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1. Introduction

Let H1, H2 and H3 be three real Hilbert spaces. Let C and Q be nonempty closed convex sets of H1

and H2, respectively. The split equality problem (SEP) for mapping A : H1 → H3 and B : H2 → H3

was proposed by Moudafi [17] as finding

s` ∈ C, t` ∈ Q such that As` = Bt`. (1.1)

When B = I, the SEP reduces to the split feasibility problem (SFP) presented by Censor and Elfving [5]
as follows:

find s` ∈ C such that As` ∈ Q, (1.2)

which appears in many practical applications, such as signal processing [3] and medical image
reconstruction [2]. The SFP can also be applied to simulate intensity-modulated radiation therapy [6].
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In order to approximate the solution of SFP, many algorithms have been proposed (see [11, 15, 16, 20,
24, 25, 29, 31]).

The application of SEP can cover many aspects, such as decomposition methods for PDEs, and
applications in game theory [1]. Many important issues, for instance, null point problem of maximal
monotone operators, equilibrium problems and optimization problems, can be converted into SEP [17].

The algorithm to solve SEP in Hilbert spaces was first proposed by Moudafi [17] in 2013, also
known as the alternating CQ-algorithm (ACQA):sn+1 = PC(sn − γnA∗(Asn − Btn)),

tn+1 = PQ(tn + γnB∗(Asn+1 − Btn)),
(1.3)

where {γn} is a nondecreasing sequence. They proved that {(sn, tn)} generated by (1.3) converges weakly
to a solution of SEP.

To get strong convergence results, Shi et al. [23] introduced a modification of Moudafi’s ACQA
algorithm: sn+1 = PC{(1 − µn)[sn − γA∗(Asn − Btn)]}, n ≥ 0,

tn+1 = PQ{(1 − µn)[tn + γB∗(Asn − Btn)]}, n ≥ 0,
(1.4)

where {µn} is a positive sequence in (0, 1). It was proved that {(sn, tn)} generated by (1.4) converges
strongly to a solution of the SEP.

To accelerate the convergence, Polyak [19] firstly proposed the inertial extrapolation method for
solving the smooth convex minimization problem. The inertial algorithm is a two-step iterative method,
using the first two iterations to define the next iteration. Nesterov [18] introduced a modified method
to improve the convergence rate as follows:tn = sn + βn(sn − sn−1),

sn+1 = tn − λn∇ f (tn), ∀n ≥ 1,
(1.5)

where βn ∈ [0, 1) is an extrapolation factor, and {λn} is a positive sequence. The inertia is denoted
by the term βn(sn − sn−1). It is worth noting that the inertial term greatly improves the performance
of the algorithm and has a good convergence property [18]. Encouraged by the inertial term, many
authors have proposed different algorithms with inertial techniques to solve a number of different
problems(see [9–11, 20, 33, 34]).

Very recently, Sahu [20] proposed a relaxed CQ algorithm with the inertial term for solving the SFP
in Hilbert spaces: tn = sn + νn(sn − sn−1),

sn+1 = PCn(tn − λn∇ fn(tn)), ∀n ≥ 1,
(1.6)

where {νn} is a positive sequence. The sequence {sn} generated by (1.6) converges weakly to a solution
of the SFP was proved by the author.

Since the setting of Banach spaces sometimes allows for more realistic modeling of problems arising
in industrial and natural science applications, solving SFP and SEP in Banach space is interesting not
only from a theoretical point of view, but also for solving related application problems in the real world.

In [21], Schöpfer et al. proposed the following algorithm for solving the SFP in Banach spaces:

sn+1 = ΠC J∗q[Jp(tn) − λnA∗J(Asn − PQ(Asn))], (1.7)
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where λn is a positive parameter, ΠC denotes the Bregman projection, Jp, J∗q, J are duality mappings,
and PQ denotes the metric projection. They showed the weak convergence of the algorithm (1.7).

In some applied disciplines, norm convergence is preferable to weak convergence. Wang [30]
proposed an algorithm for solving the following multiple-sets split feasibility problem (MSSFP): find
a point s` ∈ E1, such that

s` ∈
m⋂

k=1

Ci, As` ∈
r⋂

t=1

Q j, (1.8)

where E1, E2 are Banach spaces, {Ck}
m
k=1, {Qt}

r
t=1 are nonempty, closed and convex subsets of E1 and E2,

respectively. When m = r = 1 in (1.8), the MSSFP reduces to SFP. The author proposed the following
iterative algorithm and proved the strong convergence: for any n ∈ N,

Tn(s) =

ΠCi(n)(s), 1 ≤ i(n) ≤ r,

J∗q[Jp(s) − δnA∗Jp(As − PQ j(n)(As))], r + 1 ≤ i(n) ≤ r + d,

where i(n) = n mod (r + d) + 1, and 0 ≤ δ ≤ δn ≤ ( q
cq ||A||q

)
1
q , cq is a constant. For any s0, {sn} is

generated by the following iteration:
tn = Tnsn,

Mn = {w ∈ E1 : ∆p(tn,w) ≤ ∆p(sn,w)},
Pn = {w ∈ E1 : 〈sn − w, JE

p (s0) − JE
p (sn)〉 ≥ 0},

sn+1 = ΠMn∩Pn(s0).

