
Research article

Existence and uniqueness of a positive solutions for the product of operators

Golnaz Pakgalb¹, Mohammad Jahangiri Rad^{1,*}, Ali Salimi Shamloo² and Majid Derafshpour¹

¹ Department of Mathematics, Tabriz Branch, Islamic Azad University, Tabriz, Iran

² Department of Mathematics, Shabestar Branch, Islamic Azad University, Shabestar, Iran

* Correspondence: Email: m.jahangiri.rad.azad.tabriz@gmail.com.

Abstract: In this paper, we prove the existence of a positive solution for some equations involving multiplication of concave (possibly nonlinear) operators. Also, we provide a successively sequence to approximate the solution for such equations. This kind of the solution is necessary for quadratic differential and integral equations.

Keywords: fixed point; product of operator; quadratic integral equation; positive solution; concave operator

Mathematics Subject Classification: 47H10, 35B09, 45G10, 47N20

1. Introduction

In this paper we prove some fixed point theorems for the problem

$$x = A(x) + B(x) \cdot C(x). \quad (1.1)$$

However, these kind of theorems are related to some “quadratic” problems. Let us mention the quadratic integral equation

$$x(t) = g(t, x(t)) + u(t, x(t)) \int_0^1 K(t, s) f(s, x(s)) ds. \quad (1.2)$$

Special cases of Eq (1.2) were investigated in connection with the applications of some kind of problems in the theories of radiative transfer, neutron transport, and the kinetic theory of gases [4]. A more general problem (motivated by some practical interests in plasma physics) was investigated in [21]. See [11, 24] for other applications.

So far, two methods have been proposed to solve Eq (1.1). In the former, the measure of non-compactness technique (see [2, 8–10, 14, 17]) is used to prove the existence of a solution for

Eq (1.1), and in the latter, Dhage [13] used the combining Schauder's fixed point theorem and Banach's contraction principle to prove the existence of a solution for Eq (1.1), also see [5]. Some authors have combined the two methods and have proved the existence of a solution for Eq (1.1).

In this paper, we prove the existence of a positive solution for the Eq (1.1) in which the operators A , B , and C are concave (or convex) or monotone. Also, we give a successively sequence to approximate it. But what is our motivation to prove the existence of a positive solution for the Eq (1.1) when the operators A , B , and C are concave (or convex) or monotone? The mentioned methods have not provided a way to approximate the solution for the Eq (1.1). Also, in the case that the operators A , B , and C are concave (or convex) or monotone, we do not have to suppose the continuity, compactness, and upper-lower assumptions for the operators A , B , and C . These assumptions play an important roles in order to prove the existence of positive solutions for nonlinear differential and integral equations and they are difficult to verify for real problems. Furthermore, there exist more extensively applied of the positive solution of nonlinear differential and integral equations in practical issues (see [3, 12, 28–31]).

The start of proving the existence of a positive solution for differential and integral equations can be found in the Picard investigation (see [25], p.129–138). Authors in [18–20] generalized theorems for abstract operator equations with special positive operators called u_0 -concave. After that, ordered concavity (convexity) and α -concavity (convexity) were introduced by Amann [1] in 1976 and Potter [26] in 1977. In [7, 22, 23, 32–34], some others type of concave operators were investigated.

The paper is organized as follows: In Section 2, we introduce some of the preliminaries needed for the next sections. In Section 3, we prove some existential results for the Eq (1.1). Furthermore, we provide some examples that satisfy the main results. In Section 4, we prove the existence of positive solutions for nonlinear quadratic integral equations by theorems provided in the main results section. Section 5 is devoted to concluding and proposing new ideas.

2. Some basic definitions and notations

Throughout this paper, we assume that E is a real Banach algebra. Which means, E is a real Banach space in which an operation of multiplication is defined, subject to the following properties (for all $x, y, z \in E, \lambda \in \mathbb{R}$):

- (1) $(xy)z = x(yz)$;
- (2) $x(y + z) = xy + xz$ and $(x + y)z = xz + yz$;
- (3) $\lambda(xy) = (\lambda x)y = x(\lambda y)$;
- (4) $\|xy\| \leq \|x\|\|y\|$.

