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Abstract: Constructing mathematical models of fractional order for real-world problems and 

developing numeric-analytic solutions are extremely significant subjects in diverse fields of physics, 

applied mathematics and engineering problems. In this work, a novel analytical treatment technique 

called the Laplace residual power series (LRPS) technique is performed to produce approximate 

solutions for a non-linear time-fractional gas dynamics equation (FGDE) in a multiple fractional 

power series (MFPS) formula. The LRPS technique is a coupling of the RPS approach with the 

Laplace transform operator. The implementation of the proposed technique to handle time-FGDE 

models is introduced in detail. The MFPS solution for the target model is produced by solving it in 

the Laplace space by utilizing the limit concept with fewer computations and more accuracy. The 

applicability and performance of the technique have been validated via testing three attractive initial 

value problems for non-linear FGDEs. The impact of the fractional order 𝛽 on the behavior of the 

MFPS approximate solutions is numerically and graphically described. The 𝑗th MFPS approximate 

solutions were found to be in full harmony with the exact solutions. The solutions obtained by the 

LRPS technique indicate and emphasize that the technique is easy to perform with computational 

efficiency for different kinds of time-fractional models in physical phenomena. 
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1. Introduction  

In the last decades, several scholars have made a lot of prominent contributions to the theory 

and applications of fractional differential equations (FDEs), due to their notable role in explaining 

several real-life phenomena that arise in the natural sciences, including mechanical systems, chaos 

synchronization, earthquake modeling, image processing, control theory and wave propagation 

phenomena (see, e.g., [1–4]). These phenomena and others can be described and reformulated as 

FDEs using fractional calculus. The most significant feature of using FDEs in the mentioned 

phenomena and others is their nonlocal property. This means that the differential operators provide 

an excellent tool for the description of memory and hereditary properties of various materials and 

processes. For more details, see [5–8]. 

Partial differential equations (PDEs) in the context of fractional derivatives are considered to be 

a powerful tool in mathematical modeling to understand and interpret some structures of physical 

phenomena that are complex and unpredictable due to external factors. For this, scholars have 

utilized them to simplify the controlling design without any loss of genetic information or memory 

effect, as well as to create a nature issue closely understandable. Besides that, many attempts have 

been successfully devoted to proposing reliable numerical techniques for handling the fractional 

PDEs of physical interest; we refer the reader to [9–15] and the references therein. The solutions of 

PDEs of fractional order provide outstanding insight into the behavior of some dynamic systems and 

many real-life problems like traffic flow, oscillation, earthquakes and gas dynamics [16,17], which 

can be reformulated as nonlinear PDEs in the context of fractional derivatives. So, it is necessary to 

form a convenient and applicable approach for finding the analytical solutions to these problems and 

others. Recently, numerous analytical and numerical approaches have been conducted by researchers to 

investigate and construct analytic-approximate solutions of FDEs and PDEs of fractional order, such as 

the residual power series (RPS) method [18–22], reproducing kernel (RK) method [23–25], unified 

method (UM) [26], Adomian decomposition method (ADM) [27,28] and homotopy perturbation 

method (HPM) [29]. 

In this work, a novel effective analytical technique [30], called the Laplace residual power 

series (LRPS) technique, has been used to study analytic-approximate solutions in the sense of the 

Caputo derivative of a nonlinear fractional gas dynamic equation (FGDE) in the form 

𝒟𝑡
𝛽
𝑢(𝑥, 𝑡) − 𝑢(𝑥, 𝑡) + 𝑢(𝑥, 𝑡)

𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
+ 𝑢2(𝑥, 𝑡) = 𝑔(𝑥, 𝑡), 

(1.1) 

with the initial data 𝑢(𝑥, 0) = 𝑢0(𝑥), for 𝑡 ≥ 0, 𝑥 ∈ ℝ, 0 < 𝛽 ≤ 1, such that 𝑢(𝑥, 𝑡) is an unknown 

analytic function. For the integer case, 𝛽 = 1, the FGDE (1.1) reduces to the standard GDE. It is a 

universal mathematical model that depends upon conservation laws that exist in engineering and 

physical practices, such as conservation of mass, conservation of momentum, conservation of energy, 

etc. The nonlinear FGDEs are applicable in the shock fronts, rarefactions and contact discontinuities. 

Due to the FGDEs having many applications in physics and engineering [31], different 

numeric-analytic techniques were exploited in recent years to investigate the solutions of FGDEs. 
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Kumar et al. [32] performed the homotopy perturbation transform technique for solving homogenous 

and non-homogenous FGDEs. Biazar and Eslami [33] presented the differential transform technique 

for solving FGDEs. Tamsir and Srivastava [34] considered FGDEs and utilized the fractional 

reduced differential transform technique for obtaining their solutions. Raja Balachandar et al. [35] 

proposed the shifted Legendre polynomial of fractional order technique to study the analytical 

solutions of FGDEs. Iyiola [36] obtained the series solutions of FGDEs using the q-homotopy 

analysis technique. Kumar and Rashidi [37] applied the fractional homotopy analysis transform 

technique to provide analytical solutions to homogenous and non-homogenous FGDEs. 

Finding out the analytical-approximate solutions of non-linear time-PDEs of fractional order is 

a considerable matter for scholars to sense and study the physical and dynamic behaviors of 

nonlinear fractional models. Therefore, there is an imperious necessity for numeric-analytic 

techniques for creating precise solutions for both linear and nonlinear time-PDEs of fractional order. 

Motivated by this, the primary contribution of the present analysis is to generate an 

analytical-approximate solution in closed form compatible with the exact solution for standard-order 

𝛽 = 1 with no need for linearization, permutations or any physical assumptions in the meaning of 

the Caputo fractional derivative via extending the application of the LRPS technique. The novel 

solution technique has been suggested and proved by El-Ajou [30] for creating and analyzing the 

exact solitary solutions for a certain class of nonlinear time-FPDEs. Its hybrid technique associates 

the Laplace transform (LT) operator with the RPS scheme. The primary benefit of the present 

technique is to determine the unknown components of the proposed solutions by using limits in the 

Laplace space, which in turn reduces the required calculations and saves effort, in contrast to the 

RPS approach, which requires fractional differentiation in each phase [38–41]. The LRPS method 

had been successfully applied to create approximate series solutions in closed forms for different 

kinds of FDEs and time-fractional PDEs [42–45]. 

The rest of the current work is organized as follows: In Section 2, some basic definitions and 

theorems concerning fractional calculus, the Laplace transform and Laplace fractional expansion are 

revisited. In Section 3, the layout of the proposed technique for building the approximate solution of 

the considered fractional model (1.1) is presented. In Section 4, the LRPS technique is implemented 

for solutions of fractional gas problems to illustrate the applicability and performance in 

investigation of the solutions of time-PDEs of fractional order. Finally, some conclusions of our 

findings are drawn in Section 5. 

2. Materials and methods 

In this section, we review the primary definitions and theorems of fractional operators in the 

Riemann-Liouville and Caputo senses. Also, we review the primary definitions and theorems related 

to the Laplace transform, which will be used mainly in the next section. 

Definition 2.1.[3] For 𝛽 ∈ ℝ+, the Riemann-Liouville fractional integral operator for a real-valued 

function 𝑢(𝑥, 𝑡) is denoted by 𝓘𝑡
𝛽

 and defined as 

𝓘𝑡
𝛽
𝑢(𝑥, 𝑡) =

{
 

 1

𝛤(𝛽)
∫

𝑢(𝑥, 𝜂)

(𝑡 − 𝜂)1−𝛽
𝑑𝜂

𝑡

0

, 0 ≤ 𝜂 < 𝑡, 𝛽 > 0,

𝑢(𝑥, 𝑡), 𝛽 = 0.