(1.9)

The author proved that the sequence {sn} generated by (1.9) converges strongly to a point in the solution
set Ω.

Recently, Zhou et al. [33] proposed an improved shrinking projection algorithm with inertial
technique to solve the split common fixed point problem (SCFPP) in Banach space. The SCFPP was
proposed by Censor and Segal [7] in 2009, as finding a point s` satisfies the following:

s` ∈ F(K) and As` ∈ F(L), (1.10)

where K : E1 → E1 and L : E2 → E2 are two mappings, F(K) and F(L) represent the sets of fixed
point of K and L, respectively. The iterative algorithm was proposed by Zhou et al. [33] as follows:

mn = JE1
∗

q [JE1
p (sn) + βn[JE1

p (sn) − JE1
p (sn−1)],

qn = JE1
∗

q [JE1
p (mn) − ρnA∗JE2

p (I − L)Amn],
tn = JE1

∗

q [τnJE1
p qn + (1 − τn)JE1

p Kqn],
Dn+1 = {υ ∈ Dn : ∆p(tn, υ) ≤ ∆p(qn, υ) ≤ ∆p(mn, υ)},
sn+1 = ΠDn+1(s0),

(1.11)

where 0 < ρn < ( q
Cq‖A‖q

)
1

q−1 , {τn} ⊂ (0, 1) and {βn} ⊂ (−∞, +∞) denoted the sequences of real numbers.
The strong convergence of the algorithm was proved by the authors.

It can be observed that the step size δn in the algorithm (1.9) and ρn in the algorithm (1.11) depend
on the norm of operator A, which is not an easy task in general practice.
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Inspired by previous works, we propose a new self-adaptive algorithm with the inertial technique
for solving the SEP in Banach spaces. The step size selection of our algorithm does not require a
prior estimate of operator norm, and the inertial term improves the performance of the algorithm.
Furthermore, we prove the strong convergence theorem under some mild conditions. Our algorithm
includes the inertial technique, which is novel for solving the SEP in Banach spaces.

The rest of this paper is organized as follows: In Section 2, some basic facts and helpful lemmas
are given for use in subsequent proofs. In Section 3, the result of strong convergence of the proposed
algorithm is demonstrated. In Section 4, in terms of applications, the results are applied to the split
equality fixed point problem and the split equality variational inclusion problem. In Section 5, we give
numerical examples to verify the effectiveness of the proposed algorithm.

2. Preliminaries

In this section, we first recall some notations and results that will be needed in the sequel. We
suppose that E is a real Banach space and C is a nonempty closed convex subset of E. The dual space
of E is denoted by E∗. sn ⇀ s and sn → s indicate that {sn} ⊂ E weak and strong convergence to s,
respectively, and ωw(sn) represents the weak w-limit set of {sn}.

Let 1 ≤ q ≤ 2 ≤ p < ∞ with 1
p + 1

q = 1. The modulus of convexity δE(ε) : [0, 2]→ [0, 1] is defined
as

δE(ε) = inf{1 −
||x + y||

2
: ||x|| = ||y|| = 1, ||x − y|| ≥ ε},

E is called uniformly convex if δE(ε) > 0 for any ε ∈ (0, 2], strictly convex if δE(2) = 1. If there is a
cp > 0 such that δE(ε) ≥ cpε

p for any ε ∈ (0, 2], then E is called p-uniformly convex. The modulus of
smoothness ρE(τ) : [0,∞)→ [0,∞) is defined by

ρE(τ) = sup{
||x + τy|| + ||x − τy||

2
− 1 : ||x|| = 1, ||y|| ≤ τ},

E is called uniformly smooth if lim
τ→∞

ρE(τ)
τ

= 0, q-uniformly smooth if there is a cq > 0 so that ρE(τ) ≤
cqτ

q for any τ > 0. It is known that E is p-uniformly convex if and only if its dual E∗ is q-uniformly
smooth [14].