Now let us recall the concepts of cone and partial order for a Banach algebra. A subset P of E is called a cone of E if

- (1) P is a non-empty closed and $\theta \in P$;
- (2) $\lambda P + \gamma P \subseteq P$ for all non-negative real numbers λ, γ ;
- (3) $P^2 = P \cdot P \subseteq P$;
- (4) $P \cap (-P) = \{\theta\}$,

where θ denotes the null of E . For a given cone $P \subseteq E$, we can define a partial ordering \leq with respect to P by $x \leq y$ if and only if $y - x \in P$. $x < y$ will stand for $x \leq y$ and $x \neq y$. The cone P is called normal

if there is a number $M > m_0$ such that for all $x, y \in E$,

$$\theta \leq x \leq y \Rightarrow \|x\| \leq M\|y\|.$$

The last positive number satisfying the above inequality is called the normal constant of P . In the following, we always assume that P is a cone in E and, \leq is the partial ordering with respect to P . We call such space ordered Banach algebra and denote it by (OBA).

If $x_1, x_2 \in E$, the set $[x_1, x_2] = \{x \in E \mid x_1 \leq x \leq x_2\}$ is called the order interval between x_1 and x_2 . An operator $A : E \rightarrow E$ is called increasing (decreasing) if $x \leq y$ implies $Ax \leq Ay$ ($Ax \geq Ay$) where $x, y \in E$. For $h > \theta$ (i.e. $h \geq \theta$ and $h \neq \theta$), set

$$P_h = \{x \mid x \in E, \exists \lambda(x) > 0, \mu(x) > 0, \text{ s.t. } \lambda(x)h \leq x \leq \mu(x)h\}.$$

It is easy to notice that $P_h \subseteq P$.

Lemma 2.1. ([15]) *The two following assumptions are equivalent:*

- (1) P is a normal cone,
- (2) $x_n \leq z_n \leq y_n$ ($n = 1, 2, 3, \dots$) and $\|x_n - x\| \rightarrow 0$, $\|y_n - x\| \rightarrow 0$, imply that $\|z_n - x\| \rightarrow 0$.

Definition 2.1. ([16]) *Let α be a real number such that $0 \leq \alpha < 1$. An operator $A : P \rightarrow P$ is called an α -concave ($(-\alpha)$ -convex) if it satisfies,*

$$A(tx) \geq t^\alpha Ax \quad (A(tx) \leq t^{-\alpha}Ax), \quad \forall t \in (0, 1), x \in P. \quad (2.1)$$

Theorem 2.2. ([6]) *Assume that P is a normal cone and the operator T satisfies:*

- (D1) $T : P_h \rightarrow P_h$ is an increasing self-map in P_h ;
- (D2) For any $x \in P_h$ and $t \in (0, 1)$, there exists $\beta(t) \in (0, 1)$ such that $T(tx) \geq t^{\beta(t)}Tx$;
- (D3) For every $x_0 \in P$, there is a constant $l \geq 0$ such that $x_0 \in [\theta, lh]$.

Then, operator equation $x = Tx + x_0$ has a unique solution in P_h .

3. Main results

Now the main results could be stated and proved.

Theorem 3.1. *Let P be a normal cone, $A : P \rightarrow P$ is an increasing α -concave operator, $B : P \rightarrow P$ is an increasing γ_1 -concave operator, and $C : P \rightarrow P$ is an increasing γ_2 -concave operator such that $\gamma_1 + \gamma_2 = \gamma \leq 1$. Also, suppose that*

- (i) *there exists $h > \theta$ such that $h \cdot h \in P_h$, and $Ah, Bh, Ch \in P_h$;*
- (ii) *there exists a constant $\delta_0 > 0$ such that for all $x \in P$, we have $Ax \geq \delta_0 Bx \cdot Cx$.*

Then, the operator Eq (1.1) has a unique solution x^* in P_h . Moreover, for the constructing successively sequence $y_n = Ay_{n-1} + By_{n-1} \cdot Cy_{n-1}$ ($n = 1, 2, \dots$) and for any initial value $y_0 \in P_h$, we have $y_n \rightarrow x^*$ as $n \rightarrow \infty$.

