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Abstract: A central goal of neuroscience is to understand the way nervous systems work to produce
behavior. Experimental measurements in freely moving animals (e.g. in the C. elegans worm) suggest
that ON- and OFF-states in non-spiking nervous tissues underlie many physiological behaviors. Such
states are defined by the collective activity of non-spiking neurons with correlated up- and down-states
of their membrane potentials. How these network states emerge from the intrinsic neuron dynamics and
their couplings remains unclear. In this paper, we develop a rigorous mathematical framework for better
understanding their emergence. To that end, we use a recent simple phenomenological model capable
of reproducing the experimental behavior of non-spiking neurons. The analysis of the stationary points
and the bifurcation dynamics of this model are performed. Then, we give mathematical conditions
to monitor the impact of network activity on intrinsic neuron properties. From then on, we highlight
that ON- and OFF-states in non-spiking coupled neurons could be a consequence of bistable synaptic
inputs, and not of intrinsic neuron dynamics. In other words, the apparent up- and down-states in the
neuron’s bimodal voltage distribution do not necessarily result from an intrinsic bistability of the cell.
Rather, these states could be driven by bistable presynaptic neurons, ubiquitous in non-spiking nervous
tissues, which dictate their behaviors to their postsynaptic ones.
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1. Introduction

Spiking neurons and spiking neural networks are the most widely studied cases in computational
neuroscience due to their ubiquity in neural processes [1–6]. However, such neurons are not the
only information processing component of the nervous system. Indeed, numerous nervous tissues in
both vertebrate and invertebrate animals function normally without triggering spikes. Spiking neurons
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compress continuous inputs into digital signals for transmitting information via action potentials, while
non-spiking neurons do not elicit ones but modulate analog signals (i.e. graded potential responses).
Specifically, the amplitude and waveform of the action potentials are essentially invariant with respect
to the amplitude, duration, and waveform of the stimulus, unlike graded potentials which are stimulus
dependent (Figure 1.A) [7].

Many nervous tissues are mostly composed of non-spiking neurons such as vertebrate retina
networks [8], the C. elegans nervous system [9], many interneurons in insects and crustaceans [10],
and motorneurons in the Ascaris worm [11]. Retina has long been the object of attention through the
modeling of its several major neuronal classes [12–14]. More recently, efforts to model the neurons
of the C. elegans worm have been made [15, 16], including the development of general optimization
methods to characterize non-spiking neuron behaviors [17, 18]. C. elegans is a well-known model
organism in neuroscience due to the simplicity of its nervous system, only composed of 302 neurons
and about 7000 synaptic connections [19–21]. Despite this simplicity, the C. elegans nervous system
shares fundamental general neuronal principles with more sophisticated nervous systems, including
the human one [22–24].

Two standard non-spiking neuron behaviors exist (Figure 1.B): (i) near-linear, with smooth
depolarizations or hyperpolarizations from the resting potential, and (ii) bistable, with nonlinear
transitions between the resting potential and a depolarized potential. Therefore, a bistable cell
spontaneously alternates between two membrane plateau potentials: a depolarized potential (up-state)
and a relatively hyperpolarized potential (down-state). When the membrane potential is in the up-state
(respectively down-state), the neuron is said to be ON (respectively OFF). It is worth noting that many
spiking neurons also exhibit such a bistable behavior by triggering action potentials in the up-state,
such as mitral cells in olfactory bulb [25], purkinje cells [26], or about 15% of the thalamocortical
neurons [27].

Whole-brain calcium imaging of neuronal activity in C. elegans [28,29] reveals that several dozens
of non-spiking neurons have biological emergent properties such as collective activity with correlated
up- and down-states. The same type of collective behavior, with all-ON and all-OFF network states,
has also been observed experimentally in a chemotaxis non-spiking neural network of C. elegans
by monitoring the intracellular calcium dynamics of its neurons [30]. An important question is to
determine whether these ON- and OFF-states of coupled neurons result from the intrinsic bistability of
these cells, or whether they reflect bistable synaptic inputs [26]. Indeed, as an example, Purkinje cells
exhibit intrinsic bistable dynamics [26], whereas up- and down-states in cortical pyramidal neurons are
not intrinsic but induced by the synaptic activity [31].

The aim of this paper is to understand how emergent biological ON- and OFF-states in non-spiking
neural networks can emerge from the intrinsic dynamics of neurons and their couplings. To do this,
we use a recently developed simple model with dimensionless parameters that is able to reproduce the
qualitative behavior of both types of non-spiking neurons: near-linear and bistable. First, we analyse
mathematically the stationary points and the bifurcation dynamics of this model applied to the RIM,
AIY and AFD neurons of C. elegans (Figure 1). In particular, RIM and AIY exhibit a near-linear
behavior, while AFD displays a bistable one. On this basis, we then give mathematical conditions
for determining whether the up- and down-states in non-spiking neural networks are the result of
intrinsic bistability or bistable synaptic activity. Finally, using a canonical example of a network of
two coupled neurons, we show that up- and down-states in non-spiking neural networks could be
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driven by bistable neurons which dictate their behaviors to their postsynaptic ones through bistable
synaptic inputs. The generality of our study gives a rigorous framework for better understanding how
the behavior of coupled non-spiking neurons depends on their intrinsic dynamics and their couplings.
In other words, it allows to gain insight into how intrinsic dynamics and couplings of single non-spiking
neurons impact neural network behaviors.

