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Abstract: Constructing mathematical models of fractional order for real-world problems and
developing numeric-analytic solutions are extremely significant subjects in diverse fields of physics,
applied mathematics and engineering problems. In this work, a novel analytical treatment technique
called the Laplace residual power series (LRPS) technique is performed to produce approximate
solutions for a non-linear time-fractional gas dynamics equation (FGDE) in a multiple fractional
power series (MFPS) formula. The LRPS technique is a coupling of the RPS approach with the
Laplace transform operator. The implementation of the proposed technique to handle time-FGDE
models is introduced in detail. The MFPS solution for the target model is produced by solving it in
the Laplace space by utilizing the limit concept with fewer computations and more accuracy. The
applicability and performance of the technique have been validated via testing three attractive initial
value problems for non-linear FGDEs. The impact of the fractional order g on the behavior of the
MFPS approximate solutions is numerically and graphically described. The jth MFPS approximate
solutions were found to be in full harmony with the exact solutions. The solutions obtained by the
LRPS technigue indicate and emphasize that the technique is easy to perform with computational
efficiency for different kinds of time-fractional models in physical phenomena.
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1. Introduction

In the last decades, several scholars have made a lot of prominent contributions to the theory
and applications of fractional differential equations (FDESs), due to their notable role in explaining
several real-life phenomena that arise in the natural sciences, including mechanical systems, chaos
synchronization, earthquake modeling, image processing, control theory and wave propagation
phenomena (see, e.g., [1-4]). These phenomena and others can be described and reformulated as
FDEs using fractional calculus. The most significant feature of using FDEs in the mentioned
phenomena and others is their nonlocal property. This means that the differential operators provide
an excellent tool for the description of memory and hereditary properties of various materials and
processes. For more details, see [5-8].

Partial differential equations (PDES) in the context of fractional derivatives are considered to be
a powerful tool in mathematical modeling to understand and interpret some structures of physical
phenomena that are complex and unpredictable due to external factors. For this, scholars have
utilized them to simplify the controlling design without any loss of genetic information or memory
effect, as well as to create a nature issue closely understandable. Besides that, many attempts have
been successfully devoted to proposing reliable numerical techniques for handling the fractional
PDEs of physical interest; we refer the reader to [9-15] and the references therein. The solutions of
PDEs of fractional order provide outstanding insight into the behavior of some dynamic systems and
many real-life problems like traffic flow, oscillation, earthquakes and gas dynamics [16,17], which
can be reformulated as nonlinear PDEs in the context of fractional derivatives. So, it is necessary to
form a convenient and applicable approach for finding the analytical solutions to these problems and
others. Recently, numerous analytical and numerical approaches have been conducted by researchers to
investigate and construct analytic-approximate solutions of FDEs and PDEs of fractional order, such as
the residual power series (RPS) method [18-22], reproducing kernel (RK) method [23-25], unified
method (UM) [26], Adomian decomposition method (ADM) [27,28] and homotopy perturbation
method (HPM) [29].

In this work, a novel effective analytical technique [30], called the Laplace residual power
series (LRPS) technique, has been used to study analytic-approximate solutions in the sense of the
Caputo derivative of a nonlinear fractional gas dynamic equation (FGDE) in the form

du(x,t) (1.2

Dfu(x, t) —ulx,t) + ulx,t)

+u?(x,t) = g(x,t),

with the initial data u(x,0) = uy(x), for t > 0,x € R,0 < < 1, such that u(x,t) isan unknown
analytic function. For the integer case, § = 1, the FGDE (1.1) reduces to the standard GDE. It is a
universal mathematical model that depends upon conservation laws that exist in engineering and
physical practices, such as conservation of mass, conservation of momentum, conservation of energy,
etc. The nonlinear FGDEs are applicable in the shock fronts, rarefactions and contact discontinuities.
Due to the FGDEs having many applications in physics and engineering [31], different
numeric-analytic techniques were exploited in recent years to investigate the solutions of FGDEs.
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Kumar et al. [32] performed the homotopy perturbation transform technique for solving homogenous
and non-homogenous FGDEs. Biazar and Eslami [33] presented the differential transform technique
for solving FGDEs. Tamsir and Srivastava [34] considered FGDEs and utilized the fractional
reduced differential transform technique for obtaining their solutions. Raja Balachandar et al. [35]
proposed the shifted Legendre polynomial of fractional order technique to study the analytical
solutions of FGDEs. lyiola [36] obtained the series solutions of FGDEs using the g-homotopy
analysis technique. Kumar and Rashidi [37] applied the fractional homotopy analysis transform
technique to provide analytical solutions to homogenous and non-homogenous FGDEs.