Proof. Since $Ah, Bh, Ch \in P_h$, there exist constants $\lambda_1, \lambda_2, \mu_1, \mu_2, \nu_1, \nu_2 > 0$ such that $\lambda_1 h \leq Ah \leq \lambda_2 h, \mu_1 h \leq Bh \leq \mu_2 h, \nu_1 h \leq Ch \leq \nu_2 h$. We have

$$\lambda_1 h + \mu_1 \nu_1 h \cdot h \leq Ah + Bh \cdot Ch \leq \lambda_2 h + \mu_2 \nu_2 h \cdot h.$$

By (i), there exist $r, s > 0$ such that $rh \leq h \cdot h \leq sh$. We get

$$(\lambda_1 + \mu_1 v_1 r)h \leq Ah + Bh \cdot Ch \leq (\lambda_2 + \mu_2 v_2 s)h.$$

Hence, we can write $K_1 h \leq Ah + Bh \cdot Ch \leq J_1 h$, where $K_1 = \lambda_1 + \mu_1 v_1 r$ and $J_1 = \lambda_2 + \mu_2 v_2 s$. Thus, $Ah + Bh \cdot Ch \in Ph$. Define the operator $T = A + B \cdot C$ by $Tx = Ax + Bx \cdot Cx$. Then $T : P \rightarrow P$ and $Th \in Ph$. Next, we show that $T : P_h \rightarrow P_h$. By (2.1), for any $t \in (0, 1)$ and $x \in P$, we have

$$A\left(\frac{1}{t}x\right) \leq \frac{1}{t^\alpha}Ax, \quad B\left(\frac{1}{t}x\right) \leq \frac{1}{t^{\gamma_1}}Bx, \quad C\left(\frac{1}{t}x\right) \leq \frac{1}{t^{\gamma_2}}Cx.$$

For any $x \in P_h$, we can choose a sufficiently small number $t_0 \in (0, 1)$ such that

$$t_0 h \leq x \leq \frac{1}{t_0}h. \quad (3.1)$$

Note that $T : P \rightarrow P$ is an increasing self-map and by (3.1),

$$\begin{aligned} Tx &= Ax + Bx \cdot Cx \leq A\left(\frac{1}{t_0}h\right) + B\left(\frac{1}{t_0}h\right) \cdot C\left(\frac{1}{t_0}h\right) \\ &\leq \frac{1}{t_0^\alpha}Ah + \frac{1}{t_0^\gamma}Bh \cdot Ch \leq \frac{\lambda_2}{t_0^\alpha}h + \frac{\mu_2 v_2}{t_0^\gamma}h \cdot h = J_2 h, \end{aligned}$$

where $J_2 = \frac{\lambda_2}{t_0^\alpha} + \frac{\mu_2 v_2}{t_0^\gamma} s$. Also,

$$\begin{aligned} Tx &= Ax + Bx \cdot Cx \geq A(t_0 h) + B(t_0 h) \cdot C(t_0 h) \\ &\geq t_0^\alpha Ah + t_0^\gamma Bh \cdot Ch \geq \lambda_1 t_0^\alpha h + \mu_1 v_1 t_0^\gamma h \cdot h = K_2 h, \end{aligned}$$

where $K_2 = \lambda_1 t_0^\alpha + \mu_1 v_1 t_0^\gamma r$. Thus $Tx \in P_h$. Hence, $T : P_h \rightarrow P_h$. Moreover, $A : P_h \rightarrow P_h$, $B : P_h \rightarrow P_h$ and $C : P_h \rightarrow P_h$. In the following, we show that for any $t \in (0, 1)$, there exists $\beta_0(t) \in (\alpha, 1)$ with respect to t , such that for all $x \in P_h$,

$$T(tx) \geq t^{\beta_0(t)} Tx, \quad \forall t \in (0, 1). \quad (3.2)$$

By (ii), there exists $\delta_0 > 0$ such that $Ax \geq \delta_0 Bx \cdot Cx$. Consider the following function:

$$f(t) = \frac{t^\beta - t}{t^\alpha - t^\beta}, \quad \forall t \in (0, 1), \text{ where } \beta \in (\alpha, 1).$$

It is easy to prove that f is non-negative in $(0, 1)$. Especially, for any $t \in (0, 1)$ we have $t^\beta > t$ and $t^\alpha > t^\beta$. Furthermore, for fixing $t \in (0, 1)$, we have $\lim_{\beta \rightarrow 1^-} f(t) = 0$. So, there exists $\beta_0(t) \in (\alpha, 1)$ with respect to t such that

$$\frac{t^{\beta_0(t)} - t}{t^\alpha - t^{\beta_0(t)}} \leq \delta_0, \quad t \in (0, 1).$$