 (2.1) 
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Definition 2.2. [3] The time fractional derivative of order 𝛽 > 0, for the function 𝑢(𝑥, 𝑡) in the 

Caputo case, is denoted by 𝒟𝑡
𝛽

 and defined as 

𝒟𝑡
𝛽
𝑢(𝑥, 𝑡) = {

𝓘𝑡
𝑛−𝛽

(𝐷𝑡
𝑛𝑢(𝑥, 𝑡)) 0 < 𝑛 − 1 < 𝛽 ≤ 𝑛,

𝐷𝑡
𝑛𝑢(𝑥, 𝑡), 𝛽 = 𝑛,

 (2.2) 

where 𝐷𝑡
𝑛 =

𝜕𝑛

𝜕𝑡𝑛
, for 𝑛 ∈ ℕ.  

Definition 2.3. [43] Assume that 𝑢(𝑥, 𝑡): 𝐼 × [0,1] → ℝ. The LT of 𝑢(𝑥, 𝑡) is defined as  

𝒰(𝑥, 𝑠) = ℒ{𝑢(𝑥, 𝑡)} = ∫ 𝑢(𝑥, 𝑡) 𝑒−𝑠𝑡𝑑𝑡, 𝑠 > 𝜌,

∞

0

 (2.3) 

where 𝜌 is the exponential order of 𝑢(𝑥, 𝑡). 

The inverse LT of the new function 𝒰(𝑥, 𝑠) is defined as  

𝑢(𝑥, 𝑡) = ℒ−1{𝒰(𝑥, 𝑠)} = ∫ 𝒰(𝑥, 𝑠) 𝑒𝑠𝑡𝑑𝑠, 𝜖 = ℜ𝔢(𝑠) > 𝜖0,

𝜖+𝑖∞

𝜖−𝑖∞

 (2.4) 

with the following characteristics: 

1) ℒ{𝑡𝑚𝛼} =
𝛤(𝑚𝛼+1)

𝑠𝑚𝛼+1
, 𝛼 > −1. 

2) 𝑙𝑖𝑚
𝑠→∞

𝑠𝒰(𝑥, 𝑠) = 𝑢(𝑥, 0). 

3) ℒ{𝑎𝑣(𝑥, 𝑡) + 𝑏𝑢(𝑥, 𝑡)} = 𝑎𝑉(𝑥, 𝑠) + 𝑏𝒰(𝑥, 𝑠), for any 𝑎, 𝑏 ∈ ℝ. 

4) ℒ−1{𝑎𝑉(𝑥, 𝑠) + 𝑏𝒰(𝑥, 𝑠)} = 𝑎𝑣(𝑥, 𝑡) + 𝑏𝑢(𝑥, 𝑡),  

where 𝑉(𝑥, 𝑠) = ℒ{𝑣(𝑥, 𝑡)}, and 𝒰(𝑥, 𝑠) = ℒ{𝑢(𝑥, 𝑡)}. 

Lemma 2.1.[44] Suppose that 𝑢(𝑥, 𝑡): 𝐼 × [0,1] → ℝ is a real-valued function. Then, 

i. ℒ{𝒟𝑡
𝛽
𝑢(𝑥, 𝑡)} = 𝑠𝛽𝒰(𝑥, 𝑠) − ∑ 𝑠𝛽−𝑘−1𝑢𝑡

(𝑘)(𝑥, 0), 𝛽 ∈ (𝑛 − 1, 𝑛], 𝑛 ∈ ℕ.𝑚−1
𝑘=0  

ii. ℒ{𝒟𝑡
𝑚𝛽
𝑢(𝑥, 𝑡)} = 𝑠𝑚𝛽𝒰(𝑥, 𝑠) − ∑ 𝑠(𝑚−𝑘)𝛽−1𝒟𝑡

𝛽𝑘
𝑢(𝑥, 0),   𝛽 ∈ (0,1],𝑚 ∈ ℕ.𝑚−1

𝑘=0  

Theorem 2.1. [19,27] Let 𝑢(𝑥, 𝑡) be infinitely 𝛽-th Caputo fractional differentiable at any point 

𝑡 ∈ (0, 𝓇
1

𝛽], where 𝑢(𝑥, 𝑡) has the following multiple fractional power series (MFPS):  

𝑢(𝑥, 𝑡) = ∑𝑢𝑛(𝑥) 𝑡
𝑛𝛼 ,

∞

𝑛=0

  𝑡 ≥ 0, 𝛽 ∈ (0, 1]. (2.5) 

Then, the coefficients 𝑢𝑛(𝑥), for 𝑛 = 0,1,2, …, will be written in the form 𝑢𝑛(𝑥) =
𝔇𝑡
𝑛𝛼𝑢(𝑥,0)

𝛤(𝑛𝛼+1)
 such 

that 𝒟𝑡
𝑛𝛽
𝑢(𝑥, 𝑡)

⃒𝑡=0
= 𝒟𝑡

𝛽
. 𝒟𝑡

𝛽
. 𝒟𝑡

𝛽
…𝒟𝑡

𝛽
(𝑢(𝑥, 𝑡))

⃒𝑡=0
 (𝑛-times). 
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Theorem 2.2. [44] Suppose that  𝒟𝑡
𝑛𝛽
𝑢(𝑥, 𝑡) ∈ 𝐶(0, 𝓇

1

𝛼], in which 𝑢(𝑥, 𝑡) has the MFPS as in 

(2.5). Then, the new transform function 𝒰(𝑥, 𝑠), in the Laplace space, could be expressed as in the 

following Laplace fractional series expansion (LFSE): 

𝒰(𝑥, 𝑠) = ∑
𝑢𝑛(𝑥)

𝑠𝑛𝛼+1
, 𝑠 > 0

∞

𝑛=0

, 𝛽 ∈ (0, 1], (2.6) 

where the coefficients 𝑢𝑛(𝑥) = 𝒟𝑡
𝑛𝛽
𝑢(𝑥, 0). 

Theorem 2.3. [44] Suppose that 𝒰(𝑥, 𝑠) is expanded in the LFSE form (2.6). If there exists 𝜁(𝑥) >

0, such that | 𝑠 ℒ{𝒟𝑡
(𝑛+1)𝛽

𝑢(𝑥, 𝑡)}| ≤ 𝜁(𝑥), for 𝛽 ∈ (0,1], then the remaining term 𝑅𝑛(𝑥, 𝑠) of 

LFSE (2.6) satisfies the following: 

|𝑅𝑛(𝑥, 𝑠)| ≤
𝜁(𝑥)

𝑠1+(𝑛+1)𝛽
, 𝑥 ∈ 𝐼, 𝜂1 < 𝑠 ≤ 𝜂2. (2.7) 

Theorem 2.4. [46] If there is a constant 𝜂 ∈ (0,1), where ‖𝑢𝑘+1(𝑥, 𝑡)‖ ≤ 𝜂‖𝑢𝑘(𝑥, 𝑡)‖, ∀𝑘 ∈ ℕ 

and 0 < 𝑡 < ℜ < 1, then the obtained approximate solution converges to an exact solution. 

Proof. For all 0 < 𝑡 < ℜ < 1, we have  

‖𝑢(𝑥, 𝑡) − 𝑢𝑘(𝑥, 𝑡)‖ = ‖ ∑ 𝑢𝑖(𝑥, 𝑡)

∞

𝑖=𝑘+1

‖ ≤ ∑ ‖𝑢𝑖(𝑥, 𝑡‖

∞

𝑖=𝑘+1

≤ ‖ℱ(𝜁)‖ ∑ 𝜂𝑖
∞

𝑖=𝑘+1

=
𝜂𝑘+1

1 − 𝜂
‖ℱ(𝜁)‖

→ 0 , 𝑘 → ∞. 

3. Methodology of LRPS technique 

In the current section, the main procedure of the LRPS technique for solving the non-linear 

time-fractional gas model (1.1) is introduced. Our novel technique depends basically on the running 

the LT to the both sides of the considered problem and converting it into the Laplace space, then 

providing the Laplace fractional series solution for the new problem via the residual error function 

(REF) with using the limit concept, and as a final step, we run the inverse LT to the resultant LFSE to 

find out the MFPS approximate solution to the main problem. The present technique gives the 

accurate approximate-analytic solutions in a rapidly convergent series with no need for linearization 

or any physical restriction. To reach our purpose, the subsequent algorithm summarizes the main 

steps to create the MFPS approximate solution of the non-linear time-fractional gas model (1.1). 