For p > 1, the duality mapping JE
p : E → 2E∗ is defined by

JE
p (x) =

{
x∗ ∈ E∗ : 〈x∗, x〉 = ||x||p, ||x∗|| = ||x||p−1

}
.

If E is reflexive, strictly convex and smooth, then JE
p is one-to-one single-valued and JE

p = JE∗
q , where

JE∗
q is the duality mapping of E∗ (see [4, 14, 22]).

Given a Gâteaux differentiable function f : E → R, the Bregman distance with respect to f is
defined as:

∆ f (x, y) = f (x) − f (y) − 〈∇ f (y), x − y〉 , ∀x, y ∈ E.

Let fp(x) = 1
p ||x||

p. In this case, the duality mapping JE
p is the derivative of fp.

Definition 2.1. The Bregman distance with respect to fp is defined as

∆p(x, y) :=
||x||p

p
−
||y||p

p
−
〈
JE

p (y), x − y
〉
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=
||x||p

p
+
||y||p

q
−
〈
JE

p (y), x
〉
. (2.1)

In general, the Bregman distance is not symmetric and does not satisfy the triangle inequality.
However, it possesses some distance-like properties, and it has the following important properties [13,
26]:

∆p(x, y) + ∆p(y, z) − ∆p(x, z) =
〈
JE

p (z) − JE
p (y), x − y

〉
, ∀x, y, z ∈ E. (2.2)

∆p(x, y) + ∆p(y, x) =
〈
JE

p (x) − JE
p (y), x − y

〉
, ∀x, y ∈ E. (2.3)

For p-uniformly convex space, the metric and Bregman distance have the following relation (see [21,
26]):

τ||x − y||p ≤ ∆p(x, y) ≤
〈
JE

p (x) − JE
p (y), x − y

〉
, (2.4)

where τ > 0 is some fixed number.
The metric projection

PC x := arg min
y∈C

||x − y||, ∀x ∈ E,

is the unique minimizer of the norm distance, which can be characterized by a variational
inequality [12]: 〈

JE
p (x − PC x), z − PC x

〉
≤ 0, ∀z ∈ C. (2.5)

Similar to the metric projections, the Bregman projection is defined as

ΠC x := arg min
y∈C

∆p(y, x), ∀x ∈ E,

is the unique minimizer of the Bregman distance. It can be characterized by a variational
inequality [21]: 〈

JE
p (x) − JE

p (ΠC x), z − ΠC x
〉
≤ 0, ∀z ∈ C, (2.6)

from which one has

∆p(z,ΠC x) ≤ ∆p(z, x) − ∆p(ΠC x, x), ∀z ∈ C. (2.7)

In Hilbert spaces, the metric projection and the Bregman projection are consistent with respect to
f (x) = 1

2 ||x||
2, but in general they are different.

The following inequality in q-uniformly smooth spaces was proved by Xu [32]:

Lemma 2.2. [32] If E is a q-uniformly smooth Banach space, then there exists a cq > 0 such that for
every x, y ∈ E, the following inequality exists

||x − y||q ≤ ||x||q − q
〈
y, J∗q(x)

〉
+ cq||y||q. (2.8)
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3. Main results

In this section, we propose the self-adaptive algorithm with the inertial technique to solve the split
equality problem in Banach spaces. Subsequently, the strong convergence of the proposed algorithm
is analyzed and established. The following assumptions are made throughout this section:
• E1, E2 and E3 are p-uniformly convex and uniformly smooth real Banach spaces,
• C and Q are nonempty closed convex subsets of E1 and E2,
• A : E1 → E3 and B : E2 → E3 are two bounded linear operators,
• The solution set Γ of SEP is nonempty:

Γ = {(x, y) ∈ E1 × E2, Ax = By, x ∈ C, y ∈ Q} , ∅.

Let S = C × Q in E = E1 × E2, w = (x, y) ∈ S , define G : E → E3 by G = [A,−B]. Then, the original
SEP becomes finding w = (x, y) ∈ S with Gw = 0.

We now introduce our inertial algorithm for solving SEP as follows.

Algorithm 3.1. Let {αn} ⊂ R be a bounded set. Set w0, w1 ∈ S . The sequence {wn} is defined by the
following iteration: 

un = JE∗
q [JE

p (wn) + αn[JE
p (wn) − JE

p (wn−1)],
zn = ΠS JE∗

q [JE
p (un) − ρnG∗J

E3
p G(un)],

Dn = {u ∈ E : ∆p(u, zn) ≤ ∆p(u, un)},
En = {u ∈ E : 〈JE

p (w0) − JE
p (wn),wn − u〉 ≥ 0},

wn+1 = ΠDn∩En(w0),

for all n ≥ 0 where ρq−1
n ∈ (ε, q||Gun ||

p

cq ||G∗J
E3
p Gun ||q

− ε).

