Research article

An inertial iterative method for solving split equality problem in Banach spaces

Meiying Wang ${ }^{1}$ Luoyi Shi ${ }^{2}$ and Cuijuan Guo ${ }^{2, *}$
${ }^{1}$ School of Mathematical Sciences, Tiangong University, Tianjin 300387, China
${ }^{2}$ School of Software, Tiangong University, Tianjin 300387, China
* Correspondence: Email: guocuijuan@tiangong.edu.cn.

Abstract

In this paper, a new self-adaptive algorithm with the inertial technique is proposed for solving the split equality problem in p-uniformly convex and uniformly smooth Banach spaces. Under some mild control conditions, a strong convergence theorem for the proposed algorithm is established. Furthermore, the results are applied to split equality fixed point problem and split equality variational inclusion problem. Finally, numerical examples are provided to illustrate the convergence behaviour of the algorithm. The main results in this paper improve and generalize some existing results in the literature.

Keywords: split equality problem; self-adaptive method; inertial technique; strong convergence; Banach space
Mathematics Subject Classification: 47H09, 47J25

1. Introduction

Let H_{1}, H_{2} and H_{3} be three real Hilbert spaces. Let C and Q be nonempty closed convex sets of H_{1} and H_{2}, respectively. The split equality problem (SEP) for mapping $A: H_{1} \rightarrow H_{3}$ and $B: H_{2} \rightarrow H_{3}$ was proposed by Moudafi [17] as finding

$$
\begin{equation*}
s^{\ell} \in C, t^{\ell} \in Q \text { such that } A s^{\ell}=B t^{\ell} \tag{1.1}
\end{equation*}
$$

When $B=I$, the SEP reduces to the split feasibility problem (SFP) presented by Censor and Elfving [5] as follows:

$$
\begin{equation*}
\text { find } s^{\ell} \in C \text { such that } A s^{\ell} \in Q \tag{1.2}
\end{equation*}
$$

which appears in many practical applications, such as signal processing [3] and medical image reconstruction [2]. The SFP can also be applied to simulate intensity-modulated radiation therapy [6].

In order to approximate the solution of SFP, many algorithms have been proposed (see [11, 15, 16, 20, $24,25,29,31]$).

The application of SEP can cover many aspects, such as decomposition methods for PDEs, and applications in game theory [1]. Many important issues, for instance, null point problem of maximal monotone operators, equilibrium problems and optimization problems, can be converted into SEP [17].

The algorithm to solve SEP in Hilbert spaces was first proposed by Moudafi [17] in 2013, also known as the alternating $C Q$-algorithm ($A C Q A$):

$$
\left\{\begin{array}{l}
s_{n+1}=P_{C}\left(s_{n}-\gamma_{n} A^{*}\left(A s_{n}-B t_{n}\right)\right) \tag{1.3}\\
t_{n+1}=P_{Q}\left(t_{n}+\gamma_{n} B^{*}\left(A s_{n+1}-B t_{n}\right)\right)
\end{array}\right.
$$

where $\left\{\gamma_{n}\right\}$ is a nondecreasing sequence. They proved that $\left\{\left(s_{n}, t_{n}\right)\right\}$ generated by (1.3) converges weakly to a solution of SEP.

To get strong convergence results, Shi et al. [23] introduced a modification of Moudafi's ACQA algorithm:

$$
\begin{cases}s_{n+1}=P_{C}\left\{\left(1-\mu_{n}\right)\left[s_{n}-\gamma A^{*}\left(A s_{n}-B t_{n}\right)\right]\right\}, \quad n \geq 0, \tag{1.4}\\ t_{n+1}=P_{Q}\left\{\left(1-\mu_{n}\right)\left[t_{n}+\gamma B^{*}\left(A s_{n}-B t_{n}\right)\right]\right\}, \quad n \geq 0,\end{cases}
$$

where $\left\{\mu_{n}\right\}$ is a positive sequence in $(0,1)$. It was proved that $\left\{\left(s_{n}, t_{n}\right)\right\}$ generated by (1.4) converges strongly to a solution of the SEP.

To accelerate the convergence, Polyak [19] firstly proposed the inertial extrapolation method for solving the smooth convex minimization problem. The inertial algorithm is a two-step iterative method, using the first two iterations to define the next iteration. Nesterov [18] introduced a modified method to improve the convergence rate as follows:

$$
\left\{\begin{array}{l}
t_{n}=s_{n}+\beta_{n}\left(s_{n}-s_{n-1}\right), \tag{1.5}\\
s_{n+1}=t_{n}-\lambda_{n} \nabla f\left(t_{n}\right), \quad \forall n \geq 1,
\end{array}\right.
$$

where $\beta_{n} \in[0,1)$ is an extrapolation factor, and $\left\{\lambda_{n}\right\}$ is a positive sequence. The inertia is denoted by the term $\beta_{n}\left(s_{n}-s_{n-1}\right)$. It is worth noting that the inertial term greatly improves the performance of the algorithm and has a good convergence property [18]. Encouraged by the inertial term, many authors have proposed different algorithms with inertial techniques to solve a number of different problems(see [9-11, 20, 33, 34]).

Very recently, Sahu [20] proposed a relaxed $C Q$ algorithm with the inertial term for solving the SFP in Hilbert spaces:

$$
\left\{\begin{array}{l}
t_{n}=s_{n}+v_{n}\left(s_{n}-s_{n-1}\right), \tag{1.6}\\
s_{n+1}=P_{C_{n}}\left(t_{n}-\lambda_{n} \nabla f_{n}\left(t_{n}\right)\right), \quad \forall n \geq 1,
\end{array}\right.
$$

where $\left\{v_{n}\right\}$ is a positive sequence. The sequence $\left\{s_{n}\right\}$ generated by (1.6) converges weakly to a solution of the SFP was proved by the author.

Since the setting of Banach spaces sometimes allows for more realistic modeling of problems arising in industrial and natural science applications, solving SFP and SEP in Banach space is interesting not only from a theoretical point of view, but also for solving related application problems in the real world.

In [21], Schöpfer et al. proposed the following algorithm for solving the SFP in Banach spaces:

$$
\begin{equation*}
s_{n+1}=\Pi_{C} J_{q}^{*}\left[J_{p}\left(t_{n}\right)-\lambda_{n} A^{*} J\left(A s_{n}-P_{Q}\left(A s_{n}\right)\right)\right], \tag{1.7}
\end{equation*}
$$

where λ_{n} is a positive parameter, Π_{C} denotes the Bregman projection, J_{p}, J_{q}^{*}, J are duality mappings, and P_{Q} denotes the metric projection. They showed the weak convergence of the algorithm (1.7).

In some applied disciplines, norm convergence is preferable to weak convergence. Wang [30] proposed an algorithm for solving the following multiple-sets split feasibility problem (MSSFP): find a point $s^{\ell} \in E_{1}$, such that

$$
\begin{equation*}
s^{\ell} \in \bigcap_{k=1}^{m} C_{i}, A s^{\ell} \in \bigcap_{t=1}^{r} Q_{j}, \tag{1.8}
\end{equation*}
$$

where E_{1}, E_{2} are Banach spaces, $\left\{C_{k}\right\}_{k=1}^{m},\left\{Q_{t}\right\}_{t=1}^{r}$ are nonempty, closed and convex subsets of E_{1} and E_{2}, respectively. When $m=r=1$ in (1.8), the MSSFP reduces to SFP. The author proposed the following iterative algorithm and proved the strong convergence: for any $n \in \mathbb{N}$,

$$
T_{n}(s)=\left\{\begin{array}{l}
\Pi_{C_{i(n)}}(s), 1 \leq i(n) \leq r \\
J_{q}^{*}\left[J_{p}(s)-\delta_{n} A^{*} J_{p}\left(A s-P_{Q_{j(n)}}(A s)\right)\right], r+1 \leq i(n) \leq r+d,
\end{array}\right.
$$

where $i(n)=n \bmod (r+d)+1$, and $0 \leq \delta \leq \delta_{n} \leq\left(\frac{q}{c_{q}\|A\| \|^{q}}\right)^{\frac{1}{q}}, c_{q}$ is a constant. For any $s_{0},\left\{s_{n}\right\}$ is generated by the following iteration:

$$
\left\{\begin{array}{l}
t_{n}=T_{n} s_{n}, \tag{1.9}\\
M_{n}=\left\{w \in E_{1}: \Delta_{p}\left(t_{n}, w\right) \leq \Delta_{p}\left(s_{n}, w\right)\right\} \\
P_{n}=\left\{w \in E_{1}:\left\langle s_{n}-w, J_{p}^{E}\left(s_{0}\right)-J_{p}^{E}\left(s_{n}\right)\right\rangle \geq 0\right\} \\
s_{n+1}=\Pi_{M_{n} \cap P_{n}}\left(s_{0}\right)
\end{array}\right.
$$

The author proved that the sequence $\left\{s_{n}\right\}$ generated by (1.9) converges strongly to a point in the solution set Ω.

