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1. Introduction

In this paper we prove some fixed point theorems for the problem
x = A(x) + B(x) - C(x). (L.1)

However, these kind of theorems are related to some ‘“‘quadratic” problems. Let us mention the
quadratic integral equation

1
1) = 8. x0) + u(t3(0) [ K1) 2(5)ds (1.2)
0

Special cases of Eq (1.2) were investigated in connection with the applications of some kind of
problems in the theories of radiative transfer, neutron transport, and the kinetic theory of gases [4]. A
more general problem (motivated by some practical interests in plasma physics) was investigated
in [21]. See [11,24] for other applications.

So far, two methods have been proposed to solve Eq (1.1). In the former, the measure of
non-compactness technique (see [2, 8—10, 14, 17]) is used to prove the existence of a solution for
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Eq (1.1), and in the latter, Dhage [13] used the combining Schauder’s fixed point theorem and
Banach’s contraction principle to prove the existence of a solution for Eq (1.1), also see [5]. Some
authors have combined the two methods and have proved the existence of a solution for Eq (1.1).

In this paper, we prove the existence of a positive solution for the Eq (1.1) in which the operators A,
B, and C are concave (or convex) or monotone. Also, we give a successively sequence to approximate
it. But what is our motivation to prove the existence of a positive solution for the Eq (1.1) when
the operators A, B, and C are concave (or convex) or monotone? The mentioned methods have not
provided a way to approximate the solution for the Eq (1.1). Also, in the case that the operators A, B,
and C are concave (or convex) or monotone, we do not have to suppose the continuity, compactness,
and upper-lower assumptions for the operators A, B, and C. These assumptions play an important roles
in order to prove the existence of positive solutions for nonlinear differential and integral equations and
they are difficult to verify for real problems. Furthermore, there exist more extensively applied of the
positive solution of nonlinear differential and integral equations in practical issues (see [3,12,28-31]).

The start of proving the existence of a positive solution for differential and integral equations can
be found in the Picard investigation (see [25], p.129-138). Authors in [18-20] generalized theorems
for abstract operator equations with special positive operators called uy-concave. After that, ordered
concavity (convexity) and a-concavity (convexity) were introduced by Amann [1] in 1976 and
Potter [26] in 1977. In [7,22,23,32-34], some others type of concave operators were investigated.

The paper is organized as follows: In Section 2, we introduce some of the preliminaries needed for
the next sections. In Section 3, we prove some existential results for the Eq (1.1). Furthermore, we
provide some examples that satisfy the main results. In Section 4, we prove the existence of positive
solutions for nonlinear quadratic integral equations by theorems provided in the main results section.
Section 5 is devoted to concluding and proposing new ideas.

2. Some basic definitions and notations

Throughout this paper, we assume that E is a real Banach algebra. Which means, E is a real Banach
space in which an operation of multiplication is defined, subject to the following properties (for all
x,v,2€ E,1eR):

(1) (xy)z = x(y2);

(2) x(y+2) =xy+xzand (x + y)z = xz+ yz;
(3) Axy) = (Ax)y = x(Ay);

@) [yl < {Ixllllyll-

Now let us recall the concepts of cone and partial order for a Banach algebra. A subset P of E is
called a cone of E if

(1) Pis a non-empty closed and 6 € P;

(2) AP +yP C P for all non-negative real numbers 4, y;
3) PP=P-PCP;

4) PN (=P)=1{6},

where 6 denotes the null of E. For a given cone P C E, we can define a partial ordering < with respect
to Pby x < yifand only if y—x € P. x < y will stand for x < y and x # y. The cone P is called normal
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if there is a number M > m, such that for all x,y € E,
0<x<y= ||l < Myl

The last positive number satisfying the above inequality is called the normal constant of P. In the
following, we always assume that P is a cone in E and, < is the partial ordering with respect to P. We
call such space ordered Banach algebra and denote it by (OBA).

If x1,x, € E, the set [x1, x;] = {x € E | x; € x < x,} is called the order interval between x; and x,.
An operator A : E — E is called increasing (decreasing) if x < y implies Ax < Ay (Ax > Ay) where
x,ye E.Forh>6(.e. h > 6and h # 0), set

P,={x|x€E, AA(x) >0, u(x) >0, s.t. A(x)h < x < u(x)h}.

It is easy to notice that P, C P.