Lemma 3.2. The sequence {wn} generated by Algorithm 3.1 is well-defined.

Proof. In order to prove that {wn} is well-defined, first of all, we need to prove that Dn∩En is nonempty
closed and convex for all n ≥ 1. Obviously, Dn is closed and En is closed and convex. To prove the
convexity of Dn, note that

∆p(u, zn) ≤ ∆p(u, un),

then, using (2.1) we have

||u||p

p
+
||zn||

p

q
− 〈JE

p (zn), u〉 ≤
||u||p

p
+
||un||

p

q
− 〈JE

p (un), u〉,

that is,

〈JE
p (un) − JE

p (zn), u〉 ≤
1
q

(||un||
p − ||zn||

p), ∀u ∈ E,

so Dn is a half-space, which means Dn is convex. Hence, Dn ∩ En is closed and convex. Secondly, we
show that Dn ∩ En , ∅. To do this, it suffices to prove that

Γ ⊂ Dn ∩ En. (3.1)
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If (3.1) holds, we notice that Γ , ∅, so Dn ∩ En , ∅. Next we show Γ ⊂ Dn. Let z ∈ Γ, mn =

JE
p (un) − ρnG∗J

E3
p G(un), ∀n ≥ 1. From Lemma 2.2, we get

||mn||
q
E∗ = ||JE

p (un) − ρnG∗JE3
p G(un)||qE∗

≤ ||un||
p − qρn〈G∗JE3

p G(un), un〉 + cqρ
q
n||G

∗JE3
p G(un)||q. (3.2)

From (2.7) and (3.2), we have

∆p(z, zn) ≤ ∆p(z, JE∗
q (mn))

=
||z||p

p
− 〈mn, z〉 +

||JE∗
q (mn)||p

q

=
||z||p

p
− 〈mn, z〉 +

1
q
||mn||

(q−1)p

=
||z||p

p
− 〈mn, z〉 +

1
q
||mn||

q

≤
||z||p

p
− 〈mn, z〉 +

1
q
||un||

p − ρn〈G∗JE3
p G(un), un〉 +

cqρ
q
n

q
||G∗JE3

p G(un)||q

=
||z||p

p
− 〈JE

p (un), z〉 +
1
q
||un||

p − ρn〈JE3
p G(un),Gun −Gz〉 +

cqρ
q
n

q
||G∗JE3

p G(un)||q

= ∆p(z, un) − ρn〈JE3
p G(un),Gun〉 +

cqρ
q
n

q
||G∗JE3

p G(un)||q

= ∆p(z, un) − ρn(||Gun||
p −

cqρ
q−1
n

q
||G∗JE3

p G(un)||q). (3.3)

By using the value of {ρq−1
n }, we have

∆p(z, zn) ≤ ∆p(z, un).

This implies that Γ ⊂ Dn.

Finally, we show that Γ ⊂ En. For n = 0, we have E0 = E, so Γ ⊆ E0. Given wk and suppose
Γ ⊆ Dk ∩ Ek for some k ∈ N. Then, there exists wk+1 such that

wk+1 = ΠDk∩Ek(w0).

Using (2.6), we have
〈JE

p (w0) − JE
p (wk+1),wk+1 − z〉 ≥ 0.

Therefore, Γ ⊂ Ek+1. By induction, we can get that Γ ⊂ En ∀n ∈ N. In conclusion, this completes the
proof. �

Lemma 3.3. Let {wn} be generated by Algorithm 3.1. Then
(i) lim

n→∞
||un − wn|| = 0;

(ii) lim
n→∞
||wn − zn|| = 0.
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Proof. The definition of En actually implies that wn = ΠEn(w0). Combined with the fact that Γ ⊂ En

and the definition of Bregman projection, we get

∆p(wn,w0) ≤ ∆p(z,w0), ∀z ∈ Γ.

And since v := ΠΓ(w0) ∈ Γ, we obtain

∆p(wn,w0) ≤ ∆p(v,w0), (3.4)

which means that {∆p(wn,w0)} is bounded. Hence, we know from (2.4) that {wn} is bounded. On the
other hand, according to wn+1 ∈ En and (2.6), we have 〈JE

p (w0) − JE
p (wn),wn+1 − wn〉 ≤ 0 and by (2.7)

∆p(wn+1,wn) ≤ ∆p(wn+1,w0) − ∆p(wn,w0), ∀n ≥ 0. (3.5)

Which means that

∆p(wn,w0) ≤ ∆p(wn+1,w0) − ∆p(wn+1,wn)
≤ ∆p(wn+1,w0).

