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Abstract: In this paper, we study a free boundary problem for vascularized tumor growth with a
time delay in the process of tumor regulating apoptosis. The characteristic of this model is that both
vascularization and apoptosis regulation is considered. In mathematical form, this model is expressed
as a free boundary problem with Robin boundary. We prove the existence and uniqueness of the
global solution and their asymptotic behavior. The effects of vascularization parameters and apoptosis
regulation parameters on tumor are discussed. Depending on the importance of regulating the apoptosis
rate, the tumor will tend to the unique steady state or eventually disappear. For some parameter values,
the final results show that the dynamic behavior of the solutions of our model is analogous to the
quasi-stationary solutions. Our results are also verified by numerical simulation.
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1. Introduction

Tumor is multiple diseases that seriously threaten human life and health due to the complexity of
their growth mechanism. It is essential to study tumor growth and change the rule using mathematical
models. The study of tumor growth model has aroused the interest of many researchers. People have
considered the mathematical models of tumor growth under different conditions and given rigorous
mathematical analysis to these models [2–8, 10–14, 17, 19–24].

This paper focuses on a free boundary problem for vascularized tumor growth with a time delay in
the process of tumor regulating apoptosis. First, we introduce the mathematical model to be studied
in this paper. We denote the tumor region by Ω = {(r, t) | 0 < r < R(t), t > 0} and its free boundary
by Π = {(R(t), t)| t > 0}. It is natural to assume that the nutrient concentration σ in Ω satisfies the
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reaction-diffusion equation

c
∂σ

∂t
= ∆rσ − Γσ, (1.1)

where ∆rσ = 1
r2

∂
∂r

(
r2 ∂σ

∂r

)
, c = Tdi f f usion/Tgrowth � 1 represents the ratio between the time scale nutrient

diffusion and tumor growth, Γσ represents the nutrient consumption rate, c and Γ are positive constants.
In the growth process of tumor cells, necrosis and apoptosis are different cell loss mechanisms.

The proliferation rate of cells is determined by the balance between mitosis and cell death. However,
the changes in proliferation rate will lead to changes in apoptosis loss, which is not instantaneous.
Therefore, there is a time delay in regulating tumor cell apoptosis [7, 16]. According to the law of
conservation of mass, the free boundary r = R(t) satisfies the following equation with a time delay

d
dt

(4πR3(t)
3

)
= 4π

∫ R(t)

0
λ(σ(r, t) − σ̃)r2dr − 4π

∫ R(t−τ)

0
λθ(σ(r, t − τ) − σh)r2dr, t > 0, (1.2)

where R(t) is the tumor radius, λσ is cell proliferation rate, λσ̃ is apoptosis rate, τ is the time required
for changes in the apoptotic process, θ is a parameter that describes the importance of regulating
apoptosis and σh is the optimal growth rate of the tumor. Moreover,

∫ R(t)

0
λ(σ(r, t) − σ̃)r2dr represents

the net proliferation rate of cells,
∫ R(t−τ)

0
λθ(σ(r, t − τ) −σh)r2dr describes a cell undergoing regulatory

apoptosis, and the process of apoptosis is time delay. If σ < σh, regulatory mechanisms reduce the
loss of apoptotic cells, if σ > σh, regulatory mechanisms increase the loss of apoptotic cells,
otherwise, regulatory mechanisms do not work.

The avascular tumor is the initial spread state of solid tumor. Angiogenesis plays a vital role in
tumor growth. In this process, tumor cells secrete cytokines that stimulate the vascular system to grow
toward the tumor [1]. Since nutrients σ enter the sphere by the vascular system, the tumor will attract
blood vessel at a rate proportional to γ (γ is a positive constant). The boundary condition can be seen
as follows

∂σ

∂r
(0, t) = 0,

∂σ

∂r
(R(t), t) + γ(σ(R(t), t) − σ∞) = 0, (1.3)

where σ∞ is the nutrient concentration outside the tumor. Based on this idea, many models of tumor
growth with angiogenesis have been considered [1, 5, 15, 16]. The initial conditions of (1.1) and (1.2)
are as follows

σ(r, t) = χ(r, t), 0 ≤ r ≤ R(t), − τ ≤ t ≤ 0, (1.4)
R(t) = φ(t), − τ ≤ t ≤ 0. (1.5)

Various mathematical models describing tumor growth with time delays have been proposed and
studied in recent years from different aspects. Time delays usually occur in the time required for cell
differentiation, cell proliferation, the response of one cell to other cells, etc. The ordinary differential
system model is widely used in time-delay tumor, such as the tumor-immune system of cell-to-cell
interactions [2, 10, 11, 18] and the tumor immune system under drug treatment [8, 23]. In addition to
these ordinary differential equation systems, there are also many studies on delayed tumor models on
partial differential equations. H. M. Byrne [4] proposed two kinds of free boundary problems of
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tumor growth with time delays. One delay exists in the process of tumor cell proliferation, the other in
the process of regulating apoptosis. A time-delayed mathematical model describing tumor growth
with angiogenesis and Gibbs-Thomson relation was considered by Xu and Wu [17]. P. R. Nyarko1
and M. Anokye [12] developed an advection-reaction-diffusion system to describe interactions
between tumor cells and extracellular matrix (ECM) at the macroscopic level. Zhou et al. considered
the time delay tumor model with angiogenesis, the existence, uniqueness and stability of the solution
have been proved [7]. However, the effect of regulating apoptosis was not considered. An avascular
delayed tumor growth model with regulated apoptosis was considered in [16] by Xu et al., but the
effect of vascularization was not considered. By rigorous mathematical analysis, the existence,
uniqueness, and asymptotic behavior were obtained. He et al. [22] considered a three-dimensional
model for multilayered tumor growth of the flat-shaped form, but did not consider the influence of
angiogenesis and the regulation of apoptosis.