Step A: Apply the LT operator on both sides of the non-linear FGDE (1.1), that is,  

ℒ{𝒟𝑡
𝛽
𝑢(𝑥, 𝑡)} − ℒ{𝑢(𝑥, 𝑡)} + ℒ {𝑢(𝑥, 𝑡)

𝜕𝑢(𝑥, 𝑡)

𝜕𝑥
} + ℒ{𝑢2(𝑥, 𝑡)} = ℒ{𝑔(𝑥, 𝑡)}. (3.1) 

Utilizing Lemma 2.1 and the initial condition of (1.1) yields ℒ{𝒟𝑡
𝛽
𝑢(𝑥, 𝑡)} = 𝑠𝛽𝒰(𝑥, 𝑠) −

𝑠1−𝛽𝑢(𝑥, 0). So, Equation (3.2) becomes 
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𝒰(𝑥, 𝑠) =
𝑢0(𝑥)

𝑠
+
𝒰(𝑥, 𝑠)

𝑠𝛽
−
1

𝑠𝛽
ℒ {ℒ−1 [𝒰(𝑥, 𝑠)

𝜕

𝜕𝑥
𝒰(𝑥, 𝑠)]}

−
1

𝑠𝛽
ℒ{[ℒ−1𝒰(𝑥, 𝑠)]2} −

1

𝑠𝛽
𝐺(𝑥, 𝑠), 

(3.2) 

where ℒ{𝑢(𝑥, 𝑡)} = 𝒰(𝑥, 𝑠), ℒ{𝑔(𝑥, 𝑡)} = 𝐺(𝑥, 𝑠).  

Step B: According to the LRPS technique [30,45], the proposed solution of (3.2) has the following 

LFSE: 

𝒰(𝑥, 𝑠) = ∑
𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 𝑥 ∈ 𝐼, 𝑠 > 0, 0 <  𝛽 ≤ 1

∞

𝑚=0

. (3.3) 

Obviously, 𝑢0(𝑥) = lim
𝑠→∞

𝑠𝒰(𝑥, 𝑠) = 𝑢(𝑥, 0). So, the LFSE (3.3) can be expressed as  

𝒰(𝑥, 𝑠) =
𝑢0(𝑥)

𝑠
+ ∑

𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 𝑥 ∈ 𝐼, 𝑠 > 0, 0 <  𝛽 ≤ 1

∞

𝑚=1

, (3.4) 

and the 𝑗-th Laplace series solution 𝒰𝑗(𝑥, 𝑠), of (3.4), can be rewritten as 

𝒰𝑗(𝑥, 𝑠) =
𝑢0(𝑥)

𝑠
+ ∑

𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 𝑥 ∈ 𝐼, 𝑠 > 0, 0 <  𝛽 ≤ 1

𝑗

𝑚=1

. (3.5) 

Step C: As in [30,45], the 𝑗-th Laplace-REF of (3.2) is defined as 

ℒ {𝑅𝑒𝑠𝑗 (𝒰𝑗(𝑥, 𝑠))}

= 𝒰𝑗(𝑥, 𝑠) −
𝑢0(𝑥)

𝑠
+
𝒰𝑗(𝑥, 𝑠)

𝑠𝛽

−
1

𝑠𝛽
ℒ {ℒ−1[𝒰𝑗(𝑥, 𝑠)]ℒ

−1 [
𝜕

𝜕𝑥
𝒰𝑗(𝑥, 𝑠)]} −

1

𝑠𝛽
ℒ {[ℒ−1𝒰𝑗(𝑥, 𝑠)]

2
}

−
1

𝑠𝛽
𝐺(𝑥, 𝑠). 

(3.6) 

The Laplace-REF is given as 

ℒ{𝑅𝑒𝑠(𝒰(𝑥, 𝑠))}

= 𝒰(𝑥, 𝑠) −
𝑢0(𝑥)

𝑠
+
𝒰(𝑥, 𝑠)

𝑠𝛽

−
1

𝑠𝛽
ℒ {ℒ−1[𝒰(𝑥, 𝑠)]ℒ−1 [

𝜕

𝜕𝑥
𝒰(𝑥, 𝑠)]} −

1

𝑠𝛽
ℒ{[ℒ−1𝒰(𝑥, 𝑠)]2}

−
1

𝑠𝛽
𝐺(𝑥, 𝑠). 

(3.7) 

Consequently, we note that ℒ{𝑅𝑒𝑠(𝒰(𝑥, 𝑠))} = 0,  and lim
𝑗→∞

ℒ {𝑅𝑒𝑠𝑗 (𝒰𝑗(𝑥, 𝑠))} =

ℒ{𝑅𝑒𝑠(𝒰(𝑥, 𝑠))}, for each 𝑥 ∈ 𝐼, 𝑠 > 0. Further, one can use the following facts of the Laplace-REF, 
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which are essential in finding the approximate solutions: 

▪ lim
𝑠→∞

𝑠ℒ{𝑅𝑒𝑠(𝒰(𝑥, 𝑠))} = 0, and lim
𝑠→∞

𝑠ℒ {𝑅𝑒𝑠𝑗 (𝒰𝑗(𝑥, 𝑠))} = 0, for each 𝑥 ∈ 𝐼, 𝑠 > 0. 

▪ lim
𝑠→∞

𝑠𝑗𝛽+1ℒ {𝑅𝑒𝑠𝑗 (𝒰𝑗(𝑥, 𝑠))} = 0, for each 𝑥 ∈ 𝐼, 𝑠 > 0, 𝑗 = 1,2,3,…, and 𝛽 ∈ (0,1]. 

Step D: Collect the resulting unknown coefficients 𝑢𝑚(𝑥),  for 𝑚 = 1,2,3,… , 𝑗, in terms of the 

series expansion (3.5). 

Step E: Lastly, take the inverse LT of the obtained LFSE in Step D to get the 𝑗-th MFPS solution 

𝑢𝑗(𝑥, 𝑡). 

Subsequently, we demonstrate the procedure of the proposed technique for solving the 

homogeneous type of the main problem (1.1). To find out the unknown coefficient 𝑢1(𝑥), substitute 

𝒰1(𝑥, 𝑠) =
𝑢0(𝑥)

𝑠
+
𝑢1(𝑥)

𝑠𝛽+1
 into ℒ{𝑅𝑒𝑠1(𝒰1(𝑥, 𝑠))} of (3.6), i.e., 

ℒ{𝑅𝑒𝑠1(𝒰1(𝑥, 𝑠))}

=
𝑢1(𝑥)

𝑠𝛽+1
−
1

𝑠𝛽
(
𝑢0(𝑥)

𝑠
+
𝑢1(𝑥)

𝑠𝛽+1
)

+
1

𝑠𝛽
ℒ {ℒ−1 [

𝑢0(𝑥)

𝑠
+
𝑢1(𝑥)

𝑠𝛽+1
] ℒ−1 [

𝑢0
′ (𝑥)

𝑠
+
𝑢1
′ (𝑥)

𝑠𝛽+1
]}

+
1

𝑠𝛽
ℒ {[ℒ−1 (

𝑢0(𝑥)

𝑠
+
𝑢1(𝑥)

𝑠𝛽+1
)]

2

} 

=
𝑢1(𝑥)

𝑠𝛽+1
−
𝑢0(𝑥)

𝑠𝛽+1
−
𝑢1(𝑥)

𝑠2𝛽+1

+ 𝑠−1−3𝛽 (
𝛤(1 + 2𝛽)𝑢1(𝑥)(𝑢1(𝑥) + 𝑢1

′ (𝑥))

𝛤2(1 + 𝛽)

+ 𝑠𝛽 (𝑠𝛽(𝑢0(𝑥)
2 + 𝑢1(𝑥)𝑢0

′ (𝑥)

+ 𝑢0(𝑥) (2𝑢1(𝑥) + 𝑠
𝛽𝑢0

′ (𝑥) + 𝑢1
′ (𝑥)))). 

