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Abstract: The quasi frame is more efficient than the Frenet frame in investigating surfaces, and it
is regarded a generalization frame of both the Frenet and Bishop frames. The geometry of quasi-
Hasimoto surfaces in Minkowski 3-space E3

1 is investigated in this paper. For the three situations of
non-lightlike curves, the geometric features of the quasi-Hasimoto surfaces in E3

1 are examined and
the Gaussian and mean curvatures for each case are determined. The quasi-Hasimoto surfaces in E3

1
must satisfy a necessary and sufficient condition to be developable surfaces. As a result, the parameter
curves of quasi-Hasimoto surfaces in E3

1 is described. Thus, the s-parameter and t-parameter curves of
quasi-Hasimoto surfaces in E3

1 are said to be geodesics, asymptotic, and curvature lines under necessary
and sufficient circumstances are proved. Finally, quasi curves and associated quasi-Hasimoto surface
correspondences are discussed.
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1. Introduction

In 1972, Hasimoto was interested in studying a thin, isolated vortex filament and its approximation
of self-induced motion in an incompressible fluid. The position vector of the vortex filament is given
by Γ = Γ(s, t) in [8]. The relation holds for the vortex filament or smoke ring equation
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Γt = Γs × Γss.

This relationship can also be used to investigate a dynamical system on space curves in Euclidean
space. It is possible to demonstrate that the absence of form change in vortex motions corresponds to
travelling wave solutions of the Non-linear Schrödinger equations (NLS) [16]. The Hasimoto or NLS
surface is the NLS equation linked with the soliton surface.

The binormal motion of the curves was used to assess Hasimoto surfaces. In [18], the binormal
motion of constant curvature and torsion curves is addressed. In [17], the intrinsic geometry of the
nonlinear Schrödinger equation in E3 is addressed. In [5], In a generic intrinsic geometric setting
containing a normal congruence, a nonlinear heat system and nonlinear Schrödinger equation repulsive
type for timelike curves were developed. in E3

1. The motion of timelike surfaces was investigated in [6],
which corresponds to a NLS equation of repulsive type in timelike geodesic coordinates.

In 2012, Hasimoto surfaces in 3-dimensional Euclidean space were studied in [1]. In 2014,
Hasimoto surfaces in 3-dimensional Minkowski space according to the Frenet frame were studied
in [17]. In 2019, the geometry of Hasimoto surfaces in Euclidean 3-space according to Bishop frame
was discussed in [12]. In 2021, the Hasimoto surfaces according to Galilean space were discussed
in [3], bright and dark solitons of a weakly non-local Schrodinger equation incorporating the
non-linearity of the parabolic law in [10], the harmonic evolute surface of Hasimoto surfaces is
discussed in [13] and approximate solutions for inextensible Heisenberg antiferromagnetic flow and
solitonic magnetic flux surfaces along the normal direction in Minkowski space in [14]. In 2022,
geometry of quasi-vortex filament equation solutions in Euclidean three-space E3 in [7] and the
optical solitons of a high-order nonlinear Schrodinger equation with nonlinear dispersions and the
Kerr effect in [9].

In this paper, the geometry of quasi-Hasimoto surfaces in E3
1 is investigated. This study is structured

as follows: In Section 2, background information about Minkowski 3-space and a summary of the quasi
frame in E3

1 are provided. In Section 3, we explore the geometric features of quasi-Hasimoto surfaces
in E3

1 for the three situations of non-lightlike curves and determine their Gaussian and mean curvatures.
Furthermore, we provide a necessary and sufficient condition for quasi-Hasimoto surfaces in E3

1 to be
developable surfaces and demonstrate that the quasi frame is superior to the Frenet frame for studying
surfaces. In Section 4, we characterize the parameter curves of quasi-Hasimoto surfaces in E3

1. In
addition, we provide sufficient and necessary criteria for the s-parameter and t-parameter curves of
quasi-Hasimoto surfaces in E3

1 to be geodesic, asymptotic, and curvature lines. In Section 5 and by
using a Mathematica software, we present the quasi-curves and their accompanying quasi-Hasimoto
surfaces as models to ensure the accuracy of estimated results. Each model is arbitrarily chosen to
satisfy the criteria of the instance we wish to depict, and the associated quasi-Hasimoto surface is
evolved using the introduced calculations. The selected curves simulate the real-world situation that
we wish to convey. This study omits the actual circumstance and focuses on the approach used to
create the simulation. Finally, we provide a summary of all the subjects discussed in the paper and
demonstrate the significance of this work.