With the motivation of the above work, we will study the free boundary problem (1.1)–(1.5) for
vascularized tumor growth with a time delay in the process of tumor regulating apoptosis. The
characteristic of this model is that both vascularization and apoptosis regulation is considered. The
model studied in this paper is modified from the model in [16]. During tumor growth, the boundary
value conditions change from Dirichlet boundary condition to Robin boundary condition due to the
generation of blood vessels. In a biological sense, compared to the Dirichlet condition in [16], Robin
boundary condition is more realistic for vascularized tumor growth [1, 6, 7, 17]. In this paper, the
model with the Robin boundary condition is studied. Mathematically, the model discussed in [16] is a
special case of the model discussed in this paper where γ = ∞. At the same time, considering the
Robin boundary condition makes the analysis of the problem much more difficult. It is mainly
reflected in the following two aspects: on the one hand, it is reflected in the difficulty of calculation.
Considering the Robin boundary condition makes the calculation of nutrient concentration more
complicated, and at the same time, the discussion of the steady-state situation becomes more difficult.
On the other hand, when analyzing the asymptotic behavior of the solution, it is necessary to
overcome the difficulties caused by considering Robin boundary condition. When using the
comparison principle, it is necessary to overcome some new difficulties in the verification of whether
the conditions are met and the construction of auxiliary functions. The linearization theory of
functional differential equations is used to study the local stability of positive constant steady state
solutions. The global stability of solution is studied by the comparison principle and iterative
technique of free boundary problems. The results demonstrate the effect of parameters regulating
apoptosis on the asymptotic behavior of tumor growth.

Arrangement of the rest part is as follows. We show some preliminary lemmas in Section 2. In
Section 3, we study the quasi-stationary solution of system (1.1)–(1.5). In Section 4 and 5, we prove
the global well-posedness and asymptotic behavior of the solution of Eqs (1.1)–(1.5). In Section 6,
we will present numerical simulations of some parameters value. In the end, we draw biological
implications from the mathematical results of this paper in Section 7.
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2. Preliminaries

In this section, we introduce some preliminaries that we need to use in this paper. For convenience,
we take

p(x) =
x coth x − 1

x2 , m(x) = xp(x), wt(−τ) = w(t − τ).

Lemma 2.1. (1) p′(x) < 0, lim
x→0+

p(x) = 1
3 , lim

x→∞
p(x) = 0 for x > 0.

(2) m′(x) > 0, lim
x→0+

m(x) = 0, lim
x→∞

p(x) = 1 for x > 0.

(3) h′(x) < 0, lim
x→0+

h(x) = 1
3γ , lim

x→∞
p(x) = 0 for x > 0.

Proof. The proof of (1) and (2) see [13].

(3) Using (1) and (2), we deduce

h′(x) =
p′(x)(γ + m(x)) − m′(x)p(x)

(γ + m(x))2 < 0.

Thus

lim
x→0+

h(x) =
1

3γ
, lim

x→∞
h(x) = 0.

�

Lemma 2.2. [14] Consider the initial problem

u̇(t) = f (u(t), ut(−τ)), t > 0, (2.1)
u(t) = u0(t), − τ ≤ t ≤ 0, (2.2)

where ut(−τ) = u(t − τ). Suppose f (u,w) ∈ C1(R+,R+) and ∂ f
∂w > 0, then

(1) If us ∈ (a, b) ⊂ (0,∞) is a positive solution of equation f (u, u) = 0 such that

(u − us) f (u, u) < 0, f or u ∈ (a, b) and u , us. (2.3)

For u0(t) ∈ C[−τ, 0] and u0(t) ∈ (a, b), −τ ≤ t ≤ 0, if u(t) is a solution of the Eqs (2.1) and (2.2), then

lim
t→∞

u(t) = us.

(2) Furthermore, we assume that f (u, u) < 0 for u > 0. If (2.1) and (2.2) exis a solution for t ≥ −τ,
then for any such initial function u0(t) ∈ (0,∞) for all −τ ≤ t ≤ 0, there holds

lim
t→∞

u(t) = 0.

Lemma 2.3. [19] Linear time delay differential equations

ẋ(t) + Ax(t) + Bx(t − τ) = 0, (2.4)

where A and B are constants, the following assertions hold
(1) If A + B > 0 and A − B > 0, there exists a trivial solution of (2.4) that is asymptotically stable

for any τ > 0.
(2) If A + B < 0, the trivial solution of (2.4) for all τ > 0 is instable.
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Lemma 2.4. [5] Let (σ(r, t),R(t)) be a solution of problem (1.1)–(1.5) and set

v(r, t) =
γσ∞

γ + m(
√

ΓR(t))

R(t) sinh(
√

ΓR(t)

r sinh(
√

ΓR(t))
, m(x) =

x coth x − 1
x

.

We assume

|Ṙ(t)| ≤ L, 0 ≤ t < T,

|σ0(r) − v0(r)| ≤ M
(
1 −

R0 sinh(
√

ΓR0)

r sinh(
√

ΓR0)

)
, 0 ≤ r ≤ R0,

where R0 = R(0), 0 < L ≤ L0 and 0 < M ≤ M0. Then, there exists two constants C and c0 independent
c, T, L, M, R0 and depend only on L0, M0, Γ, γ, σ∞, such that

|σ(r, t) − v(r, t)| ≤ C̄(c′ + e−
Γt
c ) (2.5)

for all 0 < c ≤ c0, 0 ≤ r ≤ R(t) and 0 ≤ t ≤ T, where c′ = cL
M , C̄ = CM

(
1 +

√
Γ

γ

)
.