Amplitude Duration Waveform

G
ra

d
e
d

 p
o
te

n
ti

a
l

A
ct

io
n
 p

o
te

n
ti

a
l

Figure 1. (A) Difference of features between action potentials (a-c) and graded potentials (d-
f). Action potentials have been simulated from the classical Hodgkin-Huxley model, while
graded potentials have been obtained by reducing its maximal conductances gNa and gK . The
amplitude and waveform of the action potentials are essentially invariant with respect to the
(a) amplitude, (b) duration, and (c) waveform of the stimulus. Conversely, the amplitude
and waveform of the graded potentials are dependent on the (d) amplitude, (e) duration, and
(f) waveform of the stimulus. (B) Experimental examples of near-linear (RIM and AIY)
and bistable (AFD) non-spiking neurons. The evolution of the membrane potential has been
recorded in response to a series of current injections, in the space of 5 seconds, starting from
−15 pA and increasing to 35 pA by 5 pA increments. In all cases, the higher the current
intensity, the higher the amplitude of the membrane potential. The experimental data have
been reproduced from [33] and [17] with the consent of the authors.

The remainder of this paper is organized as follows. Section 2 presents the new non-spiking
phenomenological model recently developed in [32]. The analysis of its stationary points and its
bifurcation dynamics is carried out in Section 3. Section 4 presents elements for modeling synaptic
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connections in non-spiking neural networks, with a particular focus on C. elegans. Then, we study both
mathematically and numerically how the intrinsic dynamics of a simple presynaptic neuron impact the
behavior of a postsynaptic neuron.

2. Presentation of the phenomenological non-spiking model

Non-spiking neurons are ubiquitous in many nervous tissues. For this reason, a recent simple model
has been proposed in [32] as an alternative to conductance-based models (a.k.a. Hodgkin–Huxley
type models), known to be computationally expensive and difficult to treat mathematically. In this
section, we briefly present this simple non-spiking neuron model, derived from the bifurcations’ study
of conductance-based models (CBMs) of non-spiking neurons [17, 34].

Let V represent the membrane potential of a neuron. The neuron 1-D model takes the general form

τ
dV
dt

= − f (V) + I (2.1)

where I describes an injection current, τ the constant time for which V reaches its equilibrium value
V∗, and V 7→ f (V) a cubic function which reads as

f (V) = aV3 + bV2 + cV + d. (2.2)

The parameters a, b, c, and d are dimensionless. These are estimated to reproduce the steady-state
current of the neuron, noted I∞, shown to determine the neuro-computational features of non-spiking
neurons [17]. The biological meaning of the steady-state current is the following: in typical voltage-
clamp experiments, the membrane potential is clamped at several values VH (H for hold) for which
the resulting currents are measured (Figure 2.A, left). Asymptotic values (t → ∞) of those currents,
depending only on VH, are called steady-state currents (Figure 2.A, right). As a representative example,
the experimental steady-state currents of the RIM, AIY and AFD neurons are represented in Figure 9.
The stationary points V∗ of the model (2.1) satisfy

f (V∗) = I

so that the function V 7→ f (V), in particular its shape, determines the neuro-computational features of
the non-spiking model (2.1). Indeed, two typical shapes of the curve f exist, monotonic and N-shaped
(Figure 2.B), each involving two fundamental different behaviors of the neuron:

• As shown in Figure 2.B (left), a model with a monotonic function f has only one equilibrium
for any value of I. Such a model displays a near-linear behavior characterized by smooth
depolarizations or hyperpolarizations from the resting potential, such as the RIM and AIY neurons
(Figure 1.B, left).
• As shown in Figure 2.B (right), a model with a N-shaped function f has one, two, or three

equilibria depending on the value of I. Such a model displays a bistable behavior characterized
by voltage jumps between the resting potential and a depolarized potential, such as the AFD
neuron (Figure 1.B, right).

In a previous work [32], the parameters of the model (2.1) were estimated using the differential
evolution algorithm [35] to fit the experimental steady-state current of the RIM, AIY and AFD neurons
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Figure 2. (A) (Left) Evolution of the total ion currents of the neuron when its membrane
potential is clamped at a fixed value, in spans of 500 milliseconds, from −90 mV and
increasing to 60 mV by 30 mV increments. (Right) Steady-state current obtained from the
voltage-clamp recordings in (Left). Each value of the steady-state current corresponds to the
value of the current of the last milliseconds of each voltage step. (B) Two typical shapes of the
function f , in red. Intersections of f and horizontal line I = c (with c constant) correspond to
equilibria of the system. We denote stable equilibria a as filled circles  , unstable equilibria
as open circles # and saddle-node equilibria as G#. (Left) Monotonic steady-state current.
Vc1
∗ and Vc2

∗ correspond to equilibria for a current injection I = c1 and I = c2 respectively.
(Right) N-shaped steady-state current. The number of equilibria of the system depends on
the value of I. For the sake of readibility, we highlight equilibria only for I = c1, noted Vc1

1∗,
Vc1

2∗ and Vc1
3∗.

displayed in Figure 9. Further, we reproduced the mean of the steady-state current (Figure 3.A) in
order to capture the experimental trial-to-trial variability of non-spiking neuron responses, which is
known to be larger than that of spiking neurons [36]. Finally, Figure 3.B shows the resulting voltage
dynamics of the model against an example of experimental voltage traces. Again, the model is not
intended to reproduce the specific shown traces, but to capture the trial-to-trial variability of the neuron
responses. As explained in [32], although the model slightly diverges from the experimental voltage
traces, it preserves the main qualitative features of the neuron dynamics. Indeed, the RIM model is
depolarized or hyperpolarized in a smooth manner under current clamp, while the AIY model is more
sensitive to hyperpolarization than depolarization inputs with transition point around −30 mV, as in
the experimental membrane potential behaviors. Likewise, the voltage jump of the AFD model to its
up-state occurs for the same values of current injections as in the biological neuron.
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Figure 3. (A) Mean of the experimental steady-state current (represented by green circles)
with respective error bars, and the estimated steady-state current (represented by blue
crosses) given by the equation (2.2) with parameter values displayed in Table 2. (B) Example
of experimental voltage traces for the RIM, AIY and AFD neurons against their respective
models, for injection currents starting from −15 pA and increasing 35 pA by 5 pA increments.