AIMS Mathematics Volume 7, Issue 10, 17879–17893.



17881

2. Preliminaries

A Cartesian three-dimensional space R3 with a Lorentzian inner product is defined as

g(α, β) = −α1β1 + α2β2 + α3β3,

where α = (α1, α2, α3) and β = (β1, β2, β3) ∈ R3 is called the Minkowski 3-space E3
1.

Lorentzian inner product classifies the vectors α = (α1, α2, α3) ∈ R3 as
• if g(α, α) > 0 or α = 0, then α is called spacelike,
• if g(α, α) < 0, then α is called timelike,
• if g(α, α) = 0 and α , 0, then α is called lightlike or null.

Any curve ξ in E3
1 is said to be spacelike, timelike or lightlike if and only if the tangent vector field

t of a curve ξ is spacelike, timelike or lightlike, respectively. for more details, see [11, 15].
According to any unit speed curve ξ(s) in E3

1, i.e., g(ξs(s), ξs(s)) = ±1, parameterized by its
arc-length s, the quasi frame is a general frame of both Frenet and Bishop frames, consists of three
orthogonal vector fields {t(s),nq(s),bq(s)}, where t(s), nq(s) and bq(s) are the tangent, quasi-normal
and quasi-binormal vector fields, respectively, and defined by

t(s) =
ξ′s(s)
‖ ξ′s(s) ‖

, nq(s) =
t(s) × k(s)
‖ t(s) × k(s) ‖

, bq(s) = t(s) × nq(s), (2.1)

where k(s) is the projection vector. In our study, we choose the projection vector k(s) = (0, 0, 1). In
case of the tangent vector t(s) parallels to k(s), then the quasi frame becomes singular, and in this
case we only change our choice to the vector k(s) to k(s) = (0, 1, 0) or k(s) = (1, 0, 0). The matrix
expression for the relationship between quasi and Frenet vector fields is

t
nq

bq

 =


1 0 0
0 cos θ sin θ
0 − sin θ cos θ




t
n
b

 ,
where θ is an Euclidean angle between the principal normal n(s) and the quasi-normal nq(s). And the
relation between quasi and Frenet curvatures are

K1 = κ cos θ, K2 = −κ sin θ, K3 = dθ + τ,

where κ and τ are the curvature and torsion of Frenet frame. And {Ki|i = 1, 2, 3} are the first, second
and third curvatures of the quasi frame, respectively.

Every quasi curve admits a quasi frame filed {t(s),nq(s),bq(s)} which is orthogonal filed along ξ(s)
satisfying the quasi-equations 

t
nq

bq


s

=


0 ε1K1 ε2K2

ε3K1 0 ε4K3

ε5K2 ε6K3 0




t
nq

bq

 , (2.2)

According to Eq (2.2)
• If ε2 = 1 and εi = −1 (∀i = 1, 3, 4, 5, 6), then the curve ξ(s) is a spacelike quasi curve with a timelike
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quasi-normal,
• If εi = 1 (∀i = 1, 4, 6) and ε j = −1 (∀ j = 2, 3, 5), then the curve ξ(s) is a spacelike quasi curve with a
timelike quasi-binormal,
• If εi = 1 (∀i = 1, 2, 3, 5, 6) and ε4 = −1, then the curve ξ(s) is a timelike quasi curve.

If K3 = 0 or K2 = 0 we get Bishop or Frenet equations, respectively, which means the quasi frame
and equations are more general than both Bishop and Frenet.

3. The geometric characteristics of quasi-Hasimoto surfaces in E3
1

In this section, we investigate the geometric characteristics of quasi-Hasimoto surfaces for the
three cases of non-lightlike curves in E3

1, discuss the conditions under which quasi-Hasimoto surfaces
become developable, and compare our results with those of previous studies of Hasimoto surfaces
according to other frames to ensure that the quasi frame and equations are more efficient and general.

The vortex filament or smoke ring equation depicts the movement of a thin vortex in a thin, viscous
fluid as a curve in E3

1.
Γt = Γs × Γss. (3.1)

This connection also applies to a dynamical system on the space of curves in E3
1.

Proposition 3.1. Let Γ = Γ(s, t) be a vortex filament solution in E3
1 and Γ(s, 0) is a vortex filament

solution parameterized by arc-length, then Γ = Γ(s, t) is a vortex filament solution for all t.

