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1. Introduction

In this paper we prove some fixed point theorems for the problem

x = A(x) + B(x) ·C(x). (1.1)

However, these kind of theorems are related to some “quadratic” problems. Let us mention the
quadratic integral equation

x(t) = g(t, x(t)) + u(t, x(t))
∫ 1

0
K(t, s) f (s, x(s))ds. (1.2)

Special cases of Eq (1.2) were investigated in connection with the applications of some kind of
problems in the theories of radiative transfer, neutron transport, and the kinetic theory of gases [4]. A
more general problem (motivated by some practical interests in plasma physics) was investigated
in [21]. See [11, 24] for other applications.

So far, two methods have been proposed to solve Eq (1.1). In the former, the measure of
non-compactness technique (see [2, 8–10, 14, 17]) is used to prove the existence of a solution for
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Eq (1.1), and in the latter, Dhage [13] used the combining Schauder’s fixed point theorem and
Banach’s contraction principle to prove the existence of a solution for Eq (1.1), also see [5]. Some
authors have combined the two methods and have proved the existence of a solution for Eq (1.1).

In this paper, we prove the existence of a positive solution for the Eq (1.1) in which the operators A,
B, and C are concave (or convex) or monotone. Also, we give a successively sequence to approximate
it. But what is our motivation to prove the existence of a positive solution for the Eq (1.1) when
the operators A, B, and C are concave (or convex) or monotone? The mentioned methods have not
provided a way to approximate the solution for the Eq (1.1). Also, in the case that the operators A, B,
and C are concave (or convex) or monotone, we do not have to suppose the continuity, compactness,
and upper-lower assumptions for the operators A, B, and C. These assumptions play an important roles
in order to prove the existence of positive solutions for nonlinear differential and integral equations and
they are difficult to verify for real problems. Furthermore, there exist more extensively applied of the
positive solution of nonlinear differential and integral equations in practical issues (see [3,12,28–31]).

The start of proving the existence of a positive solution for differential and integral equations can
be found in the Picard investigation (see [25], p.129–138). Authors in [18–20] generalized theorems
for abstract operator equations with special positive operators called u0-concave. After that, ordered
concavity (convexity) and α-concavity (convexity) were introduced by Amann [1] in 1976 and
Potter [26] in 1977. In [7, 22, 23, 32–34], some others type of concave operators were investigated.

The paper is organized as follows: In Section 2, we introduce some of the preliminaries needed for
the next sections. In Section 3, we prove some existential results for the Eq (1.1). Furthermore, we
provide some examples that satisfy the main results. In Section 4, we prove the existence of positive
solutions for nonlinear quadratic integral equations by theorems provided in the main results section.
Section 5 is devoted to concluding and proposing new ideas.

2. Some basic definitions and notations

Throughout this paper, we assume that E is a real Banach algebra. Which means, E is a real Banach
space in which an operation of multiplication is defined, subject to the following properties (for all
x, y, z ∈ E, λ ∈ R):

(1) (xy)z = x(yz);
(2) x(y + z) = xy + xz and (x + y)z = xz + yz;
(3) λ(xy) = (λx)y = x(λy);
(4) ||xy|| ≤ ||x||||y||.

Now let us recall the concepts of cone and partial order for a Banach algebra. A subset P of E is
called a cone of E if

(1) P is a non-empty closed and θ ∈ P;
(2) λP + γP ⊆ P for all non-negative real numbers λ, γ;
(3) P2 = P · P ⊆ P;
(4) P ∩ (−P) = {θ},

where θ denotes the null of E. For a given cone P ⊆ E, we can define a partial ordering ≤ with respect
to P by x ≤ y if and only if y− x ∈ P. x < y will stand for x ≤ y and x , y. The cone P is called normal
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if there is a number M > m0 such that for all x, y ∈ E,

θ ≤ x ≤ y⇒ ||x|| ≤ M||y||.

The last positive number satisfying the above inequality is called the normal constant of P. In the
following, we always assume that P is a cone in E and, ≤ is the partial ordering with respect to P. We
call such space ordered Banach algebra and denote it by (OBA).

If x1, x2 ∈ E, the set [x1, x2] = {x ∈ E | x1 6 x 6 x2} is called the order interval between x1 and x2.
An operator A : E → E is called increasing (decreasing) if x 6 y implies Ax 6 Ay (Ax > Ay) where
x, y ∈ E. For h > θ (i.e. h > θ and h , θ), set

Ph = {x | x ∈ E, ∃ λ(x) > 0, µ(x) > 0, s.t. λ(x)h 6 x 6 µ(x)h}.

It is easy to notice that Ph ⊆ P.

Lemma 2.1. ( [15]) The two following assumptions are equivalent:
(1) P is a normal cone,
(2) xn 6 zn 6 yn (n = 1, 2, 3, ...) and ||xn − x|| → 0, ||yn − x|| → 0, imply that ||zn − x|| → 0.

