Ethereum ERs data.

Model CVM AD KS p-value
NME-Logistic 0.0243 0.2030 0.0239 0.9850
Logistic 0.0737 0.4548 0.0289 0.9195
Gumbel 0.1280 0.8543 0.1015 0.8362

In addition to the numerical illustration of the competing distributions, a visual comparison of the
competing models is also provided. For this purpose, the plots of fitted PDFs (Figure 7), CDFs, and
KM plots (Figure 8) are obtained. Based on the visual comparison of the competing distributions in
Figures 7 and 8, it is obvious that the NME-Logistic model provides the best fit for the Ethereum ERs
data.
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Figure 7. The plots of fitted the PDFs of the NME-Logistic, logistic and Gumble models for
the Ethereum ERs data.
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Figure 8. The plots of the fitted CDFs and SFs of the NME-Logistic, logistic and Gumble
distributions for the Ethereum ERs data.

5. Forecasting models and analysis

In the previous section, the modified version of the logistic distribution is examined in contrast
to some existing probability distributions through real phenomena related to the log-returns of the
daily Bitcoin and Ethereum ERs data sets. This section aims to forecast the log-returns of the
daily Bitcoin and Ethereum ERs data by applying two popular machine learning techniques, such
as artificial neural networks (ANNs) and support vector regression (SVR) including SETAR model.
The effectiveness of ML techniques is assessed against the traditional model, namely, the self exciting
threshold autoregressive (SETAR) model.

5.1. Artificial neural network

The ANN is a flexible computing algorithm for analyzing a wide range of non-linear problems.
A significant superiority of the ANN algorithms over competitive nonlinear tools is, that they can
approximate the huge class of functions with a higher degree of accuracy. In addition to this advantage,
the construction of ANNs does not require any prior assumption. Alternatively, the network is
ascertained by the characteristics of the data; see Zhang [21]. Among a list of numerous networks, the
single hidden layer feed-forward network is the most popular algorithm type for predictive modeling.
The algorithm is basically characterized by connecting three layers, namely, input layers, hidden layers,
and output layers; see Peng et al. [22].

Mathematically, the connection between input layers (@,-1, @;-2, ..., D;—4, ) and output layer (@,) can
be expressed as

k a
®1‘ = :80 + ZIBID (Zi + Z Zim®t—m] + &,
i=1 m=1
where B; (i =1,2,3,...,k), 2, (i=1,2,3,...k, m=1,2,3,...,a) are the unknown parameters, often
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refers to connection weight, k and a are indicating the number of hidden and input layers, respectively.
Using the first data set, we estimate the model with 3 hidden layers and 5 input layers (lagged
variables), and for the second data set, 3 hidden layers and 3 input layers are used. Both hidden
layers and input variables are chosen through the error and trial approach followed by Khashei and
Hajirahimi [23].

5.2. Support vector regression

The SVR approach was initially proposed by Cortes and Vapnik [24], and till today, it is widely
used for classification and regression problems. The SVR is based on the structured risk minimization
principle and statistical learning theory, which in turn evades the overfitting problem, and thus yields
an accurate forecast. Awan et al. [25] argued that SVR approximates linear and nonlinear real-world
problems precisely.

In practice, kernel function plays a key role in the forecasting performance of SVR. The utilization
of kernel functions performs operations in the input space in place of higher-dimensional space.
Numerous kernel functions are utilized in the literature including linear, polynomial, and sigmoid
Radial Basis Functions (RBF) and splines; see Yu et al. [26]. Among these, RBF has gained a
substantial focus by dint of its exceptional performance in capturing the non-linear nexus Ghosh [27]
and Raje and Mujumdar [28].

The SVR is helpful while determining the margin of error which is acceptable in the model; see
Bibi et al. [29] and Ribeiro et al. [30]. The mathematical expression for SVR with kernel function is
illustrated as

k
@ = > (B:=B)Z(Di-D)+e,
i=1

where D illustrates the support-vector, k indicates the size of support vector, Z (D; — D) indicates the
kernel function, and ¢ illustrates the threshold value. Herein, the RBF with a parameter R? can be
expressed as
_ID=Dg I
Z(D;—Dy) =e =
where ||D; - D;||* denotes the Euclidean distance amidst the two covariates in squared form, R? denotes
the width of RBF. In our study, we use the RBF as a kernel function for SVR.

5.3. SETAR

Unlike the ML tools delineated in the previous subsections, the SETAR model belongs to the
traditional statistical procedures of time series. The SETAR model was initially proposed by Tong
and Lim [31], which is basically the modified form of the autoregressive model. The SETAR
model is parametric, non-linear in nature, and a special case of markov switiching models; see
D’Amato et al. [32]. It assumes that the series behavior varies post entering into a different regime.
In Eq (12), suppose m denotes the number of regimes, often equal to two or three (in our case, the
high regime and the low regime are represented by mH and mL respectively), and 7 is the threshold
indicator, where a series changes the regime, a represent the lagged values, the model SETAR(m = 2,
a) can be expressed as

AIMS Mathematics Volume 7, Issue 10, 18031-18049.
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0 = L (" + A 0 + o+ 2000,0) (5.1)

H H H
+ Lo (zg + 200 + .+ 2T (Z),_a).

If the value of the threshold variable is fixed, then the model is linear and can be estimated by
conditional least squares.