Finding out the analytical-approximate solutions of non-linear time-PDEs of fractional order is
a considerable matter for scholars to sense and study the physical and dynamic behaviors of
nonlinear fractional models. Therefore, there is an imperious necessity for numeric-analytic
techniques for creating precise solutions for both linear and nonlinear time-PDEs of fractional order.
Motivated by this, the primary contribution of the present analysis is to generate an
analytical-approximate solution in closed form compatible with the exact solution for standard-order
B =1 with no need for linearization, permutations or any physical assumptions in the meaning of
the Caputo fractional derivative via extending the application of the LRPS technique. The novel
solution technique has been suggested and proved by EI-Ajou [30] for creating and analyzing the
exact solitary solutions for a certain class of nonlinear time-FPDEs. Its hybrid technique associates
the Laplace transform (LT) operator with the RPS scheme. The primary benefit of the present
technique is to determine the unknown components of the proposed solutions by using limits in the
Laplace space, which in turn reduces the required calculations and saves effort, in contrast to the
RPS approach, which requires fractional differentiation in each phase [38-41]. The LRPS method
had been successfully applied to create approximate series solutions in closed forms for different
kinds of FDEs and time-fractional PDEs [42-45].

The rest of the current work is organized as follows: In Section 2, some basic definitions and
theorems concerning fractional calculus, the Laplace transform and Laplace fractional expansion are
revisited. In Section 3, the layout of the proposed technique for building the approximate solution of
the considered fractional model (1.1) is presented. In Section 4, the LRPS technique is implemented
for solutions of fractional gas problems to illustrate the applicability and performance in
investigation of the solutions of time-PDEs of fractional order. Finally, some conclusions of our
findings are drawn in Section 5.

2. Materials and methods

In this section, we review the primary definitions and theorems of fractional operators in the
Riemann-Liouville and Caputo senses. Also, we review the primary definitions and theorems related
to the Laplace transform, which will be used mainly in the next section.

Definition 2.1.[3] For B € R™, the Riemann-Liouville fractional integral operator for a real-valued
function u(x,t) is denoted by ﬂf and defined as

t

! w,m) dn, 0<n<t,f>0
flfu(x, t) =1T(B) J (t—m)t-F m =1 ’ ’ (2.1)
u(x,t), B =0.
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Definition 2.2. [3] The time fractional derivative of order g > 0, for the function u(x,t) in the
Caputo case, is denoted by Df and defined as

n—B(nn _
Dfu(x, 0 = {flt (DPu(x,t)) 0<n—-1<pB<n, 2.2)
Dl'u(x, t), p=n,
where D[' = :TZ, for n € N.
Definition 2.3. [43] Assume that u(x,t):1 x [0,1] = R. The LT of u(x,t) is defined as
U(x,s) = L{u(x, t)} = f u(x, t) e Stde, s>p, (2.3)
0
where p is the exponential order of u(x,t).
The inverse LT of the new function U(x, s) is defined as
€+ico
u(lx,t) = L7HU(x,s)} = j U(x,s) eStds, € = Re(s) > €, (2.4)
€—ioo

with the following characteristics:

1) L{tme} =

r(ma+1)
Sma+1 ’

a>—1.

2) slg(r)lo sU(x,s) = u(x,0).

3) L{av(x,t) + bu(x,t)} = aV(x,s) + bU(x,s), forany a,b € R.
4) L7YaV(x,s) + bU(x,s)} = av(x, t) + bu(x, t),
where V(x,s) = L{v(x,t)}, and U(x,s) = L{u(x,t)}.
Lemma 2.1.[44] Suppose that u(x,t):1 X [0,1] - R is a real-valued function. Then,

i. L{Dtﬁu(x, t)} = sPU(x,s) — T sﬁ‘k‘lugk)(x, 0), € (n—1,n],n €N.
ii. L{D;ﬂﬁu(x, t)} = s™U(x,s) — Z’,?;ols(m‘k)ﬁ‘li)fku(x, 0), B €(0,1],m€N.
Theorem 2.1. [19,27] Let u(x,t) be infinitely g-th Caputo fractional differentiable at any point
1

t € (0,78], where u(x,t) has the following multiple fractional power series (MFPS):

[ee]

u(x,t) = Z u,(x)t"*, t=>0,8€(0,1]. (2.5)
n=0

Then, the coefficients u, (x), for n = 0,1,2, ..., will be written in the form w,(x) =

that D?Bu(x, t) om0 = Df.Df.Df ...Df(u(x, t)) lo=o (n-times).
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1
Theorem 2.2. [44] Suppose that Dfﬁu(x, t) € €(0,r<], in which u(x,t) has the MFPS as in

(2.5). Then, the new transform function U(x, s), in the Laplace space, could be expressed as in the
following Laplace fractional series expansion (LFSE):

o)