3. Mathematical analysis of the non-spiking model

This section aims at studying the phenomenological non-spiking model (2.1) presented in Section
2. The first part analyses the stationary points of the model, while the second studies its bifurcation
dynamics. Moreover, we apply the model with the parameters of the RIM, AIY and AFD neurons
(Table 2), representative of known types of behaviors of non-spiking cells: near-linear and bistable.
All numerical simulations of the models presented in this article are performed with the function ode
of the Scilab software. As a first step, some biological hypotheses are formulated and used throughout
the manuscript based on experimental studies.

Biological hypotheses throughout the manuscript. Biological cells have limited tolerance to
electrical stimulation. This is even more true for the C. elegans neurons due to their small size.
Beyond a certain threshold, the stimulus bursts the cell. Therefore, we define the range of the neuron
functioning, noted I, as follows:

I ∈ I := [m; M] (3.1)

where m = −15 pA and M = 35 pA as in [33].
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3.1. Stationary point analysis of the model

Let a, b, c and d be the parameters of the model (2.1). In the following, let A and B be defined by
A :=

27
a2

B :=
54d
a2 +

54
a

( 2b3

27a3 −
bc
3a2

) (3.2)

so that

Ĩ :=
B

2A
(3.3)

Moreover, let p and q be defined by
p := −

b2

3a2 +
c
a

q(I) :=
2b3

27a3 −
bc
3a2 +

d − I
a

(3.4)

and I1 and I2 as follows: 
I1 :=

B +
√

B2 − 4AC
2A

I2 :=
B −
√

B2 − 4AC
2A

(3.5)

where

C = 27
( 2b3

27a3 −
bc
3a2

)2

+
54d

a

( 2b3

27a3 −
bc
3a2

)
+

27d2

a2 + 4p3 (3.6)

Then, the following proposition holds.

Proposition 3.1. Let

∆(I) := 4p3 + 27q2(I) (3.7)

where p and q are defined in (3.4). Moreover, let Ĩ be defined by (3.3), and I1 and I2 be defined by
(3.5). Then:

1. if ∆(Ĩ) > 0, the model (2.1) has a unique stationary point V∗(I) for all I ∈ I given by

V∗(I) =
3

√
−

q(I)
2

+

√
q2(I)

4
+

p3

27
+

3

√
−

q(I)
2
−

√
q2(I)

4
+

p3

27
(3.8)

2. if ∆(Ĩ) ≤ 0, then:

• for all I ∈]m; I1[ ∪ ]I2; M[, the model (2.1) has a unique stationary point V∗(I) given in (3.8).
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• for I = I1 and I = I2, the model (2.1) has two stationary points V1∗(I) and V2∗(I) given by
V1∗(I) = 2 3

√
−

q(I)
2

V2∗(I) = −
3

√
−

q(I)
2

(3.9)

• for all I ∈]I1; I2[, the model (2.1) has three stationary points V1∗(I), V2∗(I) and V3∗(I) given
by 

V1∗(I) =

√
−

4p
3

sin
(ρ
3

)
V2∗(I) =

√
−

4p
3

sin
(2π + ρ

3

)
V3∗(I) =

√
−

4p
3

sin
(4π + ρ

3

)
(3.10)

where ρ = arcsin
(√
−

27q2(I)
4p3

)
.

Proof. The stationary points of the model (2.1) are given by solving

aV3 + bV2 + cV + d − I = 0 (3.11)

Let us denote V = X − α/3 with α = b/a. Then, the equation (3.11) can be rewritten as

X3 + pX + q = 0 (3.12)

where p and q are defined in (3.4). The number of roots of the third-degree polynomial (3.12) depends
on the sign of the function ∆ defined in (3.7) which is its discriminant. Moreover, ∆ is a convex
parabola, so that the number of stationary points of the model (2.1) is determined by the sign of the
minimum of the function ∆. We can rewrite ∆ in the following form:

∆(I) = AI2 − BI + C (3.13)

where A and B are defined in (3.2), and C is defined in (3.6). Then, we have

∆′(I) = 2AI − B = 0 ⇐⇒ I =
B

2A

so that the minimum of the function ∆ is reached in Ĩ = B/2A. From the Cardan-Tartaglia method, if
∆(Ĩ) > 0 then the model (2.1) displays a unique stationary point given by the equation (3.8). Moreover,
if ∆(Ĩ) ≤ 0, then the model (2.1) has one, two, or three stationary points depending on the value of I.
The critical values of I at which the number of stationary points changes are those satisfying ∆(I) = 0.
These are given by I1 and I2 defined in (3.5). Therefore, for all I < I1 and I > I2, ∆(I) > 0 so that
we have only one stationary point given by (3.8); for I = I1 or I = I2, ∆(I) = 0 so that we have two
stationary points given by (3.9); for all I1 < I < I2, ∆(I) < 0 so that we have three stationary points
given by (3.10). �
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Biological interpretation. If ∆(Ĩ) > 0, then the model (2.1) displays a near-linear behavior defined
by smooth depolarizations or hyperpolarizations from the resting potential (Figure 1.B, left). If ∆(Ĩ) <
0, then the model (2.1) exhibits a bistable behavior defined by a nonlinear transition between the resting
potential and a depolarized potential (Figure 1.B, right). In this case, I1 and I2 defined in (3.5) are the
injection current thresholds from which the neuron jumps to its down- and up-state, respectively.