(3.8) 

Then, multiplying both sides of (3.8) by 𝑠𝛽+1 yields  

𝑠𝛽+1ℒ{𝑅𝑒𝑠1(𝒰1(𝑥, 𝑠))}

= 𝑢1(𝑥) + 𝑢0(𝑥)(−1 + 𝑢0(𝑥) + 𝑢0
′ (𝑥)) +

𝛤(1 + 2𝛽)𝑢1(𝑥)(𝑢1(𝑥) + 𝑢1
′ (𝑥))

𝛤2(1 + 𝛽)𝑠2𝛽

+
1

𝑠𝛽
(𝑢1(𝑥)(−1 + 2𝑢0(𝑥) + 𝑢0

′ (𝑥)) + 𝑢0(𝑥)𝑢1
′ (𝑥)). 

(3.9) 

Based on the fact that lim
𝑠→∞

𝑠𝛽+1ℒ{𝑅𝑒𝑠1(𝒰1(𝑥, 𝑠))} = 0, we have 

𝑢1(𝑥) = 𝑢0(𝑥) − (𝑢0(𝑥)
2 − 𝑢0(𝑥)𝑢0

′ (𝑥). (3.10) 
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Again, to obtain 𝑢2(𝑥), consider the second Laplace-REF ℒ{𝑅𝑒𝑠2(𝒰2(𝑥, 𝑠))} as 

ℒ{𝑅𝑒𝑠2(𝒰2(𝑥, 𝑠))}

= 𝒰2(𝑥, 𝑠) −
𝑢0
𝑠
−
𝒰2(𝑥, 𝑠)

𝑠𝛽
+
1

𝑠𝛽
ℒ {ℒ−1[𝒰2(𝑥, 𝑠)]ℒ

−1 [
𝜕

𝜕𝑥
𝒰2(𝑥, 𝑠)]}

+
1

𝑠𝛽
ℒ{[ℒ−1𝒰2(𝑥, 𝑠)]

2}, 

(3.11) 

where 𝒰2(𝑥, 𝑠) =
𝑢0(𝑥)

𝑠
+
𝑢1(𝑥)

𝑠𝛽+1
+

𝑢2(𝑥)

𝑠2𝛽+1
. Thus, (3.11) can be reformulated as 

ℒ{𝑅𝑒𝑠2(𝒰2(𝑥, 𝑠))}

=
𝑢1(𝑥)

𝑠𝛽+1
+
𝑢2(𝑥)

𝑠2𝛽+1
−
1

𝑠𝛽
(
𝑢0(𝑥)

𝑠
+
𝑢1(𝑥)

𝑠𝛽+1
+
𝑢2(𝑥)

𝑠2𝛽+1
)

+
1

𝑠𝛽
ℒ {ℒ−1 [

𝑢0(𝑥)

𝑠
+
𝑢1(𝑥)

𝑠𝛽+1
+
𝑢2(𝑥)

𝑠2𝛽+1
] ℒ−1 [

𝑢0
′ (𝑥)

𝑠
+
𝑢1
′ (𝑥)

𝑠𝛽+1
+
𝑢2
′ (𝑥)

𝑠2𝛽+1
]}

+
1

𝑠𝛽
ℒ {[ℒ−1 (

𝑢0(𝑥)

𝑠
+
𝑢1(𝑥)

𝑠𝛽+1
+
𝑢2(𝑥)

𝑠2𝛽+1
)]

2

}. 

(3.12) 

Thereafter, multiply (3.12) by 𝑠2𝛽+1 and solve lim
𝑠→∞

𝑠2𝛽+1ℒ{𝑅𝑒𝑠2(𝒰2(𝑥, 𝑠))} = 0 to get  

𝑢2(𝑥) = 𝑢1(𝑥) − 2𝑢0(𝑥)𝑢1(𝑥) − 𝑢1(𝑥)𝑢0
′ (𝑥) − 𝑢0(𝑥)𝑢1

′ (𝑥). (3.13) 

Similarly, for the third unknown coefficient, 𝑢3(𝑥) , substitute 𝒰3(𝑥, 𝑠) =
𝑢0(𝑥)

𝑠
+

∑
𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 3

𝑚=1 into the third Laplace-REF ℒ{𝑅𝑒𝑠3(𝒰3(𝑥, 𝑠))} of (3.6), and multiply the obtained 

fractional algebraic equation by 𝑠3𝛽+1. Next, by solving lim
𝑠→∞

𝑠3𝛽+1ℒ{𝑅𝑒𝑠3(𝒰3(𝑥, 𝑠))} = 0, the 

third unknown function 𝑢3(𝑥) will be given as 

𝑢3(𝑥) = 𝑢2(𝑥) − 2𝑢0(𝑥)𝑢2(𝑥) − 𝑢2(𝑥)𝑢0
′ (𝑥) − 𝑢0(𝑥)𝑢2

′ (𝑥)

−
𝛤(1 + 2𝛽)𝑢1(𝑥)(𝑢1(𝑥) + 𝑢1

′ (𝑥))

𝛤2(1 + 𝛽)
. (3.14) 

Following the same manner in finding the fourth, fifth and sixth unknown coefficients, that is, 

𝑢𝑗(𝑥) for 𝑗 = 4,5,6, one can obtain, based on the fact lim
𝑠→∞

𝑠𝑗𝛽+1ℒ {𝑅𝑒𝑠𝑗 (𝒰𝑗(𝑥, 𝑠))} = 0, the 

following. 

𝑢4(𝑥) = 𝑢3(𝑥) − 2𝑢0(𝑥)𝑢3(𝑥) − 𝑢3(𝑥)𝑢0
′ (𝑥) − 𝑢0(𝑥)𝑢3

′ (𝑥)

−
𝛤(1 + 3𝛽) (𝑢2(𝑥)𝑢1

′ (𝑥) + 𝑢1(𝑥)(2𝑢2(𝑥) + 𝑢2
′ (𝑥)))

𝛤(1 + 𝛽)𝛤(1 + 2𝛽)
. 

(3.15) 
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𝑢5(𝑥) = 𝑢4(𝑥) − 2𝑢0(𝑥)𝑢4(𝑥) − 𝑢4(𝑥)𝑢0
′ (𝑥) − 𝑢0(𝑥)𝑢4

′ (𝑥)

−
16𝛽𝛤 (

1
2 + 2𝛽) 𝑢2

(𝑥)(𝑢2(𝑥) + 𝑢2
′ (𝑥))

√𝜋𝛤(1 + 2𝛽)

−
𝛤(1 + 4𝛽) (𝑢3(𝑥)𝑢1

′ (𝑥) + 𝑢1(𝑥)(2𝑢3(𝑥) + 𝑢3
′ (𝑥)))

𝛤(1 + 𝛽)𝛤(1 + 3𝛽)
. 

𝑢6(𝑥) = 𝑢5(𝑥) − 2𝑢0(𝑥)𝑢5(𝑥) − 𝑢5(𝑥)𝑢0
′ (𝑥) − 𝑢0(𝑥)𝑢5

′ (𝑥)

−
𝛤(1 + 5𝛽) (𝑢3(𝑥)𝑢2

′ (𝑥) + 𝑢2(𝑥)(2𝑢3(𝑥) + 𝑢3
′ (𝑥)))

𝛤(1 + 2𝛽)𝛤(1 + 3𝛽)

−
𝛤(1 + 5𝛽) (𝑢4(𝑥)𝑢1

′ (𝑥) + 𝑢1(𝑥)(2𝑢4(𝑥) + 𝑢4
′ (𝑥)))

𝛤(1 + 𝛽)𝛤(1 + 4𝛽)
. 