Thus, {∆p(wn,w0)} is nondecreasing and since {∆p(wn,w0)} is bounded, we get lim
n→∞

∆p(wn,w0) exists.
And then from (3.5) we have

lim
n→∞

∆p(wn+1,wn) = 0.

Hence, we obtain from (2.4) that
lim
n→∞
||wn+1 − wn|| = 0. (3.6)

Since JE
p is norm-to-norm uniformly continuous, we get

lim
n→∞
||JE

p (wn+1) − JE
p (wn)|| = 0.

According to the definition of {un} in the Algorithm 3.1 that

JE
p (un) − JE

p (wn) = αn(JE
p (wn) − JE

p (wn−1)).

Therefore,
||JE

p (un) − JE
p (wn)|| = αn||JE

p (wn) − JE
p (wn−1)|| → 0, n→ ∞.

Since JE∗
q is also norm-to-norm uniformly continuous, we have

||un − wn|| → 0, n→ ∞.

This completes (i).
In addition,

||wn+1 − un|| ≤ ||wn+1 − wn|| + ||wn − un|| → 0, n→ ∞.

This shows that,
||JE

p (un) − JE
p (wn+1)|| → 0.
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From (2.4), we have

∆p(wn+1, un) ≤ 〈JE
p (wn+1) − JE

p (un),wn+1 − un〉

≤ ||JE
p (wn+1) − JE

p (un)||||wn+1 − un|| → 0, n→ ∞.

Since wn+1 ∈ Dn, we have that

∆p(wn+1, zn) ≤ ∆p(wn+1, un)→ 0, n→ ∞.

This implies that
||wn+1 − zn|| → 0, n→ ∞. (3.7)

From (3.6) and (3.7) we get

||wn − zn|| ≤ ||wn − wn+1|| + ||wn+1 − zn|| → 0, n→ ∞.

This completes (ii). �

Lemma 3.4. Let {wn} be generated by Algorithm 3.1. Then the sequence {wn} has a weak cluster point
and ωw(wn) ⊆ Γ.

Proof. We know from Lemma 3.3 that {wn} is bounded. Since E is a reflexive Banach space, ωw(wn)
is nonempty. Therefore, we take a subsequence {wn j} of {wn} such that wn j ⇀ z ∈ ωw(wn). Since
||wn − zn|| → 0, n→ ∞, we can get zn j ⇀ z. Obviously we have z ∈ S . And since ||wn − un|| = 0, there
exists a subsequence {un j} of {un} such that un j ⇀ z. From (3.3), we have

ρn(||Gun||
p −

cqρ
q−1
n

q
||G∗JE3

p G(un)||q) ≤ ∆p(z, un) − ∆p(z, zn). (3.8)

By (2.2), we get
∆p(z, zn) + ∆p(zn, un) − ∆p(z, un) = 〈JE

p (un) − JE
p (zn), z − zn〉,

combine this with (2.4) we get

∆p(z, un) − ∆p(z, zn) = ∆p(zn, un) + 〈JE
p (zn) − JE

p (un), z − zn〉

≤ 〈JE
p (zn) − JE

p (un), zn − un〉 + 〈JE
p (zn) − JE

p (un), z − zn〉

≤ ||JE
p (zn) − JE

p (un)||||z − un|| → 0, n→ ∞.

Therefore, we have

||Gun||
p −

cqρ
q−1
n

q
||G∗JE3

p G(un)||q → 0, n→ ∞. (3.9)

Since ρq−1
n < q||Gun ||

p

cq ||G∗J
E3
p Gun ||q

− ε, we get

εcq

q
||G∗JE3

p Gun||
q < ||Gun||

p −
cqρ

q−1
n

q
||G∗JE3

p Gun||
q → 0, n→ ∞.

Thus,
lim
n→∞
||G∗JE3

p Gun|| = 0. (3.10)

AIMS Mathematics Volume 7, Issue 10, 17628–17646.



17637

From (3.9) and (3.10), we get lim
n→∞
||Gun|| = 0, so lim

n→∞
||Gun j || = 0. By the continuity of G, we obtain

Gwn j ⇀ Gz and
||Gwn j || − ||Gun j || ≤ ||G||||wn j − zn j || → 0, j→ ∞.

Hence, we have that ||Gwn j || = 0.
Therefore,

0 ≤ ||Gz||p = 〈JE3
p Gz,Gz〉

= lim
j→∞
〈JE3

p Gz,Gwn j〉

≤ lim
j→∞
||JE3

p Gz||||Gwn j ||

= 0.