5.4. Forecasting of the out-of-sample log-returns of daily Bitcoin and Ethereum ERs

This work uses log-return of daily Bitcoin ERs data in order to quantify the predictability of ANN
and SVM algorithms against SETAR model. Therefore, we split the data into two parts, intending to
facilitate the out-of-sample prediction accuracy. For estimation, we use the data from June 30, 2014,
to June 30, 2022 (log-returns of daily Bitcoin ERs), and June 30, 2017, to June 30, 2022 (log-returns
of daily Ethereum ERs), for checking the models’ multistep ahead out-of-sample forecasting accuracy.
We use 80 percent data for estimating the models, and the remaining 20 percent data, for checking the
models’ multistep ahead out-of-sample forecasting accuracy, as followed by Ahmad et al. [33].

The predictability is evaluated through popular statistical measures, namely, root-mean-square error
(RMSE) and mean absolute error (MAE). The model with lower RMSE and MAE is considered the
best model comparatively. The mathematical expressions for MAE and RMSE are, respectively, given
by

MAE = mean (|2, — @4]),

and

RMSE = \/mean (2, - 5,

where the observed and forecasted values of log-returns of daily Bitcoin and Ethereum ERs data sets
are given by @, and @,, respectively.

5.4.1. Analysis of the log-returns of the daily Bitcoin ERs

Figure 9 depicts the log-returns of daily Bitcoin ERs data, which shows a high volatility nature, and
thus it is a very difficult task to forecast it through traditional models. The alternative approaches to
capture its high volatile behavior with satisfactory prediction accuracy, are machine learning tools. In
this section, we apply ANN, SVR, and SETAR models to analyze the high volatile data.

In Figure 9, the log-returns of daily Bitcoin ERs data are divided by a vertical blue dotted line,
where the training part for model estimation and the second part (testing data) is used for out-of-sample
prediction.
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Figure 9. The log-returns of daily Bitcoin ERs data.

The standard accuracy measures, namely, the RMSE and MAE for ML algorithms and the SETAR
model are visually displayed in Figure 10. The height of the bar represents the models’ forecasting
performance in terms of RMSE and MAE. The smaller the height of a bar, the more accurate the
forecast is comparatively.

From Figure 10, it can be seen that the corresponding bars for ANN are smaller than the SVR and
SETAR models. In addition, SETAR outperforms the SVR. Therefore, we can infer that ANN yields a
more satisfactory forecast than the other competitive approaches (SVR and SETAR).

0.047
0.043 0.044

0.036
0.032 0.033

ANN SVR SETAR

RMSE © MAE

Figure 10. Post sample forecast comparison using the log-returns of the daily Bitcoin ERs
data.

5.4.2. Analysis of log-returns of the daily Ethereum ERs

The log-returns of daily Ethereum ERs series are very noisy in nature, as shown by Figure 11,
thereby linear models have no capability to fit such data precisely, and provide accurate forecasts.
Therefore, our study adopts alternate procedures, including the ML algorithms and SETAR model to
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fit the high volatile time series along with satisfactory forecasting accuracy. The vertical dotted line
splits the log-returns of daily Ethereum ERs time series into two parts, as shown in Figure 11, where
the first part (training set) is used for estimation and the second part (testing set) is used for post-sample
prediction.

Training set Testing set|

0.00
|

-0.05

log-returns of the daily Ethereum ERs
-0.10

-0.15

T T T T
0 100 200 300

Days

Figure 11. The log-returns of the daily Ethereum ERs data.

The forecast comparison between ML algorithms and the SETAR model is built through dual
accuracy measures such as RMSE and MAE, which are presented in Figure 12. The bar height
illustrates the predictability of the selected models in terms of RMSE and MAE. In general, the lesser
height of a bar ensures a more reliable forecast. We can observe that the RMSE and MAE computed
for SETAR are smaller than the ML algorithms, which ensures the robustness of the SETAR model.
Moreover, across the ML techniques, the ANN produces a more accurate forecast than the SVR.

0.061
0.056 0.054

0.047

0.043 0.041

ANN SVR SETAR

RMSE =MAE

Figure 12. Post sample forecast comparison using the log-returns of the daily Ethereum ERs
data.
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6. Concluding remarks

Cryptocurrencies are taking place in most aspects of daily life dealing with payments. Among the
cryptocurrencies, Bitcoin and Ethereum hold key places and experience heavy-tailed behaviors. This
paper contributed to the literature on distribution theory by introducing a new HT version of the logistic
distribution, namely, a new modified exponential-logistic distribution. The HT characteristics of the
NME-logistic distribution were proved empirically and visually. To establish the applicability of the
NME-logistic distribution, two financial data sets related to the log-returns of Bitcoin and Ethereum
exchange rates are analyzed. Furthermore, in order to forecast the high volatile behavior of the same
datasets, we implement the dual ML algorithms, namely ANN and SVR in comparison to the SETAR
model. To assess the effectiveness of these models, we split the data into two parts intending to facilitate
the out-of-sample prediction accuracy. For models’ estimation, we utilize 80 percent data, and the
remaining part of the data is used, for checking the models’ multistep ahead post sample predictive
capability. Using the first dataset, the ANN produces promising results in contrast to SVR and SETAR.
As we move towards the second dataset for analysis, the SETAR showed an outstanding performance
than the ML algorithms. The study concludes that models’ performance varies from data to data,
because of its varying nature. Future studies can compare the aforementioned tools with other ML
techniques like bagging, boosting, and random forest. In addition, to achieve more improvement in the
prediction accuracy, the ensemble procedure can be developed using ANN, SVR, and SETAR.
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