U, s) = Z Z”(x) s>0,8€(0,1], 2.6)

= na+1’
where the coefficients u,,(x) = D[* u(x, 0).
Theorem 2.3. [44] Suppose that U(x,s) is expanded in the LFSE form (2.6). If there exists {(x) >
0, such that |sL{Dt(n+1)ﬁu(x, )} < {(x), for B € (0,1], then the remaining term R, (x,s) of
LFSE (2.6) satisfies the following:

¢(x)
IR, (x,8)| < ST+ DB x €l N <s<n,. (2.7)

Theorem 2.4. [46] If there is a constant 1 € (0,1), where |[ug41(x, O] < nllug(x, t)ll, vk €N
and 0 <t < R < 1, then the obtained approximate solution converges to an exact solution.
Proof. Forall 0 <t <R < 1, we have

o)

Z u;(x,t)

i=k+1

2 0 k+1
< D, Gt S WFQI Y. 0 == IF I

i=k+1 i=k+1

llulx, t) —we(x, Ol =

-0,k - oo,

3. Methodology of LRPS technique

In the current section, the main procedure of the LRPS technique for solving the non-linear
time-fractional gas model (1.1) is introduced. Our novel technique depends basically on the running
the LT to the both sides of the considered problem and converting it into the Laplace space, then
providing the Laplace fractional series solution for the new problem via the residual error function
(REF) with using the limit concept, and as a final step, we run the inverse LT to the resultant LFSE to
find out the MFPS approximate solution to the main problem. The present technique gives the
accurate approximate-analytic solutions in a rapidly convergent series with no need for linearization
or any physical restriction. To reach our purpose, the subsequent algorithm summarizes the main
steps to create the MFPS approximate solution of the non-linear time-fractional gas model (1.1).

Step A: Apply the LT operator on both sides of the non-linear FGDE (1.1), that is,

ou(x,t)
X

£{Dfule ) - Lue 0} + £ {u(x, £) } + L{u?(x, )} = L{g(x, D)}, (3.1)

Utilizing Lemma 2.1 and the initial condition of (1.1) yields L{Dfu(x, t)} = sBU(x,s) —
s=Bu(x,0). So, Equation (3.2) becomes
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U(x,s) =

uoix) + U(S); ) _ SiﬁL {L‘l [U(x, s) aa—xu(x, s)]}

1 1
— S—ﬁL{[L‘l‘u(x, s} - o G(x,s),

(3.2)

where L{u(x, t)} = U(x,s), L{g(x, t)} = G(x,s).
Step B: According to the LRPS technique [30,45], the proposed solution of (3.2) has the following
LFSE:

o

‘U(x,s)zzum—(x)xel,s>0,0< B <1 (3.3)

smB+1
m=0

Obviously, uy(x) = lim sU(x,s) = u(x, 0). So, the LFSE (3.3) can be expressed as
S—> 00

o

Uy (x Uy (x
U(x,s) = OE )+ Z s:nnlg+3 x€l,s>00< B<1, (3.4)
m=1

and the j-th Laplace series solution U;(x, s), of (3.4), can be rewritten as
() . N ()
U\ X Um (X
Uj(x,s) = "S +zm—xel,s>0,0< g <1. (3.5)

smB+1
m=1

Step C: As in [30,45], the j-th Laplace-REF of (3.2) is defined as

L {Resj (’Uj (x, s))}

=U;(x,s) — uos(x) + 4 S; 5)

- SiﬁL {L-l[uj(x, )L [aa—xuj(x, s)]} - siﬁ[’ [ty 9]} 36

L 6s)
7 0(0s).

The Laplace-REF is given as
L{Res(ﬂ(x, s))}

s M@, U

s sP
1 d 1
— s_ﬁL {L‘l[U(x, s)|L! [aﬂ(x. S)]} - S—Bﬁ{[ﬁ‘lu(x, )%} (3.7)

1
- S—BG(x, s).

Consequently, we note that L{Res(U(x,s))}=0, and lim L{Resf (Uj (x, s))} =
jooo
L{Res(U(x,s))}, for each x € I,s > 0. Further, one can use the following facts of the Laplace-REF,
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which are essential in finding the approximate solutions:

» lim s£{Res(U(x,s))} = 0,and lim sL {Resf (Uj(x, s))} =0, foreach x € I,s > 0.

« lim s/#*1L{Res/ (U(x,5))} = 0, foreach x € [,s >0, j = 1,2,3,....and § € (0,1].

S—00
Step D: Collect the resulting unknown coefficients u,,(x), for m = 1,2,3,...,j, in terms of the
series expansion (3.5).
Step E: Lastly, take the inverse LT of the obtained LFSE in Step D to get the j-th MFPS solution
uj(x, t).