Hence, we have

$$Ax \geq \delta_0 Bx \cdot Cx \geq \frac{t^{\beta_0(t)} - t}{t^\alpha - t^{\beta_0(t)}} Bx \cdot Cx, \quad \forall t \in (0, 1), \quad x \in P_h.$$

Then, we can get

$$t^\alpha Ax + tBx \cdot Cx \geq t^{\beta_0(t)}Ax + t^{\beta_0(t)}Bx \cdot Cx, \quad \forall t \in (0, 1), x \in P_h.$$

Consequently, for any $t \in (0, 1)$ and $x \in P_h$ we have

$$\begin{aligned} T(tx) &= A(tx) + B(tx) \cdot C(tx) \geq t^\alpha Ax + t^\gamma Bx \cdot Cx \geq t^\alpha Ax + tBx \cdot Cx \\ &\geq t^{\beta_0(t)}Ax + t^{\beta_0(t)}Bx \cdot Cx, \quad \forall t \in (0, 1), x \in P_h. \end{aligned}$$

Therefore,

$$T(tx) \geq t^{\beta_0(t)}T(x), \quad \forall t \in (0, 1), x \in P_h.$$

Let $x_0 = \theta$. Application of Theorem 2.2 implies that the equation $Tx = x$ has a unique solution x^* in P_h . It can be concluded that the operator Eq (1.1) has a unique solution x^* in P_h . Now we can construct the successively sequence $y_n = Ay_{n-1} + By_{n-1} \cdot Cy_{n-1}$ ($n = 1, 2, \dots$) for any initial point $y_0 \in P_h$. Since $y_0 \in P_h$ and $Ty_0 \in P_h$, we can choose a sufficiently small number $t_0 \in (0, 1)$ such that

$$t_0 y_0 \leq Ty_0 \leq \frac{1}{t_0} y_0. \quad (3.3)$$

Note that $0 < \beta_0(t_0) < 1$, and we can also take a positive integer k such that

$$k > \frac{1}{1 - \beta_0(t_0)}. \quad (3.4)$$

Put $u_0 = t_0^k y_0$, $v_0 = \frac{1}{t_0^k} y_0$. Evidently, $u_0, v_0 \in P_h$ and $u_0 \leq y_0 \leq v_0$. By the monotonicity of T , we have $Tu_0 \leq Tv_0$. Furthermore, by combining (3.2) and (3.3) we have

$$\begin{aligned} Tu_0 &= T(t_0^k y_0) = T(t_0 t_0^{k-1} y_0) \\ &\geq t_0^{\beta_0(t_0)} T(t_0 t_0^{k-2} y_0) \geq t_0^{\beta_0(t_0)} t_0^{\beta_0(t_0)} T(t_0^{k-2} y_0) \\ &\geq \dots \geq (t_0^{\beta_0(t_0)})^k T y_0 \geq (t_0^{\beta_0(t_0)})^k t_0 y_0 = t_0^{k\beta_0(t_0)+1} y_0. \end{aligned} \quad (3.5)$$

By (3.4), one can obtain that $k\beta_0(t_0) + 1 < k$. Thus

$$t_0^{k\beta_0(t_0)+1} > t_0^k. \quad (3.6)$$

Therefore, $Tu_0 \geq t_0^{k\beta_0(t_0)+1} y_0 > t_0^k y_0 = u_0$. By (3.2),

$$T\left(\frac{1}{t}x\right) \leq \frac{1}{t^{\beta_0(t)}} T(x), \quad \forall t \in (0, 1), x \in P_h.$$

Thus,

$$\begin{aligned} Tv_0 &= T\left(\frac{1}{t_0^k} y_0\right) = T\left(\frac{1}{t_0} \frac{1}{t_0^k} y_0\right) \leq \frac{1}{t_0^{\beta_0(t_0)}} T\left(\frac{1}{t_0^{k-1}} y_0\right) = \frac{1}{t_0^{\beta_0(t_0)}} T\left(\frac{1}{t_0} \frac{1}{t_0^{k-2}} y_0\right) \\ &\leq \frac{1}{t_0^{\beta_0(t_0)}} \frac{1}{t_0^{\beta_0(t_0)}} T\left(\frac{1}{t_0^{k-2}} y_0\right) \leq \dots \leq \frac{1}{(t_0^{\beta_0(t_0)})^k} T(y_0) \leq \frac{1}{t_0^{k\beta_0(t_0)+1}} y_0. \end{aligned} \quad (3.7)$$