More coefficients 𝑢𝑗(𝑥), for arbitrary 𝑗, can be computed in the same previous manner by 

employing the MATHEMATICA software package. Based on the obtained results of 𝑢𝑗(𝑥), we get 

the LFSE 𝒰(𝑥, 𝑠) of the homogenous Laplace algebraic equation (3.2) in the form 

𝒰(𝑥, 𝑠) =
𝑢0(𝑥)

𝑠
+
(𝑢0(𝑥) − (𝑢0(𝑥)

2 − 𝑢0(𝑥)𝑢0
′ (𝑥))

𝑠𝛽+1

+
(𝑢1(𝑥) − 2𝑢0(𝑥)𝑢1(𝑥) − 𝑢1(𝑥)𝑢0

′ (𝑥) − 𝑢0(𝑥)𝑢1
′ (𝑥))

𝑠2𝛽+1
+⋯. 

(3.16) 

Finally, by applying the inverse LT of the resultant equation (3.16), the MFPS approximate 

solution of the fractional gas model (1.1) will be represented as 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥) +
(𝑢0(𝑥) − (𝑢0(𝑥)

2 − 𝑢0(𝑥)𝑢0
′ (𝑥))

𝛤(1 + 𝛽)
𝑡𝛽

+
(𝑢1(𝑥) − 2𝑢0(𝑥)𝑢1(𝑥) − 𝑢1(𝑥)𝑢0

′ (𝑥) − 𝑢0(𝑥)𝑢1
′ (𝑥))

𝛤(1 + 2𝛽)
𝑡2𝛽 +⋯. 

(3.17) 

4. Simulation and test problems  

In this section, the LRPS technique is profitably applied in view of the Caputo derivative for 

investigating the analytical-approximate solution of three time-nonlinear FGDEs subject to suitable 

initial data. Some graphical and numerical simulations are achieved for the solved problems, which 

confirmed the efficiency and applicability of the proposed technique. It is worth mentioning that all 

computations and numerical and graphical simulations of the obtained results were accomplished 

utilizing Mathematica 12. 

Problem 4.1. Consider the following homogeneous non-linear fractional gas model [32,34]: 
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𝒟𝑡
𝛽
𝑢(𝑥, 𝑡) − 𝑢(𝑥, 𝑡) + 𝑢(𝑥, 𝑡)

𝜕

𝜕𝑥
𝑢(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡) = 0, 𝑡 ≥ 0, 𝑥 ∈ ℝ, 0 < 𝛽 ≤ 1, (4.1) 

with the initial data 

𝑢(𝑥, 0) = 𝑒−𝑥 . (4.2) 

For the standard case 𝛽 = 1, the exact solution of (4.1) and (4.2) is 𝑢(𝑥, 𝑡) = 𝑒𝑡−𝑥. In light of 

the previous discussion of the LRPS technique, we apply the LT to (4.1). Then, by using the initial 

data (4.2), we get 

𝒰(𝑥, 𝑠) =
𝑒−𝑥

𝑠
+
𝒰(𝑥, 𝑠)

𝑠𝛽
−
1

𝑠𝛽
ℒ {ℒ−1 [𝒰(𝑥, 𝑠)

𝜕

𝜕𝑥
𝒰(𝑥, 𝑠)]} −

1

𝑠𝛽
ℒ{[ℒ−1𝒰(𝑥, 𝑠)]2}. (4.3) 

To create the approximate solution of (4.3), let the 𝑗-th LFSE 𝒰𝑗(𝑥, 𝑠) be given as 

𝒰𝑗(𝑥, 𝑠) =
𝑒−𝑥

𝑠
+ ∑

𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 ,

𝑗

𝑚=1

 (4.4) 

where the unknown coefficients 𝑢𝑚, 𝑚 = 1,2, … , 𝑗, are obtained through the construction of the 

following 𝑗-th Laplace REF of the time-FGDE (4.3) and (4.4) as 

ℒ {𝑅𝑒𝑠𝑗 (𝒰𝑗(𝑥, 𝑠))}

= ∑
𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑗

𝑚=1

−
1

𝑠𝛽
(
𝑒−𝑥

𝑠
+ ∑

𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑗

𝑚=1

)

+
1

𝑠𝛽
ℒ {ℒ−1 [

𝑒−𝑥

𝑠
+ ∑

𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑗

𝑚=1

] ℒ−1 [−
𝑒−𝑥

𝑠
+ ∑

𝑢𝑚
′ (𝑥)

𝑠𝑚𝛽+1
 

𝑗

𝑚=1

]}

+
1

𝑠𝛽
ℒ {[ℒ−1(

𝑒−𝑥

𝑠
+ ∑

𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑗

𝑚=1

)]

2

}. 

(4.5) 

Next, by using the formulas in (3.10) and (3.13)–(3.15), the unknown coefficients for  𝑚 =

1,2,… ,6 will be 𝑢𝑚(𝑥) = 𝑒−𝑥. Therefore, the sixth L-FSE 𝒰6(𝑥, 𝑠) is written as 

𝒰6(𝑥, 𝑠) =
𝑒−𝑥

𝑠
+
𝑒−𝑥

𝑠𝛽+1
+

𝑒−𝑥

𝑠2𝛽+1
+

𝑒−𝑥

𝑠3𝛽+1
+

𝑒−𝑥

𝑠4𝛽+1
+

𝑒−𝑥

𝑠5𝛽+1
+

𝑒−𝑥

𝑠6𝛽+1
. (4.6) 

So, the infinite series solution 𝒰(𝑥, 𝑠) of the Laplace algebraic equation (4.3) can be written as 

𝒰(𝑥, 𝑠) = 𝑒−𝑥 ( 
1

𝑠
+

1

𝑠𝛽+1
+

1

𝑠2𝛽+1
+

1

𝑠3𝛽+1
+⋯+

1

𝑠𝑗𝛽+1
+⋯). (4.7) 

Consequently, the MFPS approximate solution 𝑢(𝑥, 𝑡) of the fractional gas model (4.1) and 

(4.2) takes the following infinite series form: 
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𝑢(𝑥, 𝑡) = 𝑒−𝑥 ( 1 +
𝑡𝛽

𝛤(𝛽 + 1)
+

𝑡2𝛽

𝛤(2𝛽 + 1)
+

𝑡3𝛽

𝛤(3𝛽 + 1)
+⋯+

𝑡𝑗𝛽

𝛤(𝑗𝛽 + 1)
+ ⋯). (4.8) 

If we replace 𝛽 = 1 in the MFPS formula (4.8), we obtain 𝑢(𝑥, 𝑡) = 𝑒−𝑥 ( 1 + 𝑡 +
𝑡2

2!
+
𝑡3

3!
+

⋯+
𝑡𝑗

𝑗!
+⋯), which is the same as the obtained results in [32,34]. 

Table 1 shows the absolute errors |𝑢(𝑥, 𝑡) − 𝑢10(𝑥, 𝑡)|, which are obtained for the fractional 

gas model (4.1) and (4.2) for some selected various values of 𝑡 with step size 0.15 and fixed 

values of 𝑥 at 𝑛 = 10. Graphically, the solution behaviors of the tenth MFPS approximate solution 

at different values of fractional order 𝛽 are plotted in Figure 1 against the exact solution when 𝛽 =

1. One can see from this graph that, as the parameter 𝛽 increases on its domain, the obtained 

approximate solutions converge continuously to the standard case for 𝛽 = 1. Figure 2 demonstrates 

the comparison of the geometric behaviors between the exact solution and the obtained tenth MFPS 

approximate solution of (4.1) and (4.2) at various 𝛽 values for (𝑥, 𝑡) ∈ [0,1]2. From these 3D 

surface plots, we see that the solution behaviors for different Caputo fractional derivatives on their 

domain are in close agreement with each other, particularly for classical derivatives. 

Table 1. Numerical simulation for fractional gas model (4.1) and (4.2) at 𝛽 = 1 and 

𝑛 = 10 with different values of 𝑡.  