Subsequently, we demonstrate the procedure of the proposed technique for solving the
homogeneous type of the main problem (1.1). To find out the unknown coefficient u; (x), substitute
U, (x,5) = u"T(x)+ 109 nto L{Res(Uy(x,s))} of (3.6), i.e.,

sﬁ+1

L{Res*(U(x,5))}
Cu () 1 fue(x) | wy(x)

- sB+1 sB s sB+1
1 ug(x) u(x un(x)  uwi(x
PRLIpS o()+ 1()[:_1 o(x) uy(x)
sk s sB+1 s sB+1

j

Cw) ul) w) (38)
T gB+1 sB+1  g2B+1
4+ g-1-36 I'(1 4 28)uq () (ug (x) + ui (x))
rz@+p)
+ 58 (59 (g (007 + 1,0 ()
+ uy(x) (2u1 (x) + sPuy(x) + ui(x)))).
Then, multiplying both sides of (3.8) by s#*! yields
sPHL{Res(Uy(x,5))}
_ , T2+ 28)uy (o) (ug (%) + uj (x))
= T(x) +up () (=1 + ue(x) + up(x)) + F2(L+ B)s2F 9
+ 7 (ul(x)(—l + 2uy(x) + uy (x)) + uo(x)u;(x)).
Based on the fact that lim s#**L{Res*(Uy(x,s))} = 0, we have
uy () = () — (e (x)? — up (¥)up (x). (3.10)
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Again, to obtain u, (x), consider the second Laplace-REF L{Res?(U,(x,s))} as

L{Res?(Uy(x,5))}

0 112 ) 1 a
=U,(x,s) — u? — % + s_ﬁL {ﬁ_l[uz(x, s)|L7! [auz(x; S)]} (3.11)

4 H{L U ()]
S

uz(x)
s2B+1"

uq(x)
sB+1

where U, (x,s) = ”"S(x) + + Thus, (3.11) can be reformulated as
L{Res?(Uy(x,5))}

_ul(x) uz(x)_ 1 (uo(x) u;(x) | up(x)

T UGB+l T g2p+1 B S B+l T g2B+1

1 ug(x) u (x) uy(x)
- -1 0 1 2 -1
+¢L& [S .

up(x) +u£(x) ué(x)}

s sh+1  g2B+1 (3.12)
1 w() | wl)  w\|
e -1
el (2,22 )
Thereafter, multiply (3.12) by s2f*% and solve lim s2f*1£{Res?(U,(x,s))} =0 to get
S—00
Uz (%) = uy () — 2up () uy (x) — uy () up(x) — up () ug (x). (3.13)

Similarly, for the third unknown coefficient, uz(x) , substitute Us(x,s) =—uos(x)+
3 12 into the third Laplace-REF L{Res®(Us(x,s))} of (3.6), and multiply the obtained

m=1gmp+1

fractional algebraic equation by s3F*1. Next, by solving lim s®#*1L{Res?(U;s(x,s))} = 0, the
S—00

third unknown function u;(x) will be given as

uz(x) = up (%) — 2up () uz (%) — up (U (x) — up () uy(x)
_ ra+ Z,B)ul(x)(ul(x) + ui(x)) (3.14)
rz2(i+p) '

Following the same manner in finding the fourth, fifth and sixth unknown coefficients, that is,
u;(x) for j =456, one can obtain, based on the fact lim sjﬁ“L{Resf (uj(x,s))} =0, the
S—00

following.
uy () = uz(x) — 2up()uz(x) — uz () uy(x) — up(x)uz(x)

r{+3p) (u2 g (%) + uy (0) (2u, (%) + uj (x))) (3.15)
- ra+pra+2p) '
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17655

us () = ug(x) — 2o ()us (x) — us (uy (x) — ue()uy(x)
16T (% + Zﬁ) Uy () (uz (%) + uj(x))
Var(1 +2pB)

(1 +4) (us (ug () + 3 (0) (2u3 (x) + 14.(x)))
B r(1+B)Ir(+3p) '

u (%) = us(x) = 2uo () us (%) — us () ug(x) — uo () us(x)

r(1+ 58) (13 (0 () + () (2u3(x) +14(x)))
B r1+2p)ra +3p)

(1 +58) (us(up () + 1w (0 (2ua () +14,()))
raa+p)r+4p) '
More coefficients u;(x), for arbitrary j, can be computed in the same previous manner by

employing the MATHEMATICA software package. Based on the obtained results of u;(x), we get
the LFSE U(x,s) of the homogenous Laplace algebraic equation (3.2) in the form

Ulx,s) = uogx) " (uo(X) - (uo(:;il— uo(x)ué(x))
(g () = 2up () uy (%) — uy () uh(x) — ue(uf (x)) (3.16)
" s2B+1 + ...,