Definition 2.1. ( [16]) Let α be a real number such that 0 ≤ α < 1. An operator A : P → P is called
an α-concave ((-α)-convex) if it satisfies,

A(tx) > tαAx (A(tx) 6 t−αAx), ∀t ∈ (0, 1), x ∈ P. (2.1)

Theorem 2.2. ( [6]) Assume that P is a normal cone and the operator T satisfies:
(D1) T : Ph → Ph is an increasing self-map in Ph;
(D2) For any x ∈ Ph and t ∈ (0, 1), there exists β(t) ∈ (0, 1) such that T (tx) > tβ(t)T x;
(D3) For every x0 ∈ P, there is a constant l ≥ 0 such that x0 ∈ [θ, lh].

Then, operator equation x = T x + x0 has a unique solution in Ph.

3. Main results

Now the main results could be stated and proved.

Theorem 3.1. Let P be a normal cone, A : P → P is an increasing α-concave operator, B : P → P
is an increasing γ1-concave operator, and C : P → P is an increasing γ2-concave operator such that
γ1 + γ2 = γ 6 1. Also, suppose that

(i) there exists h > θ such that h · h ∈ Ph, and Ah, Bh,Ch ∈ Ph;
(ii) there exists a constant δ0 > 0 such that for all x ∈ P, we have Ax > δ0Bx ·Cx.
Then, the operator Eq (1.1) has a unique solution x∗ in Ph. Moreover, for the constructing

successively sequence yn = Ayn−1 + Byn−1 · Cyn−1(n = 1, 2, · · · ) and for any initial value y0 ∈ Ph, we
have yn → x∗ as n→ ∞.

Proof. Since Ah, Bh,Ch ∈ Ph, there exist constants λ1, λ2, µ1, µ2, υ1, υ2 > 0 such that λ1h 6 Ah 6
λ2h, µ1h 6 Bh 6 µ2h, υ1h 6 Ch 6 υ2h. We have

λ1h + µ1υ1h · h 6 Ah + Bh ·Ch 6 λ2h + µ2υ2h · h.
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By (i), there exist r, s > 0 such that rh 6 h · h 6 sh. We get

(λ1 + µ1υ1r)h 6 Ah + Bh ·Ch 6 (λ2 + µ2υ2s)h.

Hence, we can write K1h 6 Ah + Bh · Ch 6 J1h, where K1 = λ1 + µ1υ1r and J1 = λ2 + µ2υ2s. Thus,
Ah + Bh · Ch ∈ Ph. Define the operator T = A + B · C by T x = Ax + Bx · Cx. Then T : P → P and
Th ∈ Ph. Next, we show that T : Ph → Ph. By (2.1), for any t ∈ (0, 1) and x ∈ P, we have

A(
1
t

x) 6
1
tα

Ax, B(
1
t

x) 6
1
tγ1

Bx, C(
1
t

x) 6
1
tγ2

Cx.

For any x ∈ Ph, we can choose a sufficiently small number t0 ∈ (0, 1) such that

t0h 6 x 6
1
t0

h. (3.1)

Note that T : P→ P is an increasing self-map and by (3.1),

T x = Ax + Bx ·Cx 6 A(
1
t0

h) + B(
1
t0

h) ·C(
1
t0

h)

6
1
tα0

Ah +
1
tγ0

Bh ·Ch 6
λ2

tα0
h +

µ2υ2

tγ0
h · h = J2h,

where J2 = λ2
tα0

+
µ2υ2

tγ0
s. Also,

T x = Ax + Bx ·Cx > A(t0h) + B(t0h) ·C(t0h)
> tα0 Ah + tγ0 Bh ·Ch > λ1tα0 h + µ1υ1tγ0h · h = K2h,

where K2 = λ1tα0 +µ1υ1tγ0r. Thus T x ∈ Ph. Henece, T : Ph → Ph. Moreover, A : Ph → Ph, B : Ph → Ph

and C : Ph → Ph. In the following, we show that for any t ∈ (0, 1), there exists β0(t) ∈ (α, 1) with
respect to t, such that for all x ∈ Ph,

T (tx) ≥ tβ0(t)T x, ∀t ∈ (0, 1). (3.2)

By (ii), there exists δ0 > 0 such that Ax > δ0Bx ·Cx. Consider the following function:

f (t) =
tβ − t
tα − tβ

, ∀t ∈ (0, 1), where β ∈ (α, 1).

It is easy to prove that f is non-negative in (0, 1). Especially, for any t ∈ (0, 1) we have tβ > t and
tα > tβ. Furthermore, for fixing t ∈ (0, 1), we have limβ→1− f (t) = 0. So, there exists β0(t) ∈ (α, 1) with
respect to t such that

tβ0(t) − t
tα − tβ0(t) 6 δ0, t ∈ (0, 1).

Hence, we have

Ax > δ0Bx ·Cx >
tβ0(t) − t
tα − tβ0(t) Bx ·Cx, ∀t ∈ (0, 1), x ∈ Ph.
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Then, we can get

tαAx + tBx ·Cx > tβ0(t)Ax + tβ0(t)Bx ·Cx, ∀t ∈ (0, 1), x ∈ Ph.

Consequently, for any t ∈ (0, 1) and x ∈ Ph we have

T (tx) = A(tx) + B(tx) ·C(tx) > tαAx + tγBx ·Cx > tαAx + tBx ·Cx

> tβ0(t)Ax + tβ0(t)Bx ·Cx, ∀t ∈ (0, 1), x ∈ Ph.