The application of (3.6) implies $Tv_0 \leq \frac{1}{t_0^{k\beta_0(u_0)+1}}y_0 \leq \frac{1}{t_0^k}y_0 = v_0$. Thus, $u_0 \leq Tu_0 \leq Tv_0 \leq v_0$. For $n = 1, 2, \dots$, let $u_n = Tu_{n-1}, v_n = Tv_{n-1}$. Then, $u_n \leq y_n \leq v_n$ ($n = 1, 2, \dots$). Similar to the proof of Theorem 1.3 of [35], there exists $y^* \in P_h$ such that $Ty^* = y^*$ and $\lim_{n \rightarrow \infty} u_n = \lim v_n = y^*$. Then, by Lemma 2.1, $y_n \rightarrow y^*$ ($n \rightarrow \infty$). Since the fixed point of the operator T in P_h is unique, we have $x^* = y^*$. \square

Example 3.1. Consider the Banach space $E = C[0, 1]$ with the supremum norm. E is a Banach algebra by the multiplication $(x \cdot y)(t) = x(t) \cdot y(t)$. Assume that $P = \{x(t) \in C[0, 1] \mid x(t) \geq 0, \forall t \in [0, 1]\}$. Then E is an (OBA) by the cone P . Let us define operators $A, B, C : P \rightarrow P$ as the following

$$A(x) = \sqrt{x+1}, \quad B(x) = \frac{1}{\sqrt{x+1}}, \quad C(x) = 1.$$

Assume that $h(t) = 1$. We can prove that all of the assumptions of Theorem 3.1 are satisfied and the operator $T = A + B \cdot C$ has a unique positive solution.

Example 3.2. Consider the Banach space $E = L_\infty[0, 1]$ with the L_∞ norm. E is a Banach algebra by the multiplication $(x \cdot y)(t) = x(t) \cdot y(t)$. Assume that $P = \{x(t) \in L_\infty[0, 1] \mid x(t) \geq 0, \forall t \in [0, 1]\}$. Then E is an (OBA) by the cone P . For any $x \in P$ and $t \in [0, 1]$, let us define

$$A(x) = \frac{1}{\sqrt{x+1}}, \quad B(x) = \sqrt{x+1}, \quad C(x) = 1, \quad h(t) = 1.$$

It is easy to prove that for any $x \in P$, $A(x), B(x), C(x) \in P$. Also we have $h > 0$. Therefore, $A, B, C, h : P \rightarrow P$. It is easily noticed that, A is an α -concave operator (for some $0 < \alpha < 1$), B is a γ_1 concave operator (for some $0 \leq \gamma_1 < 1$), and C is a γ_2 concave operator (for some $0 \leq \gamma_2 < 1$) such that $\gamma_1 + \gamma_2 \leq 1$. Now let us consider that

$$x(t) = \begin{cases} n & t = \frac{1}{n}, \\ 0 & t \in [0, 1] \setminus \{\frac{1}{n}\}. \end{cases}$$

Then, $x(t) \in P$ and for $t = \frac{1}{n}$ we have

$$A(x(\frac{1}{n})) = \frac{1}{\sqrt{x(\frac{1}{n})+1}} = \frac{1}{\sqrt{n+1}}, \quad B(x(\frac{1}{n})) = \sqrt{x(\frac{1}{n})+1} = \sqrt{n+1}.$$

Therefore, there is no $\delta_0 > 0$ such that for all $t \in [0, 1]$ we have $Ax(t) \geq \delta_0 Bx(t) \cdot Cx(t)$. Hence, the assumption (ii) of Theorem 3.1 is not satisfied. It is easy to prove that the rest of the assumptions of Theorem 3.1 are satisfied and $T = A + B \cdot C$ has a unique positive solution.