Application to the RIM, AIY and AFD neurons. Here we determine the number and the expression
of the stationary points of the three neurons under study (RIM, AIY and AFD). To do this, we
compute ∆(Ĩ), defined in (3.7), with the parameters a, b, c and d given in Table 2, determined in a
previous work [32] to reproduce the qualitative behavior of these neurons. The result for each ones is
summarized in Table 1 and shown in Figure 4.

Table 1. Minimum of the function I 7→ ∆(I) for each neuron.

Neuron RIM AIY AFD
∆(Ĩ) 6.18e11 6.27e10 -1.57e07

We observe that ∆(Ĩ) > 0 for the RIM and AIY neurons so that the following corollary holds from
Proposition 3.1.

Corollary 3.1 (RIM and AIY neurons). Model (2.1) endowed with parameters values relative to the
RIM and AIY neurons has a unique stationary point V∗ given in (3.8).

Moreover, ∆(Ĩ) < 0 for the AFD neuron. We compute I1 and I2 defined in (3.5) and we find I1 = 2.62
and I2 = 3.12. Then, we have the following corollary:

Corollary 3.2 (AFD neuron). Let I1 = 2.62 and I2 = 3.12. Then, model (2.1) endowed with parameters
values relative to the AFD neuron displays one, two, or three stationary points depending on the value
of I:

• for all I ∈]m; I1[ ∪ ]I2; M[, AFD has a unique stationary point V∗(I) given in (3.8);
• for I = I1 and I = I2, AFD has two stationary points V1∗(I) and V2∗(I) given in (3.9);
• for all I ∈]I1; I2[, AFD has three stationary points V1∗(I), V2∗(I) and V3∗(I) given in (3.10).

Stability of stationary points. Consider I such as F(V∗(I), I) = 0 where F is the right-hand side of
the model (2.1). The first-order derivative of the function (V, I) 7→ F(V, I) with respect to V is given by

∂F(V, I)
∂V

= −3aV2 − 2bV − c (3.14)

Then, for each neuron, we compute from Cardan-Tartaglia formula the equilibria V∗(I) for each I ∈ I
by 0.01pA, as well as the value of the function (3.14) in V∗(I) to determine its nature. As shown in
Figure 5, the sign of the function (3.14) is always negative for RIM and AIY, showing that their unique
equilibrium point is always stable. Regarding AFD, it depends on the value of I. For any I < I1 and
I > I2, the unique equilibrium point is stable. For I = I1 and I = I2, we have one stable and one
non-hyperbolic equilibrium point. For any I ∈]I1; I2[, we have two stable equilibria and one unstable
equilibrium point.
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A

B

Figure 4. Dynamics of the function I 7→ ∆(I) for the RIM, AIY and AFD neurons. (A)
Dynamics of I 7→ ∆(I) for all I ∈ I where I is defined in (3.1). (B) Zoom of the red box
displayed in (A). The sign of the function ∆ for RIM and AIY is always positive, implying
a unique equilibrium point for all values of I. For AFD, the sign of ∆ depends on the value
of I: for all I < I1 and I > I2, ∆(I) > 0 (so a unique equilibrium point); for all I1 < I < I2,
∆(I) < 0 (so three equilibria); and for I = I1 and I = I2, ∆(I) = 0 (so two equilibria). Ĩ
denotes the argmin of the function ∆.

Figure 5. Stability of equilibria for the RIM, AIY and AFD neurons. For RIM and AIY, the
sign of the first-order derivative of the function F defined in (3.14) with respect to V is always
negative for all I ∈ I, so that their unique equilibrium point is stable. For AFD, the sign is
negative for I < I1, so for these values of injection currents, the single equilibrium point is
stable. For I = I1 and I = I2, we have two equilibria, one stable and one non-hyperbolic. For
I ∈]I1, I2[, we have three equilibria, two stable and one unstable.
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3.2. Bifurcation analysis of the model

The analysis of the stationary points carried out in the previous section shows the existence of two
non-hyperbolic equilibrium points for bistable dynamics of the model (2.1). The following proposition
gives information on the dynamics of the model (2.1) near these points.

Proposition 3.2. Let V∗(I∗) be a non-hyperbolic equilibrium point of the model (2.1) such as

3aV∗ + b , 0.

Then, a saddle-node bifurcation occurs at I = I∗.
Moreover, the normal form of the model (2.1) near the stationary point V∗(I∗) is given by

dη
dt

= µ − η2 if 3aV∗ + b > 0

dη
dt

= µ + η2 if 3aV∗ + b < 0
(3.15)

where
µ = |3aV∗ + b|(I − I∗)

Proof. For the convenience of readability, we set τ = 1.