Proof. It is sufficient to show gt(Γs,Γs) = 0 for all solutions of Eq (3.1)

gt(Γs,Γs) = 2g((Γt)s,Γs)
= 2g((Γs × Γss)s,Γs)
= 2g(Γss × Γss + Γs × Γsss,Γs) = 0.

�

Now, we demonstrate the geometric interpretation of Eq (3.1) on the space of curves in E3
1

• The motion fulfilling Equation (3.1) yields a spacelike quasi-Hasimoto surface if Γ = Γ(s, t) is a
spacelike quasi curve with timelike quasi-normal for all t,
• The motion fulfilling Equation (3.1) yields a timelike quasi-Hasimoto surface if Γ = Γ(s, t) is a
spacelike quasi curve with timelike quasi-binormal for all t,
• The motion fulfilling Equation (3.1) yields a timelike quasi-Hasimoto surface if Γ = Γ(s, t) is a
timelike quasi curve for all t.

First two cases are relevant to non-linear heat system; see [2]

qt = qss + q2Γ, Γt = −Γss − Γ2q.

For the third case, by a solution of repulsive type non linear Schröinger equation

iqt = −qss + 2|q|2q,

the Hasimoto surface has been determined in E3
1. By the motion of a timelike quasi-geodesic

coordinates corresponds to NLS-equation, a timelike quasi-Hasimoto surfaces generated, was deeply
discussed according to Frenet frame in Minkowski 3-space in [6].
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Definition 3.1. We define Γ = Γ(s, t) is a quasi-Hasimoto surface of
• type 1 if Γ is a unit speed spacelike quasi-curve with a timelike quasi-normal vector field for all t,
• type 2 if Γ is a a unit speed spacelike quasi-curve with a timelike quasi-binormal vector field for all
t,
• type 3 if Γ is a unit speed timelike quasi-curve for all t.

Theorem 3.1. Let Γ = Γ(s, t) be of type 1, therefore the subsequent conditions are true

i.


t

nq

bq


s

=


0 −K1 K2

−K1 0 −K3

−K2 −K3 0




t
nq

bq

 ,
ii.


t

nq

bq


t

=


0 α β

α 0 γ

−β γ 0




t
nq

bq

 ,
where {t,nq, bq} is the quasi frame field, {Ki|i = 1, 2, 3} are the curvature functions of the curve Γ for
all t, and

α = −K2s − K1K3,

β = K1s + K2K3,

γ =
1

K∗
[
− K2

1 K2
3 + K2(K2K2

3 + 2K3K1s + K2ss − K1t) + K1(−2K3K2s − K1ss + K2t)
]
,

where K∗ = K2
1 − K2

2 .

Proof. i. This is clearly obtained from Eq (2.2) under choice ε2 = 1 and εi = −1 (∀i = 1, 3, 4, 5, 6).
ii. There are random functions α, β, and γ such that α, β, and γ satisfy

t
nq

bq


t

=


0 α β

α 0 γ

−β γ 0




t
nq

bq

 .
We need to find these functions in terms of {Ki|i = 1, 2, 3} as a solution to the curve Γ = Γ(s, t) of

vortex filament for all t. By using compatibility condition tts = tst and (nq)ts = (nq)st, we get

αs = −K1t + γK2 + βK3, (3.2a)
βs = K2t − γK1 + αK3, (3.2b)
γs = −K3t − βK1 − αK2. (3.2c)

Now, we suppose that the velocity of the curve is

Γt = λt + µnq + νbq.

By using the compatibility criterion Γts = Γst, We obtain the subsequent

0 = λs − µK1 − νK2, (3.3a)
α = µs − λK1 − νK3, (3.3b)
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β = νs + λK2 − µK3. (3.3c)

By multiplying the (3.2a) by K2, (3.2b) by K1 and add them, we get

γ =
1

K∗
[
αsK2 + βsK1 + K1tK2 − K2tK1 − K3(βK2 + αK1)

]
, (3.4)

where K∗ = K2
1 − K2

2 . For the solution of vortex filament, the velocity vector is

Γt = Γs × Γss = t × (−K1nq + K2bq)
= −K2nq + K1bq.

Here, (λ, µ, ν)→ (0,−K2,K1), then by substituting into Eqs (3.3b), (3.3c) and (3.4), we get

α = −K2s − K1K3,

β = K1s + K2K3,

γ =
1

K∗
[
− K2

1 K2
3 + K2(K2K2

3 + 2K3K1s + K2ss − K1t) + K1(−2K3K2s − K1ss + K2t)
]
.