Therefore,
T (tx) > tβ0(t)T (x), ∀t ∈ (0, 1), x ∈ Ph.

Let x0 = θ. Application of Theorem 2.2 implies that the equation T x = x has a unique solution x∗ in
Ph. It can be concluded that the operator Eq (1.1) has a unique solution x∗ in Ph. Now we can construct
the successively sequence yn = Ayn−1 + Byn−1 · Cyn−1(n = 1, 2, · · · ) for any initial point y0 ∈ Ph. Since
y0 ∈ Ph and Ty0 ∈ Ph, we can choose a sufficiently small number t0 ∈ (0, 1) such that

t0y0 6 Ty0 6
1
t0

y0. (3.3)

Note that 0 < β0(t0) < 1, and we can also take a positive integer k such that

k >
1

1 − β0(t0)
. (3.4)

Put u0 = tk
0y0, v0 = 1

tk0
y0. Evidently, u0, v0 ∈ Ph and u0 6 y0 6 v0. By the monotonicity of T , we have

Tu0 6 Tv0. Furthermore, by combining (3.2) and (3.3) we have

Tu0 = T (tk
0y0) = T (t0tk−1

0 y0)

> tβ0(t0)
0 T (t0tk−2

0 y0) > tβ0(t0)
0 tβ0(t0)

0 T (tk−2
0 y0)

> · · · > (tβ0(t0)
0 )kTy0 > (tβ0(t0)

0 )kt0y0 = tkβ0(t0)+1
0 y0. (3.5)

By (3.4), one can obtains that kβ0(t0) + 1 < k. Thus

tkβ0(t0)+1
0 > tk

0. (3.6)

Therefore, Tu0 > tkβ0(t0)+1
0 y0 > tk

0y0 = u0. By (3.2),

T (
1
t

x) 6
1

tβ0(t) T (x), ∀t ∈ (0, 1), x ∈ Ph.

Thus,

Tv0 = T (
1
tk
0

y0) = T (
1
t0

1
tk
0

y0) 6
1

tβ0(t0)
0

T (
1

tk−1
0

y0) =
1

tβ0(t0)
0

T (
1
t0

1
tk−2
0

y0)

6
1

tβ0(t0)
0

1

tβ0(t0)
0

T (
1

tk−2
0

y0) 6 · · · 6
1

(tβ0(t0)
0 )k

T (y0) 6
1

tkβ0(t0)+1
0

y0. (3.7)
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The application of (3.6) implies Tv0 6
1

t
kβ0(t0)+1
0

y0 6
1
tk0

y0 = v0. Thus, u0 6 Tu0 6 Tv0 6 v0. For

n = 1, 2, · · · , let un = Tun−1, vn = Tvn−1. Then, un 6 yn 6 vn (n = 1, 2, · · · ). Similar to the proof
of Theorem 1.3 of [35], there exists y∗ ∈ Ph such that Ty∗ = y∗ and limn→∞ un = lim vn = y∗. Then,
by Lemma 2.1, yn → y∗(n → ∞). Since the fixed point of the operator T in Ph is unique, we have
x∗ = y∗. �

Example 3.1. Consider the Banach space E = C[0, 1] with the supremum norm. E is a Banach algebra
by the multiplication (x · y)(t) = x(t) · y(t). Assume that P = {x(t) ∈ C[0, 1] | x(t) > 0, ∀t ∈ [0, 1]}. Then
E is an (OBA) by the cone P. Let us define operators A, B,C : P −→ P as the following

A(x) =
√

x + 1, B(x) =
1

√
x + 1

, C(x) = 1.

Assume that h(t) = 1. We can prove that all of the assumptions of Theorem 3.1 are satisfied and the
operator T = A + B ·C has a unique positive solution.

Example 3.2. Consider the Banach space E = L∞[0, 1] with the L∞ norm. E is a Banach algebra by
the multiplication (x · y)(t) = x(t) · y(t). Assume that P = {x(t) ∈ L∞[0, 1] | x(t) > 0, ∀t ∈ [0, 1]}. Then
E is an (OBA) by the cone P. For any x ∈ P and t ∈ [0, 1], let us define

A(x) =
1

√
x + 1

, B(x) =
√

x + 1, C(x) = 1, h(t) = 1.

It is easy to prove that for any x ∈ P, A(x), B(x),C(x) ∈ P. Also we have h > 0. Therefore, A, B,C, h :
P −→ P. It is easily noticed that, A is an α-concave operator (for some 0 < α < 1), B is a γ1 concave
operator (for some 0 6 γ1 < 1), and C is a γ2 concave operator (for some 0 6 γ2 < 1) such that
γ1 + γ1 6 1. Now let us consider that

x(t) =

{
n t = 1

n ,

0 t ∈ [0, 1]\{1n }n.

Then, x(t) ∈ P and for t = 1
n we have

A(x(
1
n

)) =
1√

x(1
n ) + 1

=
1

√
n + 1

, B(x(
1
n

)) =

√
x(

1
n

) + 1 =
√

n + 1.