3. Quasi-steady-state solution

In this section, we will discuss the quasi-steady-state problem of (1.1)–(1.5) as follows

∆rσ = Γσ, 0 < r < R(t), t > 0, (3.1)
∂σ

∂r
(0, t) = 0,

∂σ

∂r
(R(t), t) + γ(σ(R(t), t) − σ∞) = 0, t > 0, (3.2)

d
dt

(4πR3(t)
3

)
= 4π

∫ R(t)

0
λ(σ(r, t) − σ̃)r2dr − 4π

∫ R(t−τ)

0
λθ(σ(r, t − τ) − σh)r2dr, t > 0, (3.3)

R(t) = φ(t), − τ ≤ t ≤ 0. (3.4)

Solving (3.1) and (3.2), we obtain

σ(r, t) =
γσ∞

γ + m(
√

ΓR(t))

R(t) sinh(
√

Γr)

r sinh(
√

ΓR(t))
. (3.5)

Substitute (3.5) into (3.3), we get

η̇(t) = a1η(t)
[( p(η(t))
γ + m(η(t))

−
σ̃

3γσ∞

)
+ θ

( σh

3γσ∞
−

p(ηt(−τ))
γ + m(ηt(−τ))

)(ηt(−τ)
η(t)

)3]
, t > 0, (3.6)

η(t) = ψ(t), − τ ≤ t ≤ 0, (3.7)

where a1 = λγσ∞,
√

ΓR(t) = η(t),
√

Γφ(t) = ψ(t), and ηt(−τ) = η(t − τ). Further, letting η3(t) = w(t),
ψ3(t) = ϕ(t), a = 3a1, we deduce

ẇ(t) = a
[( p(w

1
3 (t))

γ + m(w
1
3 )
−

σ̃

3γσ∞

)
w(t) − θ

( σh

3γσ∞
−

p(w
1
3
t (−τ))

γ + m(w
1
3
t (−τ))

)
wt(−τ)

]
, t > 0, (3.8)
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w(t) = ϕ(t), − τ ≤ t ≤ 0. (3.9)

Therefore, the positive constant solutions of (3.8) are its stationary points satisfying

h(x) −
σ̃

3γσ∞
+

θσh

3γσ∞
− θh(x) = 0,

where h(x) =
p(x)

γ+m(x) . Let θ , 1, the stationary points are determined by

h(x) =
θσh − σ̃

3γσ∞(1 − θ)
. (3.10)

If ws is a solution of (3.10), then x
1
3
s = ws.

Lemma 3.1. (1) If σ̃ < σ∞ < σh and σ̃
σh
> θ, then ws is the unique positive solution of (3.10).

(2) If σ∞ < σh < σ̃ and σ̃
σh
> θ > 1, (3.10) has no positive solution.

Proof. (1) Since σ̃ < σ∞ < σh, we have θ(σh−σ∞) > 0 > σ̃−σ∞, which implies σ̃−θσh < (1−θ)σ∞.
If 0 < σ̃

σh
< 1, we see that

θσh − σ̃

3γσ∞(θ − 1)
∈ (0,

1
3γ

),

by θσh−σ̃
σ∞(θ−1) < 1. Using the properties of h(x), there only exists a positive solutions of (3.10) and we

remark it as ws.
(2) Since θσh−σ̃

3γσ∞(θ−1) ∈ (0, 1
3γ ) for σ̃ < σ∞ < σh and σ̃

σh
> θ, we conclude θσh−σ̃

3γσ∞(θ−1) >
1

3γ or θσh−σ̃
3γσ∞(θ−1) < 0

for σ∞ < σh < σ̃, and σ̃
σh
> θ > 1. It is clearly that (3.10) has no positive solution. �

Theorem 3.2. If σh > σ∞ > σ̃, then the trivial solution of (3.8) and (3.9) is unstable, and the unique
steady-state solution is asymptotically stable.

Proof. Firstly, we linearize (3.8) at x = 0 and obtain

ẇ = a
( 1
3γ
−

σ̃

3γσ∞

)
w(t) + aθ

( σh

3γσ∞
−

1
3γ

)
w(t − τ). (3.11)

By initial condition (3.9), we have

w(t) > ϕ(0)e
1

3γ (1−σ̃/σ∞)t
→ ∞, t → ∞,

where ϕ(0) = ψ3(0) > 0. Thus, the trivial solution is unstable by Lemma 2.3.
Next, if θ < σ̃

σh
, (3.8) and (3.9) have a unique stationary solution ws by Lemma 3.1. Letting

u(t) = w(t) − ws, we linearize (3.8) at x = ws,

u̇(t) = a
[
h(w

1
3
s ) −

σ̃

3γσ∞
+

1
3

h′(w
1
3
s )w

1
3
s

]
u(t) + aθ

[ σh

3γσ∞
− h(w

1
3
s ) −

1
3

h′(w
1
3
s )w

1
3
s

]
u(t − τ). (3.12)

characteristic equation of (3.12) is λ + A + Be−λτ = 0, here A = −a
[
h(w

1
3
s ) − σ̃

3γσ∞
+ 1

3h′(w
1
3
s )w

1
3
s

]
,

B = −aθ
[

σh
3γσ∞

− h(w
1
3
s ) − 1

3h′(w
1
3
s )w

1
3
s

]
. Since h′(x) < 0 and h(x) ∈

(
0, 1

3γ

)
, we obatin B < 0, A +

B = θ−1
3 ah′(w

1
3
s )w

1
3
s , which implies A > 0, A + B > 0 and A − B > 0. Therefore, we see that the

trivial solution of (3.12) is asymptotically stable by Lemma 2.3. Applying the linearization theory of
functional differential equations, (3.8) and (3.9) are asymptotically stable at w

1
3
s . �

AIMS Mathematics Volume 7, Issue 10, 19440–19457.