Recently, Zhou et al. [33] proposed an improved shrinking projection algorithm with inertial technique to solve the split common fixed point problem (SCFPP) in Banach space. The SCFPP was proposed by Censor and Segal [7] in 2009, as finding a point s^{ℓ} satisfies the following:

$$
\begin{equation*}
s^{\ell} \in F(K) \text { and } A s^{\ell} \in F(L), \tag{1.10}
\end{equation*}
$$

where $K: E_{1} \rightarrow E_{1}$ and $L: E_{2} \rightarrow E_{2}$ are two mappings, $F(K)$ and $F(L)$ represent the sets of fixed point of K and L, respectively. The iterative algorithm was proposed by Zhou et al. [33] as follows:

$$
\left\{\begin{array}{l}
m_{n}=J_{q}^{E_{1}{ }^{*}}\left[J_{p}^{E_{1}}\left(s_{n}\right)+\beta_{n}\left[J_{p}^{E_{1}}\left(s_{n}\right)-J_{p}^{E_{1}}\left(s_{n-1}\right)\right],\right. \tag{1.11}\\
q_{n}=J_{q}^{E_{1}{ }^{*}}\left[J_{p}^{E_{1}}\left(m_{n}\right)-\rho_{n} A^{*} J_{p}^{E_{2}}(I-L) A m_{n}\right], \\
t_{n}=J_{q}^{E_{1}{ }^{*}}\left[\tau_{n} J_{p}^{E_{1}} q_{n}+\left(1-\tau_{n}\right) J_{p}^{E_{1}} K q_{n}\right], \\
D_{n+1}=\left\{v \in D_{n}: \Delta_{p}\left(t_{n}, v\right) \leq \Delta_{p}\left(q_{n}, v\right) \leq \Delta_{p}\left(m_{n}, v\right)\right\}, \\
s_{n+1}=\Pi_{D_{n+1}}\left(s_{0}\right),
\end{array}\right.
$$

where $0<\rho_{n}<\left(\frac{q}{C_{q}\|A\|^{q}}\right)^{\frac{1}{q-1}},\left\{\tau_{n}\right\} \subset(0,1)$ and $\left\{\beta_{n}\right\} \subset(-\infty,+\infty)$ denoted the sequences of real numbers. The strong convergence of the algorithm was proved by the authors.

It can be observed that the step size δ_{n} in the algorithm (1.9) and ρ_{n} in the algorithm (1.11) depend on the norm of operator A, which is not an easy task in general practice.

Inspired by previous works, we propose a new self-adaptive algorithm with the inertial technique for solving the SEP in Banach spaces. The step size selection of our algorithm does not require a prior estimate of operator norm, and the inertial term improves the performance of the algorithm. Furthermore, we prove the strong convergence theorem under some mild conditions. Our algorithm includes the inertial technique, which is novel for solving the SEP in Banach spaces.

The rest of this paper is organized as follows: In Section 2, some basic facts and helpful lemmas are given for use in subsequent proofs. In Section 3, the result of strong convergence of the proposed algorithm is demonstrated. In Section 4, in terms of applications, the results are applied to the split equality fixed point problem and the split equality variational inclusion problem. In Section 5, we give numerical examples to verify the effectiveness of the proposed algorithm.

2. Preliminaries

In this section, we first recall some notations and results that will be needed in the sequel. We suppose that E is a real Banach space and C is a nonempty closed convex subset of E. The dual space of E is denoted by $E^{*} . s_{n} \rightharpoonup s$ and $s_{n} \rightarrow s$ indicate that $\left\{s_{n}\right\} \subset E$ weak and strong convergence to s, respectively, and $\omega_{w}\left(s_{n}\right)$ represents the weak w-limit set of $\left\{s_{n}\right\}$.

Let $1 \leq q \leq 2 \leq p<\infty$ with $\frac{1}{p}+\frac{1}{q}=1$. The modulus of convexity $\delta_{E}(\varepsilon):[0,2] \rightarrow[0,1]$ is defined as

$$
\delta_{E}(\varepsilon)=\inf \left\{1-\frac{\|x+y\|}{2}:\|x\|=\|y\|=1,\|x-y\| \geq \varepsilon\right\}
$$

E is called uniformly convex if $\delta_{E}(\varepsilon)>0$ for any $\varepsilon \in(0,2]$, strictly convex if $\delta_{E}(2)=1$. If there is a $c_{p}>0$ such that $\delta_{E}(\varepsilon) \geq c_{p} \varepsilon^{p}$ for any $\varepsilon \in(0,2]$, then E is called p-uniformly convex. The modulus of smoothness $\rho_{E}(\tau):[0, \infty) \rightarrow[0, \infty)$ is defined by

$$
\rho_{E}(\tau)=\sup \left\{\frac{\|x+\tau y\|+\|x-\tau y\|}{2}-1:\|x\|=1,\|y\| \leq \tau\right\}
$$

E is called uniformly smooth if $\lim _{\tau \rightarrow \infty} \frac{\rho_{E}(\tau)}{\tau}=0, q$-uniformly smooth if there is a $c_{q}>0$ so that $\rho_{E}(\tau) \leq$ $c_{q} \tau^{q}$ for any $\tau>0$. It is known that E is p-uniformly convex if and only if its dual E^{*} is q-uniformly smooth [14].

For $p>1$, the duality mapping $J_{p}^{E}: E \rightarrow 2^{E^{*}}$ is defined by

$$
J_{p}^{E}(x)=\left\{x^{*} \in E^{*}:\left\langle x^{*}, x\right\rangle=\|x\|^{p},\left\|x^{*}\right\|=\|x\|^{p-1}\right\} .
$$

If E is reflexive, strictly convex and smooth, then J_{p}^{E} is one-to-one single-valued and $J_{p}^{E}=J_{q}^{E^{*}}$, where $J_{q}^{E^{*}}$ is the duality mapping of E^{*} (see $[4,14,22]$).

Given a Gâteaux differentiable function $f: E \rightarrow \mathbb{R}$, the Bregman distance with respect to f is defined as:

$$
\Delta_{f}(x, y)=f(x)-f(y)-\langle\nabla f(y), x-y\rangle, \forall x, y \in E .
$$

Let $f_{p}(x)=\frac{1}{p}\|x\|^{p}$. In this case, the duality mapping J_{p}^{E} is the derivative of f_{p}.
Definition 2.1. The Bregman distance with respect to f_{p} is defined as

$$
\Delta_{p}(x, y):=\frac{\|x\|^{p}}{p}-\frac{\|y\|^{p}}{p}-\left\langle J_{p}^{E}(y), x-y\right\rangle
$$

$$
\begin{equation*}
=\frac{\|x\|^{p}}{p}+\frac{\|y\|^{p}}{q}-\left\langle J_{p}^{E}(y), x\right\rangle . \tag{2.1}
\end{equation*}
$$

In general, the Bregman distance is not symmetric and does not satisfy the triangle inequality. However, it possesses some distance-like properties, and it has the following important properties [13, 26]:

$$
\begin{gather*}
\Delta_{p}(x, y)+\Delta_{p}(y, z)-\Delta_{p}(x, z)=\left\langle J_{p}^{E}(z)-J_{p}^{E}(y), x-y\right\rangle, \forall x, y, z \in E . \tag{2.2}\\
\Delta_{p}(x, y)+\Delta_{p}(y, x)=\left\langle J_{p}^{E}(x)-J_{p}^{E}(y), x-y\right\rangle, \forall x, y \in E . \tag{2.3}
\end{gather*}
$$