Finally, by applying the inverse LT of the resultant equation (3.16), the MFPS approximate
solution of the fractional gas model (1.1) will be represented as

(1o () = (o (x)? = up (Xuy (x)) tB
raa+pg)

ulx,t) = up(x) +

(3.17)
N (1. (%) = 2o ()uy (2) — uy (Dug (x) — up(uj (x))

r(1+2p) 26 4 o

4. Simulation and test problems

In this section, the LRPS technique is profitably applied in view of the Caputo derivative for
investigating the analytical-approximate solution of three time-nonlinear FGDEs subject to suitable
initial data. Some graphical and numerical simulations are achieved for the solved problems, which
confirmed the efficiency and applicability of the proposed technique. It is worth mentioning that all
computations and numerical and graphical simulations of the obtained results were accomplished
utilizing Mathematica 12.

Problem 4.1. Consider the following homogeneous non-linear fractional gas model [32,34]:

AIMS Mathematics Volume 7, Issue 10, 17647-17669.
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Dfulx, ) —ulx, ) + ux ) —ux,t) + (1) =0,t 20,x ER0< < 1, (4.1)

with the initial data
u(x,0) =e™*, (4.2)

For the standard case S = 1, the exact solution of (4.1) and (4.2) is u(x,t) = e . In light of
the previous discussion of the LRPS technique, we apply the LT to (4.1). Then, by using the initial
data (4.2), we get

X U(x, 1 d 1
Ux,s) = eT + % _ S—BL{L‘l [’U(x, $) UG, s)]} - LU (43)

To create the approximate solution of (4.3), let the j-th LFSE U;(x,s) be given as

X

I,
Ui (x,s) = eT + Z i (X) (4.4)

smpB+1’
m=1

where the unknown coefficients u,,, m = 1,2, ...,j, are obtained through the construction of the
following j-th Laplace REF of the time-FGDE (4.3) and (4.4) as

L{Resj ('Uj(x, s))}
J J

B up(x) 1 [e’™* U, ()
=) o w5 e

m=1 m=1

e * ) Uy, (%) e d Uy, (x)

— ' N m ' N m 7

+ sﬁL £ s Z smp+1 £ s + Z smp+1 (4.5)
m=1 m=1

Next, by using the formulas in (3.10) and (3.13)—(3.15), the unknown coefficients for m =
1,2,...,6 will be u,,(x) = e™*. Therefore, the sixth L-FSE U4 (x, s) is written as

e * e™* e ™ e ™ e ™ e e
Us(x,s) = S + sh+1 + 52B+1 + s3B+1 + s4B+1 + §5B+1 + S6B8+1" (4.6)
So, the infinite series solution U(x,s) of the Laplace algebraic equation (4.3) can be written as
1 1 1 1 1
U(x,s) =e™™ <;+ Gt spategat ot gt ) 4.7)

Consequently, the MFPS approximate solution u(x,t) of the fractional gas model (4.1) and
(4.2) takes the following infinite series form:
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u(x,t) =

¢ <1+I’(B+1)+1’(2/3+ 1)+r(3ﬁ+1>+'”+m+"'>' 9

t3F

tiB

2 3
If we replace 8 =1 in the MFPS formula (4.8), we obtain u(x,t) =e™* ( 1+t+ % + % +

et j—]' + - ) which is the same as the obtained results in [32,34].

Table 1 shows the absolute errors |u(x,t) — ui0(x, t)|, which are obtained for the fractional
gas model (4.1) and (4.2) for some selected various values of t with step size 0.15 and fixed
values of x at n = 10. Graphically, the solution behaviors of the tenth MFPS approximate solution
at different values of fractional order £ are plotted in Figure 1 against the exact solution when g =
1. One can see from this graph that, as the parameter B increases on its domain, the obtained
approximate solutions converge continuously to the standard case for § = 1. Figure 2 demonstrates
the comparison of the geometric behaviors between the exact solution and the obtained tenth MFPS
approximate solution of (4.1) and (4.2) at various S values for (x,t) € [0,1]?. From these 3D
surface plots, we see that the solution behaviors for different Caputo fractional derivatives on their
domain are in close agreement with each other, particularly for classical derivatives.