𝑥𝑖 𝑡𝑖 𝑢(𝑥, 𝑡) 𝑢10(𝑥, 𝑡) |𝑢(𝑥, 𝑡) − 𝑢10(𝑥, 𝑡)| 

−1 

0.15 3.158192909689767 3.158192909689767 0.0 

0.30 3.669296667619244 3.669296667619121 1.23900889 × 10−13 

0.45 4.263114515168817 4.263114515157978 1.08393294 × 10−11 

0.60 4.953032424395115 4.953032424135106 2.60008903 × 10−10 

0.75 5.754602676005731 5.754602672938858 3.06687298 × 10−9 

0.90 6.685894442279268 6.685894419187874 2.30913946 × 10−8 

1 

0.15 0.427414931948733 0.427414931948727 5.55111512 × 10−17 

0.30 0.496585303791409 0.496585303791393 1.67088565 × 10−14 

0.45 0.576949810380487 0.576949810379019 1.46693768 × 10−12 

0.60 0.670320046035639 0.670320046000451 3.51882967 × 10−11 

0.75 0.778800783071405 0.778800782656349 4.15055989 × 10−10 

0.90 0.904837418035959 0.904837414910879 3.12508052 × 10−9 
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(a) 

 
(b) 

Figure 1. (a) Plots of exact and tenth MFPS solutions at various 𝛽 values and 𝑡 = 1. (b) 

Plots of exact and tenth MFPS solutions at various 𝛽 values and 𝑥 = 1 for Problem 4.1. 

  

  

𝑢(𝑥, 𝑡), 𝛽 = 1 ;     𝑢10(𝑥, 𝑡), 𝛽 = 1;     𝑢10(𝑥, 𝑡), 𝛽 = 0.85;    𝑢10(𝑥, 𝑡), 𝛽 = 0.65 

Figure 2. 3D-Surface plots of exact solution 𝑢(𝑥, 𝑡) and the 10th MFPS approximate 

solution 𝑢10(𝑥, 𝑡) for FGDE (4.1) and (4.2) with 𝑡 ∈ [0,1] and 𝑥 ∈ [0,1] at various 

values of 𝛽. 

  ******   𝛽 = 0.3 
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Problem 4.2. Consider the following homogeneous nonlinear fractional gas model [32,34]: 

𝒟𝑡
𝛽
𝑢(𝑥, 𝑡) − log(𝑞) 𝑢(𝑥, 𝑡) + 𝑢(𝑥, 𝑡)

𝜕

𝜕𝑥
𝑢(𝑥, 𝑡) − log(𝑞) 𝑢2(𝑥, 𝑡) = 0, (4.9) 

with the initial data 

𝑢(𝑥, 0) = 𝑞−𝑥, (4.10) 

where 𝑞 > 0, 0 < 𝛽 ≤ 1, and (𝑥, 𝑡) ∈ [0,1] × ℝ. For the integer case 𝛽 = 1, the exact solution of 

(4.9) and (4.10) is 𝑢(𝑥, 𝑡) = 𝑞𝑡−𝑥. 

Employing the LRPS technique, we start by applying the LT on both sides of (4.9) and using 

the initial data (4.10) to get 

𝒰(𝑥, 𝑠) =
𝑞−𝑥

𝑠
+
log𝑞

𝑠𝛽
𝒰(𝑥, 𝑠) −

1

𝑠𝛽
ℒ {ℒ−1 [𝒰(𝑥, 𝑠)

𝜕

𝜕𝑥
𝒰(𝑥, 𝑠)]}

−
log𝑞

𝑠𝛽
ℒ{[ℒ−1𝒰(𝑥, 𝑠)]2}. 

(4.11) 

Thus, the LFSE of (4.11) has the following shape 

𝒰(𝑥, 𝑠) =
𝑢0(𝑥)

𝑠
+ ∑

𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
.

∞

𝑚=1

 (4.12) 

Obviously 𝑢0(𝑥) = lim
𝑠→∞

𝑠 𝒰(𝑥, 𝑠) = 𝑢(𝑥, 0) = 𝑞−𝑥. So, the 𝑗-th LFSE of (4.11) will be written as 

𝒰𝑗(𝑥, 𝑠) =
𝑞−𝑥

𝑠
+ ∑

𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
.

𝑗

𝑚=1

 (4.13) 

Next, the 𝑗-th L-REF ℒ {𝑅𝑒𝑠𝑗 (𝒰𝑗(𝑥, 𝑠))} of (4.11) is defined as 

ℒ {𝑅𝑒𝑠𝑗 (𝒰𝑗(𝑥, 𝑠))}

= ∑
𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑗

𝑚=1

−
log𝑞

𝑠𝛽
(
𝑞−𝑥

𝑠
+ ∑

𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑗

𝑚=1

)

+
1

𝑠𝛽
ℒ {ℒ−1 [

𝑞−𝑥

𝑠
+ ∑

𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑗

𝑚=1

] ℒ−1 [−log𝑞
𝑞−𝑥

𝑠
+ ∑

𝑢𝑚
′ (𝑥)

𝑠𝑚𝛽+1
 

𝑗

𝑚=1

]}

+
log𝑞

𝑠𝛽
ℒ {[ℒ−1(

𝑞−𝑥

𝑠
+ ∑

𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑗

𝑚=1

)]

2

}. 

(4.14) 
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Hence, the unknown functions 𝑢𝑚(𝑥) can be computed via writing the 𝑗-th LFSE of (4.13) 

into the 𝑗-th L-RFE ℒ {𝑅𝑒𝑠𝑗 (𝒰𝑗(𝑥, 𝑠))} of (4.14), multiplying the resultant equation by 𝑠𝑗𝛽+1 

and taking into account the result lim
𝑠→∞

𝑠𝑗𝛽+1ℒ {𝑅𝑒𝑠𝑗 (𝒰𝑗(𝑥, 𝑠))} = 0 for 𝑚 = 1,2,… , 𝑗. In this way, 

one can determine the forms of the functions 𝑢𝑚(𝑥), respectively, as  

𝑢1(𝑥) = 𝑞−𝑥log (𝑞), 

𝑢2(𝑥) = 𝑞
−𝑥(log (𝑞))2, 

𝑢3(𝑥) = 𝑞
−𝑥(log (𝑞))3, 

𝑢4(𝑥) = 𝑞
−𝑥(log (𝑞))4, 

⋮. 

 

Therefore, the LFSE 𝒰(𝑥, 𝑠) of the Laplace algebraic equation (4.12) takes the form 

𝒰(𝑥, 𝑠) = 𝑞−𝑥 ( 
1

𝑠
+
log (𝑞)

s𝛽+1
+
(log (𝑞))2

𝑠2𝛽+1
+
(log (𝑞))3

𝑠3𝛽+1
+⋯+

(log (𝑞))𝑗

𝑠𝑗𝛽+1
+⋯). (4.15) 

Lastly, by taking the inverse LT of both sides of the achieved LFSE (4.15), one could conclude 

that the MFPS approximate solution of the nonlinear time-fractional gas model (4.9) and (4.10) has 

the following infinite series formula:  

𝑢(𝑥, 𝑡) = 𝑞−𝑥 ∑
(𝑡𝛽log (𝑞))

𝑚

𝛤(𝑚𝛽 + 1)
,

∞

𝑚=0

 (4.16) 

which coincides with the obtained results in [32,34]. Moreover, when 𝛽 = 1, the MFPS approximate 

solution is entirely in harmony with the exact solution 𝑢(𝑥, 𝑡) = 𝑞𝑡−𝑥.  

Table 2 shows the accuracy of the proposed approach via computed numerical results for the 

tenth MFPS approximate solutions of Problem 4.2 at fixed values of 𝑥 and some node points of 𝑡, 

with step size 0.25  for different values of 𝛽 . The geometric behaviors of the tenth-MFPS 

approximate solutions against the exact solution are drawn in 3D surface plots for 𝑡 ∈ [0,1] and 

𝑥 ∈ [0,1] at various values of 𝛽, as shown in Figure 3. It is manifest from this figure that the 

obtained approximate solution converges continuously to the standard-case 𝛽 = 1 as 𝛽 moves 

over (0, 1). Also, the graphs of the behaviors of the obtained tenth-MFPS approximate solutions are 

consistent with each other, especially when considering the standard derivative. 