�

Corollary 3.1. Let Γ = Γ(s, t) be of type 1, then the quasi-Gaussian Kq and quasi-mean Hq curvatures
of Γ are provided by:

Kq =
K2

2

(
K2

1s + K1K1ss

)
+ K1K2 (K1K2ss − 2K1sK2s) + K2

1

(
K2

2s − K1K1ss

)
− K3

2 K2ss

K2
(
K2

1 − K2
2

) ,

Hq =
K1 (2K3K2s + K1ss) + K2

(
−2K3K1s − K2ss + K3

2 − K2
3 K2

)
+ K4

1 +
(
K2

3 − 2K2
2

)
K2

1

2K
(
K2

1 − K2
2

) ,

where K =‖ Γs × Γt ‖=

√
| − K2

1 + K2
2 |.

Proof. The E, F and G coefficients of the first fundamental form are

E = g(Γs,Γs) = 1,
F = g(Γs,Γt) = 0,
G = g(Γt,Γt) = K2

1 − K2
2 .

The normal vector field of the surface is

N =
Γs × Γt

‖ Γs × Γt ‖
=

t × (−K2nq + K2bq)
‖ t × (−K2nq + K2bq) ‖

=
1
K

[−K1nq + K2bq],

where K =‖ Γs × Γt ‖=

√
| − K2

1 + K2
2 |.
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The second fundamental form coefficients are

e = g(Γss,N) =
1
K

[−K2
1 + K2

2],

f = g(Γst,N) =
1
K

[αK1 + βK2],

g = g(Γtt,N) =
1
K

[K2K1t − K1K2t + γ(K2
1 − K2

2)].

The quasi-Gaussian Kq and quasi-mean Hq are determined by

Kq = g(nq, nq)
eg − f 2

EG − F2 ,

Hq = g(nq, nq)
Eg − 2 f F + Ge

2(EG − F2)
.

�

Corollary 3.2. If we put K3 = 0 in Corollary (3.1), then the quasi-Gaussian curvature does not change,
while the quasi-mean curvature is denoted by

Hq =
K1K1ss + K2(K3

2 − K2ss) + K4
1 − 2K2

2 K2
1

2K(K2
1 − K2

2)
.

Which are the results according to the Bishop frame.

Theorem 3.2. Let Γ = Γ(s, t) be of type 2, therefore the subsequent conditions are true

i.


t

nq

bq


s

=


0 K1 −K2

−K1 0 K3

−K2 K3 0




t
nq

bq

 ,
ii.


t

nq

bq


t

=


0 δ ζ

−δ 0 η

ζ η 0




t
nq

bq

 ,
where

δ = −K2s + K1K3,

ζ = −K2K3 + K1s,

η =
−1
K∗

[
− K2

(
−2K3K1s + K2ss + K1t + K2K2

3

)
+ K1 (−2K3K2s + K1ss + K2t) + K2

1 K2
3

]
,

where K∗ = K2
1 − K2

2 .

Corollary 3.3. Let Γ = Γ(s, t) be of type 2, then the quasi-Gaussian Kq and quasi-mean Hq curvatures
of Γ are provided by:

Kq =
K2

2

(
K2

1s + K1K1ss

)
+ K1K2 (K1K2ss − 2K1sK2s) + K2

1

(
K2

2s − K1K1ss

)
− K3

2 K2ss

K2
(
K2

1 − K2
2

) ,

Hq =
K1 (2K3K2s − K1ss) + K2

(
−2K3K1s + K2ss + K3

2 + K2
3 K2

)
+ K4

1 −
(
2K2

2 + K2
3

)
K2

1

2K
(
K2

1 − K2
2

) ,
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where K =‖ Γs × Γt ‖=

√
|K2

1 − K2
2 |.

Corollary 3.4. If we put K3 = 0 in Corollary (3.3), then the quasi-Gaussian curvature does not change,
while the quasi-mean curvature is denoted by

Hq =
1

2K(K2
1 − K2

2)2

[
K2K2

1(−K2ss − 2K1t + 3K3
2) + K2

2 K1(K1ss + 2K2t) + K3
1 K1ss

− K3
2(K2ss + K3

2) + K6
1 − 3K2

2 K4
1

]
.