For p-uniformly convex space, the metric and Bregman distance have the following relation (see [21, 26]):

$$
\begin{equation*}
\tau\|x-y\|^{p} \leq \Delta_{p}(x, y) \leq\left\langle J_{p}^{E}(x)-J_{p}^{E}(y), x-y\right\rangle \tag{2.4}
\end{equation*}
$$

where $\tau>0$ is some fixed number.
The metric projection

$$
P_{C} x:=\underset{y \in C}{\arg \min }\|x-y\|, \forall x \in E
$$

is the unique minimizer of the norm distance, which can be characterized by a variational inequality [12]:

$$
\begin{equation*}
\left\langle J_{p}^{E}\left(x-P_{C} x\right), z-P_{C} x\right\rangle \leq 0, \forall z \in C \tag{2.5}
\end{equation*}
$$

Similar to the metric projections, the Bregman projection is defined as

$$
\Pi_{C} x:=\underset{y \in C}{\arg \min } \Delta_{p}(y, x), \forall x \in E,
$$

is the unique minimizer of the Bregman distance. It can be characterized by a variational inequality [21]:

$$
\begin{equation*}
\left\langle J_{p}^{E}(x)-J_{p}^{E}\left(\Pi_{C} x\right), z-\Pi_{C} x\right\rangle \leq 0, \forall z \in C \tag{2.6}
\end{equation*}
$$

from which one has

$$
\begin{equation*}
\Delta_{p}\left(z, \Pi_{C} x\right) \leq \Delta_{p}(z, x)-\Delta_{p}\left(\Pi_{C} x, x\right), \forall z \in C \tag{2.7}
\end{equation*}
$$

In Hilbert spaces, the metric projection and the Bregman projection are consistent with respect to $f(x)=\frac{1}{2}\|x\|^{2}$, but in general they are different.

The following inequality in q-uniformly smooth spaces was proved by Xu [32]:
Lemma 2.2. [32] If E is a q-uniformly smooth Banach space, then there exists a $c_{q}>0$ such that for every $x, y \in E$, the following inequality exists

$$
\begin{equation*}
\|x-y\|^{q} \leq\|x\|^{q}-q\left\langle y, J_{q}^{*}(x)\right\rangle+c_{q}\|y\|^{q} . \tag{2.8}
\end{equation*}
$$

3. Main results

In this section, we propose the self-adaptive algorithm with the inertial technique to solve the split equality problem in Banach spaces. Subsequently, the strong convergence of the proposed algorithm is analyzed and established. The following assumptions are made throughout this section:

- E_{1}, E_{2} and E_{3} are p-uniformly convex and uniformly smooth real Banach spaces,
- C and Q are nonempty closed convex subsets of E_{1} and E_{2},
- $A: E_{1} \rightarrow E_{3}$ and $B: E_{2} \rightarrow E_{3}$ are two bounded linear operators,
- The solution set Γ of SEP is nonempty:

$$
\Gamma=\left\{(x, y) \in E_{1} \times E_{2}, A x=B y, x \in C, y \in Q\right\} \neq \emptyset .
$$

Let $S=C \times Q$ in $E=E_{1} \times E_{2}, w=(x, y) \in S$, define $G: E \rightarrow E_{3}$ by $G=[A,-B]$. Then, the original SEP becomes finding $w=(x, y) \in S$ with $G w=0$.

We now introduce our inertial algorithm for solving SEP as follows.
Algorithm 3.1. Let $\left\{\alpha_{n}\right\} \subset \mathbb{R}$ be a bounded set. Set $w_{0}, w_{1} \in S$. The sequence $\left\{w_{n}\right\}$ is defined by the following iteration:

$$
\left\{\begin{array}{l}
u_{n}=J_{q}^{E^{*}}\left[J_{p}^{E}\left(w_{n}\right)+\alpha_{n}\left[J_{p}^{E}\left(w_{n}\right)-J_{p}^{E}\left(w_{n-1}\right)\right],\right. \\
z_{n}=\Pi_{S} J_{q}^{E^{*}}\left[J_{p}^{E}\left(u_{n}\right)-\rho_{n} G^{*} J_{p}^{E_{3}} G\left(u_{n}\right)\right], \\
D_{n}=\left\{u \in E: \Delta_{p}\left(u, z_{n}\right) \leq \Delta_{p}\left(u, u_{n}\right)\right\}, \\
E_{n}=\left\{u \in E:\left\langle J_{p}^{E}\left(w_{0}\right)-J_{p}^{E}\left(w_{n}\right), w_{n}-u\right\rangle \geq 0\right\}, \\
w_{n+1}=\Pi_{D_{n} \cap E_{n}}\left(w_{0}\right),
\end{array}\right.
$$

for all $n \geq 0$ where $\rho_{n}^{q-1} \in\left(\epsilon, \frac{q\| \| G u_{n}| |^{p}}{c_{q} \mid G^{*} J_{p}^{E_{3}} u_{n} \|^{q}}-\epsilon\right)$.
Lemma 3.2. The sequence $\left\{w_{n}\right\}$ generated by Algorithm 3.1 is well-defined.
Proof. In order to prove that $\left\{w_{n}\right\}$ is well-defined, first of all, we need to prove that $D_{n} \cap E_{n}$ is nonempty closed and convex for all $n \geq 1$. Obviously, D_{n} is closed and E_{n} is closed and convex. To prove the convexity of D_{n}, note that

$$
\Delta_{p}\left(u, z_{n}\right) \leq \Delta_{p}\left(u, u_{n}\right),
$$

then, using (2.1) we have

$$
\frac{\|u\|^{p}}{p}+\frac{\left\|z_{n}\right\|^{p}}{q}-\left\langle J_{p}^{E}\left(z_{n}\right), u\right\rangle \leq \frac{\|u\|^{p}}{p}+\frac{\left\|u_{n}\right\|^{p}}{q}-\left\langle J_{p}^{E}\left(u_{n}\right), u\right\rangle,
$$

that is,

$$
\left\langle J_{p}^{E}\left(u_{n}\right)-J_{p}^{E}\left(z_{n}\right), u\right\rangle \leq \frac{1}{q}\left(\left\|u_{n}\right\|^{p}-\left\|z_{n}\right\|^{p}\right), \quad \forall u \in E,
$$

so D_{n} is a half-space, which means D_{n} is convex. Hence, $D_{n} \cap E_{n}$ is closed and convex. Secondly, we show that $D_{n} \cap E_{n} \neq \emptyset$. To do this, it suffices to prove that

$$
\begin{equation*}
\Gamma \subset D_{n} \cap E_{n} . \tag{3.1}
\end{equation*}
$$

If (3.1) holds, we notice that $\Gamma \neq \emptyset$, so $D_{n} \cap E_{n} \neq \emptyset$. Next we show $\Gamma \subset D_{n}$. Let $z \in \Gamma, m_{n}=$ $J_{p}^{E}\left(u_{n}\right)-\rho_{n} G^{*} J_{p}^{E_{3}} G\left(u_{n}\right), \quad \forall n \geq 1$. From Lemma 2.2, we get

$$
\begin{align*}
\left\|m_{n}\right\|_{E^{*}}^{q} & =\left\|J_{p}^{E}\left(u_{n}\right)-\rho_{n} G^{*} J_{p}^{E_{3}} G\left(u_{n}\right)\right\|_{E^{*}}^{q} \\
& \leq\left\|u_{n}\right\|^{p}-q \rho_{n}\left\langle G^{*} J_{p}^{E_{3}} G\left(u_{n}\right), u_{n}\right\rangle+c_{q} \rho_{n}^{q}\left\|G^{*} J_{p}^{E_{3}} G\left(u_{n}\right)\right\|^{q} . \tag{3.2}
\end{align*}
$$