Thus Gz = 0 and hence z ∈ Γ. �

Now let us give the convergence analysis of the proposed algorithm.

Theorem 3.5. The sequence {wn} generated by Algorithm 3.1 converges strongly to a point ΠΓ(w0).

Proof. We know that wn j ⇀ z. From Lemma 3.4 it follows that z ∈ Γ. Since wn+1 ∈ En and ΠEn(w0) =

arg minw∈E ∆p(w0,w), then we get

∆p(wn,w0) = ∆p(ΠEn(w0),w0)
≤ ∆p(wn+1,w0).

By Lemma 3.2, ΠΓ(w0) ∈ Γ ⊆ En+1. So

∆p(wn+1,w0) = ∆p(ΠEn+1(w0),w0)
≤ ∆p(ΠΓ(w0),w0).

Therefore,
∆p(wn,w0) ≤ ∆p(wn+1,w0) ≤ ∆p(ΠΓ(w0),w0).

From (2.2) and (2.3), we can obtain

∆p(wn j ,ΠΓ(w0)) = ∆p(wn j ,w0) + ∆p(w0,ΠΓ(w0))
+ 〈JE

p (ΠΓ(w0)) − JE
p (w0),w0 − wn j〉

≤ ∆p(ΠΓ(w0),w0) + ∆p(w0,ΠΓ(w0))
+ 〈JE

p (ΠΓ(w0)) − JE
p (w0),w0 − ΠΓ(w0)〉

+ 〈JE
p (ΠΓ(w0)) − JE

p (w0),ΠΓ(w0) − wn j〉

= 〈JE
p (w0) − JE

p (ΠΓ(w0)),wn j − ΠΓ(w0)〉. (3.11)

Taking lim sup, we get

lim sup
j→∞

∆p(wn j ,ΠΓ(w0)) ≤ lim sup
j→∞

〈JE
p (w0) − JE

p (ΠΓ(w0)),wn j − ΠΓ(w0)〉

= 〈JE
p (w0) − JE

p (ΠΓ(w0)), z − ΠΓ(w0)〉

≤ 0.
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Therefore, lim
j→∞

∆p(wn j ,ΠΓ(w0)) = 0 and wn j → ΠΓ(w0). From the arbitrariness of {wn j} and the

uniqueness of ΠΓ(w0), we have wn ⇀ ΠΓ(w0). Using (2.4), it follows from (3.11) that

τ||wn − ΠΓ(w0)||p ≤ ∆p(wn,ΠΓ(w0)) ≤ 〈JE
p (w0) − JE

p (ΠΓ(w0)),wn − ΠΓ(w0)〉.

Taking limit of the above inequality, we obtain that wn → ΠΓ(w0). �

Remark 3.6. It is worth mentioning that there are some advantages of our main result as follows:
(1) The methods in this paper can be applied to solve SEP in p-uniformly convex and uniformly

smooth Banach spaces, which are more general than Hilbert spaces ( [10, 17, 27, 29]).
(2) The choice of step size of our algorithm is self-adaptive, which means that ρn does not depend

on a prior estimate of the operator norm G. This allows our algorithm to be computed more simply
than the computation of the step size in algorithm (1.9) and (1.11).

(3) The strong convergence result obtained in this paper is more desirable than the weak convergence
counterparts for solving many problems in applied disciplines.

(4) Our algorithm with inertial effects is new for solving SEP in Banach spaces, even in Hilbert
spaces. If A = B in our problem, then Algorithm 3.1 can be reduced to solve SFP.

Our algorithm reduces to the following form in Hilbert space (the function ∆p changes to ∆p(x, y) =
1
2‖x − y‖2 and ΠS is the equivalent of PS ).

Corollary 3.7. Let H be a Hilbert space, {αn} ⊂ R be a bounded set. Set w0, w1 ∈ H. The sequence
{wn} is defined by the following iteration:

un = wn + αn(wn − wn−1),
zn = PS (un − ρnG∗Gun),
Dn = {u ∈ H : ||zn − u|| ≤ ||un − u||},

En = {u ∈ H : 〈w0 − wn,wn − u〉 ≥ 0},
wn+1 = PDn∩En(w0).