Therefore, there is no δ0 > 0 such that for all t ∈ [0, 1] we have Ax(t) > δ0Bx(t) · Cx(t). Hence, the
assumption (ii) of Theorem 3.1 is not satisfied. It is easy to prove that the rest of the assumptions of
Theorem 3.1 are satisfied and T = A + B ·C has a unique positive solution.

Example 3.3. Consider E, that is defined in Example 3.1. Let us define operators A, B,C : P −→ P as
the following

A(x) = 11 + sin(x), B(x) = 2 + sin(x), C(x) = 2 + cos(x).

Suppose that h(t) = π
4 . We have A, B,C : P −→ P and h · h > 0. Also, for all x ∈ P, Ax > Bx · Cx.

None of the functions A, B, and C are concave. But the operator T = A + B · C has a unique positive
solution.
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Example 3.4. Consider the Banach space E = C[0, 1] with the supremum norm. Let us consider the
multiplication

( f · g)(t) =

∫ x

0
f (t)g(x − t)dt

for any x, y ∈ E. E is a Banach algebra( [27]). Assume that, P = {x(t) ∈ C[0, 1] | x(t) > 0, ∀t ∈ [0, 1]}.
Then, E is an (OBA) by the cone P. Now suppose that, h(t) = 1 > 0. We have h · h(x) = x. Then,
h · h < Ph.

Example 3.5. Consider E that is defined in Example 3.4. Let h(t) = 1 > 0. Let us define the operators
A, B,C : P −→ P as the following

A(x) =
√

x + 1, B(x) =
1

√
x + 1

+ 1, C(x) = 1.

We can prove that all of the assumptions of Theorem 3.1, except h · h > 0, are satisfied. Operator
T = A + B ·C has no positive solution.

Let the operators A, B,C : P −→ P be defined as the following

A(x) =
√

x + 1, B(x) = 1, C(x) =
1
2
.

It is easy to prove that all of the assumptions of the Theorem 3.1, except the assumption h · h > 0, are
satisfied. The equation T = A + B ·C has a unique positive solution.

Lemma 3.2. Assume that, P is a normal cone and the operator A satisfies the following conditions:
(D1) A : Ph → Ph is decreasing in Ph;
(D2) For any x ∈ Ph and t ∈ (0, 1), there exists α(t) ∈ (0, 1) such that A(tx) 6 t−α(t)Ax.

Then, there exist u0, v0 ∈ Ph such that u0 < v0, u0 6 Av0 6 Au0 ≤ v0.

Proof. Since Ah ∈ Ph, we can select a sufficiently small number t0 such that

t0h 6 Ah 6
1
t0

h. (3.8)

Note that 0 < α(t0) < 1, and we can choose a positive integer k such that

k >
1

1 − α(t0)
. (3.9)

Set u0 = tk
0h and v0 = 1

tk0
h. Evidently, u0, v0 ∈ Ph and u0 < v0. By the monotonicity of A, Au0 > Av0.

Furthermore, by (D2) and (3.8) we have,

Au0 = A(tk
0h) = A(t0tk−1

0 h)

6 t−α(t0)
0 A(tk−1

0 h) 6 · · · 6 t−kα(t0)
0 A(t0h) (3.10)

6 t−kα(t0)
0

1
t0

h = t−kα(t0)−1
0 h.

By (3.10), we get that kα(t0) + 1 < k. Thus,

t−kα(t0)−1
0 < t−k

0 . (3.11)
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Hence,
Au0 6 t−kα(t0)−1

0 h < t−k
0 h < v0.

By (D2),
tα(t)A(x) 6 A(

x
t
) ∀t ∈ (0, t), x ∈ Ph. (3.12)

Thus,

Av0 = A(
1
tk
0

h) = A(
1
t0

1
tk−1
0

h) > tα(t0)
0 A(

1
tk−1
0

h) = tα(t0)
0 A(

1
t0

1
tk−2
0

h)

> tα(t0)
0 tα(t0)

0 A(
1

tk−2
0

h) > · · · > tkα(t0)
0 A(

1
t0

h) = tkα(t0)+1
0 h.

Application of (3.9) implies that Av0 > tkα(t0)+1
0 h > tk

0h = u0. So we have

u0 6 Av0 6 Au0 6 v0. (3.13)

�

Theorem 3.3. Assume that P is normal cone, the operator T satisfies (D1) and (D2) of Lemma 3.2,
and there is a constant l > 0 such that x0 ∈ [θ, lh].

Then, the operator equation T x + x0 = x has a unique solution in Ph.

Proof. For all x ∈ Ph, we have T x ∈ Ph. Then, there exist real numbers λ, µ > 0 such that λh 6 T x 6
µh. Thus,

λh 6 T x + x0 6 (µ + l)h. (3.14)

Hence,
T x + x0 ∈ Ph, ∀x ∈ Ph. (3.15)

Define the operator F by,
Fx = T x + x0, ∀x ∈ Ph. (3.16)

By (3.15), and considering the monotonicity of the operator T , the operator F : Ph → Ph is decreasing.
Furthermore, for all x ∈ Ph and t ∈ (0, 1), we have

F(tx) = T (tx) + x0 6 t−α(t)T (x) + t−α(t)x0 6 t−α(t)F(x). (3.17)

Lemma 3.2 implies that, there exist u0, v0 ∈ Ph such that

u0 < v0, u0 6 Fv0 6 Fu0 6 v0. (3.18)

Construct the successively sequences

un = Fun−1, vn = Fvn−1, n = 1, 2, · · · .