Which are the results according to the Bishop frame.

Theorem 3.3. Let Γ = Γ(s, t) be of type 3, therefore the subsequent conditions are true

i.


t

nq

bq


s

=


0 K1 K2

K1 0 −K3

K2 K3 0




t
nq

bq

 ,
ii.


t

nq

bq


t

=


0 φ ψ

φ 0 ξ

ψ −ξ 0




t
nq

bq

 ,
where

φ = −K2s + K1K3,

ψ = K2K3 + K1s,

ξ =
−1
K∗

[
K2

(
2K3K1s − K2ss − K1t + K2K2

3

)
+ K1 (2K3K2s + 2K2K3s + K1ss − K2t) − K2

1 K2
3

]
,

where K∗ = K2
1 − K2

2 .

Corollary 3.5. Let Γ = Γ(s, t) be of type 3, then its quasi-Gaussian Kq and quasi-mean Hq curvatures
are provided by

Kq =
1

K2

[ 1
K2

1 + K2
2

(
− K1K2s + K2(K1s + K2K3) + K3K2

1

)2
− K2K1t + K1K2t

−
1

K2
1 − K2

2

(K2
1 + K2

2)
(
K2(−K3(2K1s + K2K3) + K2ss + K1t) + K2

1 K2
3

− K1(2K3K2s + 2K2K3s + K1ss − K2t)
)],

Hq =
−1

2K(K2
1 + K2

2)

[ 1
K2

1 − K2
2

(K2
1 + K2

2)
(
K2(−K3(2K1s + K2K3) + K2ss + K1t)

− K1(2K3K2s + 2K2K3s + K1ss − K2t) + K2
1 K2

3

) + K2K1t − K1K2t − (K2
1 + K2

2)2
]
,

where K =‖ Γs × Γt ‖=

√
|K2

1 + K2
2 |.
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Corollary 3.6. If we put K3 = 0 in Corollary (3.5), then the quasi-Gaussian curvature and quasi-mean
curvature are determined by

Kq =

(K2K1s−K1K2s)2

K2
1 +K2

2
−

(K2
1 +K2

2 )(K2(K2ss+K1t)−K1(K1ss−K2t))
K2

1−K2
2

− K2K1t + K1K2t

K2 ,

Hq =
−K1K1ss + K2(K2ss + K3

2) + K4
1 + 2K2

2 K2
1

2K(K2
1 + K2

2)
.

Which are the results according to the Bishop frame.

Quasi-Hasimoto surface with parameterization Γ = Γ(s, t) in E3
1 is a developable surface if it can be

flattened onto a plane without distortion, i.e., the quasi-Gaussian curvature Kq is zero.

Corollary 3.7. The quasi-Hasimoto surface parametrized by Γ = Γ(s, t) in E3
1 is developable if and

only if
• for type 1 and type 2:

K2
2(K2

1s + K1K1ss) + K1K2(K1K2ss − 2K1sK2s) + K2
1(K2

2s − K1K1ss) − K3
2 K2ss = 0.

• for type 3:

1
K2

1 + K2
2

(
− K1K2s + K2(K1s + K2K3) + K3K2

1

)2
− K2K1t + K1K2t

−
1

K2
1 − K2

2

(K2
1 + K2

2)
(
K2(−K3(2K1s + K2K3) + K2ss + K1t) + K2

1 K2
3

− K1(2K3K2s + 2K2K3s + K1ss − K2t)
) = 0.

Proof. The proof comes directly form the results of Corollaries (3.1), (3.3) and (3.5). �

Corollary 3.8. If we put K3 = 0 in Corollary (3.7), then the quasi-Hasimoto surface is developable if
and only if
• for type 1 and type 2, the same result as Corollary (3.7).
• for type 3

(K2K1s − K1K2s)2

K2
1 + K2

2

−
(K2

1 + K2
2)(K2(K2ss + K1t) − K1(K1ss − K2t))

K2
1 − K2

2

− K2K1t + K1K2t = 0.

Which are the results according to the Bishop frame.