From (2.7) and (3.2), we have

$$
\begin{align*}
\Delta_{p}\left(z, z_{n}\right) & \leq \Delta_{p}\left(z, J_{q}^{E^{*}}\left(m_{n}\right)\right) \\
& =\frac{\|z\|^{p}}{p}-\left\langle m_{n}, z\right\rangle+\frac{\left\|J_{q}^{E^{*}}\left(m_{n}\right)\right\|^{p}}{q} \\
& =\frac{\|z\|^{p}}{p}-\left\langle m_{n}, z\right\rangle+\frac{1}{q}\left\|m_{n}\right\|^{(q-1) p} \\
& =\frac{\|z\|^{p}}{p}-\left\langle m_{n}, z\right\rangle+\frac{1}{q}\left\|m_{n}\right\|^{q} \\
& \leq \frac{\|z\|^{p}}{p}-\left\langle m_{n}, z\right\rangle+\frac{1}{q}\left\|u_{n}\right\|^{p}-\rho_{n}\left\langle G^{*} J_{p}^{E_{3}} G\left(u_{n}\right), u_{n}\right\rangle+\frac{c_{q} \rho_{n}^{q}}{q}\left\|G^{*} J_{p}^{E_{3}} G\left(u_{n}\right)\right\|^{q} \\
& =\frac{\|z\|^{p}}{p}-\left\langle J_{p}^{E}\left(u_{n}\right), z\right\rangle+\frac{1}{q}\left\|u_{n}\right\|^{p}-\rho_{n}\left\langle J_{p}^{E_{3}} G\left(u_{n}\right), G u_{n}-G z\right\rangle+\frac{c_{q} \rho_{n}^{q}}{q}\left\|G^{*} J_{p}^{E_{3}} G\left(u_{n}\right)\right\|^{q} \\
& =\Delta_{p}\left(z, u_{n}\right)-\rho_{n}\left\langle J_{p}^{E_{3}} G\left(u_{n}\right), G u_{n}\right\rangle+\frac{c_{q} \rho_{n}^{q}}{q}\left\|G^{*} J_{p}^{E_{3}} G\left(u_{n}\right)\right\|^{q} \\
& =\Delta_{p}\left(z, u_{n}\right)-\rho_{n}\left(\left\|G u_{n}\right\|^{p}-\frac{c_{q} \rho_{n}^{q-1}}{q}\left\|G^{*} J_{p}^{E_{3}} G\left(u_{n}\right)\right\|^{q}\right) . \tag{3.3}
\end{align*}
$$

By using the value of $\left\{\rho_{n}^{q-1}\right\}$, we have

$$
\Delta_{p}\left(z, z_{n}\right) \leq \Delta_{p}\left(z, u_{n}\right)
$$

This implies that $\Gamma \subset D_{n}$.
Finally, we show that $\Gamma \subset E_{n}$. For $n=0$, we have $E_{0}=E$, so $\Gamma \subseteq E_{0}$. Given w_{k} and suppose $\Gamma \subseteq D_{k} \cap E_{k}$ for some $k \in \mathbb{N}$. Then, there exists w_{k+1} such that

$$
w_{k+1}=\Pi_{D_{k} \cap E_{k}}\left(w_{0}\right) .
$$

Using (2.6), we have

$$
\left\langle J_{p}^{E}\left(w_{0}\right)-J_{p}^{E}\left(w_{k+1}\right), w_{k+1}-z\right\rangle \geq 0
$$

Therefore, $\Gamma \subset E_{k+1}$. By induction, we can get that $\Gamma \subset E_{n} \forall n \in \mathbb{N}$. In conclusion, this completes the proof.

Lemma 3.3. Let $\left\{w_{n}\right\}$ be generated by Algorithm 3.1. Then
(i) $\lim _{n \rightarrow \infty}\left\|u_{n}-w_{n}\right\|=0$;
(ii) $\lim _{n \rightarrow \infty}\left\|w_{n}-z_{n}\right\|=0$.

Proof. The definition of E_{n} actually implies that $w_{n}=\Pi_{E_{n}}\left(w_{0}\right)$. Combined with the fact that $\Gamma \subset E_{n}$ and the definition of Bregman projection, we get

$$
\Delta_{p}\left(w_{n}, w_{0}\right) \leq \Delta_{p}\left(z, w_{0}\right), \quad \forall z \in \Gamma .
$$

And since $v:=\Pi_{\Gamma}\left(w_{0}\right) \in \Gamma$, we obtain

$$
\begin{equation*}
\Delta_{p}\left(w_{n}, w_{0}\right) \leq \Delta_{p}\left(v, w_{0}\right), \tag{3.4}
\end{equation*}
$$

which means that $\left\{\Delta_{p}\left(w_{n}, w_{0}\right)\right\}$ is bounded. Hence, we know from (2.4) that $\left\{w_{n}\right\}$ is bounded. On the other hand, according to $w_{n+1} \in E_{n}$ and (2.6), we have $\left\langle J_{p}^{E}\left(w_{0}\right)-J_{p}^{E}\left(w_{n}\right), w_{n+1}-w_{n}\right\rangle \leq 0$ and by (2.7)

$$
\begin{equation*}
\Delta_{p}\left(w_{n+1}, w_{n}\right) \leq \Delta_{p}\left(w_{n+1}, w_{0}\right)-\Delta_{p}\left(w_{n}, w_{0}\right), \quad \forall n \geq 0 \tag{3.5}
\end{equation*}
$$

Which means that

$$
\begin{aligned}
\Delta_{p}\left(w_{n}, w_{0}\right) & \leq \Delta_{p}\left(w_{n+1}, w_{0}\right)-\Delta_{p}\left(w_{n+1}, w_{n}\right) \\
& \leq \Delta_{p}\left(w_{n+1}, w_{0}\right) .
\end{aligned}
$$

Thus, $\left\{\Delta_{p}\left(w_{n}, w_{0}\right)\right\}$ is nondecreasing and since $\left\{\Delta_{p}\left(w_{n}, w_{0}\right)\right\}$ is bounded, we get $\lim _{n \rightarrow \infty} \Delta_{p}\left(w_{n}, w_{0}\right)$ exists. And then from (3.5) we have

$$
\lim _{n \rightarrow \infty} \Delta_{p}\left(w_{n+1}, w_{n}\right)=0
$$

Hence, we obtain from (2.4) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|w_{n+1}-w_{n}\right\|=0 \tag{3.6}
\end{equation*}
$$

Since J_{p}^{E} is norm-to-norm uniformly continuous, we get

$$
\lim _{n \rightarrow \infty}\left\|J_{p}^{E}\left(w_{n+1}\right)-J_{p}^{E}\left(w_{n}\right)\right\|=0
$$

According to the definition of $\left\{u_{n}\right\}$ in the Algorithm 3.1 that

$$
J_{p}^{E}\left(u_{n}\right)-J_{p}^{E}\left(w_{n}\right)=\alpha_{n}\left(J_{p}^{E}\left(w_{n}\right)-J_{p}^{E}\left(w_{n-1}\right)\right) .
$$

Therefore,

$$
\left\|J_{p}^{E}\left(u_{n}\right)-J_{p}^{E}\left(w_{n}\right)\right\|=\alpha_{n}\left\|J_{p}^{E}\left(w_{n}\right)-J_{p}^{E}\left(w_{n-1}\right)\right\| \rightarrow 0, n \rightarrow \infty .
$$

Since $J_{q}^{E^{*}}$ is also norm-to-norm uniformly continuous, we have

$$
\left\|u_{n}-w_{n}\right\| \rightarrow 0, \quad n \rightarrow \infty .
$$

This completes (i).
In addition,

$$
\left\|w_{n+1}-u_{n}\right\| \leq\left\|w_{n+1}-w_{n}\right\|+\left\|w_{n}-u_{n}\right\| \rightarrow 0, n \rightarrow \infty .
$$

This shows that,

$$
\left\|J_{p}^{E}\left(u_{n}\right)-J_{p}^{E}\left(w_{n+1}\right)\right\| \rightarrow 0
$$

From (2.4), we have

$$
\begin{aligned}
\Delta_{p}\left(w_{n+1}, u_{n}\right) & \leq\left\langle J_{p}^{E}\left(w_{n+1}\right)-J_{p}^{E}\left(u_{n}\right), w_{n+1}-u_{n}\right\rangle \\
& \leq\left\|J_{p}^{E}\left(w_{n+1}\right)-J_{p}^{E}\left(u_{n}\right)\right\|\left\|w_{n+1}-u_{n}\right\| \rightarrow 0, n \rightarrow \infty .
\end{aligned}
$$

Since $w_{n+1} \in D_{n}$, we have that

$$
\Delta_{p}\left(w_{n+1}, z_{n}\right) \leq \Delta_{p}\left(w_{n+1}, u_{n}\right) \rightarrow 0, n \rightarrow \infty .
$$

This implies that

$$
\begin{equation*}
\left\|w_{n+1}-z_{n}\right\| \rightarrow 0, n \rightarrow \infty \tag{3.7}
\end{equation*}
$$

From (3.6) and (3.7) we get

$$
\left\|w_{n}-z_{n}\right\| \leq\left\|w_{n}-w_{n+1}\right\|+\left\|w_{n+1}-z_{n}\right\| \rightarrow 0, \quad n \rightarrow \infty
$$

This completes (ii).
Lemma 3.4. Let $\left\{w_{n}\right\}$ be generated by Algorithm 3.1. Then the sequence $\left\{w_{n}\right\}$ has a weak cluster point and $\omega_{w}\left(w_{n}\right) \subseteq \Gamma$.