By the monotonicity of F, we have v1 = Fv0 6 Fu0 = u1. Similarly, we have

u0 6 v1 6 u2 6 v2 6 u1 6 v0. (3.19)
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By continuing this process, for n = 1, 2, · · · , we get

u0 6 v1 6 u2 6 · · · 6 u2n 6 v2n+1 6 u2n+1 6 v2n 6 · · · 6 v2 6 u1 6 v0. (3.20)

Therefore, {u2n}, {v2n+1} are the increasing and {u2n+1}, {v2n} are decreasing sequences. By (3.20), for
n = 1, 2, · · · , we have

u2n 6 v2n, v2n+1 6 u2n+1. (3.21)

Assume that,
t2n = sup{t | tv2n 6 u2n}, t2n+1 = sup{t | tu2n+1 6 v2n+1}.

Thus, for n = 1, 2, · · · , we have u2n > t2nv2n and v2n+1 > t2n+1v2n+1. Then,

u2n+1 > u2n > t2nv2n > t2nv2n+1 n = 1, 2, · · · ,

v2m > v2m+1 > t2m+1u2m+1 > t2m+1u2m m = 1, 2, · · · .

Therefore, tn+1 > tn, i.e. tn is an increasing sequence such that tn ⊆ (0, 1]. If tn → t∗ as n → ∞, then
t∗ = 1. Otherwise, 0 < t∗ < 1. We distinguish two cases:
Case (i): There exists an integer N such that tN = t∗. In this case, we know tn = t∗, for all n > N. So
for n > N, we have

u2n+1 = Fu2n 6 F(t∗v2n) 6 (t∗)−α(t∗)F(v2n) = (t∗)−α(t∗)v2n+1,

i.e. (t∗)α(t∗)u2n+1 6 v2n+1. By the definition of t2n+1, we have t2n+1 = t∗ > (t∗)α(t∗) > t∗, which is a
contradiction.
Case (ii): For all integer n, tn < t∗. Then,

v2n+1 = F(v2n) > F(t−1
2n u2n) = F(

t∗

t2n

u2n

t∗
)

= F(
t∗
t2n

u2n

t∗
) > (t∗)α(t∗)F(

t∗

t2n
u2n) = (t∗)α(t∗)F(

u2n
t2n
t∗

)

> (t∗)α(t∗)(
t2n

t∗
)(α( t2n

t∗ ))Fu2n > (t∗)α(t∗)(
t2n

t∗
)u2n+1

= t2n(t∗)α(t∗)−1u2n+1. (3.22)

By the definition of tn, we have t2n+1 > t2n(t∗)α(t∗)−1. If n → ∞, we get t∗ > (t∗)α(t∗) > t∗, which is a
contradiction. Thus, limn→∞tn = 1. For any natural number p, we have

θ 6 u2(n+p) − u2n 6 v2(n+p) − t2nv2n 6 v2n − t2nv2n = (1 − t2n)v2n 6 (1 − t2n)v0,

θ 6 v2n − v2(n+p) 6 v2n − u2n 6 v0 − u2n 6 v0 − t2nv0 6 (1 − t2n)v0.

Since P is normal, we have

||u2(n+p) − u2n|| 6 N(1 − t2n)||v0|| → 0 (n→ ∞),

||v2n − v2(n+p)|| ≤ N(1 − t2n)||v0|| → 0 (n→ ∞),
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where N is the normal constant. Hence, we can claim that u2n and v2n are Cauchy sequences. Since E
is a complete space, there exist u∗ and v∗ such that u2n → u∗, v2n → v∗ as n → ∞. By (3.20), we know
that u2n 6 u∗ 6 v∗ 6 v2n where u∗, v∗ ∈ Ph. Then

θ 6 v∗ − u∗ 6 v2n − u2n 6 (1 − t2n)v0.

Furthermore,
||v∗ − u∗|| 6 N(1 − t2n)||v0|| → 0 (n→ ∞).

Thus, u∗ = v∗. Let x∗ = u∗ = v∗. Also, by (3.20), we have

θ 6 v2n+1 − u2n 6 v2n − u2n,

θ 6 u2n+1 − v2n+1 6 v2n − v2n+1.

Then v2n+1 → x∗ and u2n+1 → x∗ as n→ ∞. By the inequality u2n 6 x∗ 6 v2n for n = 1, 2, · · · , we have

v2n+1 = Fv2n > Fx∗ > Fu2n = u2n+1.

If n→ ∞, we get x∗ = Fx∗. That is, x∗ is a fixed point of F in Ph. In the following, we prove that x∗ is
the unique fixed point of F in Ph. Let x̄ be any fixed point of F in Ph. Set r1 = sup{r > 0 | rx∗ 6 x̄ 6
1
r x∗}. Evidently, 0 < r1 < ∞ and r1x∗ 6 x̄ 6 1

r1
x∗. Next, we prove that r1 > 1. If 0 < r1 < 1,

rα(r1)
1 x∗ 6 F(

x∗

r1
) 6 x̄ = Fx̄ 6 F(r1x∗) 6 r−α(r1)

1 x∗.