Example 3.3. Consider E , that is defined in Example 3.1. Let us define operators $A, B, C : P \rightarrow P$ as the following

$$A(x) = 11 + \sin(x), \quad B(x) = 2 + \sin(x), \quad C(x) = 2 + \cos(x).$$

Suppose that $h(t) = \frac{\pi}{4}$. We have $A, B, C : P \rightarrow P$ and $h \cdot h > 0$. Also, for all $x \in P$, $Ax \geq Bx \cdot Cx$. None of the functions A, B , and C are concave. But the operator $T = A + B \cdot C$ has a unique positive solution.

Example 3.4. Consider the Banach space $E = C[0, 1]$ with the supremum norm. Let us consider the multiplication

$$(f \cdot g)(t) = \int_0^x f(t)g(x-t)dt$$

for any $x, y \in E$. E is a Banach algebra ([27]). Assume that, $P = \{x(t) \in C[0, 1] \mid x(t) \geq 0, \forall t \in [0, 1]\}$. Then, E is an (OBA) by the cone P . Now suppose that, $h(t) = 1 > 0$. We have $h \cdot h(x) = x$. Then, $h \cdot h \notin P_h$.

Example 3.5. Consider E that is defined in Example 3.4. Let $h(t) = 1 > 0$. Let us define the operators $A, B, C : P \rightarrow P$ as the following

$$A(x) = \sqrt{x+1}, \quad B(x) = \frac{1}{\sqrt{x+1}} + 1, \quad C(x) = 1.$$

We can prove that all of the assumptions of Theorem 3.1, except $h \cdot h > 0$, are satisfied. Operator $T = A + B \cdot C$ has no positive solution.

Let the operators $A, B, C : P \rightarrow P$ be defined as the following

$$A(x) = \sqrt{x+1}, \quad B(x) = 1, \quad C(x) = \frac{1}{2}.$$

It is easy to prove that all of the assumptions of the Theorem 3.1, except the assumption $h \cdot h > 0$, are satisfied. The equation $T = A + B \cdot C$ has a unique positive solution.

Lemma 3.2. Assume that, P is a normal cone and the operator A satisfies the following conditions:

(D1) $A : P_h \rightarrow P_h$ is decreasing in P_h ;

(D2) For any $x \in P_h$ and $t \in (0, 1)$, there exists $\alpha(t) \in (0, 1)$ such that $A(tx) \leq t^{-\alpha(t)}Ax$.

Then, there exist $u_0, v_0 \in P_h$ such that $u_0 < v_0$, $u_0 \leq Av_0 \leq Au_0 \leq v_0$.

Proof. Since $Ah \in P_h$, we can select a sufficiently small number t_0 such that

$$t_0h \leq Ah \leq \frac{1}{t_0}h. \quad (3.8)$$

Note that $0 < \alpha(t_0) < 1$, and we can choose a positive integer k such that

$$k > \frac{1}{1 - \alpha(t_0)}. \quad (3.9)$$

Set $u_0 = t_0^k h$ and $v_0 = \frac{1}{t_0^k}h$. Evidently, $u_0, v_0 \in P_h$ and $u_0 < v_0$. By the monotonicity of A , $Au_0 \geq Av_0$. Furthermore, by (D2) and (3.8) we have,

$$\begin{aligned} Au_0 &= A(t_0^k h) = A(t_0 t_0^{k-1} h) \\ &\leq t_0^{-\alpha(t_0)} A(t_0^{k-1} h) \leq \dots \leq t_0^{-k\alpha(t_0)} A(t_0 h) \\ &\leq t_0^{-k\alpha(t_0)} \frac{1}{t_0} h = t_0^{-k\alpha(t_0)-1} h. \end{aligned} \quad (3.10)$$

By (3.10), we get that $k\alpha(t_0) + 1 < k$. Thus,

$$t_0^{-k\alpha(t_0)-1} < t_0^{-k}. \quad (3.11)$$

Hence,

$$Au_0 \leq t_0^{-k\alpha(t_0)-1}h < t_0^{-k}h < v_0.$$

By (D2),

$$t^{\alpha(t)}A(x) \leq A\left(\frac{x}{t}\right) \quad \forall t \in (0, t), x \in P_h. \quad (3.12)$$