Proof. We know from Lemma 3.3 that $\left\{w_{n}\right\}$ is bounded. Since E is a reflexive Banach space, $\omega_{w}\left(w_{n}\right)$ is nonempty. Therefore, we take a subsequence $\left\{w_{n_{j}}\right\}$ of $\left\{w_{n}\right\}$ such that $w_{n_{j}} \rightharpoonup z \in \omega_{w}\left(w_{n}\right)$. Since $\left\|w_{n}-z_{n}\right\| \rightarrow 0, n \rightarrow \infty$, we can get $z_{n_{j}} \rightharpoonup z$. Obviously we have $z \in S$. And since $\left\|w_{n}-u_{n}\right\|=0$, there exists a subsequence $\left\{u_{n_{j}}\right\}$ of $\left\{u_{n}\right\}$ such that $u_{n_{j}} \rightharpoonup z$. From (3.3), we have

$$
\begin{equation*}
\rho_{n}\left(\left\|G u_{n}\right\|^{p}-\frac{c_{q} \rho_{n}^{q-1}}{q}\left\|G^{*} J_{p}^{E_{3}} G\left(u_{n}\right)\right\|^{q}\right) \leq \Delta_{p}\left(z, u_{n}\right)-\Delta_{p}\left(z, z_{n}\right) \tag{3.8}
\end{equation*}
$$

By (2.2), we get

$$
\Delta_{p}\left(z, z_{n}\right)+\Delta_{p}\left(z_{n}, u_{n}\right)-\Delta_{p}\left(z, u_{n}\right)=\left\langle J_{p}^{E}\left(u_{n}\right)-J_{p}^{E}\left(z_{n}\right), z-z_{n}\right\rangle,
$$

combine this with (2.4) we get

$$
\begin{aligned}
\Delta_{p}\left(z, u_{n}\right)-\Delta_{p}\left(z, z_{n}\right) & =\Delta_{p}\left(z_{n}, u_{n}\right)+\left\langle J_{p}^{E}\left(z_{n}\right)-J_{p}^{E}\left(u_{n}\right), z-z_{n}\right\rangle \\
& \leq\left\langle J_{p}^{E}\left(z_{n}\right)-J_{p}^{E}\left(u_{n}\right), z_{n}-u_{n}\right\rangle+\left\langle J_{p}^{E}\left(z_{n}\right)-J_{p}^{E}\left(u_{n}\right), z-z_{n}\right\rangle \\
& \leq\left\|J_{p}^{E}\left(z_{n}\right)-J_{p}^{E}\left(u_{n}\right)\right\|\left\|z-u_{n}\right\| \rightarrow 0, n \rightarrow \infty .
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
\left\|G u_{n}\right\|^{p}-\frac{c_{q} \rho_{n}^{q-1}}{q}\left\|G^{*} J_{p}^{E_{3}} G\left(u_{n}\right)\right\|^{q} \rightarrow 0, n \rightarrow \infty . \tag{3.9}
\end{equation*}
$$

Since $\rho_{n}^{q-1}<\frac{q \|\left. G u_{n}\right|^{p}}{c_{q}\left\|G^{*} J_{p}^{\epsilon_{3}} G u_{n}\right\|^{q}}-\epsilon$, we get

$$
\frac{\epsilon c_{q}}{q}\left\|G^{*} J_{p}^{E_{3}} G u_{n}\right\|^{q}<\left\|G u_{n}\right\|^{p}-\frac{c_{q} \rho_{n}^{q-1}}{q}\left\|G^{*} J_{p}^{E_{3}} G u_{n}\right\|^{q} \rightarrow 0, n \rightarrow \infty .
$$

Thus,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|G^{*} J_{p}^{E_{3}} G u_{n}\right\|=0 \tag{3.10}
\end{equation*}
$$

From (3.9) and (3.10), we get $\lim _{n \rightarrow \infty}\left\|G u_{n}\right\|=0$, so $\lim _{n \rightarrow \infty}\left\|G u_{n_{j}}\right\|=0$. By the continuity of G, we obtain $G w_{n_{j}} \rightharpoonup G z$ and

$$
\left\|G w_{n_{j}}\right\|-\left\|G u_{n_{j}}\right\| \leq\|G\|\left\|w_{n_{j}}-z_{n_{j}}\right\| \rightarrow 0, \quad j \rightarrow \infty .
$$

Hence, we have that $\left\|G w_{n_{j}}\right\|=0$.
Therefore,

$$
\begin{aligned}
0 & \leq\|G z\|^{p}=\left\langle J_{p}^{E_{3}} G z, G z\right\rangle \\
& =\lim _{j \rightarrow \infty}\left\langle J_{p}^{E_{3}} G z, G w_{n_{j}}\right\rangle \\
& \leq \lim _{j \rightarrow \infty}\left\|J_{p}^{E_{3}} G z\right\|\left\|G w_{n_{j}}\right\| \\
& =0 .
\end{aligned}
$$

Thus $G z=0$ and hence $z \in \Gamma$.
Now let us give the convergence analysis of the proposed algorithm.
Theorem 3.5. The sequence $\left\{w_{n}\right\}$ generated by Algorithm 3.1 converges strongly to a point $\Pi_{\Gamma}\left(w_{0}\right)$.
Proof. We know that $w_{n_{j}} \rightharpoonup z$. From Lemma 3.4 it follows that $z \in \Gamma$. Since $w_{n+1} \in E_{n}$ and $\Pi_{E_{n}}\left(w_{0}\right)=$ $\arg \min _{w \in E} \Delta_{p}\left(w_{0}, w\right)$, then we get

$$
\begin{aligned}
\Delta_{p}\left(w_{n}, w_{0}\right) & =\Delta_{p}\left(\Pi_{E_{n}}\left(w_{0}\right), w_{0}\right) \\
& \leq \Delta_{p}\left(w_{n+1}, w_{0}\right)
\end{aligned}
$$

By Lemma 3.2, $\Pi_{\Gamma}\left(w_{0}\right) \in \Gamma \subseteq E_{n+1}$. So

$$
\begin{aligned}
\Delta_{p}\left(w_{n+1}, w_{0}\right) & =\Delta_{p}\left(\Pi_{E_{n+1}}\left(w_{0}\right), w_{0}\right) \\
& \leq \Delta_{p}\left(\Pi_{\Gamma}\left(w_{0}\right), w_{0}\right) .
\end{aligned}
$$

Therefore,

$$
\Delta_{p}\left(w_{n}, w_{0}\right) \leq \Delta_{p}\left(w_{n+1}, w_{0}\right) \leq \Delta_{p}\left(\Pi_{\Gamma}\left(w_{0}\right), w_{0}\right)
$$

From (2.2) and (2.3), we can obtain

$$
\begin{align*}
\Delta_{p}\left(w_{n_{j}}, \Pi_{\Gamma}\left(w_{0}\right)\right) & =\Delta_{p}\left(w_{n_{j}}, w_{0}\right)+\Delta_{p}\left(w_{0}, \Pi_{\Gamma}\left(w_{0}\right)\right) \\
& +\left\langle J_{p}^{E}\left(\Pi_{\Gamma}\left(w_{0}\right)\right)-J_{p}^{E}\left(w_{0}\right), w_{0}-w_{n_{j}}\right\rangle \\
& \leq \Delta_{p}\left(\Pi_{\Gamma}\left(w_{0}\right), w_{0}\right)+\Delta_{p}\left(w_{0}, \Pi_{\Gamma}\left(w_{0}\right)\right) \\
& +\left\langle J_{p}^{E}\left(\Pi_{\Gamma}\left(w_{0}\right)\right)-J_{p}^{E}\left(w_{0}\right), w_{0}-\Pi_{\Gamma}\left(w_{0}\right)\right\rangle \\
& +\left\langle J_{p}^{E}\left(\Pi_{\Gamma}\left(w_{0}\right)\right)-J_{p}^{E}\left(w_{0}\right), \Pi_{\Gamma}\left(w_{0}\right)-w_{n_{j}}\right\rangle \\
& =\left\langle J_{p}^{E}\left(w_{0}\right)-J_{p}^{E}\left(\Pi_{\Gamma}\left(w_{0}\right)\right), w_{n_{j}}-\Pi_{\Gamma}\left(w_{0}\right)\right\rangle . \tag{3.11}
\end{align*}
$$