19446

Theorem 3.3. The following assertions hold for ϕ(t) > 0, −τ ≤ t < 0.
(1) If σ̃ < σ∞ < σh and σ̃

σh
> θ, then the solution of (3.8) and (3.9) tends to ws as t → ∞, where

ws = x
1
3
s is the unique stationary solution of (3.8).

(2) If σ∞ < σh < σ̃ and σ̃
σh
> θ > 1, then the solution of (3.8) and (3.9) tends to 0 as t → ∞.

Proof. Define a function

f (x, y) = a
[(

h(x
1
3 ) −

σ̃

3γσ∞

)
x
]

+ aθ
[( σh

3γσ∞
− h(y

1
3 )
)
y
]
.

Obviously,

∂ f
∂y

= aθ
( σh

3γσ∞
− h(y

1
3 ) −

1
3

y
1
3 h′(y

1
3 )
)
> aθ

( σh

3γσ∞
−

1
3γ
−

1
3

y
1
3 h′(y

1
3 )
)
> 0.

(1) If σ̃ < σ∞ < σh and σ̃
σh
> θ, (3.10) has a unique positive solution ws by Lemma 3.1. Thanks to

the following equation

f (x, x) = a
[
h(x

1
3 )(1 − θ) +

θσh − σ̃

3γσ∞

]
x, (3.13)

and σ̃
σh
> θ, we get

(i) f (x, x) > 0, 0 < x < ws. (ii) f (x, x) = 0, x = ws. (iii) f (x, x) < 0, x > ws.

Hence, the conclusion (1) holds by Lemma 2.2.
(2) Under the condition of (2), for x > 0, we see that f (x, x) < 0 from (3.13). Applying Lemma 2.2,

the solution of (3.8) and (3.9) tends to 0 as t → ∞. The proof is completed. �

4. Global well-posedness

In this section, we will study the system (1.1)–(1.5), the well-posedness of global solution will be
proved.

Theorem 4.1. Assuming that χ(r, t) is a twice differentiable function in [0,∞]×[−τ, 0], σ∞ ≥ χ(r, t) > 0
when R(t) ≥ r, or χ(r, t) = σ∞ when R(t) < r. For a positive initial function φ(t) in t ∈ [−τ, 0], there
exists a unique solution (σ(r, t),R(t)) of system (1.1)–(1.5). Moreover, the following estimates hold:

(1) For 0 ≤ r ≤ R(t), t > 0, we obtain 0 ≤ σ(r, t) ≤ σ∞.
(2) φ(0) exp{−λσ̃t

3 } ≤ R(t) ≤ 3√1 + λθσhτ|φ| exp{λ(σ∞−σ̃+θσh)t
3 }, where |φ| = max−τ≤t≤0 ϕ(t).

(3) −λσ̃3 ≤
Ṙ(t)
R(t) ≤

1
3λ(σ∞ − σ̃ + θσh exp{λσ̃τ}), t > 0.

(4) φ(0) exp{−λσ̃t
3 } ≤ R(t) ≤ φ(0) exp{λ(σ∞−σ̃+θeλσ̃τσh)

3 }, t > 0.

Proof. (1) Obviously, σ(r, t) = 0 and σ(r, t) = σ∞ is a pair of lower and upper solutions of (1.1)
and (1.3), then by maximal principle, 0 ≤ σ ≤ σ∞ holds.

(2) From (1.2), we have

−
λσ̃R(t)

3
≤ Ṙ(t) ≤

λ

3R2(t)
[(σ∞ − σ̃)R3(t) + θσhR3(t − τ)], t > 0, (4.1)
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Integrating the left side of inequality (4.1), we deduce

R(t) ≥ φ0e−
λσ̃t

3 , (4.2)

where φ0 = φ(0). By employing (4.1) and setting ς(t) = R3(t), we get

ς̇(t) ≤ λ(σ∞ − σ̃)ς(t) + λθς(t − τ). (4.3)

Applying Theorem 3.1 of [9] in chapter one to (4.3), ς(t) ≤ A3eBt, where A =
3√1 + λθσhτ|φ|, B =

λ(σ∞ − σ̃ + θσh) and |φ| = max−τ≤t≤0 φ(t).
(3) By observing (4.1), we can obtain

(
R(t) exp{λσ̃t

3 }
)′
≤ 0, which implies (4.4) hold(Rt(−τ)

R(t)

)3
≤ eλσ̃τ, (4.4)

then, θσh

(
Rt(−τ)

R(t)

)3
+ (σ∞ − σ̃) is bounded. Since (4.1) hold, the estimate (3) holds.

(4) Integrating (3), we have φ0 exp{−λσ̃t
3 } ≤ R(t) ≤ φ0 exp{λ(σ∞−σ̃+θeλσ̃τσh)

3 }, t > 0.
Using Banach fixed point theorem and the extension theorem, similar to the proof of [5,16], we get

the existence and uniqueness of global solution. �

5. Asymptotic behavior

In this section, the asymptotic behavior of the solution of (1.1)–(1.5) will be proved. The steady-
state solution of (1.1)–(1.5) satisfies the following problem

∆rσs = Γσs(r), 0 < r < Rs, (5.1)
∂σs

∂r
(0, t) = 0,

∂σs

∂r
(Rs) + γ(σs(Rs) − σ∞) = 0, (5.2)∫ Rs

0
λ(σs(r) − σ̃)r2dr −

∫ Rs

0
λθ(σs(r) − σh)r2dr = 0. (5.3)

If σh > σ∞ > σ̃ and σ̃
σh
> θ, (5.1)–(5.3) have a unique positive solution

(σs(r),Rs) =
( γσ∞

γ + m(
√

ΓRs)

Rs sinh(
√

Γr)

r sinh(
√

ΓRs)
,Rs

)
,

where Rs is determined by h(
√

ΓRs) = θσh−σ̃
3γσ∞(θ−1) . It is clear that xs =

√
ΓRs. In the sequence, we will

prove that (σs,Rs) is asymptotically stable.