• We carry out the following change of variables:y = V − V∗

p = I − I∗

The model (2.1) in the new coordinates becomes

dy
dt

= −a(y + V∗)3 − b(y + V∗)2 − c(y + V∗) − d + p + I∗

= −ay3 − 3aV∗y2 − 3aV2
∗ y − aV3

∗ − by2 − 2bV∗y − bV2
∗ − cy − cV∗ − d + p + I∗

:= g(y, p)

(3.16)

Therefore, (0, 0) is a non-hyperbolic stationary point of the model (3.16).
• The third order term in y is negligible in 0 compared to the second order and first order terms in

y. Then, we obtain

dy
dt

= −3aV∗y2 − 3aV2
∗ y − aV3

∗ − by2 − 2bV∗y − bV2
∗ − cy − cV∗ − d + p + I∗

= (−3aV∗ − b)y2 + (−3aV2
∗ − 2bV∗ − c)y − aV3

∗ − bV2
∗ − cV∗ − d + I∗ + p

(3.17)

Given
−3aV2

∗ − 2bV∗ − c =
∂g
∂y

(0, 0) = 0
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and
−aV3

∗ − bV2
∗ − cV∗ − d + I∗ = g(0, 0) = 0

the Eq (3.17) becomes
dy
dt

= (−3aV∗ − b)y2 + p

By assumption, −3aV∗ − b , 0, so that
dy
dt

= p − (3aV∗ + b)y2 if 3aV∗ + b > 0

dy
dt

= p + |3aV∗ + b|y2 if 3aV∗ + b < 0
(3.18)

• Finally, we rescale the Eqs (3.18) by considering the change of variable

η = |3aV∗ + b|y

so that 
dη
dt

= µ − η2 si 3aV∗ + b > 0

dη
dt

= µ + η2 si 3aV∗ + b < 0

where
µ = |3aV∗ + b|p

�

Application to the AFD neuron. In the previous section, we highlighted two non-hyperbolic
equilibrium points V∗(I1) and V∗(I2) in the case of the AFD neuron (see Figure 5 as an illustration),
where I1 and I2 are still defined in (3.5). Indeed,

∂F(V∗(I1), I1)
∂V

= 0 and
∂F(V∗(I2), I2)

∂V
= 0

where F is given in (3.14). From Proposition 3.2, the dynamics of the model (2.1) near the non-
hyperbolic equilibrium V∗(I1) is given by the following normal form:

dη
dt

= µ − η2 (3.19)

whereas near V∗(I2), the normal form reads as

dη
dt

= µ + η2. (3.20)

Finally, we obtain the bifurcation diagram displayed in Figure 6.
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A B

Figure 6. Saddle-node bifurcation diagram (A) near the non-hyperbolic stationary point
V∗(I1), and (B) near the non-hyperbolic stationary point V∗(I2).

4. Non-spiking neural network

Experimental measurements of the non-spiking neuronal activity in freely C. elegans worms show
that ON and OFF network states underlie physiological behaviors [28–30]. This section aims at
understanding how such correlated up- and down-states of the membrane potential of the neurons
can emerge from the intrinsic neuron dynamics and their couplings. To that end, we first present
the C. elegans synaptic connections and their modeling, before determining mathematical conditions
informing whether the ON- and OFF-states result from the intrinsic neuron dynamics or the synaptic
activity.

4.1. C. elegans synaptic connection

Anatomical reconstruction of the C. elegans nervous system reveals both chemical and electrical
synaptic connections [37]. Synaptic transmission at chemical synapses occurs through the release of
neurotransmitters similar to those in more complex vertebrates, such as GABA [38], glutamate [39],
acetylcholine [40], and some amines (serotonine, dopamine, etc.) [41]. Regarding C. elegans gap
junctions [42], i.e. electrical synapses, numerous works demonstrate their functional equivalence to
mammalian gap junctions (we refer to [43] for a recent review). Chemical and eletrical synapses often
coexist in same target neurons.

From a general viewpoint, neurons can transmit information through various modes of
neurotransmitter release. In the case of C. elegans, experimental biological studies show that neurons
release neurotransmitters in a graded manner [44–48]. In addition, there is evidence of a graded release
in Ascaris lumbricoides [49, 50], another extensively studied nematode related to C. elegans. More
precisely, the graded synaptic connection is defined as follows:

Definition 4.1 (Graded synaptic connection [45]). Graded synaptic connection is one in which action
potentials are required neither for transmitter release nor for postsynaptic signalling, and in which
incremental changes in membrane potential in the soma of the presynaptic neuron cause incremental
changes in membrane potential in the soma of the postsynaptic neuron.

Graded release of neurotransmitters in C. elegans has been firstly modeled in [51] based on data
from Ascaris lumbricoides [49, 50] adapted to the particular case of C. elegans neurons. In the
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following, we will refine some parameter values based on recent experimental evidences from C.
elegans.

4.2. Modeling of synaptic connections

Each instance of the models composing the network follow the general equation

τi
dVi

dt
= − f (Vi) −

N∑
j=1

(
I syn
i j + Igap

i j
)

+ Iext
i (4.1)

with
f (Vi) = aiV3

i + biV2
i + ciVi + di

where:

• Vi denotes the membrane potential of a neuron i;
• τi, ai, bi, ci, and di are the parameters of the neuron i;
• N is the number of neurons in the network;
• Iext

i is any injected current by the experimenter, modeling a sensory input;
• I syn

i j is the synaptic current flowing into neuron i from neuron j accross a single chemical synapse;
• Igap

i j the current flowing across a single gap junction between neuron j and neuron i.