4. Characterizing the parameter curves of a quasi-Hashimoto surface in E3
1

In this section, we characterize the parametric curves of quasi-Hasimoto surfaces in E3
1. Then we

provide sufficient and necessary criteria for the s-parameter and t-parameter curves of quasi-Hasimoto
surfaces in E3

1 to be geodesics, asymptotics, and lines of curvature.
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Definition 4.1. The quasi-Hasimoto surface with parameterization Γ = Γ(s, t) in E3
1, for s-parameter

curves of the surface, is said to be
• geodesic if the second derivative of position vector with respect to s, Γss, takes the same direction of
the normal to the surface N i.e. the quasi-geodesic curvature is zero, (Kq)g = 0,
• asymptotics if the normal curvature Kn is equal to zero i.e. Kn = g(Γss,N) = 0,
• lines of curvatures if g(Γst,N) = g(Γs,Γt) = 0 .

Definition 4.2. The quasi-Hasimoto surface with parameterization Γ = Γ(s, t) in E3
1, for t-parameter

curves of the surface, is said to be
• geodesic if the triple scalar product of the second derivative of the curve with respect to t, Γtt, the
normal to the surface N, and the tangent to the surface with respect to t, Γt, is equal to zero i.e., the
quasi-geodesic curvature is zero, (Kq)g = g(Γtt,N × t) = 0
• asymptotic if the normal curvature Kn is equal to zero i.e. Kn = g(Γtt,N) = 0.

Definition 4.3. In quasi-Hasimoto surface with parameterization Γ = Γ(s, t) in E3
1, the family of all s

and t-parameter curves is denoted by Λ and Ω, respectively.

Theorem 4.1. Suppose Γ = Γ(s, t) is a quasi-Hasimoto surface in E3
1, then the followings conditions

are satisfied
i. All curves in Λ are geodesics,
ii. All curves in Ω are geodesics if and only if K1K1t = ηiK2K2t, where {Ki|i = 1, 2, 3} are the curvature
functions of the curve Γ for all t, and ηi = ±1.

Proof. Suppose Γ = Γ(s, t) be of type 1.
i. By Theorem (3.1) and its results, we know that

Γss = ts = −K1nq + K2bq.

And the normal to the surface Γ is

N =
1
K

[−K1nq + K2bq],

where K =‖ Γs × Γt ‖=

√
| − K2

1 + K2
2 |. Thus, Γss is parallel to the normal of the surface which means

all curves in Λ are geodesics.
ii. By Theorem (3.1) and its results, we know that

Γtt = (−αK2 − βK1)t + (−K2t + γK1)nq + (−γK2 + K1t)bq,

where the values of functions α, β and γ are given as above. Then g(Γtt,N × t) = 0 if and only if
K1K1t = K2K2t.

The proof is similar if Γ is a quasi-Hasimoto surface of type 2 and type 3. �

Corollary 4.1. According to Theorem (4.1), if we put K3 = 0, the results according to quasi frame is
the same as Bishop frame in E3

1.

Theorem 4.2. Let Γ = Γ(s, t) be a quasi-Hasimoto surface in E3
1, then the followings conditions are

satisfied:
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i. All curves in Λ are asymptotics of the surface if and only if K = 0,
ii. All curves in Ω are asymptotics of the surface if and only if

• Γ of type 1, then

−K1(2K3K2s + K1ss) + K2(2K3K1s + K2ss + K2K2
3) − K2

1 K2
3 = 0.

• Γ of type 2, then

K2K2
1(−2K3K1s + K2ss + 2K1t) + K2

2 K1(2K3K2s − K1ss − 2K2t)
+ K3

1(2K3K2s − K1ss) + K3
2(−2K3K1s + K2ss + K2K2

3) − K2
3 K4

1 = 0.

• Γ of type 3, then

−K1(2K3K2s + 2K2K3s + K1ss) + K2(K2ss − K3(2K1s + K2K3)) + K2
1 K2

3 = 0.

Proof. Let Γ = Γ(s, t) be of type 1.
i. By Theorem (3.1) and its results, we know that

Γss = ts = −K1nq + K2bq.

And the normal to the surface Γ is

N =
1
K

[−K1nq + K2bq],

where K =‖ Γs × Γt ‖=

√
| − K2

1 + K2
2 |. Then g(Γss,N) = 0⇔ K = 0.

ii. By Theorem (3.3) and its results, we know that

Γtt = (−αK2 − βK1)t + (−K2t + γK1)nq + (−γK2 + K1t)bq,

where the values of functions α, β and γ are given as above. Then g(Γtt × N,Γt) = 0⇔

−K1(2K3K2s + K1ss) + K2(2K3K1s + K2ss + K2K2
3) − K2

1 K2
3 = 0.

The proof is similar if Γ is a quasi-Hasimoto surface of type 2 and type 3. �

Corollary 4.2. According to Theorem (4.2), if we put K3 = 0, then the followings conditions are
satisfied
i. All curves in Λ are asymptotic of the surface if and only if K = 0,
ii. All curves in Ω are asymptotic of the surface if and only if

• Γ of type 1 and type 2, then
K1K1ss = K2K2ss.