Table 2. Comparison of numerical tenth MFPS approximate solutions for Problem 4.2. 

𝑥𝑖  𝑡𝑖 
𝑢10(𝑥, 𝑡) 

𝛽 = 1 𝛽 = 0.80 𝛽 = 0.60 𝛽 = 0.40 

−1 

0.25 0.42044821 0.39369508 0.36549146 0.33892131 

0.50 0.35355339 0.33256158 0.31643312 0.30560356 

0.75 0.29730178 0.28745081 0.28378632 0.28490461 

1.0 0.25000002 0.25217222 0.25942999 0.26992039 

1 

0.25 1.68179283 1.57478033 1.46196585 1.35568524 

0.50 1.41421356 1.33024631 1.26573247 1.22241427 

0.75 1.18920712 1.14980321 1.13514527 1.13961843 

1.0 1.00000008 1.00868888 1.03771999 1.07968155 
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𝑢(𝑥, 𝑡), 𝛽 = 1 ;   𝑢10(𝑥, 𝑡), 𝛽 = 1;   𝑢10(𝑥, 𝑡), 𝛽 = 0.8;   𝑢10(𝑥, 𝑡), 𝛽 = 0.6 

Figure 3. 3D surface plots of exact solution 𝑢(𝑥, 𝑡) and the 10th MFPS approximate 

solution 𝑢10(𝑥, 𝑡) for FGDE (4.9) and (4.10) with 𝑡 ∈ [0,1], 𝑥 ∈ [0,1] and 𝑞 = 10 at 

various values of 𝛽. 

Problem 4.3. Consider the following non-homogeneous fractional gas model [32,34] 

𝒟𝑡
𝛽
𝑢(𝑥, 𝑡) + 𝑢(𝑥, 𝑡)

𝜕

𝜕𝑥
𝑢(𝑥, 𝑡) + (1 + 𝑡)2 𝑢2(𝑥, 𝑡) = 𝑥2, (4.17) 

with the initial data 

𝑢(𝑥, 0) = 𝑥, (4.18) 

where 0 < 𝛽 ≤ 1, and (𝑥, 𝑡) ∈ [0,1] × ℝ. For the integer case 𝛽 = 1, the exact solution of (4.17) 

and (4.18) is 𝑢(𝑥, 𝑡) =
𝑥

1+𝑡
. 

Now, to perform the process of our proposed method, we start with the initial data (4.18), and 

applying the LT on both sides of (4.18) yields 

𝑥 

𝑡 

𝑥 

𝑡 

𝑥 

𝑡 
𝑥 

𝑡 
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𝒰(𝑥, 𝑠) =
𝑥

𝑠
−
1

𝑠𝛽
ℒ {ℒ−1 [𝒰(𝑥, 𝑠)

𝜕

𝜕𝑥
𝒰(𝑥, 𝑠)]} −

1

𝑠𝛽
ℒ{[ℒ−1𝒰(𝑥, 𝑠)]2} +

1

𝑠𝛽
ℒ{𝑥2}. (4.19) 

As in the manner of the LRPS algorithm, we construct the 𝑗-th L-REF of (4.19) as  

ℒ {𝑅𝑒𝑠𝑗 (𝒰𝑗(𝑥, 𝑠))}

= ∑
𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑗

𝑚=1

−
1

𝑠𝛽
ℒ{𝑥2}

+
1

𝑠𝛽
ℒ {ℒ−1 [

𝑥

𝑠
+ ∑

𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑗

𝑚=1

] ℒ−1 [
1

𝑠
+ ∑

𝑢𝑚
′ (𝑥)

𝑠𝑚𝛽+1
 

𝑗

𝑚=1

]}

+
1

𝑠𝛽
ℒ {ℒ−1 [

1

s
+
2

𝑠2
+
2

𝑠3
] [ℒ−1 (

𝑥

𝑠
+ ∑

𝑢𝑚(𝑥)

𝑠𝑚𝛽+1
 

𝑗

𝑚=1

)]

2

}. 

(4.20) 

To find out 𝑢1(𝑥), we consider 𝑘 = 1 in (4.20), that is,  

ℒ{𝑅𝑒𝑠1(𝒰1(𝑥, 𝑠))}

=
𝑢1(𝑥)

𝑠𝛽+1
−
1

𝑠𝛽
ℒ{𝑥2} +

1

𝑠𝛽
ℒ {ℒ−1 [

𝑥

𝑠
+
𝑢1(𝑥)

𝑠𝛽+1
] ℒ−1 [

1

𝑠
+
𝑢1
′ (𝑥)

𝑠𝛽+1
]}

+
1

𝑠𝛽
ℒ {ℒ−1 [

1

s
+
2

𝑠2
+
2

𝑠3
] [ℒ−1 (

𝑥

𝑠
+
𝑢1(𝑥)

𝑠𝛽+1
)]
2

} 

= −
𝑥2

𝑠1+𝛽
+
𝑢1(𝑥)

𝑠𝛽+1
+
2𝑢0

2(𝑥)

𝑠3+𝛽
+
2𝑢0

2(𝑥)

𝑠2+𝛽
+
𝑢0
2(𝑥)

𝑠1+𝛽
+ 2

𝑢0(𝑥)𝑢1(𝑥)

𝑠1+2𝛽

+
4𝛤(𝛽 + 2)𝑢0(𝑥)𝑢1(𝑥)

𝑠2+2𝛽𝛤(𝛽 + 1)
+
2𝛤(𝛽 + 2)𝑢0(𝑥)𝑢1(𝑥)

𝑠3+2𝛽𝛤(𝛽 + 1)

+
𝛤(2𝛽 + 1)𝑢1

2(𝑥)

𝑠1+3𝛽𝛤2(𝛽 + 1)
+ +

2𝛤(2𝛽 + 2)𝑢1
2(𝑥)

𝑠2+3𝛽𝛤2(𝛽 + 1)

+
𝛤(2𝛽 + 3)𝑢1

2(𝑥)

𝑠3+3𝛽𝛤2(𝛽 + 1)
+
𝑢0(𝑥)𝑢0

′ (𝑥)

𝑠1+𝛽
+
𝑢1(𝑥)𝑢0

′ (𝑥)

𝑠1+2𝛽

+
𝑢0(𝑥)𝑢1

′ (𝑥)

𝑠1+2𝛽
+
𝛤(2𝛽 + 1)𝑢1(𝑥)𝑢1

′ (𝑥)

𝑠1+3𝛽𝛤2(𝛽 + 1)
. 

(4.21) 

Next, we multiply both sides of (4.21) by 𝑠𝛽+1 to get 
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𝑠𝛽+1ℒ{𝑅𝑒𝑠1(𝒰1(𝑥, 𝑠))}

= −𝑥2 + 𝑢0
2(𝑥) +

2𝑢0
2(𝑥)

𝑠2
+
2𝑢0

2(𝑥)

𝑠
+ 𝑢1(𝑥) +

4𝑢0(𝑥)𝑢1(𝑥)

𝑠2+𝛽
+
4𝑢0(𝑥)𝑢1(𝑥)

𝑠1+𝛽

+
2𝑢0(𝑥)𝑢1(𝑥)

𝑠𝛽
+
6𝛽𝑢0(𝑥)𝑢1(𝑥)

𝑠2+𝛽
+
4𝛽𝑢0(𝑥)𝑢1(𝑥)

𝑠1+𝛽
+
2𝛽2𝑢0(𝑥)𝑢1(𝑥)

𝑠2+𝛽

+
2𝛤(2𝛽 + 1)𝑢1

2(𝑥)

𝑠2+2𝛽𝛤2(𝛽 + 1)
+
2𝛤(2𝛽 + 1)𝑢1

2(𝑥)

𝑠1+2𝛽𝛤2(𝛽 + 1)
+
𝛤(2𝛽 + 1)𝑢1

2(𝑥)

𝑠2𝛽𝛤2(𝛽 + 1)

+
6𝛽𝛤(2𝛽 + 1)𝑢1

2(𝑥)

𝑠2+2𝛽𝛤2(𝛽 + 1)
+
4𝛽𝛤(2𝛽 + 1)𝑢1

2(𝑥)

𝑠1+2𝛽𝛤2(𝛽 + 1)
+
4𝛽2𝛤(2𝛽 + 1)𝑢1

2(𝑥)

𝑠2+2𝛽𝛤2(𝛽 + 1)

+ 𝑢0(𝑥)𝑢0
′ (𝑥) +

𝑢1(𝑥)𝑢0
′ (𝑥)

𝑠𝛽
+
𝑢0(𝑥)𝑢1

′ (𝑥)

𝑠𝛽
+
𝛤(2𝛽 + 1)𝑢1(𝑥)𝑢1

′ (𝑥)

𝑠2𝛽𝛤2(𝛽 + 1)
. 