Lemma 2.1. ( [15]) The two following assumptions are equivalent:
(1) P is a normal cone,
Q) x, <z <y, (n=1,2,3,...) and ||x, — x|| = O, ||y, — x|l = O, imply that ||z, — x|| — O.

Definition 2.1. ( [16]) Let « be a real number such that 0 < @ < 1. An operator A : P — P is called
an a-concave ((-a)-convex) if it satisfies,

A(tx) > t"Ax (A(tx) <t "Ax), Vte(0,1),xeP. (2.1

Theorem 2.2. ( [6]) Assume that P is a normal cone and the operator T satisfies:
(DI) T : P, — Py is an increasing self-map in Py,;
(D2) For any x € P, and t € (0, 1), there exists B(t) € (0, 1) such that T(tx) > *OTx;
(D3) For every xy € P, there is a constant | > 0 such that x, € [0, [h)].

Then, operator equation x = T x + xo has a unique solution in P,

3. Main results

Now the main results could be stated and proved.

Theorem 3.1. Let P be a normal cone, A : P — P is an increasing a-concave operator, B: P — P
is an increasing y;-concave operator, and C : P — P is an increasing y,-concave operator such that
v1 +v> =7y < 1. Also, suppose that

(i) there exists h > 6 such that h - h € Py, and Ah, Bh,Ch € Py,

(ii) there exists a constant 6y > 0 such that for all x € P, we have Ax > 6gBx - Cx.

Then, the operator Eq (1.1) has a unique solution x* in P,. Moreover, for the constructing
successively sequence y, = Ay, + By,_1 - Cy,_1(n = 1,2,---) and for any initial value y, € P,, we
have y, — x* as n — oo.

Proof. Since Ah, Bh,Ch € P, there exist constants Ay, Ay, iy, Uz, U1, > 0 such that 114 < Ah <
Ah, ph < Bh < pyh,vih < Ch < voh. We have

/lll’l+,u11}1]’l'h <Ah+Bh-Ch< /lzl’l +/12U2]’l'h.
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By (i), there exist r, s > O such that rh < h - h < sh. We get
(/l] + ,U]‘U]r)h <Ah+Bh-Ch< (/12 + IUQUQS)h.

Hence, we can write K1h < Ah + Bh - Ch < J1h, where K|, = Ay + yyvir and J; = Ay + ppvps. Thus,
Ah + Bh - Ch € Ph. Define the operator T = A+ B-Cby Tx = Ax+ Bx-Cx. ThenT : P — P and
Th € Py. Next, we show that T : P, — Pj,. By (2.1), forany 7 € (0, 1) and x € P, we have

1

s

1 1 1 1
Ax, B(;x) < t—Bx, C(;x) < —Cx.

1
ACX) < 7 ,yz

For any x € P,, we can choose a sufficiently small number #, € (0, 1) such that

1
toh < x < —h. (3.1)
Iy

Note that T : P — P is an increasing self-map and by (3.1),

1 1 1
Tx=Ax+Bx-Cx<A(—=h)+ B(=h)-C(—=h)
Iy Iy Iy

I A
< =Ah+ =Bh-Ch< Z2n+B2n 1= pon,
o o o o

where J, = f% + ‘%s. Also,
0 0

Tx = Ax+ Bx-Cx > A(toh) + B(toh) - C(toh)
> (0Ah + )Bh - Ch > LiSh + i lh - h = Kyh,

where K, = /11t8+,ulvltgr. Thus Tx € P;,. Henece, T : P, — P;,. Moreover, A : P, — P,,B: P, — P,
and C : P, — P;. In the following, we show that for any ¢ € (0, 1), there exists Sy(¢) € (a, 1) with
respect to ¢, such that for all x € P,

T(tx) = POTx, VYte(0,1). (3.2)

By (ii), there exists ¢y > 0 such that Ax > 6¢Bx - Cx. Consider the following function:

P —
f@) =

o VYt e (0,1), where B € (a, 1).
It is easy to prove that f is non-negative in (0, 1). Especially, for any ¢ € (0, 1) we have # > r and
t* > {*. Furthermore, for fixing ¢ € (0, 1), we have limg_,1- f(t) = 0. So, there exists By(?) € (a, 1) with
respect to ¢ such that