Gap junctions are modeled as ohhmic resistances, while channels of chemical synapses are gated in
the postsynaptic membrane with inward current. Their respective expressions are therefore given by

Igap
i j = ggap

i j (Vi − V j)

I syn
i j = gi j(t)(Vi − Ei j)

with:

• Ei j the reversal potential for the synaptic conductance, set to 0mV for excitatory synapses and
−48mV for inhibitory synapses [51];
• V j a presynaptic membrane potential;
• ggap

i j the constant conductance of the gap junction. Recent experimental works [52, 53] directly
recorded trans-junctional currents between C. elegans neurons, from AVA to VA5, giving a
parameter value to about 0.4nS. Therefore, ggap

i j will be set to 0.4;
• gi j the synaptic conductance of the postsynaptic membrane which is gated according to

presynaptic potential V j of a sigmoidal manner. Therefore, t 7→ gi j(t) is described by the equation

dgi j

dt
=

gi j∞(V j) − gi j

τi j

where τi j is the synaptic constant time and V 7→ gi j∞(V) is a sigmoidal function relating pre-
and postsynaptic membrane potential. In the C. elegans worm, τi j � 1, so that the activation
of synaptic conductances can be considered as instantaneous [51]. Therefore, the synaptic
conductances depend only on the presynaptic membrane potential V j, i.e.

gi j(t) = gi j∞(V j)
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Finally, the expression of gi j∞ is given by

gi j∞(V j) =
gi j

1 + exp
(V i j

1/2 − V j

Vslope

)
where gi j is the maximal postsynaptic conductance, V i j

1/2 satisfies gi j∞(V i j
1/2) = gi j/2, and Vslope the

slope factor where smaller values of Vslope lead to a sharper gi j∞.

In the following section, we carry out a mathematical analysis of the dynamics of coupled neurons
based on the formalism described in this section.

4.3. Mathematical analysis of coupled non-spiking neurons

Let N be the number of neurons in the network, and i ∈ {1, . . . ,N} a given neuron. Based on the
previous section, the dynamics of the membrane potential of the neuron i is given by

τi
dVi

dt
= − f (Vi) −

N∑
j=1

gi j∞(V j)(Vi − Ei j)︸                ︷︷                ︸
I syn
i j

−

N∑
j=1

ggap
i j (Vi − V j)︸         ︷︷         ︸

Igap
i j

+Iext
i (4.2)

where

gi j∞(V j) =
gi j

1 + exp
(V i j

1/2 − V j

Vslope

)
and

f (Vi) = aiV3
i + biV2

i + ciVi + di.

Therefore, the system (4.2) can be written as follows:

τi
dVi

dt
= −aiV3

i − biV2
i − Ci(V j)Vi −Di(V j, Iext

i ) (4.3)

where 
Ci(V j) = ci +

∑N
j=1 ggap

i j +
∑N

j=1 gi j∞(V j)

Di(V j, Iext
i ) = di −

∑N
j=1 gi j∞(V j)Ei j −

∑N
j=1 ggap

i j V j − Iext
i

Stationary point analysis of the coupled models. From (4.3), the stationary points of the membrane
potential of the neuron i verify

aiV3
i + biV2

i + Ci(V j)Vi +Di(V j, Iext
i ) = 0 (4.4)
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where V j and Iext
i are considered as parameters of the system of the neuron i. Then, based on the

previous section, the discriminant of the third-degree polynomial (4.4) is given by

∆i(V j, Iext
i ) = 4pi(V j)3 + 27q2

i (V j, Iext
i ) (4.5)

where 
pi(V j) := −

b2
i

3a2
i

+
Ci(V j)

ai

qi(V j, Iext
i ) :=

2b3
i

27a3
i

−
biCi(V j)

3a2
i

+
Di(V j, Iext

i )
ai

(4.6)

where Ci andDi are defined in (4.3). Then, the following proposition holds.

Proposition 4.1. Let ∆i be defined in (4.5), pi and qi be defined in (4.6), and V j and Iext
i be the inputs

considered as parameters. Then:

• if ∆i > 0, the membrane potential of the neuron i has a unique stationary point V∗i (V j, Iext
i ) given

by

V∗i (V j, Iext
i ) =

3

√√√
−

qi(V j, Iext
i )

2
+

√
q2

i (V j, Iext
i )

4
+

p3
i (V j)
27

+
3

√√√
−

qi(V j, Iext
i )

2
−

√
q2

i (V j, Iext
i )

4
+

p3
i (V j)
27

• if ∆i = 0, the membrane potential of the neuron i exhibits two stationary points V1∗
i (V j, Iext

i ) and
V2∗

i (V j, Iext
i ) which reads as 

V1∗
i (V j, Iext

i ) = 2
3

√
−

qi(V j, Iext
i )

2

V2∗
i (V j, Iext

i ) = −
3

√
−

qi(V j, Iext
i )

2

• if ∆i < 0, the membrane potential of the neuron i has three stationary points V1∗
i (V j, Iext

i ),
V2∗

i (V j, Iext
i ) and V3∗

i (V j, Iext
i ) given by

V1∗
i (V j, Iext

i ) =

√
−

4pi(V j)
3

sin
(ρi(V j, Iext

i )
3

)
V2∗

i (V j, Iext
i ) =

√
−

4pi(V j)
3

sin
(2π + ρi(V j, Iext

i )
3

)
V3∗

i (V j, Iext
i ) =

√
−

4pi(V j)
3

sin
(4π + ρi(V j, Iext

i )
3

)
where ρi(V j, Iext

i ) = arcsin
(√
−

27q2
i (V j, Iext

i )