Lemma 5.1. Let (σ(r, t),R(t)) be a solution of (1.1)–(1.5). When σ̃ < σ∞ < σh and σ̃
σh

> θ hold.

Assuming for some ε > 0, −τ ≤ t ≤ 0, φ ∈
(
ε, 1

ε

)
, c0 (a positive constant) does not dependent on c and

φ(t), then there exists

1
2

min
{
Rs, ε exp

{λσ̃t
3

}}
< R(t) < 2 max

{
Rs,

1
ε

3
√

1 + λθσhτ exp
{λ(σ∞ − σ̃ + θσhτ)

3ε

}}
, (5.4)

for any t ≥ 0 and 0 < c ≤ c0.
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Proof. Using Theorem 4.1(2), ϕ(t) ∈
(
ε, 1

ε

)
and −τ ≤ t ≤ 0, we see that

ε

2
exp

{λσ̃t
3

}
< R(t) <

2
ε

3
√

1 + λθσhτ exp
{λ(σ∞ − σ̃ + θσh)τ

3

}
, (5.5)

and either

R(T ) = 2 max
{
Rs,

1
ε

3
√

1 + λθσhτ exp
{λ(σ∞ − σ̃ + θσh)τ

3

}}
,

or

R(T ) =
1
2

min
{
Rs, ε exp

{λσ̃t
3

}}
.

If R(T ) = 2 max
{
Rs,

1
ε

3√1 + λθσhτ exp
{
λ(σ∞−σ̃+θσh)τ

3

}}
, then

Ṙ(T ) ≥ 0. (5.6)

Obviously, by Theorem 4.2 (3), we obtain

Ṙ(t) ≤ L, 0 ≤ t ≤ T, (5.7)

where L (a positive constant) does not dependent on T and c. Setting

v(r, t) =
γσ∞

γ + m(
√

ΓR(t))

R(t) sinh(
√

Γr)

r sinh(
√

ΓR(t)
,

we conclue

|σ0(r) − v0(r)| ≤ M
(
1 −

φ(0) sinh(
√

Γr)

r sinh(
√

Γφ(0))

)
, 0 ≤ r ≤ ϕ(0),

where σ0(r) = σ(r, 0), v0(r) = v(r, 0). By Lemma 2.4, we deduce

|σ(r, t) − v(r, t)| ≤ C̄(c′ + e−
Γτ
c ), 0 ≤ r ≤ R(t), 0 ≤ t < T, (5.8)

where C̄ = CM
(
1 +

√
Γ

γ

)
, c′ = cL

M , 0 < c ≤ c0, 0 < M ≤ M0. For t > τ, we compute

Ṙ(t) ≤
1

R2(t)

[ ∫ R(t)

0
λ(v(r, t) − σ̃)r2dr −

∫ R(t−τ)

0
λθ(v(r, t − τ) − σh)r2dr

]
+

1
3

[
λC̄

(
c′ + exp

{
−

Γt
c

})
+ λθC̄

(
c′ + exp

{Γ(τ − t)
c

})]
R(t)

= R(t)z(R(t),Rt(−τ)),

where

z(x, y) =
a1

γ
x
[(

h(
√

Γx) −
σ̃

3γσ∞

)
+ θ

( σh

3γσ∞
− h(
√

Γy)
)(y

x

)3
+ Υ(t)

]
,
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Υ(t) =
1
3

[
λC̄

(
c′ + e−

Γt
c
)

+ λθC̄
(
c′ + e−

Γ(t−τ)
c

)]
.

Letting G(y) =
(

σh
3γσ∞

− h(y)
)
y3 for σ̃ < σ∞ < σh, we obtain

∂G(y)
∂y

= 3
[ σh

3γσ∞
− h(y)

]
y2 − h′(y)y3 > 0.

Obviously, f (x, x) < 0 for x > ws, we see that if Rs < R(T ), then z(R(T ),R(T )) < 0 for 0 < c ≤ c0 (c0

is sufficiently small). Hence,

R(T )z(R(T ),R(T )) ≥ R(T )z(R(T ),RT (−τ)) ≥ Ṙ(t), τ < T,

which is contradiction with (5.6).
If R(T ) = 1

2 min
{
εe−

λσ̃t
3 ,Rs

}
, one can proof it in the same way and we omit here. �

Set

L(x, y) =
a1

γ

√
Γ
[(

h(
√

Γx) −
σ̃

3γσ∞

)
+ θ

( σh

3γσ∞
− h(
√

Γy)
)( x

y

)3]
,

g(x) =
(
h(
√

Γx) −
σ̃

3γσ∞

)
+ θ

( σh

3γσ∞
− h(
√

Γx)
)
.

Consider the initial value problems as follows

u′+(t) = u+(t){L(u+(t), u+(t − τ)) + C̄αc′}, t > 0, (5.9)
u+(t) = φ(t), − τ ≤ t ≤ 0, (5.10)

and

u′−(t) = u−(t){L(u−(t), u−(t − τ)) + C̄αc′}, t > 0, (5.11)
u−(t) = φ(t), − τ ≤ t ≤ 0, (5.12)

where c′ = cL
M and a positive constant C̄ = CM

(
1 +

√
Γ

γ

)
is independent of α and c0.