However, by rα(r1)
1 x∗ 6 x̄, rα(r1)

1 6 r1. Since rα(r1)
1 > r1, we get a contradiction. Hence, r1 > 1 and we get

x̄ > r1x∗ > x∗. Similarly, we can prove that x∗ > x̄, and x∗ = x̄. Therefore, F has a unique fixed point
x∗ in Ph. That is to say, T x + x0 = x has a unique solution in Ph. �

Comment 3.4. In [26], Theorem 3.3 is proved by Hilbert’s projective metric method where, α is
constant function. But, the successively sequence that converges to the fixed point has not been
obtained.

Theorem 3.5. Consider that P is a normal cone, A, B : P→ P are decreasing operators, and C : P→
P is a decreasing (-α)-convex operator. Assume that
(i) there exists h > θ such that Ah ∈ Ph, Bh ∈ Ph and Ch ∈ Ph;
(ii) h · h ∈ Ph.

Then, the operator Eq (1.1) has a unique solution x∗ in Ph. Moreover, for the constructing
successively sequence yn = Ayn−1 + Byn−1 · Cyn−1, n = 1, 2, ... and for any initial value y0 ∈ Ph, we
have yn → x∗ as n→ ∞.

Proof. Since Ah, Bh,Ch ∈ Ph, there exist constants λ1, λ2, µ1, µ2, υ1, υ2 > 0 such that λ1h 6 Ah 6
λ2h, µ1h 6 Bh 6 µ2h, υ1h 6 Ch 6 υ2h. Similar to the proof of the Theorem 3.1, we can prove that, if
the operator T = A + B ·C is defined by T x = Ax + Bx ·Cx. Then, T : P→ P and Th ∈ Ph. Next, we
show that T : Ph → Ph. By (2.1) and the monotonicity of A, B, we have

A(
1
t

x) > Ax, B(
1
t

x) > Bx, C(
1
t

x) ≥ tαAx, t ∈ (0, 1), x ∈ P.
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For any x ∈ Ph, we can select a sufficiently small number t0 ∈ (0, 1) such that

t0h 6 x 6
1
t0

h. (3.23)

T : P→ P is decreasing and by (3.23) we have,

T x = Ax + Bx ·Cx > A(
1
t0

h) + B(
1
t0

h) ·C(
1
t0

h)

> Ah + tα0 Bh ·Ch > λ2h + µ2υ2tα0 h · h.

By (ii), there exist s > 0 such that 1
s h 6 h · h 6 sh. So, we have T x > J2h where J2 = λ2 + µ2υ2

1
s tα0 .

Also,

T x = Ax + Bx ·Cx 6 A(t0h) + B(t0h) ·C(t0h)
6 Ah + t−α0 Bh ·Ch 6 λ1h + µ1υ1t−α0 h · h.

Hence, we have T x 6 K2h, where K2 = λ1 + µ1υ1t−α0 s. Thus, T x ∈ Ph. So, T : Ph → Ph. Moreover,
A : Ph → Ph, B : Ph → Ph, and C : Ph → Ph. On the other hand, for any t ∈ (0, 1) and x ∈ Ph,

Ax + t−αBx ·Cx 6 t−α(Ax + Bx ·Cx).

Then,
T (tx) = A(tx) + B(tx) ·C(tx) 6 t−αT (x) ∀t ∈ (0, 1), x ∈ Ph.

Therefore, T is the (-α)-convex operator. Let, x0 = θ. Application of Theorem 3.3 implies that the
equation T x = x has a unique solution x∗ in Ph. That is, the operator Eq (1.1) has a unique solution x∗

in Ph. Now, we construct successively the sequence yn = Ayn−1 + Byn−1 · Cyn−1(n = 1, 2, · · · ) for any
initial point y0 ∈ Ph. Since y0 ∈ Ph and Ty0 ∈ Ph, we can choose a sufficiently small number t0 ∈ (0, 1)
such that

t0y0 6 Ty0 6
1
t0

y0. (3.24)

Since 0 < α(t0) < 1, we can also take a positive integer k such that

k >
1

1 − α(t0)
. (3.25)

Set u0 = tk
0y0, v0 = 1

tk0
y0. Let un+1 = Tun, vn+1 = Tvn(n = 1, 2, · · · ). By Theorem 3.3, un → x∗ and

vn → x∗(as n → ∞). By (3.25), we have u0 6 y1 6 v0. Let us define yn+1 = Tyn. Since T is monotone
decreasing and by (3.20), we get

v2n−1 6 y2n 6 u2n−1, v2n 6 y2n+1 6 u2n, n = 1, 2, · · · . (3.26)

Then by Lemma 2.1, y2n → x∗, y2n+1 → x∗ as n → ∞. Thus, for ε > 0, there exists an integer N such
that for n > N,

||y2n − x∗|| < ε, ||y2n+1 − x∗|| < ε. (3.27)

Therefore, (3.27) show that yn → x∗ as n→ ∞. �
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4. Applications to nonlinear integral equation