4p3
i (V j)

)
.
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Biological interpretation. Beyond informing us about the stationary points of a coupled neuron,
Proposition 4.1 tells us about how the coupling impacts the instrinsic dynamics of the coupled neurons.
Indeed, if ∆i > 0, then the neuron i governed by the equation (4.2) displays a near-linear intrinsic
dynamics, while it exhibits an intrinsic bistable one if ∆i < 0.
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Figure 7. Voltage dynamics of the RIM neuron coupled with the AFD bistable presynaptic
neuron. (A) Diagram of connectivity between the AFD bistable presynaptic neuron and the
RIM near-linear postsynaptic neuron. (B) Left: Evolution of the membrane potential of the
RIM neuron when its AFD bistable presynaptic neuron is stimulated by a series of injection
currents Iext, from −15 pA to 35 pA by 5 pA increments. Right: Corresponding histogram of
the membrane potential calculated from 50 ds (5000 ms) of simulation.

Application on a canonical example of two coupled neurons. Here we implement a non-spiking
neural network of two coupled neurons through a gap junction and an excitatory chemical synapse
(Figure 7.A). We consider the AFD bistable neuron as the presynaptic sensory neuron, noted A, and
the RIM near-linear neuron as the postsynaptic neuron, noted R. It is worth noting that the behavior of
the AFD and RIM neurons represents the two qualitative types of non-spiking behavior (bistable and
near-linear), and are representative of two major quantitative classes of C. elegans neurons [33].

The mathematical expression of the network is given by
τA

dVA

dt
= −aAV3

A − bAV2
A − cAVA − dA + Iext

A

τR
dVR

dt
= −aRV3

R − bRV2
R − cRVR − dR − gRA∞(VA)(VR − ERA) − ggap

RA (VR − VA)

The dynamics of the membrane potential VR of the RIM neuron shows up- and down-states when
coupled with a bistable presynaptic neuron (Figure 7.B, left), as previously reported in [32]. These
up- and down-states are apparent in the bimodal distribution of the membrane potential (Figure 7.B,
right), computed using the distplot function of the Seaborn library in Python. This is in agreement
with its bistable intracellular calcium dynamics when exposed to odor stimuli [30]. This shows that
the connectivity strongly affects the behavior of RIM: the membrane potential of a near-linear neuron
can have bimodal dynamics when coupled with a bistable neuron. The question that then arises is
whether these up- and down-states result from the intrinsic bistability of the cell, or whether they
reflect bistable synaptic inputs. In other words, we want to understand whether the connectivity has
modified the intrinsic nature of the RIM neuron, from a near-linear type to a bistable type. To address
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this issue, we use the Proposition 4.1. As a first step, the equation on the postsynaptic RIM neuron is
rewritten in the form (4.3):

τR
dVR

dt
= − aRV3

R − bRV2
R −

CR(VA)︷                       ︸︸                       ︷
(cR + gRA∞(VA) + ggap

RA ) VR

− (dR − gRA∞(VA)ERA − ggap
RA VA)︸                                ︷︷                                ︸

DR(VA, 0)

(4.7)

As the chemical synapse is excitatory, we have ERA = 0 so that
CR(VA) = cR + gRA∞(VA) + ggap

RA

DR(VA, 0) = dR − ggap
RA VA

Therefore, we plot in Figure 8.A the discriminant ∆R given in (4.5). We observe that ∆R > 0 for any
value of the presynaptic membrane potential VA. According to Proposition 4.1, the RIM postsynaptic
neuron exhibits a unique stationnary point. This allows to conclude that the nature of the intrinsic
dynamics of this coupled neuron remains near-linear despite the bimodality of its membrane potential.
Finally, Figure 8.B shows the bistable dynamics of the synaptic activity which confers a bimodal
membrane potential dynamics to the RIM neuron.

The same analysis has been conducted with the AIY neuron as the postsynaptic neuron, and AFD
as the presynaptic neuron. As can be seen in Figure 10, the same results are obtained: the apparent
bimodality of the AIY voltages is not the result of an intrinsic change in its nature, but of bistable
synaptic inputs.
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Figure 8. (A) Dynamics of the function VA 7→ ∆R(VA, 0). (B) Left: Evolution of synaptic
inputs received by the RIM neuron in response to the stimulation (current injections from
−15 pA to 35 pA by 5 pA increments) of the AFD presynaptic neuron. Right: Corresponding
histogram of the synaptic inputs calculated from 50 ds (5000 ms) for each stimulation.