Table 1. Numerical simulation for fractional gas model (4.1) and (4.2) at § =1 and

n = 10 with different values of ¢t.

x4 ux, t) Uro(x,£) u(x, £) = g0 (%, 0|
0.15 3.158192909689767 3.158192909689767 0.0
0.30 3.669296667619244 3.669296667619121 1.23900889 x 10713

_1 0.45 4.263114515168817 4.263114515157978 1.08393294 x 10~11
0.60 4.953032424395115 4.953032424135106 2.60008903 x 10~1°
0.75 5.754602676005731 5.754602672938858 3.06687298 x 10~°
0.90 6.685894442279268 6.685894419187874 2.30913946 x 1078
0.15 0.427414931948733 0.427414931948727 5.55111512 x 10717
0.30 0.496585303791409 0.496585303791393 1.67088565 x 1014
0.45 0.576949810380487 0.576949810379019 1.46693768 x 10~12

1 0.60 0.670320046035639 0.670320046000451 3.51882967 x 10711
0.75 0.778800783071405 0.778800782656349 4.15055989 x 10710
0.90 0.904837418035959 0.904837414910879 3.12508052 x 10~°
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ux,1) u(1,t)

251

2.0

1.5F

I L L I L = 1 1 I T, |
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

(a) (b)

Figure 1. (a) Plots of exact and tenth MFPS solutions at various 8 valuesand t = 1. (b)
Plots of exact and tenth MFPS solutions at various g valuesand x = 1 for Problem 4.1.

-u(x, t),=1; %uw(x, t),B =1; Mulo(x, t), 8 = 0.85; L uso(x, t), B = 0.65

Figure 2. 3D-Surface plots of exact solution u(x,t) and the 10th MFPS approximate

solution u,y(x,t) for FGDE (4.1) and (4.2) with t € [0,1] and x € [0,1] at various
values of S.
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Problem 4.2. Consider the following homogeneous nonlinear fractional gas model [32,34]:
Dﬁu(x t) —log(q) u(x,t) + u(x, t) u(x t) —log(q) u?(x,t) =0, 4.9
with the initial data

u(x,0) =q7%, (4.10)

whereqg >0, 0 < <1,and (x,t) € [0,1] X R. For the integer case B = 1, the exact solution of
(4.9) and (4.10) is u(x,t) = qt~*.

Employing the LRPS technique, we start by applying the LT on both sides of (4.9) and using
the initial data (4.10) to get

UG ) = T 80y L fet [ue ) St )|
X,S) = S oy X, S P X,S ax X, S (411)
l .
— LU, )P
Thus, the LFSE of (4.11) has the following shape

Uy (x) S u (%)

UCx,s) ==~ ==+ Z e (4.12)

m=1

Obviously uy(x) = lim s U(x,s) = u(x,0) = g~*. So, the j-th LFSE of (4.11) will be written as
S—00

J

uj(x,s)_q— z m (%) (4.13)

mB+1"°

m=1

Next, the j-th L-REF L{Resf (uj(x, s))} of (4.11) is defined as

L {Resf (‘Uj (x, s))}
j .
N\ um(x) logq [ q U ()
- smB+l P S + gmp+1
m=1 m=1
i vu®| | S uw
-1 m -1 m
+S_BL L T+ Smﬁ"'l L —lqu—+ Z Smﬁ+1 (4 14)
m=1 | m=1
i 12
lo x U, (x
il T Y
S S
m=1
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Hence, the unknown functions u,,(x) can be computed via writing the j-th LFSE of (4.13)
into the j-th L-RFE L{Resf (u-(x s))} of (4.14), multiplying the resultant equation by s/#+1

and taking into account the result lim s/#*1£ {Resf (u (x, s))} =0 for m =1,2,...,j. In this way,

S—00

one can determine the forms of the functions u,,(x), respectively, as
u; (x) = q7*log (q),
U (x) = q*(log (¢))?,
us(x) = q*(log (¢))?,
uy(x) = g *(log (q)*

Therefore, the LFSE U(x,s) of the Laplace algebraic equation (4.12) takes the form

log (q) (log(q))* (log(q))® (log (9))’
Ulx,s) =q~ ( + gB+1 g2B+1 §3B+1 +W+ )

(4.15)

Lastly, by taking the inverse LT of both sides of the achieved LFSE (4.15), one could conclude
that the MFPS approximate solution of the nonlinear time-fractional gas model (4.9) and (4.10) has
the following infinite series formula:

- (¢P10g (0))"
u(x, t) = Z B +1) (4.16)

which coincides with the obtained results in [32,34]. Moreover, when S = 1, the MFPS approximate
solution is entirely in harmony with the exact solution u(x,t) = q*~*.

Table 2 shows the accuracy of the proposed approach via computed numerical results for the
tenth MFPS approximate solutions of Problem 4.2 at fixed values of x and some node points of ¢,
with step size 0.25 for different values of . The geometric behaviors of the tenth-MFPS
approximate solutions against the exact solution are drawn in 3D surface plots for t € [0,1] and

€ [0,1] at various values of B, as shown in Figure 3. It is manifest from this figure that the
obtained approximate solution converges continuously to the standard-case 8 =1 as f moves
over (0, 1). Also, the graphs of the behaviors of the obtained tenth-MFPS approximate solutions are
consistent with each other, especially when considering the standard derivative.