(3.12)

4. Applications

4.1. Split equality fixed point problem

Let H1, H2 and H3 be three Hilbert spaces. Let K : H1 → H1 and L : H2 → H2 be two nonlinear
operators whose sets of fixed points are denoted by F(K) and F(L), respectively. The split equality
fixed point problem for mappings A : H1 → H3 and B : H2 → H3 was introduced by Moudafi [17] as

finding x` ∈ F(K) and y` ∈ F(L) such that Ax` = By`. (4.1)

When B = I, the split equality fixed point problem (4.1) is degraded to the split common fixed point
problem (1.10). Let H = H1 × H2, U = K × L, define G : H → H3 by G = [A,−B]. In this case, the
split equality fixed point problem can be redescribed as

finding w = (x`, y`) ∈ F(U) with Gw = 0.

Regarding this problem, we formulate the following theorem based on the result of Theorem 3.5.

AIMS Mathematics Volume 7, Issue 10, 17628–17646.



17639

Theorem 4.1. Let H be a Hilbert space, {αn} ⊂ R be a bounded set. Set w0, w1 ∈ H. The sequence
{wn} is defined by the following iteration:

un = wn + αn(wn − wn−1),
zn = PF(U)(un − ρnG∗Gun),
Dn = {u ∈ H : ||zn − u|| ≤ ||un − u||},

En = {u ∈ H : 〈w0 − wn,wn − u〉 ≥ 0},
wn+1 = PDn∩En(w0),

(4.2)

where U is a quasi-nonexpansive operator and ρn ∈ (ε, 2||Gun ||
2

||G∗Gun ||2
− ε). If the solution set Γ = {w ∈ F(S ) :

Gw = 0} , ∅, then the sequence generated by (4.2) converges strongly to a point w̌ = PΓw0 ∈ Γ.

Proof. Set C = F(K) and Q = F(L), that is, S = F(U). Without difficulty, it can be seen that PF(U) is a
nonexpansive mapping, such that the conclusion clearly holds according to Theorem 3.5. �

4.2. Split equality variational inclusion problem

Let H be a Hilbert space, N : H → 2H be a set-valued mapping with dom(N) = {x ∈ H : N(x) ,
∅}. In the following, we first introduce the definition of monotone operator and maximal monotone
operator.

Definition 4.2. An operator N : H → 2H is said to be:
(i) monotone operator, if 〈s − t, x − y〉 ≥ 0, ∀s ∈ Nx, t ∈ Ny.
(ii) maximal monotone operator, if its graph: gra(N) = {(x, y) : x ∈ dom(N), y ∈ dom(N)} is not
properly contained in the graph of any other monotone operator.

Lemma 4.3. [28] Let N : H → 2H be a maximal monotone operator on a real Hilbert space H. The
resolvent is defined by JN

ν = (I + νN)−1 for ν > 0. Then the following properties hold:
(i) For each ν > 0, JN

ν is a single-valued and firmly nonexpansive mapping.
(ii) dom(JN

ν )=H and F(JN
ν ) = N−1(0) = {x ∈ dom(N), 0 ∈ Nx}.

Definition 4.4. [8] Let H1, H2 and H3 be three Hilbert spaces. Let M : H1 → 2H1 and P : H2 → 2H2

be maximal monotone operators. Then split equality variational inclusion problem for mappings A :
H1 → H3 and B : H2 → H3 can be formulated as

finding x` ∈ M−1(0) and y` ∈ P−1(0) such that Ax` = By`. (4.3)

Let H = H1 ×H2, define G : H → H3 by G = [A,−B]. We assume that JT
ν = [JM

ν , J
P
ν ], then the split

equality variational inclusion problem is equivalent to

finding w = (x`, y`) ∈ H such that w = JT
ν w, Gw = 0.

Theorem 4.5. Let H be a Hilbert space, {αn} ⊂ R be a bounded set. Set w0, w1 ∈ H. The sequence
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{wn} is defined by the following iteration:

un = wn + αn(wn − wn−1),
zn = PF(JT

ν )(un − ρnG∗Gun),
Dn = {u ∈ H : ||zn − u|| ≤ ||un − u||},

En = {u ∈ H : 〈w0 − wn,wn − u〉 ≥ 0},
wn+1 = PDn∩En(w0),

(4.4)

where ρn ∈ (ε, 2||Gun ||
2

||G∗Gun ||2
− ε). If the solution set Γ , ∅, then the sequence generated by (4.4) converges

strongly to a point w̌ = PΓw0 ∈ Γ.

Proof. Set C = F(JM
ν ) and Q = F(JP

ν ), that is, S = F(JT
ν ). It is easy to see that PF(JT

ν ) is a nonexpansive
mapping. Therefore, the strong convergence theorem is obviously proved. �

5. Numerical example

In this section, we give some numerical examples and compare Algorithm 3.1 with Algorithm (1.4)
in Hilbert spaces to demonstrate the effectiveness of our newly proposed method. All codes were
written in MATLAB2015B. The numerical results were carried out on Intel(R) Core(TM) i5-7200
CPU @ 3.1 GHz.