PBO(t) —t

— <
o <00 1€(0.1),

Hence, we have
Pod _ 4

> . > -
Ax 2 09Bx-Cx > o

Bx-Cx, VYte(,1), xeP,.
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Then, we can get
t"Ax +tBx - Cx > "*VAx + *“Bx - Cx, Vte€(0,1),x€ Py,
Consequently, for any 7 € (0, 1) and x € P, we have

T(tx) = A(tx) + B(tx) - C(tx) > t*Ax + 'Bx - Cx > t*Ax + tBx - Cx
> POAx + POBx - Cx, Vte(0,1),x€ P,

Therefore,
T(tx) > POT(x), Vre(0,1),x¢€ P,

Let xo = 6. Application of Theorem 2.2 implies that the equation 7x = x has a unique solution x* in
Py,. It can be concluded that the operator Eq (1.1) has a unique solution x* in P,. Now we can construct
the successively sequence y, = Ay,—1 + By,—1 - Cy,—1(n = 1,2, ---) for any initial point y, € Pj. Since
Yo € P, and Ty, € Pj,, we can choose a sufficiently small number #, € (0, 1) such that

1

foyo < Tyg < o (3.3)
0

Note that 0 < By(#y) < 1, and we can also take a positive integer k such that

1
k> ———0. 3.4
“1 — Bo(to) G4

Put uy = toyo, Vo = I Lyo. Evidently, uy, vy € P, and uy < yy < vo. By the monotonicity of 7', we have
Tug < Tvy. Furthermore by combining (3.2) and (3.3) we have

Tuo = T(t6y0) = T(tog"' yo)
> zgo(to)T(tOtlé—ZyO) > l’gO(tO)l’gO(tO)T(tg_zyo)
> (Zgo(to))kTyO > (lgo(fo))ktoyo — t](;ﬁO(IO)+1yO~ (35)

By (3.4), one can obtains that kBy(#y) + 1 < k. Thus

g S (3.6)

> tkﬁo(lo)ﬂ

Therefore, Tu, Yo > 15yo = uy. By (3.2),

T(— 0S5

Yt e (0,1),x € Pp.

Thus,

| 11 11 111
Tvy = T(t—kyo) = T( kyO) S WT( Z7Y0) = tﬂo(to)T( k—ZyO)
0 1 "o

1 1

1 1
< T(==yo) <+ < —5—=—T(0) < 7o
tgo(lo) tgo(lo) t’é‘z (lgo(lo))k tl(;ﬁo(to)ﬂ

(3.7)
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The application of (3.6) implies Tvy < W)’o < #yo = vy. Thus, ug < Tuy < Tvy < vy. For
0 0
n=12--,letu, = Tu,—1,v, = Tv,—y. Then, u, <y, < v, (n = 1,2,---). Similar to the proof

of Theorem 1.3 of [35], there exists y* € P), such that Ty* = y* and lim,_,., u, = limv, = y*. Then,
by Lemma 2.1, y, — y*(n — o0). Since the fixed point of the operator T in P is unique, we have
X" =y" |

Example 3.1. Consider the Banach space E = C[0, 1] with the supremum norm. E is a Banach algebra
by the multiplication (x - y)(t) = x(t) - y(t). Assume that P = {x(t) € C[0, 1] | x(¢) > 0, VYt € [0, 1]}. Then
E is an (OBA) by the cone P. Let us define operators A, B,C : P — P as the following

A(x)= Vx+1, B(x) = x1+ = Cx)=1.

Assume that h(t) = 1. We can prove that all of the assumptions of Theorem 3.1 are satisfied and the
operator T = A + B - C has a unique positive solution.

Example 3.2. Consider the Banach space E = L.[0, 1] with the L., norm. E is a Banach algebra by
the multiplication (x - y)(t) = x(t) - y(t). Assume that P = {x(t) € L.[0, 1] | x(¢) > 0, Vt € [0, 1]}. Then
E is an (OBA) by the cone P. For any x € Pandt € [0, 1], let us define

A(x) = , Bx)=vVx+1, Cx)=1, h@® =1.

x+1

It is easy to prove that for any x € P, A(x), B(x),C(x) € P. Also we have h > 0. Therefore, A,B,C,h :
P — P. It is easily noticed that, A is an a-concave operator (for some 0 < a < 1), B is a y; concave
operator (for some 0 < vy < 1), and C is a y, concave operator (for some 0 < y, < 1) such that
v1 +v1 < 1. Now let us consider that

n o t=1,
o) = { 0 ref0, 11\[L},.