Table 2. Comparison of numerical tenth MFPS approximate solutions for Problem 4.2.

, . Uq0(x, t)
' ' =1 B = 0.80 B = 0.60 B = 0.40

0.25  0.42044821 0.39369508 0.36549146 0.33892131

_, 050 035355339 0.33256158 0.31643312 0.30560356
0.75  0.29730178 0.28745081 0.28378632 0.28490461
1.0 0.25000002 0.25217222 0.25942999 0.26992039
0.25  1.68179283 1.57478033 1.46196585 1.35568524

, 050 141421356 1.33024631 1.26573247 1.22241427
0.75  1.18920712 1.14980321 1.13514527 1.13961843
1.0 1.00000008 1.00868888 1.03771999 1.07968155
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ulx, t),=1; -ulo(x, t),B =1, &ulo(x, t),8 =0.8; G4 Uo(x, t),B =0.6

Figure 3. 3D surface plots of exact solution u(x,t) and the 10" MFPS approximate
solution u,y(x,t) for FGDE (4.9) and (4.10) with t € [0,1], x € [0,1] and g = 10 at
various values of f3.

Problem 4.3. Consider the following non-homogeneous fractional gas model [32,34]
Dfu(x, t) + u(x,t) aa—xu(x, t) + (1 +6)2u?(x,t) = x?, (4.17)
with the initial data

u(x,0) = x, (4.18)

where 0 < <1, and (x,t) € [0,1] X R. For the integer case 8 = 1, the exact solution of (4.17)

and (4.18) is u(x,t) = —

14t
Now, to perform the process of our proposed method, we start with the initial data (4.18), and

applying the LT on both sides of (4.18) yields
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UCx, s) = __i,;{ -1 [u(x,s);—xu(x,s)]}—Siﬂ,c{[,c-lu(x,s)]Z}+Siﬁ1:{x2}. (4.19)

As in the manner of the LRPS algorithm, we construct the j-th L-REF of (4.19) as

L {Resj (‘Uj (x, s))}
U (%) 1 5
= 2, Siper ~57L)
m=1
1 r ]| 1 Suww
1 e Zumx 4|1 Eumx
L 20 R el e el EC ol ey e, (4.20)
m=1 =1

m
j 2
1 1 2 2 X U, (x
+—=L L] —+—+—] £ —+Z m (1) :
sk s s2 g3 s

To find out u,(x), we consider k =1 in (4.20), that is,

L{Res'(U;(x,5))}

_u®) 1L{x2}+lﬁL{L‘1 [f+u1(x)]ﬁ [ ul(x)}
S S

Sﬁ+1 S,8+1 SB+1

1 1 2 2 x  u (0N
Sl D Wt Il | SN
+sﬁ’£{£ [s+sz+s3] [L <s+ sh+1 >]

x*u(x)  2uf(x)  2uf(x)  uf(x) up(x)uy (x)
T TSR T Bt + $3+B S2+B S1+B S1+2B (4.21)
4r(f + 2)uo(u (x)  2r(B + 2)ug(x)uy (x)
s2t26r (B + 1) s3t26r (B + 1)

r2g + Du(x) 2r (2B + 2)u?(x)
sU3Brz(p+1) s#H3Br2(p+1)

r2p+3)ui(x)  uy(x)ug(x) N uy () ug(x)
s3+3Br2(B + 1) 148 s1+2p

u(ui(x) | I'2B + Duy (Dus (x)
s1+2B t s1+3Br2(B + 1)

Next, we multiply both sides of (4.21) by sf*! to get
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sPHL{Res(Uy(x,5))}
2ug (x) Zu(z) (x) dug(ug (x)  Aug()uy (x)
s2 s T Uy (%) s2+B S1tB
2ug(uy(x)  6Bug(ug(x)  4Bug(uy(x)  2B%up(x)uy (x)
+ Y 52+B S1tB S2+B
2r2p + Du?(x) 2r2p+ Du?(x) rp+ Dui(x)
s2R2rz(p+1) - s12Pr2(p+1) - sPrip+1) (4.22)

= —x% +uf(x) +

6B (2B + Dui(x) 4Br(2p + Dui(x) 4B*Ir'(2p + Dui(x)
s2+2Br2(B 4+ 1) s1*26r2(B +1) s2+2Br2(B 4+ 1)

) U (up(x)  ug(ui(x) 2B + Duy(x)ui(x)
o (up() + = = sZﬁFZ(ﬁ1+1)1

Thereafter, by solving lim sP*1£{Res!(U;(x,s))} = 0, one can get u, (x) = —x. So, the first
S—00
LFSE of (4.19) could be written as U, (x,s) == — =,

B+

For construction of the second LFSE of (4.19), we should substitute U,(x,s) ==—

x
s1t+p

+

Uy (x)