Lemma 5.2. Assuming σ̃ < σ∞ < σh and σ̃
σh
> θ hold, φ(t) is a positive and continuous function in

−τ ≤ t ≤ 0. Setting c′ = cL
M , there exists two positive constants c0 and α0 such that if 0 < c ≤ c0,

0 < α ≤ α0, then there exists two positive constants u+
s and u−s which are the unique solution of

equations L(x, x) + C̄αc′ = 0 and L(x, x) − C̄αc′ = 0, respectively. Moreover, lim
t→∞

u±(t) = u±s .

Proof. Due to g′(x) = (1 − θ)
√

Γh′(
√

Γx) < 0 and Lemma 2.1, one can get that

lim
x→0+

g(x) =
1

3γ
−

σ̃

3γσ∞
+ θ

( σh

3γσ∞
−

1
3γ

)
> 0,

lim
x→∞

g(x) = −
σ̃

3γσ∞
+

θσh

3γσ∞
=
θσh − σ̃

3γσ∞
< 0.

Therefore, there exists positive constants α0 and c0 such that g(x, x)± C̄αc′ = 0 has unique solution u±s ,
respectively, where 0 < α ≤ α0, 0 < c ≤ c0.
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By a simple computation,

∂L
∂y

= 3λσ∞θx−3y2
[( σh

3γσ∞
− h(
√

Γy)
)
−

1
3

√
Γyh′(

√
Γy)

]
,

similarly with the proof of Theorem 3.3, we obtain ∂L
∂y > 0. Thus, for 0 < α ≤ α0 and 0 < c ≤ c0,

L(x, x) ± C̄αc′ = 0 has a unique solution u±s , respectively. Since g′(x) < 0, f (x, x) = x[λ
√

Γσ∞g(x) +

C̄αc′] and f (u±s , u
±
s ) = 0, when x , u±s , we have (x − u±s ) f (x, x) < 0. Using Lemma 2.2, we see that

u±(t) will tends to u±s as t → ∞. �

Lemma 5.3. (σ(r, t),R(t)) is a solution of (1.1)–(1.5), assuming

K1 ≤ R(t) ≤ K2, t > −τ, (5.13)

where K1, K2 independent on c and α are constants. If σ̃ < σ∞ < σh and σ̃
σh

> θ hold, there exists
constants c0, ν, T0 and C independent of c, α such that if |Ṙ(t)| ≤ α in 0 ≤ r ≤ R(t), t ≥ 0 and

|R(t) − Rs| ≤ α, |σ(r, t) − σs| ≤ α, (5.14)

for −τ ≤ t, 0 ≤ r ≤ R(t), then for T0 + τ < t,

|R(t) − Rs| ≤ C̄α(c′ + e−νt), |σ(r, t) − σs| ≤ C̄α(c′ + e−νt). (5.15)

Proof. Denote

λ

R2(t)

[ ∫ R(t)

0
(v(r, t) − σ̃)r2dr −

∫ R(t−τ)

0
θ(v(r, t − τ) − σh)r2dr

]
= R(t)L(R(t),Rt(−τ)), (5.16)

where

v(r, t) =
γσ∞

γ + m(
√

ΓR(t))

R(t) sinh(
√

Γr)

r sinh(
√

ΓR(t))
,

L(x, y) =
a1
√

Γ

γ

[(
h(
√

Γx) −
σ̃

3γσ∞

)
+ θ

( σh

3γσ∞
− h(
√

Γy)
)( x

y

)3]
,

we obtain

|Ṙ(t) − R(t)L(R(t),Rt(−τ))|

=
∣∣∣∣ 1
R2(t)

[ ∫ R(t)

0
λ(σ(r, t) − v(r, t))r2dr −

∫ R(t−τ)

0
λθ(σ(r, t − τ) − v(r, t − τ))r2dr

]∣∣∣∣
≤

1
3

R(t)
[
λC̄α(c′ + e−

Γt
c ) + λθC̄α(c′ + e−

Γ(t−τ)
c )

(Rt(−τ)
R(t)

)3]
.

If t ≥ 2τ, we see that e−
Γ(t−τ)

c ≤ e−
Γt
c ≤ c

Γτ
. Moreover, we deduce

R(t)[L(R(t),Rt(−τ)) − C̄αc′] ≤ Ṙ(t) ≤ R(t)[L(R(t),Rt(−τ)) + C̄αc′],
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where C̄ (a positive constant) does not dependent on c and α. Consider the initial value problem

u′±(t) = u±(t)[L(u±(t), u±(t − τ)) ± C̄αc′], t > 2τ,
u±(t) = R(t), τ ≤ t ≤ 2τ.