Then, x(t) € P and fort = i we have

A = e = L RSy = a1 = Vi T,
n \/x(5)+1 Vi +1 n n

Therefore, there is no 6y > 0 such that for all t € [0, 1] we have Ax(t) > 6oBx(t) - Cx(t). Hence, the
assumption (ii) of Theorem 3.1 is not satisfied. It is easy to prove that the rest of the assumptions of
Theorem 3.1 are satisfied and T = A + B - C has a unique positive solution.

Example 3.3. Consider E, that is defined in Example 3.1. Let us define operators A,B,C : P — P as

the following
A(x) = 11 +sin(x), B(x) =2 +sin(x), C(x) =2 + cos(x).

Suppose that h(t) = 7. We have A,B,C : P — Pand h-h > 0. Also, for all x € P, Ax > Bx - Cx.
None of the functions A, B, and C are concave. But the operator T = A + B - C has a unique positive
solution.

AIMS Mathematics Volume 7, Issue 10, 18853—-18869.



18859

Example 3.4. Consider the Banach space E = C[0, 1] with the supremum norm. Let us consider the
multiplication

(f'g)(t)=fo J(Og(x = ndt

forany x,y € E. E is a Banach algebra( [27]). Assume that, P = {x(t) € C[0, 1] | x(¢) > 0, Yt € [0, 1]}.
Then, E is an (OBA) by the cone P. Now suppose that, h(t) = 1 > 0. We have h - h(x) = x. Then,
h-h¢ P,

Example 3.5. Consider E that is defined in Example 3.4. Let h(t) = 1 > 0. Let us define the operators
A,B,C : P — P as the following

Ax)= Vx+1, B(x)=

+1, Cx)=1.
x+1

We can prove that all of the assumptions of Theorem 3.1, except h - h > 0, are satisfied. Operator
T = A+ B - C has no positive solution.
Let the operators A, B,C : P — P be defined as the following

Ax)= Vx+1, Bx)=1, C(x) = %

It is easy to prove that all of the assumptions of the Theorem 3.1, except the assumption h - h > 0, are
satisfied. The equation T = A + B - C has a unique positive solution.

Lemma 3.2. Assume that, P is a normal cone and the operator A satisfies the following conditions:
(DI1) A : P, — Py, is decreasing in Py;
(D2) For any x € P, and t € (0, 1), there exists a(t) € (0, 1) such that A(tx) < t*PAx.

Then, there exist ug, vo € Pj, such that up < vy, uy < Avg < Aug < vy.

Proof. Since Ah € P;,, we can select a sufficiently small number #, such that
1
toh < Ah < t_h' 3.8)
0
Note that 0 < a(#)) < 1, and we can choose a positive integer k such that

1

k > T (o)

(3.9)

Set uy = t{;h and vy = #h. Evidently, uy, vy € P, and uy < vy. By the monotonicity of A, Auy > Avy.
0
Furthermore, by (D2) and (3.8) we have,

Aug = A(t5h) = A(tots ' h)

<t WA h) < - <1 Adtoh) (3.10)
< tak“("’)%h = £k,
By (3.10), we get that ka(#y) + 1 < k. Thus,
—ka(ty)—1

t

0 <t (3.11)
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Hence,
Aug < 5O < 155h < v,
By (D2),
FOA(x) < A(%) Ve (0,1),x € P, (3.12)
Thus,

1 11 wtin) 1, | wio) 1,1 1
Avo = A(=h) = A(—=—=h) > 1{"A(=—=h) = 1;"VA(=—=h)
Iy Iy Iy Iy o 1y

1 1
> tg(to)tg(to)A(tk__zh) >... > t](;a(tO)A(t_h) — tl(;a/(to)ﬂh.
0 0

ka(tg)+1
A h

Application of (3.9) implies that Avy > > tﬁh = up. So we have

Uy < AV() < Alxt() < V. (313)

O

Theorem 3.3. Assume that P is normal cone, the operator T satisfies (D1) and (D2) of Lemma 3.2,
and there is a constant | > O such that xy € [0, lh].
Then, the operator equation T x + xy = x has a unique solution in P,

Proof. For all x € P,, we have Tx € P;,. Then, there exist real numbers A, u > 0 such that 142 < Tx <
ph. Thus,