Taking lim sup, we get

$$
\begin{aligned}
\underset{j \rightarrow \infty}{\limsup } \Delta_{p}\left(w_{n_{j}}, \Pi_{\Gamma}\left(w_{0}\right)\right) & \leq \underset{j \rightarrow \infty}{\limsup }\left\langle J_{p}^{E}\left(w_{0}\right)-J_{p}^{E}\left(\Pi_{\Gamma}\left(w_{0}\right)\right), w_{n_{j}}-\Pi_{\Gamma}\left(w_{0}\right)\right\rangle \\
& =\left\langle J_{p}^{E}\left(w_{0}\right)-J_{p}^{E}\left(\Pi_{\Gamma}\left(w_{0}\right)\right), z-\Pi_{\Gamma}\left(w_{0}\right)\right\rangle \\
& \leq 0 .
\end{aligned}
$$

Therefore, $\lim _{j \rightarrow \infty} \Delta_{p}\left(w_{n_{j}}, \Pi_{\Gamma}\left(w_{0}\right)\right)=0$ and $w_{n_{j}} \rightarrow \Pi_{\Gamma}\left(w_{0}\right)$. From the arbitrariness of $\left\{w_{n_{j}}\right\}$ and the uniqueness of $\Pi_{\Gamma}\left(w_{0}\right)$, we have $w_{n} \rightharpoonup \Pi_{\Gamma}\left(w_{0}\right)$. Using (2.4), it follows from (3.11) that

$$
\tau\left\|w_{n}-\Pi_{\Gamma}\left(w_{0}\right)\right\|^{p} \leq \Delta_{p}\left(w_{n}, \Pi_{\Gamma}\left(w_{0}\right)\right) \leq\left\langle J_{p}^{E}\left(w_{0}\right)-J_{p}^{E}\left(\Pi_{\Gamma}\left(w_{0}\right)\right), w_{n}-\Pi_{\Gamma}\left(w_{0}\right)\right\rangle .
$$

Taking limit of the above inequality, we obtain that $w_{n} \rightarrow \Pi_{\Gamma}\left(w_{0}\right)$.
Remark 3.6. It is worth mentioning that there are some advantages of our main result as follows:
(1) The methods in this paper can be applied to solve SEP in p-uniformly convex and uniformly smooth Banach spaces, which are more general than Hilbert spaces ($[10,17,27,29]$).
(2) The choice of step size of our algorithm is self-adaptive, which means that ρ_{n} does not depend on a prior estimate of the operator norm G. This allows our algorithm to be computed more simply than the computation of the step size in algorithm (1.9) and (1.11).
(3) The strong convergence result obtained in this paper is more desirable than the weak convergence counterparts for solving many problems in applied disciplines.
(4) Our algorithm with inertial effects is new for solving SEP in Banach spaces, even in Hilbert spaces. If $A=B$ in our problem, then Algorithm 3.1 can be reduced to solve SFP.

Our algorithm reduces to the following form in Hilbert space (the function Δ_{p} changes to $\Delta_{p}(x, y)=$ $\frac{1}{2}\|x-y\|^{2}$ and Π_{S} is the equivalent of P_{S}).
Corollary 3.7. Let H be a Hilbert space, $\left\{\alpha_{n}\right\} \subset \mathbb{R}$ be a bounded set. Set $w_{0}, w_{1} \in H$. The sequence $\left\{w_{n}\right\}$ is defined by the following iteration:

$$
\left\{\begin{array}{l}
u_{n}=w_{n}+\alpha_{n}\left(w_{n}-w_{n-1}\right), \tag{3.12}\\
z_{n}=P_{S}\left(u_{n}-\rho_{n} G^{*} G u_{n}\right), \\
D_{n}=\left\{u \in H:\left\|z_{n}-u\right\| \leq\left\|u_{n}-u\right\|\right\}, \\
E_{n}=\left\{u \in H:\left\langle w_{0}-w_{n}, w_{n}-u\right\rangle \geq 0\right\}, \\
w_{n+1}=P_{D_{n} \cap E_{n}}\left(w_{0}\right) .
\end{array}\right.
$$

4. Applications

4.1. Split equality fixed point problem

Let H_{1}, H_{2} and H_{3} be three Hilbert spaces. Let $K: H_{1} \rightarrow H_{1}$ and $L: H_{2} \rightarrow H_{2}$ be two nonlinear operators whose sets of fixed points are denoted by $F(K)$ and $F(L)$, respectively. The split equality fixed point problem for mappings $A: H_{1} \rightarrow H_{3}$ and $B: H_{2} \rightarrow H_{3}$ was introduced by Moudafi [17] as

$$
\begin{equation*}
\text { finding } x^{\ell} \in F(K) \text { and } y^{\ell} \in F(L) \text { such that } A x^{\ell}=B y^{\ell} \text {. } \tag{4.1}
\end{equation*}
$$

When $B=I$, the split equality fixed point problem (4.1) is degraded to the split common fixed point problem (1.10). Let $H=H_{1} \times H_{2}, U=K \times L$, define $G: H \rightarrow H_{3}$ by $G=[A,-B]$. In this case, the split equality fixed point problem can be redescribed as

$$
\text { finding } w=\left(x^{\ell}, y^{\ell}\right) \in F(U) \text { with } G w=0 \text {. }
$$

Regarding this problem, we formulate the following theorem based on the result of Theorem 3.5.

Theorem 4.1. Let H be a Hilbert space, $\left\{\alpha_{n}\right\} \subset \mathbb{R}$ be a bounded set. Set $w_{0}, w_{1} \in H$. The sequence $\left\{w_{n}\right\}$ is defined by the following iteration:

$$
\left\{\begin{array}{l}
u_{n}=w_{n}+\alpha_{n}\left(w_{n}-w_{n-1}\right), \tag{4.2}\\
z_{n}=P_{F(U)}\left(u_{n}-\rho_{n} G^{*} G u_{n}\right), \\
D_{n}=\left\{u \in H:\left\|z_{n}-u\right\| \leq\left\|u_{n}-u\right\|\right\}, \\
E_{n}=\left\{u \in H:\left\langle w_{0}-w_{n}, w_{n}-u\right\rangle \geq 0\right\}, \\
w_{n+1}=P_{D_{n} \cap E_{n}}\left(w_{0}\right),
\end{array}\right.
$$

where U is a quasi-nonexpansive operator and $\rho_{n} \in\left(\epsilon, \frac{2\left\|G u_{n}\right\|^{2}}{\left\|G^{*} G u_{n}\right\|^{2}}-\epsilon\right)$. If the solution set $\Gamma=\{w \in F(S)$: $G w=0\} \neq \emptyset$, then the sequence generated by (4.2) converges strongly to a point $\check{w}=P_{\Gamma} w_{0} \in \Gamma$.

Proof. Set $C=F(K)$ and $Q=F(L)$, that is, $S=F(U)$. Without difficulty, it can be seen that $P_{F(U)}$ is a nonexpansive mapping, such that the conclusion clearly holds according to Theorem 3.5.

4.2. Split equality variational inclusion problem

Let H be a Hilbert space, $N: H \rightarrow 2^{H}$ be a set-valued mapping with $\operatorname{dom}(N)=\{x \in H: N(x) \neq$ $\emptyset\}$. In the following, we first introduce the definition of monotone operator and maximal monotone operator.

Definition 4.2. An operator $N: H \rightarrow 2^{H}$ is said to be:
(i) monotone operator, if $\langle s-t, x-y\rangle \geq 0, \forall s \in N x, t \in N y$.
(ii) maximal monotone operator, if its graph: $\operatorname{gra}(N)=\{(x, y): x \in \operatorname{dom}(N), y \in \operatorname{dom}(N)\}$ is not properly contained in the graph of any other monotone operator.