Theorem 4.1. Assume that E = C[0, 1], P = {x(t) ∈ C[0, 1] | x(t) > 0, ∀t ∈ [0, 1]},
(H1) g(t, x) : [0, 1]× [0,∞)→ [0,∞), u(t, x) : [0, 1]× [0,∞)→ [0,∞) and f (t, x) : [0, 1]× [0,∞)→

[0,∞) are increasing operators with respect to x;
(H2) there exists h > θ in P such that g(t, h), u(t, h) ∈ Ph and h · h ∈ Ph;
(H3) g(t, x) is an α-concave operator, f (t, x) is a γ1-concave operator, and u(t, x) is a γ2-concave

operator with respect to x such that γ1 + γ2 = γ 6 1;
(H4) G(t, s) is non-negative for any t, s ∈ [0, 1]. Also, for any fixed t ∈ [0, 1], the function G(t, s) is

bounded in [0, 1] and for any fixed s ∈ [0, 1], we have G(t, s) ∈ Ph;
(H5) there exists δ0 > 0 such that for any t ∈ [0, 1] and any y ∈ [0,∞) we have

g(t, y) > δ0u(t, y) ·
∫ 1

0
G(t, s) f (s, y)ds.

Then the problem

x(t) = g(t, x(t)) + u(t, x(t))
∫ 1

0
G(t, s) f (s, x(s))ds

has a unique positive solution x∗ in Ph. Moreover, for any x0 ∈ Ph and for the constructing successively
sequence

xn+1(t) = g(t, xn(t)) + u(t, xn(t))
∫ 1

0
G(t, s) f (s, xn(s))ds, n = 0, 1, 2, · · · ,

we have ||xn − x∗|| → 0 as n→ ∞.

Proof. Let us define the operators A : P→ E, B : P→ E, and C : P→ E as the following:

(Ax)(t) = g(t, x(t)), (Bx)(t) = u(t, x(t)),

(Cx)(t) =

∫ 1

0
G(t, s) f (s, x(s))ds.

It can easily be noticed that x∗ is a solution of the problem (4.1) if x∗ = Ax∗ + Bx∗ · Cx∗. By (H1) and
(H4), we notice that A : P→ P, B : P→ P and C : P→ P. By (H3), for any λ ∈ (0, 1) and x ∈ P, we
have

C(λx)(t) =

∫ 1

0
G(t, s) f (s, λx(s))ds

> λγ1

∫ 1

0
G(t, s) f (s, x(s))ds = λγ1C(x)(t).

Then, C is a γ1-concave operator with respect to x. By (H2), Ah ∈ Ph and Bh ∈ Ph. By (H4), for any
s ∈ [0, 1] there exist λ(s), µ(s) > 0 such that

λ(s)h(t) 6 G(t, s) 6 µ(s)h(t).

Since G(t, s) is bounded, λ(s), µ(s) are bounded positive real numbers(for any s ∈ [0, 1]). Therefore,

Ch(t) =

∫ 1

0
G(t, s) f (s, h(s))ds 6

∫ 1

0
µ(s)h(t) f (s, 1)ds = h(t)

∫ 1

0
µ(s) f (s, 1)ds
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and

Ch(t) =

∫ 1

0
G(t, s) f (s, h(s))ds >

∫ 1

0
λ(s)h(t) f (s, 0)ds = h(t)

∫ 1

0
λ(s) f (s, 0)ds.

Thus, Ch ∈ Ph. Hence, the condition (i) of Theorem 3.1 is satisfied. By (H2), the condition (iii) of
Theorem 3.1 is satisfied and by (H5) the condition (ii) of Theorem 3.1 is satisfied. Then, Theorem 4.1
follows from Theorem 3.1. �

Example 4.1. Assume that E = C[0, 1], P = {x(t) ∈ C[0, 1] | x(t) > 0, ∀t ∈ [0, 1]}. Let us define

g(t, x(t)) =

√
x(t)

1 +
√

x(t)
, u(t, x(t)) =

x(t)√
1 + x2(t)

, f (t, x(t)) =
√

1 + x(t)

for t ∈ [0, 1] and x ∈ P. It is easy to prove that g is α−concave ( for α = 1
2 ). Also, f is a γ1-concave

operator (for γ1 = 0) and u is a γ2-concave operator (for γ2 = 1) with respect to x. Suppose that
G(t, s) = e−ts

1+ts ( for t, s ∈ [0, 1] ). It is easy to see that g, u, f , and G are satisfied in all assumptions of
Theorem 4.1 for h(t) = 1. Hence, the problem

x(t) =

√
x(t)

1 +
√

x(t)
+

x(t)√
1 + x2(t)

∫ 1

0

e−ts√1 + x(s)
1 + ts

ds

has a unique positive solution.