Example 5.1. We give the numerical example in (R3, || · ||2) of the problem considered in this paper.
Let S := {w = (w1,w2,w3) ∈ R3 : ||w|| ≤ 1}. For Algorithm 3.1, we take αn = 1

n+1 and ρn = ρ = 0.01,
for Algorithm (1.4), we take µn = 1

n+1 and γ = 0.01. And let

G =


5 −5 −7
−4 2 −2
−7 −4 5

 .
The iteration was stopped with error = ||wn+1−wn ||

||w2−w1 ||
≤ ε, where ε = 10−5 and 10−10. We assume w0 =

(0, 0, 0) and take different w1:

(i) Case I: w1 = (1, 1,−1).

Figure 1. Case I: ε = 10−5.
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Figure 2. Case I: ε = 10−10.

(ii) Case II: w1 = (−6,−3,−1).

Figure 3. Case II: ε = 10−5.

Figure 4. Case II: ε = 10−10.

Then, we summarize the comparison of Algorithm 3.1 and Algorithm 1.4 in Table 1.
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Table 1. Comparison of Algorithm 3.1 and Algorithm 1.4.

Case Error Number of iteration Time
Algorithm 3.1 I 10−5 27 0.0049851
Algorithm (1.4) I 10−5 34 0.0100229
Algorithm 3.1 II 10−5 24 0.0036867
Algorithm (1.4) II 10−5 30 0.0052639
Algorithm 3.1 I 10−10 59 0.0106569
Algorithm (1.4) I 10−10 66 0.015625
Algorithm 3.1 II 10−10 56 0.0109959
Algorithm (1.4) II 10−10 62 0.015625

Example 5.2. Finally, we consider our problem in E = E3 = L2[0, 1] with the inner product 〈u, v〉 :=∫ 1

0
u(t)v(t) dt. Let

S := {w ∈ E : 〈a, w〉 ≤ b},

where a = t/4 and b = 1, we have

ΠS (w) = PS (w) = w + max{0,
b − 〈a, w〉
‖a‖2

a}.

We assume Gw(t) = w(t)/2 and G = G∗. We compare Algorithm 3.1 and Algorithm (1.4) with initial
points w0(t) = w1(t) = e2t and w0(t) = w1(t) = sin 2t. For Algorithm 3.1, we take αn = α = 0.1 and
ρn = ρ = 1, for Algorithm (1.4), we take γ = 1. The iteration was stopped with error = ||wn −ΠS wn|| ≤

ε, where ε = 10−5 and 10−8.

(i) Case I: w0(t) = w1(t) = e2t.

Figure 5. Case I: ε = 10−5.
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Figure 6. Case I: ε = 10−8.

(ii) Case II: w0(t) = w1(t) = sin 2t.

Figure 7. Case II: ε = 10−5.

Figure 8. Case II: ε = 10−8.

Then, we summarize the comparison of Algorithm 3.1 and Algorithm 1.4 in Table 2.
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Table 2. Comparison of Algorithm 3.1 and Algorithm 1.4.

Case Error Number of iteration Time
Algorithm 3.1 I 10−5 74 1.14063
Algorithm (1.4) I 10−5 91 2.215
Algorithm 3.1 II 10−5 78 2.21875
Algorithm (1.4) II 10−5 92 7.48438
Algorithm 3.1 I 10−8 120 1.76563
Algorithm (1.4) I 10−8 143 3.95313
Algorithm 3.1 II 10−8 124 3.84375
Algorithm (1.4) II 10−8 144 13.125

From the above Figures 1−8, we can see that the error value decreases as the number of
iterative steps increases, which means that all the algorithms for solving SEP are valid. In addition,
Algorithm 3.1 shows a faster decrease in error values, fewer iteration steps and shorter CPU time than
Algorithm (1.4), which reflects the better effect of Algorithm 3.1.

6. Conclusions

In this paper, we propose a new self-adaptive algorithm with the inertial technique for solving the
SEP in Banach spaces. The inertial term greatly improves the performance of the algorithm and has
a good convergence property. Furthermore, the choice of step size is self-adaptive, which means that
ρn does not depend on a prior estimate of the operator norm G. This allows our algorithm to be
computed more simply. Under some mild conditions, the strong convergence theorem of the algorithm
for solving SEP is obtained. In the meantime, the proposed algorithm is extended by us to solve
the split equality fixed point problem and the split equality variational inclusion problem. Through
numerical experiments, the effectiveness of the algorithm was verified by comparing it with existing
results.
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