Lemma 4.3. [28] Let $N: H \rightarrow 2^{H}$ be a maximal monotone operator on a real Hilbert space H. The resolvent is defined by $J_{v}^{N}=(I+v N)^{-1}$ for $v>0$. Then the following properties hold:
(i) For each $v>0, J_{v}^{N}$ is a single-valued and firmly nonexpansive mapping.
(ii) $\operatorname{dom}\left(J_{v}^{N}\right)=H$ and $F\left(J_{v}^{N}\right)=N^{-1}(0)=\{x \in \operatorname{dom}(N), 0 \in N x\}$.

Definition 4.4. [8] Let H_{1}, H_{2} and H_{3} be three Hilbert spaces. Let $M: H_{1} \rightarrow 2^{H_{1}}$ and $P: H_{2} \rightarrow 2^{H_{2}}$ be maximal monotone operators. Then split equality variational inclusion problem for mappings A : $H_{1} \rightarrow H_{3}$ and $B: H_{2} \rightarrow H_{3}$ can be formulated as

$$
\begin{equation*}
\text { finding } x^{\ell} \in M^{-1}(0) \text { and } y^{\ell} \in P^{-1}(0) \text { such that } A x^{\ell}=B y^{\ell} \text {. } \tag{4.3}
\end{equation*}
$$

Let $H=H_{1} \times H_{2}$, define $G: H \rightarrow H_{3}$ by $G=[A,-B]$. We assume that $J_{v}^{T}=\left[J_{v}^{M}, J_{v}^{P}\right]$, then the split equality variational inclusion problem is equivalent to

$$
\text { finding } w=\left(x^{\ell}, y^{\ell}\right) \in H \text { such that } w=J_{v}^{T} w, G w=0 \text {. }
$$

Theorem 4.5. Let H be a Hilbert space, $\left\{\alpha_{n}\right\} \subset \mathbb{R}$ be a bounded set. Set $w_{0}, w_{1} \in H$. The sequence
$\left\{w_{n}\right\}$ is defined by the following iteration:

$$
\left\{\begin{array}{l}
u_{n}=w_{n}+\alpha_{n}\left(w_{n}-w_{n-1}\right), \tag{4.4}\\
z_{n}=P_{F\left(J_{v}^{T}\right)}\left(u_{n}-\rho_{n} G^{*} G u_{n}\right), \\
D_{n}=\left\{u \in H:\left\|z_{n}-u\right\| \leq\left\|u_{n}-u\right\|\right\}, \\
E_{n}=\left\{u \in H:\left\langle w_{0}-w_{n}, w_{n}-u\right\rangle \geq 0\right\}, \\
w_{n+1}=P_{D_{n} \cap E_{n}}\left(w_{0}\right),
\end{array}\right.
$$

where $\rho_{n} \in\left(\epsilon, \frac{2 \|\left. G u_{n}\right|^{2}}{\left\|G^{*} G G_{n}\right\|^{2}}-\epsilon\right)$. If the solution set $\Gamma \neq \emptyset$, then the sequence generated by (4.4) converges strongly to a point $\check{w}=P_{\Gamma} w_{0} \in \Gamma$.

Proof. Set $C=F\left(J_{v}^{M}\right)$ and $Q=F\left(J_{v}^{P}\right)$, that is, $S=F\left(J_{v}^{T}\right)$. It is easy to see that $P_{F\left(J_{v}^{T}\right)}$ is a nonexpansive mapping. Therefore, the strong convergence theorem is obviously proved.

5. Numerical example

In this section, we give some numerical examples and compare Algorithm 3.1 with Algorithm (1.4) in Hilbert spaces to demonstrate the effectiveness of our newly proposed method. All codes were written in MATLAB2015B. The numerical results were carried out on Intel(R) Core(TM) i5-7200 CPU @ 3.1 GHz.

Example 5.1. We give the numerical example in $\left(\mathbb{R}^{3},\|\cdot\|_{2}\right)$ of the problem considered in this paper. Let $S:=\left\{w=\left(w_{1}, w_{2}, w_{3}\right) \in \mathbb{R}^{3}:\|w\| \leq 1\right\}$. For Algorithm 3.1, we take $\alpha_{n}=\frac{1}{n+1}$ and $\rho_{n}=\rho=0.01$, for Algorithm (1.4), we take $\mu_{n}=\frac{1}{n+1}$ and $\gamma=0.01$. And let

$$
G=\left(\begin{array}{ccc}
5 & -5 & -7 \\
-4 & 2 & -2 \\
-7 & -4 & 5
\end{array}\right)
$$

The iteration was stopped with error $=\frac{\left\|w_{n+1}-w_{n}\right\|}{\left\|w_{2}-w_{1}\right\|} \leq \epsilon$, where $\epsilon=10^{-5}$ and 10^{-10}. We assume $w_{0}=$ $(0,0,0)$ and take different w_{1} :
(i) Case I: $w_{1}=(1,1,-1)$.

Figure 1. Case I: $\epsilon=10^{-5}$.

Figure 2. Case I: $\epsilon=10^{-10}$.
(ii) Case II: $w_{1}=(-6,-3,-1)$.

Figure 3. Case II: $\epsilon=10^{-5}$.

Figure 4. Case II: $\epsilon=10^{-10}$.

Then, we summarize the comparison of Algorithm 3.1 and Algorithm 1.4 in Table 1.

Table 1. Comparison of Algorithm 3.1 and Algorithm 1.4.

	Case	Error	Number of iteration	Time
Algorithm 3.1	I	10^{-5}	27	0.0049851
Algorithm (1.4)	I	10^{-5}	34	0.0100229
Algorithm 3.1	II	10^{-5}	24	0.0036867
Algorithm (1.4)	II	10^{-5}	30	0.0052639
Algorithm 3.1	I	10^{-10}	59	0.0106569
Algorithm (1.4)	I	10^{-10}	66	0.015625
Algorithm 3.1	II	10^{-10}	56	0.0109959
Algorithm (1.4)	II	10^{-10}	62	0.015625

Example 5.2. Finally, we consider our problem in $E=E_{3}=L_{2}[0,1]$ with the inner product $\langle u, v\rangle:=$ $\int_{0}^{1} u(t) v(t) d t$. Let

$$
S:=\{w \in E:\langle a, w\rangle \leq b\},
$$

where $a=t / 4$ and $b=1$, we have

$$
\Pi_{S}(w)=P_{S}(w)=w+\max \left\{0, \frac{b-\langle a, w\rangle}{\|a\|^{2}} a\right\} .
$$

We assume $G w(t)=w(t) / 2$ and $G=G^{*}$. We compare Algorithm 3.1 and Algorithm (1.4) with initial points $w_{0}(t)=w_{1}(t)=e^{2 t}$ and $w_{0}(t)=w_{1}(t)=\sin 2 t$. For Algorithm 3.1, we take $\alpha_{n}=\alpha=0.1$ and $\rho_{n}=\rho=1$, for Algorithm (1.4), we take $\gamma=1$. The iteration was stopped with error $=\left\|w_{n}-\Pi_{S} w_{n}\right\| \leq$ ϵ, where $\epsilon=10^{-5}$ and 10^{-8}.
(i) Case I: $w_{0}(t)=w_{1}(t)=e^{2 t}$.

Figure 5. Case I: $\epsilon=10^{-5}$.

Figure 6. Case I: $\epsilon=10^{-8}$.
(ii) Case II: $w_{0}(t)=w_{1}(t)=\sin 2 t$.

Figure 7. Case II: $\epsilon=10^{-5}$.

Figure 8. Case II: $\epsilon=10^{-8}$.

Then, we summarize the comparison of Algorithm 3.1 and Algorithm 1.4 in Table 2.

Table 2. Comparison of Algorithm 3.1 and Algorithm 1.4.

	Case	Error	Number of iteration	Time
Algorithm 3.1	I	10^{-5}	74	1.14063
Algorithm (1.4)	I	10^{-5}	91	2.215
Algorithm 3.1	II	10^{-5}	78	2.21875
Algorithm (1.4)	II	10^{-5}	92	7.48438
Algorithm 3.1	I	10^{-8}	120	1.76563
Algorithm (1.4)	I	10^{-8}	143	3.95313
Algorithm 3.1	II	10^{-8}	124	3.84375
Algorithm (1.4)	II	10^{-8}	144	13.125

From the above Figures $1-8$, we can see that the error value decreases as the number of iterative steps increases, which means that all the algorithms for solving SEP are valid. In addition, Algorithm 3.1 shows a faster decrease in error values, fewer iteration steps and shorter CPU time than Algorithm (1.4), which reflects the better effect of Algorithm 3.1.