Ah < Tx+ xo < (u+ Dh. (3.14)
Hence,

Tx+xy€P,, VxeP,. (3.15)
Define the operator F by,

Fx=Tx+xy, VYxe€P,. (3.16)

By (3.15), and considering the monotonicity of the operator 7', the operator F' : P, — P, is decreasing.
Furthermore, for all x € P, and ¢ € (0, 1), we have

F(tx) = T(tx) + xo < t*OT(x) + t*Pxo < O F (). (3.17)
Lemma 3.2 implies that, there exist ugy, vy € P, such that
Uy < vg, ug < Fvy< Fuy <. (3.18)
Construct the successively sequences
u, =Fu,_y,v,=Fv,_,n=1,2,---
By the monotonicity of F, we have vi = Fvy < Fuy = u;. Similarly, we have

Up S VI S Uy S V2 < U < V. (3.19)
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By continuing this process, forn = 1,2,---, we get
Up S VI S Uy S v S Uy S Vopel S Uyl SV S0 SV S U S Ve (3.20)

Therefore, {us,}, {v2n.11} are the increasing and {u,,.1}, {v2,} are decreasing sequences. By (3.20), for
n=1,2,---, we have

Uy S Vo, Von+l S Upsl- (3.21)
Assume that,
tn = sup{t | tvy, < Uz}, a1 = SUP{L | tuppsy < Vopsr )

Thus, forn =1,2,---, we have uy, > t,Vo, and Vo, = f2,11V2n+1. Then,
Uppsl = Uy = TgVop 2 togVaner N =1,2,--+,

Vom 2 Vsl 2 bmsiUomsl = bapsitlyy m=1,2,---

Therefore, t,.1 > t,, 1.e. t, is an increasing sequence such that ¢, € (0,1]. If t, — " as n — oo, then
t* = 1. Otherwise, 0 < ¢* < 1. We distinguish two cases:

Case (i): There exists an integer N such that ¢ty = ¢*. In this case, we know #, = ¢*, for all n > N. So
for n > N, we have

Upns1 = Ftg, < F(t'v3,) < () O F(vy,) = () vy,

ie. (1)"uy,1 < vony. By the definition of ty,.;, we have ty,.; = t* > (r)*) > *, which is a
contradiction.
Case (ii): For all integer n, t, < t*. Then,

£ uy,
Vons1 = F(vy,) 2 F(fz,, Uop) = F(— ;
oy

)
=F(’2" e )““F(—uzn) () O ()

1 n t
> ()" 2@ By, > (1) >(ﬁ)u2n+1

= t2n(t )a/(t) 1I/t2n+l- (3.22)

By the definition of f,, we have ty,.; > t,(t*)*71. If n — oo, we get * > ()% > ¢*, which is a
contradiction. Thus, lim,_,.t, = 1. For any natural number p, we have

0 < u2(n+p) — Uop < v2(n+p) — hyVon < Vo — bapVon = (1 - t2n)v2n < (1 - t2n)V0a

0 < Vo = Vauap) S Van — Uzy < Vo — Uy < Vo — BV < (1 = 1p,)v0.

Since P is normal, we have
ltt2(nspy) — t2all < N(1 = 120)lvoll = 0 (n — 0),
[V2n = vauipll < N(1 = t20)l[voll = 0 (n — o0),
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where N is the normal constant. Hence, we can claim that u,, and v,, are Cauchy sequences. Since E
is a complete space, there exist #* and v* such that u,, — u*, v,, — v* as n — co. By (3.20), we know
that u,, < u* < v* < vy, where u*,v* € P;,. Then

O<V —u" < vy — Uy, < (1 = t2)p.

Furthermore,
IV =l < N(1 = t2)llvoll > 0 (n — o0).

Thus, u* = v*. Let x* = u* = v*. Also, by (3.20), we have
0 < Vaue1 — Uy < Vo — Uy,

0 < Uop+1 — Van+l < Von = Von+l-

Then vy,,; — x* and uy,.; — x* as n — co. By the inequality u,, < x* < vy, forn=1,2,---, we have
Vonel = Fvoy 2 FX* 2 Fuy, = 1.