• Γ of type 3, then

K2K2
1(K2ss + 2K1t) + K2

2 K1(−K1ss − 2K2t) − K3
1 K1ss + K3

2 K2ss = 0.

Which are the results according to the Bishop frame.
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Corollary 4.3. If all curves in Λ are asymptotics, then the all curves in Ω are also asymptotics if and
only if K2 = 0.

Corollary 4.4. All curves in Λ and Ω of a quasi-Hasimoto surface Γ = Γ(s, t) in E3
1 are lines of

curvature if and only if
K2(εiK2K3 + K1s) + K1(εiK1K3 − K2s) = 0,

where εi = ±1.

Proof. For quasi-Hasimoto surface in E3
1, we know f = F = 0 if and only if

K2(εiK2K3 + K1s) + K1(εiK1K3 − K2s) = 0.

�

Corollary 4.5. If we put K3 = 0 in Corollary (4.4), then the all curves in Λ and Ω of a quasi-Hasimoto
surface Γ = Γ(s, t) in E3

1 are lines of curvature if and only if K2K1s = K1K2s. Which are the results
according to the Bishop frame.

Corollary 4.6. In whole results of this paper, if we put K2 = 0, then we get the same results of Hasimoto
surface according to Frenet-Serret frame; Check [4].

5. Application

In this section, we introduce some quasi-curves and their correspondence quasi-Hasimoto surfaces.
Each model is arbitrarily chosen to satisfy the criteria of the instance we wish to depict, and the
associated quasi-Hasimoto surface is evolved using the introduced calculations. The selected curves
simulate the real-world situation that we wish to convey. This study omits the actual circumstance and
focuses on the approach used to create the simulation.

Based on Theorem (3.1), we introduce the curve of type 1 as

Γ(s) =
1
5

(
cosh(

√
5 s),

√
20 s, sinh(

√
5 s)

)
,

and its correspondence spacelike quasi-Hasimoto surface (See Figure 1).

Figure 1. The unit speed spacelike quasi curve with timelike quasi-normal vector field and
its correspondence spacelike quasi-Hasimoto surface.
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Based on Theorem (3.2), we introduce the curve of type 2 as

Γ(s) =
1
3

(
2 sinh(

√
3 s),

√
3 s, 2 cosh(

√
3 s)

)
,

and its correspondence timelike quasi-Hasimoto surface (See Figure 2).

Figure 2. The unit speed spacelike quasi curve with timelike quasi-binormal vector field and
its correspondence timelike quasi-Hasimoto surface.

Based on Theorem (3.3), we introduce the curve of type 3 as

Γ(s) =
1
3

(√
12 s, cos(

√
3 s), sin(

√
3 s)

)
,

and its correspondence timelike quasi-Hasimoto surface (See Figure 3).

Figure 3. The unit speed timelike quasi curve and its correspondence timelike quasi-
Hasimoto surface.
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6. Conclusions

The quasi-frame and equations are more efficient and general than Frenet and Bishop. In the case
of Frenet, the quasi is defined at all points. In the case of Bishop, the quasi gives more accuracy and
easier in computation.

In this paper, we investigated the geometry of quasi-Hasimoto surfaces in Minkowski 3-space E3
1.

For the three situations of non-lightlike curves, we examined the geometric features of the
quasi-Hasimoto surfaces in E3

1 and determined the Gaussian and mean curvatures for each case. we
showed the necessary and sufficient condition of the quasi-Hasimoto surfaces in E3

1 to be developable
surfaces. As a result, we described the parameter curves of quasi-Hasimoto surfaces in E3

1. Thus, we
discussed the necessary and sufficient conditions of s-parameter and t-parameter curves of
quasi-Hasimoto surfaces in E3

1 to be geodesics, asymptotic, and curvature lines. Finally, we discussed
quasi curves and associated quasi-Hasimoto surface correspondences.

This studying is more general, efficient and a new contribution to the field. Especially, for the pure
binormal motion of curves, in the future, it may be needed for some specific applications in studying
surfaces as Hasimoto, Razzaboni, etc., and in many areas of science.
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