6. Conclusions

In this paper, we propose a new self-adaptive algorithm with the inertial technique for solving the SEP in Banach spaces. The inertial term greatly improves the performance of the algorithm and has a good convergence property. Furthermore, the choice of step size is self-adaptive, which means that ρ_{n} does not depend on a prior estimate of the operator norm G. This allows our algorithm to be computed more simply. Under some mild conditions, the strong convergence theorem of the algorithm for solving SEP is obtained. In the meantime, the proposed algorithm is extended by us to solve the split equality fixed point problem and the split equality variational inclusion problem. Through numerical experiments, the effectiveness of the algorithm was verified by comparing it with existing results.

Acknowledgments

The authors would like to express their sincere thanks to the editors and reviewers for reading our manuscript very carefully and for their valuable comments and suggestions.

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. H. Attouch, J. Bolte, P. Redont, A. Soubeyran, Alternating proximal algorithms for weakly coupled minimization problems. Applications to dynamical games and PDEs, J. Convex Anal., 15 (2008), 485-506.
2. C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Probl., 18 (2002), 441-453. https://doi.org/10.1088/0266-5611/18/2/310
3. C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20 (2004), 103-120. https://doi.org/10.1088/0266-5611/20/1/006
4. I. Cioranescu, Geometry of Banach spaces, duality mappings and nonlinear problems, Dordrecht: Springer, 1990. https://doi.org/10.1007/978-94-009-2121-4
5. Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algor., 8 (1994), 221-239. https://doi.org/10.1007/BF02142692
6. Y. Censor, T. Bortfeld, B. Martin, A. Trofimov, A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol., 51 (2006), 2353-2365. https://doi.org/10.1088/0031-9155/51/10/001
7. Y. Censor, A. Segal, The split common fixed point problem for directed operators, J. Convex Anal., 26 (2010), 055007. https://doi.org/10.1088/0266-5611/26/5/055007
8. S. S. Chang, L. Wang, Y. K. Tang, G. Wang, Moudafi's open question and simultaneous iterative algorithm for general split equality variational inclusion problems and general split equality optimization problems, Fixed Point Theory Appl., 2014 (2014), 215. https://doi.org/10.1186/1687-1812-2014-215
9. A. Dixit, D. R. Sahu, P. Gautam, T. Som, J. C. Yao, An accelerated forward-backward splitting algorithm for solving inclusion problems with applications to regression and link prediction problems, J. Nonlinear Var. Anal., 5 (2021), 79-101. https://doi.org/10.23952/jnva.5.2021.1.06
10. Q. L. Dong, Y. Peng, Y. Yao, Alternated inertial projection methods for the split equality problem, J. Nonlinear Convex Anal., 22 (2021), 53-67.
11. Q. L. Dong, L. Liu, Y. Yao, Self-adaptive projection and contraction methods with alternated inertial terms for solving the split feasibility problem, J. Nonlinear Convex Anal., 23 (2022), 591605.
12. K. Goebel, S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, New York: Marcel Dekker, 1984.
13. L. O. Jolaoso, Y. Shehu, Y. J. Cho, Convergence analysis for variational inequalities and fixed point problems in reflexive Banach spaces, J. Inequal. Appl., 2021 (2021), 44. https://doi.org/10.1186/s13660-021-02570-6
14. J. Lindenstrauss, L. Tzafriri, Classical Banach spaces II, Berlin, Heidelberg: Springer, 1979.
15. G. López, V. Martín-Márquez, F. Wang, H. K. Xu, Solving the split feasibility problem without prior knowledge of matrix norms, Inverse Probl., 28 (2012), 085004. https://doi.org/10.1088/02665611/28/8/085004
16. H. Y. Li, Y. L. Wu, F. H. Wang, New inertial relaxed CQ algorithms for solving split feasibility problems in Hilbert spaces, J. Math., 2021 (2021), 6624509. https://doi.org/10.1155/2021/6624509
17. A. Moudafi, A relaxed alternating CQ-algorithms for convex feasibility problems, Nonlinear Anal. Theor., 79 (2013), 117-121. https://doi.org/10.1016/j.na.2012.11.013
18. Y. Nesterov, A method for solving the convex programming problem with convergence rate O(1/k $)$, Dokl. Akad. Nauk Sssr, 269 (1983), 543-547.
19. B. T. Polyak, Some methods of speeding up the convergence of iteration methods, Ussr Comput. Math. Math. Phys., 4 (1964), 1-17. https://doi.org/10.1016/0041-5553(64)90137-5
20. D. R. Sahu, Y. J. Cho, Q. L. Dong, M. R. Kashyap, X. H. Li, Inertial relaxed CQ algorithms for solving a split feasibility problem in Hilbert spaces, Numer. Algor., 87 (2021), 1075-1095. https://doi.org/10.1007/s11075-020-00999-2
21. F. Schöpfer, T. Schuster, A. K. Louis, An iterative regularization method for the solution of the split feasibility problem in Banach spaces, Inverse Probl., 24 (2008), 055008. https://doi.org/10.1088/0266-5611/24/5/055008
22. F. Schöpfer, T. Schuster, A. K. Louis, Metric and Bregman projections onto affine subspaces and their computation via sequential subspace optimization methods, Journal of Inverse and ILL-Posed Problems, 16 (2008), 479-506. https://doi.org/10.1515/JIIP.2008.026
23. L. Y. Shi, R. D. Chen, Y. J. Wu, Strong convergence of iterative algorithms for the split equality problem, J. Inequal. Appl., 2014 (2014), 478. https://doi.org/10.1186/1029-242X-2014-478
24. Y. Shehu, O. S. Iyiola, C. D. Enyi, An iterative algorithm for solving split feasibility problems and fixed point problems in Banach spaces, Numer. Algor., 72 (2016), 835-864. https://doi.org/10.1007/s 11075-015-0069-4
25. Y. Shehu, P. T. Vuong, P. Cholamjiak, A self-adaptive projection method with an inertial technique for split feasibility problems in Banach spaces with applications to image restoration problems, J. Fixed Point Theory Appl., 21 (2019), 50. https://doi.org/10.1007/s11784-019-0684-0
26. Y. Shehu, O. T. Mewomo, F. U. Ogbuisi, Further investigation into approximation of a common solution of fixed point problems and split feasibility problems, Acta. Math. Sci., 36 (2016), 913930. https://doi.org/10.1016/S0252-9602(16)30049-2
27. D. Tian, L. Jiang, Two-step methods and relaxed two-step methods for solving the split equality problem, Comput. Appl. Math., 40 (2021), 83. https://doi.org/10.1007/s40314-021-01465-y
28. W. Takahashi, Nonlinear functional analysis: fixed point theory and its application, Yokohama: Yokohama Publishers, 2000.
29. P. T. Vuong, J. J. Strodiot, V. H. Nguyen, A gradient projection method for solving split equality and split feasibility problems in Hilbert spaces, Optimization, 64 (2015), 2321-2341. https://doi.org/10.1080/02331934.2014.967237
30. F. Wang, A new algorithm for solving the multiple-sets split feasibility problem in Banach spaces, Numer. Funct. Anal. Optim., 35 (2014), 99-110. https://doi.org/10.1080/01630563.2013.809360
31. T. X. Xu, L. Y. Shi, Multiple-sets split feasibility problem and split equality fixed point problem for firmly quasi-nonexpansive or nonexpansive mappings, J. Inequal. Appl., 2021 (2021), 120. https://doi.org/10.1186/s13660-021-02656-1
32. H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. Theor., 16 (1991), 1127-1138. https://doi.org/10.1016/0362-546X(91)90200-K
33. Z. Zhou, B. Tan, S. X. Li, An inertial shrinking projection algorithm for split common fixed point problems, J. Appl. Anal. Comput., 10 (2020), 2104-2120. https://doi.org/10.11948/20190330
34. J. Zhao, Y. Li, A new inertial self-adaptive algorithm for split common fixed point problems, J. Nonlinear Var. Anal., 5 (2021), 43-57. https://doi.org/10.23952/jnva.5.2021.1.04
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