If n - oo, we get x* = Fx*. Thatis, x" is a fixed point of F in P;. In the following, we prove that x* is
the unique fixed point of F in P;. Let X be any fixed point of F'in P,. Set r; = sup{r > 0| rx* < ¥ <
1x*}. Evidently, 0 < r; < co and ryx* < X < %x*. Next, we prove that r; > 1. If 0 < r; < 1,

x*

r‘ll(r‘)x* SF(=)<x=Fx< F(rnx" < rl_”(r‘)x*.
r

(r1) < (r1)

However, by rf(”) x* <X, r{" < ry. Since r{"" > ry, we get a contradiction. Hence, r; > 1 and we get
X > rix* > x*. Similarly, we can prove that x* > X, and x* = X. Therefore, F' has a unique fixed point
x* in Pj,. That is to say, Tx + xo = x has a unique solution in P;,. O

Comment 3.4. In [26], Theorem 3.3 is proved by Hilbert’s projective metric method where, « is
constant function. But, the successively sequence that converges to the fixed point has not been
obtained.

Theorem 3.5. Consider that P is a normal cone, A, B : P — P are decreasing operators, and C : P —
P is a decreasing (-a)-convex operator. Assume that
(i) there exists h > 6 such that Ah € Py, Bh € P, and Ch € Py,
(ii) h - h € Py,

Then, the operator Eq (1.1) has a unique solution x* in P,. Moreover, for the constructing
successively sequence y, = Ay,-1 + By,_1 - Cy,_1,n = 1,2,... and for any initial value yy € P, we
have y, — x* as n — oo.

Proof. Since Ah, Bh,Ch € P, there exist constants Ay, Ay, 1, p, vy, v, > 0 such that 11h < Ah <
h, uh < Bh < uoh, vih < Ch < vyh. Similar to the proof of the Theorem 3.1, we can prove that, if
the operator T = A + B - C is defined by Tx = Ax + Bx - Cx. Then, T : P — P and Th € P;,. Next, we
show that T : P, — P,. By (2.1) and the monotonicity of A, B, we have

1 1 1
A(;x) > Ax, B(;x) > Bux, C(;x) > t"Ax, te(0,1),xeP
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For any x € P, we can select a sufficiently small number 7, € (0, 1) such that
1
foh < x < t_h (3.23)
0

T : P — P is decreasing and by (3.23) we have,

Tx=Ax+Bx-Cx>A(- h) B(~ h) C(— h)
> Ah+ ((Bh-Ch > /lzh + ,uzvgtoh h.

By (ii), there exist s > O such that %h < h-h < sh. So, we have Tx > Joh where J, = A, + MoV t
Also,

Tx = Ax + Bx - Cx < A(toh) + B(toh) - C(toh)
< Ah+1"Bh - Ch < Aih + i ;%h - h.

Hence, we have Tx < Kyh, where K, = Ay + pyvit;*s. Thus, Tx € P,. So, T : P, — P,. Moreover,
A:P,— P,,B:P,— P,,and C : P, — Pj. On the other hand, for any # € (0, 1) and x € P,

Ax+ 1t “Bx-Cx <t %Ax+ Bx-Cx).

Then,
T(tx) = A(tx) + B(tx) - C(tx) < t7°T(x) Vte(0,1),x € Py.

Therefore, T is the (-a)-convex operator. Let, xo = 6. Application of Theorem 3.3 implies that the
equation Tx = x has a unique solution x* in P;. That is, the operator Eq (1.1) has a unique solution x*
in P,. Now, we construct successively the sequence y, = Ay,_1 + By, - Cy,-1(n = 1,2,---) for any
initial point y, € P;,. Since yy € P, and Ty, € P;, we can choose a sufficiently small number #, € (0, 1)

such that |

toyo < Typ < t—y(). (3.24)
0
Since 0 < a(#;) < 1, we can also take a positive integer k such that
k> ! (3.25)
1- a’(t())' '

Set uy = toyo,vo = kyo Let u,y1 = Tu,, vpuqy = Tv,(n = 1,2,--+). By Theorem 3.3, u, — x* and
v, = x*(as n — o). By (3.25), we have ug < y; < vy. Let us define y,,; = Ty,. Since T is monotone
decreasing and by (3.20), we get

Vanol < Yon S Uop—1,  Von < Yope1 S Uy, n=1,2,---. (3.26)

Then by Lemma 2.1, y,, — X, y2,4,1 — x* as n — oco. Thus, for £ > 0, there exists an integer N such
that forn > N,
Iy =X <& lyme =Xl <& (3.27)

Therefore, (3.27) show that y, — x* as n — oo. O
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4. Applications to nonlinear integral equation