We see that lim
t→∞

u±(t) = u±s from Lemma 5.2. Applying comparison principle, we get

u−(t) ≤ R(t) ≤ u+(t). (5.17)

For g′(x) < 0, we have |u±s − Rs| ≤ C̄αc′.
Indeed, u±s and Rs are solutions of λσ∞

√
Γg(x) = ∓C̄αc′ and λσ∞

√
Γg(x) = 0, respectively, K1 ≤

R(t) ≤ K2, then we obtain |u±s − Rs| ≤ C̄αc′.
We linearize (5.9) at u+

s ,

u′+(t) = −au+(t) + bu+(t − τ), (5.18)

where

a =
a1
√

Γ

γ

[
3θ

( σh

γσ∞
− h(
√

Γu+
s )

)
−
√

Γu+
s h′(
√

Γu+
s )

]
,

b =
a1θ
√

Γ

γ

[
3
( σh

γσ∞
− h(
√

Γu+
s )

)
−
√

Γu+
s h′(
√

Γu+
s )

]
.

z = −a + be−zτ is the characteristic equation of (5.18). In the same way, we can get the characteristic
equation of linearized equation at u−s is z = −A + Be−zτ, where

A =
a1
√

Γ

γ

[
3θ

( σh

γσ∞
− h(
√

Γu−s )
)
−
√

Γu−s h′(
√

Γu−s )
]
,

B =
a1θ
√

Γ

γ

[
3
( σh

γσ∞
− h(
√

Γu−s )
)
−
√

Γu−s h′(
√

Γu−s )
]
.

Due to θ < σ̃
σh
< 1, we see that 0 < b < a, 0 < B < A, which implies their real part of the complex

roots are negative. Therefore, there exists positive constants K, ν1 and 2τ ≤ T1 such that

|u±(t) − u±s | ≤ Ke−ν1t|φ(t) − u±s |, T1 ≤ t,

where |φ(t) − u±s | = max−τ≤t≤0 |φ(t) − R±s |. Since |u±s − Rs| ≤ C̄αc′ for t ≥ T0, we have

|R(t) − Rs| ≤ max |u±(t) − Rs|

≤ max[|u±s − Rs| + |u±(t) − u±s |]
≤ max[Ke−ν1t(|Rs − u±s | + |φ(t) − Rs|)] + C̄αc′

≤ C̄α(c′ + e−ν1t).

Note that K1 ≤ R(t) ≤ K2 and σs(r) = vs(r), thus

|v(r, t) − σs(r)| = |v(r, t) − vs(r)| ≤ C̄|R(t) − Rs| ≤ C̄α, 0 ≤ r ≤ R(t), t ≥ 0.
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It is clearly that

|σ(r, t) − v(r, t)| ≤ |σ(r, t) − σs(r)| + |v(r, t) − σs(r)| ≤ C̄α, 0 ≤ r ≤ R(t), t ≥ 0.

Specially, |σ(r, 0) − v(r, 0)| ≤ C̄α, |Ṙ(t)| ≤ α, applying Lemma 2.4, then

|σ(r, t) − v(r, t)| ≤ C̄α(c′ + e−
−Γt

c ) ≤ C̄α(c′ + e
−Γτ
c0 ), 0 ≤ r ≤ R(t), t ≥ 0, 0 < c ≤ c0. (5.19)

Let

f (t) =
1

R3(t)

[ ∫ R(t)

0
λ(σ(r, t) − σ̃)r2dr −

∫ R(t−τ)

0
λθ(σ(r, t − τ) − σh)r2dr

]
.

For τ ≤ T , we have

|R(t) f (t) − R(t)L(R(t),Rt(−τ))| ≤
1
3

R(t)
[
λC̄α(c′ + e−

Γt
c ) + λθC̄α(c′ + e

Γ(τ−t)
c )

(Rt(−τ)
R(t)

)3]
.

Hence,

|R(t) f (t) − R(t)L(R(t),Rt(−τ))| ≤ C̄α(c′ + e−ν2t), t ≥ 2τ, (5.20)

where ν2 = Γ
c0

. For t ≥ T0 + τ,

|L(R(t),Rt(−τ)) − L(Rs,Rs)| ≤ C(|Rt(−τ) − Rs| + |R(t) − Rs|) ≤ C̄α(c′ + e−ν1t).

Combining Ṙ(t) = R(t) f (t), (5.20) and K1 ≤ R(t) ≤ K2, we see that |Ṙ(t)| ≤ C̄α(c′ + e−ν1t). Taking
ν = min{ν1, ν2}, the proof is completed. �

Theorem 5.4. Suppose that (σ(r, t),R(t)) is a solution of problem (1.1)–(1.5).
(1) If σ̃ < σ∞ < σh and σ̃

σ∞
> θ, then

lim
t→∞

Ṙ(t) = 0, lim
t→∞
|R(t) − Rs| = 0, lim

t→∞
|σ(r, t) − σs| = 0, T0 + τ ≤ t, 0 ≤ r ≤ R(t).

(2) If σ∞ < σh < σ̃ and σ̃
σh
−

σ∞
σh
> θ > 1, then

lim
t→∞

R(t) = 0, ϕ(t) ≥ 0, − τ ≤ t ≤ 0.

Proof. (1) Thanks to (5.4), we set

K1 =
1
2

min{Rs, εe−
λσ̃t

3 }, K2 = 2 max{Rs,
1
ε

3
√

1 + λθσhτe−
λ(σ∞−σ̃+θσh)τ

3 },

then (5.5) holds. |R(t) − Rs| ≤ K2 + Rs = α1, (t ≥ 0). Minimize the absolute values of (4.1) both
sides of the inequality, we have |Ṙ(t)| ≤ λσ∞K2

3K1
= α2. Since |σ(r, t) − σs(r)| ≤ 2σ∞, we let α = α0 =

max{α1, α2, 2σ∞} in Lemma 5.3. Take τ and ν in according to Lemma 5.3, while c0 sufficiently small
and T0 sufficiently large, then

|R(t) − Rs| ≤ C̄α(c′ + e−νt) ≤ 2Ccα, t ≥ T0 + τ,
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|Ṙ(t)| ≤ C̄α(c′ + e−νt) ≤ 2Ccα, t ≥ T0 + τ,

|σ(r, t) − σs(r)| ≤ C̄α(c′ + e−νt) ≤ 2Ccα, 0 ≤ r ≤ R(t), t ≥ T0 + τ.