5. Conclusion and discussion

Experimental observations through calcium imaging in freely moving animals (e.g. in the C.
elegans worm) show that non-spiking neural networks exhibit ON- and OFF-states. This paper aimed
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at understanding how such states could emerge from the intrinsic dynamics of neurons and their
couplings. To that end, we used a recently developed simple model of non-spiking neurons from
which a mathematical analysis of its dynamics were carried out. In particular, we determined explicit
expressions of the stationary points of the model depending on its type, near-linear or bistable. In
addition, the bifurcation dynamics of the model were studied, with the determination of its normal
form. Then, we determined mathematical conditions for determining whether the ON- and OFF-states
in non-spiking neural networks result from the intrinsic neuron dynamics or the synaptic activity.
On this basis, we highlighted that the bimodality of the membrane potential of coupled neurons
could be a consequence of bistable synaptic inputs, and not of intrinsically bistable neuron dynamics
contrary to what one might have expected. Further, we suggested that up- and down-states in non-
spiking neural networks could be driven by bistable neurons which dictate their behaviors to their
postsynaptic neurons. Such a configuration, with bistable neurons sending electrical signals to near-
linear (and bistable) postsynaptic neurons, is ubiquitous in non-spiking neural networks. Indeed, many
sensory, inter- and motorneurons in C. elegans are bistable such as ASER [9], RMD [54], AWC [55],
ASH [56], AFD [33], AWA [33], AIA [57] and numerous non identified neurons [9]. In the same
way, the bipolar [58] and horizontal [59] cells of the retina are bistable and send eletrical signals to
ganglion and amacrine cells respectively [8]. Therefore, our study gives a rigorous framework for better
understanding how the behavior of coupled non-spiking neurons depends on their intrinsic dynamics
and their couplings. In particular, it allows to gain insight into how intrinsic dynamics and couplings
of single non-spiking neurons impact neural network behaviors.

On the importance of distinguishing between bimodality and bistability. Here we stress the
importance of distinguishing between the terms bistable and bimodal. Bistability results from the
intrinsic properties of the neuron, whereas a bimodal distribution of the neuron’s voltages does not
necessarily. A bistable neuron inherently displays a bimodal distribution of its voltages, but a neuron
can exhibit a bimodality of its voltages when it is coupled without being intrinsically bistable. Indeed,
we showed in this paper that the RIM near-linear coupled neuron can display a bimodal distribution of
its voltages without being transformed into a bistable neuron.

The implications on the network signal processing could be radically different whether the
bimodality of the RIM voltages are induced by intrinsic bistability or not. Indeed, a modification of the
near-linear type of RIM into a bistable type would endow it with new computational characteristics.
In this regard, bistable neurons enhance the short-term memory capabilities of excitatory recurrent
networks [60], stabilize the persistent neural activity observed in working memory systems [61], and
reduce the effects of noise and distraction stimuli [57,62]. Therefore, if we want to understand the way
nervous systems work to produce specific behaviors, we then must understand how synaptic activities
influence the dynamics of neurons and their intrinsic nature. We argue that the current paper, through
Proposition 4.1, makes this possible in the case of non-spiking networks.

Perspective. In this paper, we determined mathematical conditions to study the influence of synaptic
activities on the neuron intrinsic dynamics. We applied them to canonical examples of two coupled
neurons, representative of widespread configurations in non-spiking networks. However, an application
on larger scale networks could be implemented in the future, for example on C. elegans networks for
which we have the fully mapped connectome (i.e. the wiring diagram of its nervous system) [21,37,63].
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In particular, a biological network of four pair of neurons displaying correlated up- and down-states
has been well-studied in a biological viewpoint [30]. This network underlies a chemotaxis behavior,
characterized by C. elegans reversal (reorientation) responses to odors. Modeling this network could
be of significant importance to deal with many issues. For instance, a currently open question is the
specific contribution of the gap junctions vs. chemical synapses in the emergence of the up- and down-
states [30].
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Appendix

A. Supplementary materials

Table 2. Parameter values of the model (2.1) for the RIM, AIY and AFD neurons.

Neuron
Parameters

a b c d τ (10−1s)

RIM 0.000024 0.0036 0.31 7.22 0.042
AIY 0.000044 0.0093 0.773 20.38 0.04
AFD 0.00033 0.048 2.31 38.99 0.06

AIMS Mathematics Volume 7, Issue 10, 19415–19439.

http://dx.doi.org/https://doi.org/10.1126/sciadv.abb3076
http://dx.doi.org/https://doi.org/10.1038/nn.2131
http://dx.doi.org/https://doi.org/10.1038/nn.2157
http://dx.doi.org/https://doi.org/10.1016/j.neuron.2011.06.038
http://dx.doi.org/https://doi.org/10.7554/eLife.50566
http://dx.doi.org/https://doi.org/10.3389/fncel.2021.809531
http://dx.doi.org/https://doi.org/10.1016/S0168-0102(00)00111-5
http://dx.doi.org/https://doi.org/10.1016/S0168-0102(00)00111-5
http://dx.doi.org/https://doi.org/10.1038/nn893
http://dx.doi.org/https://doi.org/10.1093/cercor/bhg095
http://dx.doi.org/https://doi.org/10.1371/journal.pcbi.1001066


19439

B. Supplementary figures

RIM AIY AFD

Figure 9. (Top) Evolution of the total ion currents of the RIM, AIY and AFD neurons for
different fixed values of their membrane potentials, starting from −100 mV and increasing
to 50 mV by 10 mV increments. (Bottom) Current-membrane relationships obtained from
averaged voltage-clamp recordings (RIM: n = 3; AIY: n = 7; AFD: n = 3); see Figure 2.A
for detailed explanations about how to obtain this relationship from (Top). Peak currents are
measured by the absolute maximum amplitude of currents within the first 100 ms of each
voltage step onset, while steady-state currents are measured by the averaged currents of the
last 50 ms of each voltage step. The figure has been reproduced from [33] with the consent
of the authors.
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Figure 10. (A) Evolution of the membrane potential of the AIY neuron when its AFD
bistable presynaptic neuron is stimulated by a series of injection currents Iext, from −15 pA
to 35 pA by 5 pA increments. (B) Corresponding histogram of the membrane potential
calculated from 50 ds (5000 ms) of simulation. (C) Dynamics of the function VAFD 7→

∆AIY(VAFD, 0).
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