Theorem 4.1. Assume that E = C[0, 1], P = {x(¢) € C[0, 1] | x(¢) > 0, V¢t € [0, 1]},

(HI) g(t, x) : [0,1]1X[0, 00) — [0, 00), u(t, x) : [0, 1] %[0, 00) — [0, 00) and f(t, x) : [0, 1] X [0, c0) —
[0, o0) are increasing operators with respect to x;

(H2) there exists h > 6 in P such that g(t,h),u(t,h) € P,and h- h € Py;

(H3) g(t, x) is an a-concave operator, f(t,x) is a y;-concave operator, and u(t, x) is a y,-concave
operator with respect to x such that y; + vy, =y < 1;

(H4) G(t, s) is non-negative for any t, s € [0, 1]. Also, for any fixed t € [0, 1], the function G(t, s) is
bounded in [0, 1] and for any fixed s € [0, 1], we have G(t, s) € Py,

(HS5) there exists 6o > 0 such that for any t € [0, 1] and any y € [0, o) we have

1
g(t,y) = dou(t,y) - fo G(t, $)f(s,y)ds.
Then the problem
1
x(t) = g(t, x(1)) + u(t, x(1)) f G(t,5)f(s, x(s))ds
0

has a unique positive solution x* in P,. Moreover, for any xo € Py, and for the constructing successively
sequence

1
Xns1(8) = g(t, x, (1)) + u(t, x,(1)) f G, 5)f(s, x,(s)ds, n=0,1,2,---,
0
we have ||x, — x*|| > 0as n — oo.

Proof. Let us define the operators A : P - E, B: P — E,and C : P — E as the following:
(Ax)(1) = g(t, x(1)), (Bx)(1) = u(t, x(1)),
1
(Cx)() = f G(t,5)f (s, x(s))ds.
0

It can easily be noticed that x* is a solution of the problem (4.1) if x* = Ax* + Bx* - Cx*. By (H1) and
(H4), we notice that A : P - P,B: P - Pand C : P — P. By (H3),forany 4 € (0,1) and x € P, we
have

1
CAx)(1) = f G(t, 5)f (s, Ax(s))ds
0

1
> A" f G(t, $)f (s, x(s))ds = ' C(x)(1).
0

Then, C is a y;-concave operator with respect to x. By (H2), Ah € P, and Bh € P,. By (H4), for any
s € [0, 1] there exist A(s), u(s) > 0 such that

A(h(t) < G(t, s) < p($)h(1).

Since G(t, s) is bounded, A(s), u(s) are bounded positive real numbers(for any s € [0, 1]). Therefore,
1 1 1
Ch(r) = f G(t, 5)f (s, h(s))ds < f u(s)h(@) f (s, Dds = h(z) f p(s)f(s, 1ds
0 0 0
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and

1 1 1
Ch(t) = f G(t, $)f (s, h(s))ds > f A(Sh(@) f(s,0)ds = h(t) f A($)f(s,0)ds.
0 0 0

Thus, Ch € Pj,. Hence, the condition (i) of Theorem 3.1 is satisfied. By (H2), the condition (iii) of
Theorem 3.1 is satisfied and by (H5) the condition (if) of Theorem 3.1 is satisfied. Then, Theorem 4.1
follows from Theorem 3.1. O

Example 4.1. Assume that E = C[0, 1], P = {x(¢) € C[0, 1] | x(¢) > 0, V¢t € [0, 1]}. Let us define

Vx(t) ( [
X = —u X o . — X — 1 X
g(ta (t)) 1 (t), (t’ (l)) 1 (t) f(t (t)) (t)

fort € [0,1] and x € P. It is easy to prove that g is a—concave ( for a = % ). Also, f is a y,-concave
operator (for v1 = 0) and u is a y,-concave operator (for y, = 1) with respect to x. Suppose that
G(t,s) = - (fort,s € [0,1] ). It is easy to see that g, u, f, and G are satisfied in all assumptions of
Theorem 4.1 for h(t) = 1. Hence, the problem

V(1) N x(1) f A1+ x(s

SRR R i S T

has a unique positive solution.