Setting e−ν(T0+τ) = c′, repeating the process, and we get

|R(t) − Rs| ≤ C̄(2Ccα)n−1α(c′ + e−ν(t−(n−1)T0)) ≤ (2Cc)nα, t ≥ nT0 + τ.

Similarly, for 0 ≤ r ≤ R(t) and t ≥ nT0 + τ, we have |Ṙ(t)| ≤ (2Cc)nα, |σ(r, t) − σs| ≤ (2Cc)nα.
Finally, denote β > 0, which satisfies 2Cc = e−βT0 < 1 for 2Cc < 1. If n is sufficiently large and

satisfies nT0 + τ ≤ t ≤ (n + 1)T0 + τ, then

|R(t) − Rs| ≤ (2Cc)nα = αe−nβT0 = αe−βte−β(nT0−t) ≤ αeβ(T0+τ)e−βt = Ce−βt.

Repeating the process, the proof of (1) is completed.
(2) Let

ξ̇(t) = f (ξ(t), ξt(−τ)) = −λ(σ̃ − σ∞)ξ(t) + λθσhξt(−τ), t > 0,
ξ(t) = φ(t), − τ ≤ t ≤ 0,

(5.21)

where ξt(−τ) = ξ(t − τ). The characteristic equation of (5.21) is z = −λ(σ̃ − σ∞) + λθσhe−τz, where
λ(σ̃ − σ∞) > λθσh > 0. It is easy to see that

f (ξ(t), ξ(t)) ≤ λ(σ∞ − σ̃ +
σ̃ − σ∞
σh

σh)ξ(t) < 0.

Applying Lemma 2.2, we have limt→∞ ξ(t) = 0. By (4.2), (4.3) and comparison principle, we obtain
ς(t) ≤ ξ(t). Hence, limt→∞ R(t) = 0. The proof of Theorem 5.4 is completed. �

6. Numerical simulations

In this section, numerical simulation matching the theoretical results will be presented in Figures
1–3. In Figure 1, we take the parameter values as

c = 0, a = 30, σ∞ = 10, σh = 15, λ = 1, Γ = 1, γ = 3, σ̃ = 6, θ = 0.3,

where are satisfied the conditions σh > σ∞ > σ̃ and θ < σ̃
σh

of Lemma 3.1. We see that there exists a
unique root of h(x) − σ̃

3γσ∞
+ θσh

3γσ∞
− θh(x) = 0, then Theorem 4.3 is verified.

0 10 20 30 40 50

x
60 70 80 90 100

0

0.02

0.04

0.06

0.08

0.1

0.12

h(
x)

Figure 1. The stationary solution xs ≈ 9.68 to (3.10).
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Figure 1 shows that the tumor radius is a fixed size in certain cases. In the sequence, Figures 2 and 3
show the asymptotic behavior of R with different values of the parameters.

For Figure 2, we take the parameter values as

c = 0, a = 30, σ∞ = 10, σh = 15, Γ = 1, γ = 3,
λ = 1, θ = 0.3, σ̃ = 6, R3

0 = 60, 1000, 2600, τ = 3,

satisfy the condition of Theorem 3.3 (1), then the three lines represent the results obtained for the
solution w(t) of (3.8) under different initial values 2600, 1000 and 60, respectively. w(t) = R3(t) tends
to the stationary solution ws ≈ 906 as t → ∞. This indicates that the radius of the tumor gradually
tends to a fixed value with the increase of time, and this state is consistent with the state described in
Figure 1.

0 20 40 60 80 100

t
120 140 160 180 200

0

500

1000

1500

2000

2500

3000

w
(t

)

Figure 2. Asymptotic behavior of w(t) = R3(t) for σ̃ < σ∞ < σh and σ̃
σh
> θ.
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Figure 3. Asymptotic behavior of w(t) = R3(t) for σ∞ < σh < σ̃ and σ̃
σh
> θ > 1.

For Figure 3, we take the parameter values as

c = 0, a = 30, σ∞ = 10, σh = 15, Γ = 1, γ = 3,
λ = 1, θ = 1.1, σ̃ = 18, R3

0 = 64, 125, 216, τ = 3,
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satisfy the condition of Theorem 3.3 (2), then the three lines represent the results obtained for the
solution w(t) of (3.8) under different initial values 216, 125 and 64, respectively. w(t) = R3(t) tends to
the stationary solution ws ≈ 0 as t → ∞. In other words, the tumor in this condition will disappear
with infinite time.

7. Conclusions

In this paper, we consider a Robin free boundary PDEs mathematical model in order to account
for a vascularized tumor growth model with a time delay. We discussed the well-posedness of the
stationary solution by rigorous analysis. The result shows that dynamical behavior of (1.1)–(1.5) is
similar to corresponding quasi-stationary problem (see Theorems 3.3 and 5.4). For some parameter
values, numerical simulations are also matching our results.

We assume that σ(r, t) and R(t) are radially symmetric, that in the development of solid tumor with
a time delay in regulatory apoptosis, two situations may occur: it converges to a dormant state or
disappears. On the one hand, if σ̃ < σ∞ < σh and σ̃

σh
> θ, where the apoptosis rate σ̃ of cells and the

degree of importance for regulating apoptosis rate is relatively small, then the tumor will converge to
the unique steady state (dormant state, see Theorems 3.3 (1) and 5.4 (1)). On the other hand, the tumor
will disappear (see Theorems 3.3 (2) and 5.4 (2)).

In our discussion, γ in (1.3) is taken as a constant. The case where γ is a bounded function or a
periodic function is not studied. Interested readers and researchers can dig deeper into this in future
works.
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