EET: into the second L-REF of (4.19). By multiplying the resultant equation by the factor s'*2#,

the second unknown coefficient will be obtained such that u,(x) = 2x. Thus, the second LFSE of
. 2
(4.19) could be written as U, (x,s) = = — = + 05
Following the procedure of the LRPS algorithm, the forms of the unknown functions u,,, m =
1,2,3,...,j, could be found by solving the system lim s/f+1L {Resf (uj(x, s))} =0 for u,,(x),
S—00

and hence the LFSE of (4.19) can be formulated as

[ee]

X 2x 6x 24x 120x 720x —-1)™m
B+l + g2B+1 §3B+1 + 4B+l ¢5B+1 + 56ﬁ+1 ) Z Sm[)’+1

Ux,s) = g— (4.23)

m=0

As the last phase in finding the approximate solution of the main problem, we apply the inverse
LT on both sides of LFSE (4.23) to get the following MFPS approximate solution of
non-homogeneous FGDEs (4.17) and (4.18):

1 2 , 6 24 4
wd =x (14 s o rapa s rare
= iy (4.24)
) =x 2 rgrn ™
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Particularly, when g =1, the MFPS approximate solution (4.24) reduces to the closed-form

u(x, t) = 11 which agrees with the exact solution of the classical form of (4.17) and (4.18) as in

+t'
[32,34].

The harmony between the exact and obtained approximate solutions is illustrated via computing
the absolute errors |u(x,t) — us9(x,t)| of the IVP (4.17) and (4.18) for some selected grid points
t; = 0.15i,i = 1,2,3,4, with fixed values of x, as summarized in Table 3. To explain the geometric
behaviors of the obtained solutions by the LRPS approach, Figure 4 demonstrates the effect of the
fractional order derivative on the pattern of the obtained solutions via the LRPS method and the full
compatibility between the LRPS curves and the exact solution. Also, one can see the convergence
between the exact solution and the obtained approximate solution for non-linear fractional gas model
(4.17) and (4.18) at different S values, especially at the standard order derivative, as in Figure 5.

Table 3. Numerical simulation for fractional gas model (4.17) and (4.18) at § =1 and
n = 10 with different values of t.

Xi L u(x, t) ulO(x' t) |u(xr t) - ulO(x' t)l

0.15 0.17391304 0.17391304 1.5043053 x 10710

0.2 0.30 0.15384615 0.15384642 2.7253385 x 1077

' 0.45 0.13793103 0.13795216 2.1134873 x 107>

0.60 0.12500000 0.12545349 45349632 x 10~*

0.15 0.34782609 0.347826087 3.0086106 x 10710

0.4 0.30 0.30769238 0.307692853 5.4506769 x 1077

' 0.45 0.27586207 0.275904339 42269746 x 107>

0.60 0.25000000 0.250906992 9.0699264 x 10~°

B =045
140+
20k B =055 11'}3_
w7 ﬁ =0.65 ll}l};—
B =075 80t
1.0+ 5|}E
i w0l
0.5 [
0" e
D.IZ U'-I-l U'-Iﬁ I D-Ia 1-I[|' * r D.Il D.I-I FE!_.rﬁ' - 0.8 l.ll] f
(a) (b)

Figure 4. (a) Plots of exact and tenth MFPS solutions at various B values and t = 0.2.
(b) Plots of exact and tenth MFPS solutions at various £ values and x = 1, for Problem
4.3.
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-u(x, t),6=1; Zﬁéuw(x, ),8=1, T Fu,(xt),p=075 uyo(x, t), B = 0.5,

Figure 5. 3D surface plots of exact solution u(x,t) and the tenth MFPS approximate
solution uq,(x,t) for Problem 4.3 with t € [0,1] and x € [0,1] at various values of .

5. Conclusions

In this work, the LRPS technique was profitably used to create the analytical approximate
solution for both homogeneous and non-homogeneous non-linear time-FGDEs along with
appropriate initial data. The main idea of the proposed technique is to determine the unknown
coefficients of LFSE for the new equation in the Laplace space by using the limit concept. The
analytical approximate solutions for the solved gas fractional initial value problems are achieved in
rapidly convergent MFPS formulas with fast, more accurate computations with no perturbation,
discretization or physical hypotheses. The performance and reliability of the LRPS technique have
been studied by carrying out three illustrative examples. The obtained results via our technique are

AIMS Mathematics Volume 7, Issue 10, 17647-17669.
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compatible with results obtained by the homotopy perturbation transform technique [32] and the
reduced differential transform technique [34]. Consequently, the LRPS technique is a direct, easy and
convenient tool to treat a various range of non-linear time-fractional PDEs that arise in engineering
and science problems.
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