Theorem 4.2. Assume that E = C[0, 1], P = {x(t) € C[0, 1] | x(¢) = 0, Vt € [0, 1]},

(HI) g(t,x) : [0,1]1%[0, 00) — [0, 00), u(t, x) : [0, 1] %[0, 00) — [0, c0) and f(t,x) : [0, 1] %[0, 00) —
[0, 00) are decreasing with respect to x;

(H2) there exists h > 6 in P such that g(t, h), u(t,h) € P,, and h - h € P;

(H3) f(t, x) is (-a)-convex with respect to x;

(H4) G(t, s) is non-negative for any t,s € [0, 1], for any fixed t € [0, 1], the function G(t, s) is
bounded in [0, 1], and for any fixed s € [0, 1], we have G(t, s) € Py,

Then, the problem

1
x(t) = g(t, x(1)) + ut, x(1)) f G(t, 5)f(s, x(s))ds,
0

has a unique positive solution x* in P,. Moreover, for any xo € P, and for the constructing successively
sequence

1
X1 (1) = (8, X,(0)) + u(t, xn(l))f G, $)f(s, x,(s)ds, n=0,1,2,---
0
we have ||x, — x*|| = 0 as n — oo.

Proof. Let us define the operators A : P — E, B: P — E and C : P — E as the following:
(Ax)(1) = g(1, x(1)), (Bx)(1) = u(t, x(1)),
1
(C)(0) = f G(1, 5)f (s, x(5))dss.
0
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It is easily noticed that if x* = Ax* + Bx" - Cx", x* is a solution of the problem (4.1). By (H1) and (H4),
wehave A: P> P,B: P— PandC : P — P. By (H3), forany 4 € (0, 1) and x € P we have,

1 1
C(Ax)(r) = f G(t, $)f (s, Ax(s))ds > /l_“f G(t, $)f(s, x(s))ds = A7 C(x)(t).
0 0

Hence, C is an (-a)-convex operator. By (H2), we have Ah € P, and Bh € P,. By (H4), for any
s € [0, 1], there exist A(s) and u(s) > 0 such that

A($)h(t) < G(2, 5) < u(s)h(z).

Since G(t, s) is bounded, A(s) and u(s) are bounded positive real numbers (for any s € [0, 1]).
Therefore, we have

1 1
Ch(t) = f G(t,5)f(s,h(s))ds < f u(s)h(t)f(s,0)ds
0 0

1
= h(?) fo u(s)f(s,0)ds
and

1 1
Ch(t) = f G(t, $)f(s, h(s))ds > f ASh(@) f(s, Dds
0 0

1
:h(t)f A($)f(s, Dds.
0

Thus, Ch € P,. Hence, the assumption (i) of Theorem 3.5 is satisfied. By (H2), the assumption (iii) of
Theorem 3.5 is satisfied. Then, Theorem 4.2 follows from Theorem 3.5. m]

Example 4.2. Assume that E = C[0, 1], P = {x(#) € C[0, 1] | x(t) > 0, Vt € [0, 1]}. Let us define,

g(t, x(1)) = u(t, x(t)) = arccot(x(t) — 4), f(t,x(1)) =

1+ x2(t)’

1
VI+x@)

fort € [0,1] and x € P. It can be proved that f is (-a)-convex ( for @ = % ). Also u, g are convex
sub-homogeneous in x. Suppose that G(t, s) = <—( for t, s € [0, 11). We can see that g, u, f, and G are

1+ts

satisfied in all assumptions of Theorem 4.2 for h(t) = 1. Then the problem

1 boe™ 1
x(1) = T+ 20 + arccot(x(t) — 4)](; T s mds

has a unique positive solution.
S. Conclusions

In this paper, we firstly proved the existence of a positive solution for the Eq (1.1) and approximated
it by the constructing successively sequence, where A is an a-concave operator, B : P — P is an

increasing y;-concave operator and C : P — P is an increasing y,-concave operator such that y; +7y, =
v < 1.
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Secondly, we proved the existence of a positive solution for the Eq (1.1) and approximated it by
the constructing successively sequence, where A, C are decreasing operators and C is a (-a)-convex
operator.

Thirdly, we proved the existence a positive solution for some nonlinear integral equations and
approximated it by the constructing successively sequence(especially in the case of quadratic integral
equation).

Remark 5.1. It is suggested that the Theorems 3.1 and 3.5 be proved without the assumption h-h > 6,
and also the Theorem 3.1 be proved without assumption (ii). Another interesting topic can be the
comparison of the results of Theorems 3.1 and 3.5 with the results of theorems that are proven by the
measure of non-compactness [2] and Dhage’s techniques [13].
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