(4.22) 

Thereafter, by solving lim
𝑠→∞

𝑠𝛽+1ℒ{𝑅𝑒𝑠1(𝒰1(𝑥, 𝑠))} = 0, one can get 𝑢1(𝑥) = −𝑥. So, the first 

LFSE of (4.19) could be written as 𝒰1(𝑥, 𝑠) =
𝑥

𝑠
−

𝑥

𝑠𝛽+1
. 

For construction of the second LFSE of (4.19), we should substitute 𝒰2(𝑥, 𝑠) =
𝑥

𝑠
−

𝑥

𝑠1+𝛽
+

𝑢2(𝑥)

𝑠1+2𝛽
 into the second L-REF of (4.19). By multiplying the resultant equation by the factor 𝑠1+2𝛽, 

the second unknown coefficient will be obtained such that 𝑢2(𝑥) = 2𝑥. Thus, the second LFSE of 

(4.19) could be written as 𝒰2(𝑥, 𝑠) =
𝑥

𝑠
−

𝑥

𝑠𝛽+1
+

2𝑥

𝑠1+2𝛽
. 

Following the procedure of the LRPS algorithm, the forms of the unknown functions 𝑢𝑚, 𝑚 =

1,2,3, … , 𝑗, could be found by solving the system lim
𝑠→∞

𝑠𝑗𝛽+1ℒ {𝑅𝑒𝑠𝑗 (𝒰𝑗(𝑥, 𝑠))} = 0 for 𝑢𝑚(𝑥), 

and hence the LFSE of (4.19) can be formulated as 

𝒰(𝑥, 𝑠) =  
𝑥

𝑠
−

𝑥

𝑠𝛽+1
+

2𝑥

𝑠2𝛽+1
−

6𝑥

𝑠3𝛽+1
+
24𝑥

𝑠4𝛽+1
−
120𝑥

𝑠5𝛽+1
+
720𝑥

𝑠6𝛽+1
+⋯ = 𝑥 ∑

(−1)𝑚𝑚!

𝑠𝑚𝛽+1
 

∞

𝑚=0

. (4.23) 

As the last phase in finding the approximate solution of the main problem, we apply the inverse 

LT on both sides of LFSE (4.23) to get the following MFPS approximate solution of 

non-homogeneous FGDEs (4.17) and (4.18):  

𝑢(𝑥, 𝑡) = 𝑥 ( 1 +
1

𝛤(𝛽 + 1)
𝑡𝛽 −

2

𝛤(2𝛽 + 1)
𝑡2𝛽 +

6

𝛤(3𝛽 + 1)
𝑡3𝛽 +

24

𝛤(4𝛽 + 1)
𝑡4𝛽

+⋯)  = 𝑥 ∑
(−1)𝑚𝑚!

𝛤(𝑚𝛽 + 1)
𝑡𝑚𝛽 .

∞

𝑚=0

 
(4.24) 
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Particularly, when 𝛽 = 1, the MFPS approximate solution (4.24) reduces to the closed-form 

𝑢(𝑥, 𝑡) =
𝑥

1+𝑡
, which agrees with the exact solution of the classical form of (4.17) and (4.18) as in 

[32,34]. 

The harmony between the exact and obtained approximate solutions is illustrated via computing 

the absolute errors |𝑢(𝑥, 𝑡) − 𝑢10(𝑥, 𝑡)| of the IVP (4.17) and (4.18) for some selected grid points 

𝑡𝑖 = 0.15𝑖, 𝑖 = 1,2,3,4, with fixed values of 𝑥, as summarized in Table 3. To explain the geometric 

behaviors of the obtained solutions by the LRPS approach, Figure 4 demonstrates the effect of the 

fractional order derivative on the pattern of the obtained solutions via the LRPS method and the full 

compatibility between the LRPS curves and the exact solution. Also, one can see the convergence 

between the exact solution and the obtained approximate solution for non-linear fractional gas model 

(4.17) and (4.18) at different 𝛽 values, especially at the standard order derivative, as in Figure 5. 

Table 3. Numerical simulation for fractional gas model (4.17) and (4.18) at 𝛽 = 1 and 

𝑛 = 10 with different values of 𝑡. 

𝑥𝑖 𝑡𝑖 𝑢(𝑥, 𝑡) 𝑢10(𝑥, 𝑡) |𝑢(𝑥, 𝑡) − 𝑢10(𝑥, 𝑡)| 

0.2 

0.15 0.17391304 0.17391304 1.5043053 × 10−10 

0.30 0.15384615 0.15384642 2.7253385 × 10−7 

0.45 0.13793103 0.13795216 2.1134873 × 10−5 

0.60 0.12500000 0.12545349 4.5349632 × 10−4 

0.4 

0.15 0.34782609 0.347826087 3.0086106 × 10−10 

0.30 0.30769238 0.307692853 5.4506769 × 10−7 

0.45 0.27586207 0.275904339 4.2269746 × 10−5 

0.60 0.25000000 0.250906992 9.0699264 × 10−5 

 

 

(a) 

  

(b) 

Figure 4. (a) Plots of exact and tenth MFPS solutions at various 𝛽 values and 𝑡 = 0.2. 

(b) Plots of exact and tenth MFPS solutions at various 𝛽 values and 𝑥 = 1, for Problem 

4.3.  

  ******   𝛽 = 0.45 

 

 

  ******   𝛽 = 055 

 

 

  ******   𝛽 = 0.65 

 

 

  ******   𝛽 = 0.75 
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𝑢(𝑥, 𝑡), 𝛽 = 1 ;     𝑢10(𝑥, 𝑡), 𝛽 = 1;     𝑢10(𝑥, 𝑡), 𝛽 = 0.75;     𝑢10(𝑥, 𝑡), 𝛽 = 0.5, 

Figure 5. 3D surface plots of exact solution 𝑢(𝑥, 𝑡) and the tenth MFPS approximate 

solution 𝑢10(𝑥, 𝑡) for Problem 4.3 with 𝑡 ∈ [0,1] and 𝑥 ∈ [0,1] at various values of 𝛽. 

5. Conclusions 

In this work, the LRPS technique was profitably used to create the analytical approximate 

solution for both homogeneous and non-homogeneous non-linear time-FGDEs along with 

appropriate initial data. The main idea of the proposed technique is to determine the unknown 

coefficients of LFSE for the new equation in the Laplace space by using the limit concept. The 

analytical approximate solutions for the solved gas fractional initial value problems are achieved in 

rapidly convergent MFPS formulas with fast, more accurate computations with no perturbation, 

discretization or physical hypotheses. The performance and reliability of the LRPS technique have 

been studied by carrying out three illustrative examples. The obtained results via our technique are 

𝑥 

𝑡 

𝑥 

𝑡 

𝑥 

𝑡 

𝑥 

𝑡 
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compatible with results obtained by the homotopy perturbation transform technique [32] and the 

reduced differential transform technique [34]. Consequently, the LRPS technique is a direct, easy and 

convenient tool to treat a various range of non-linear time-fractional PDEs that arise in engineering 

and science problems. 
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