Theorem 4.2. Assume that E = C[0, 1], P = {x(t) ∈ C[0, 1] | x(t) > 0, ∀t ∈ [0, 1]},
(H1) g(t, x) : [0, 1]× [0,∞)→ [0,∞), u(t, x) : [0, 1]× [0,∞)→ [0,∞) and f (t, x) : [0, 1]× [0,∞)→

[0,∞) are decreasing with respect to x;
(H2) there exists h > θ in P such that g(t, h), u(t, h) ∈ Ph, and h · h ∈ Ph;
(H3) f (t, x) is (-α)-convex with respect to x;
(H4) G(t, s) is non-negative for any t, s ∈ [0, 1], for any fixed t ∈ [0, 1], the function G(t, s) is

bounded in [0, 1], and for any fixed s ∈ [0, 1], we have G(t, s) ∈ Ph.
Then, the problem

x(t) = g(t, x(t)) + u(t, x(t))
∫ 1

0
G(t, s) f (s, x(s))ds,

has a unique positive solution x∗ in Ph. Moreover, for any x0 ∈ Ph and for the constructing successively
sequence

xn+1(t) = g(t, xn(t)) + u(t, xn(t))
∫ 1

0
G(t, s) f (s, xn(s))ds, n = 0, 1, 2, · · ·

we have ||xn − x∗|| → 0 as n→ ∞.

Proof. Let us define the operators A : P→ E, B : P→ E and C : P→ E as the following:

(Ax)(t) = g(t, x(t)), (Bx)(t) = u(t, x(t)),

(Cx)(t) =

∫ 1

0
G(t, s) f (s, x(s))ds.
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It is easily noticed that if x∗ = Ax∗ + Bx∗ ·Cx∗, x∗ is a solution of the problem (4.1). By (H1) and (H4),
we have A : P→ P, B : P→ P and C : P→ P. By (H3), for any λ ∈ (0, 1) and x ∈ P we have,

C(λx)(t) =

∫ 1

0
G(t, s) f (s, λx(s))ds > λ−α

∫ 1

0
G(t, s) f (s, x(s))ds = λ−αC(x)(t).

Hence, C is an (-α)-convex operator. By (H2), we have Ah ∈ Ph and Bh ∈ Ph. By (H4), for any
s ∈ [0, 1], there exist λ(s) and µ(s) > 0 such that

λ(s)h(t) 6 G(t, s) 6 µ(s)h(t).

Since G(t, s) is bounded, λ(s) and µ(s) are bounded positive real numbers (for any s ∈ [0, 1]).
Therefore, we have

Ch(t) =

∫ 1

0
G(t, s) f (s, h(s))ds 6

∫ 1

0
µ(s)h(t) f (s, 0)ds

= h(t)
∫ 1

0
µ(s) f (s, 0)ds

and

Ch(t) =

∫ 1

0
G(t, s) f (s, h(s))ds >

∫ 1

0
λ(s)h(t) f (s, 1)ds

= h(t)
∫ 1

0
λ(s) f (s, 1)ds.

Thus, Ch ∈ Ph. Hence, the assumption (i) of Theorem 3.5 is satisfied. By (H2), the assumption (iii) of
Theorem 3.5 is satisfied. Then, Theorem 4.2 follows from Theorem 3.5. �

Example 4.2. Assume that E = C[0, 1], P = {x(t) ∈ C[0, 1] | x(t) > 0, ∀t ∈ [0, 1]}. Let us define,

g(t, x(t)) =
1

1 + x2(t)
, u(t, x(t)) = arccot(x(t) − 4), f (t, x(t)) =

1
√

1 + x(t)
,

for t ∈ [0, 1] and x ∈ P. It can be proved that f is (-α)-convex ( for α = 1
2 ). Also u, g are convex

sub-homogeneous in x. Suppose that G(t, s) = e−ts

1+ts ( for t, s ∈ [0, 1]). We can see that g, u, f , and G are
satisfied in all assumptions of Theorem 4.2 for h(t) = 1. Then the problem

x(t) =
1

1 + x2(t)
+ arccot(x(t) − 4)

∫ 1

0

e−ts

1 + ts
1

√
1 + x(t)

ds

has a unique positive solution.

5. Conclusions

In this paper, we firstly proved the existence of a positive solution for the Eq (1.1) and approximated
it by the constructing successively sequence, where A is an α-concave operator, B : P → P is an
increasing γ1-concave operator and C : P→ P is an increasing γ2-concave operator such that γ1 +γ2 =

γ 6 1.
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Secondly, we proved the existence of a positive solution for the Eq (1.1) and approximated it by
the constructing successively sequence, where A,C are decreasing operators and C is a (-α)-convex
operator.

Thirdly, we proved the existence a positive solution for some nonlinear integral equations and
approximated it by the constructing successively sequence(especially in the case of quadratic integral
equation).

Remark 5.1. It is suggested that the Theorems 3.1 and 3.5 be proved without the assumption h · h > θ,
and also the Theorem 3.1 be proved without assumption (ii). Another interesting topic can be the
comparison of the results of Theorems 3.1 and 3.5 with the results of theorems that are proven by the
measure of non-compactness [2] and Dhage’s techniques [13].
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8. M. Cichoń, M. M. A. Metwali, On a fixed point theorem for the product of operators, J. Fixed Point
Theory Appl., 18 (2016), 753–770. https://doi.org/10.1007/s11784-016-0319-7
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10. K. Cichoń, M. Cichoń, M. M. A. Metwali, On some fixed point theorems in abstract duality pairs,
Rev. Union Math. Argent., 61 (2020), 249–266. https://doi.org/10.33044/revuma.v61n2a04
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