Thus,

$$\begin{aligned} Av_0 &= A\left(\frac{1}{t_0^k}h\right) = A\left(\frac{1}{t_0} \frac{1}{t_0^{k-1}}h\right) \geq t_0^{\alpha(t_0)}A\left(\frac{1}{t_0^{k-1}}h\right) = t_0^{\alpha(t_0)}A\left(\frac{1}{t_0} \frac{1}{t_0^{k-2}}h\right) \\ &\geq t_0^{\alpha(t_0)}t_0^{\alpha(t_0)}A\left(\frac{1}{t_0^{k-2}}h\right) \geq \cdots \geq t_0^{k\alpha(t_0)}A\left(\frac{1}{t_0}h\right) = t_0^{k\alpha(t_0)+1}h. \end{aligned}$$

Application of (3.9) implies that $Av_0 \geq t_0^{k\alpha(t_0)+1}h \geq t_0^k h = u_0$. So we have

$$u_0 \leq Av_0 \leq Au_0 \leq v_0. \quad (3.13)$$

□

Theorem 3.3. Assume that P is normal cone, the operator T satisfies (D1) and (D2) of Lemma 3.2, and there is a constant $l \geq 0$ such that $x_0 \in [\theta, lh]$.

Then, the operator equation $Tx + x_0 = x$ has a unique solution in P_h .

Proof. For all $x \in P_h$, we have $Tx \in P_h$. Then, there exist real numbers $\lambda, \mu > 0$ such that $\lambda h \leq Tx \leq \mu h$. Thus,

$$\lambda h \leq Tx + x_0 \leq (\mu + l)h. \quad (3.14)$$

Hence,

$$Tx + x_0 \in P_h, \quad \forall x \in P_h. \quad (3.15)$$

Define the operator F by,

$$Fx = Tx + x_0, \quad \forall x \in P_h. \quad (3.16)$$

By (3.15), and considering the monotonicity of the operator T , the operator $F : P_h \rightarrow P_h$ is decreasing. Furthermore, for all $x \in P_h$ and $t \in (0, 1)$, we have

$$F(tx) = T(tx) + x_0 \leq t^{-\alpha(t)}T(x) + t^{-\alpha(t)}x_0 \leq t^{-\alpha(t)}F(x). \quad (3.17)$$

Lemma 3.2 implies that, there exist $u_0, v_0 \in P_h$ such that

$$u_0 < v_0, \quad u_0 \leq Fv_0 \leq Fu_0 \leq v_0. \quad (3.18)$$

Construct the successively sequences

$$u_n = Fu_{n-1}, v_n = Fv_{n-1}, n = 1, 2, \dots.$$

By the monotonicity of F , we have $v_1 = Fv_0 \leq Fu_0 = u_1$. Similarly, we have

$$u_0 \leq v_1 \leq u_2 \leq v_2 \leq u_1 \leq v_0. \quad (3.19)$$

By continuing this process, for $n = 1, 2, \dots$, we get

$$u_0 \leq v_1 \leq u_2 \leq \dots \leq u_{2n} \leq v_{2n+1} \leq u_{2n+1} \leq v_{2n} \leq \dots \leq v_2 \leq u_1 \leq v_0. \quad (3.20)$$

Therefore, $\{u_{2n}\}$, $\{v_{2n+1}\}$ are the increasing and $\{u_{2n+1}\}$, $\{v_{2n}\}$ are decreasing sequences. By (3.20), for $n = 1, 2, \dots$, we have

$$u_{2n} \leq v_{2n}, \quad v_{2n+1} \leq u_{2n+1}. \quad (3.21)$$

Assume that,

$$t_{2n} = \sup\{t \mid tv_{2n} \leq u_{2n}\}, \quad t_{2n+1} = \sup\{t \mid tu_{2n+1} \leq v_{2n+1}\}.$$

Thus, for $n = 1, 2, \dots$, we have $u_{2n} \geq t_{2n}v_{2n}$ and $v_{2n+1} \geq t_{2n+1}u_{2n+1}$. Then,

$$u_{2n+1} \geq u_{2n} \geq t_{2n}v_{2n} \geq t_{2n}v_{2n+1} \quad n = 1, 2, \dots,$$

$$v_{2m} \geq v_{2m+1} \geq t_{2m+1}u_{2m+1} \geq t_{2m+1}u_{2m} \quad m = 1, 2, \dots.$$

Therefore, $t_{n+1} \geq t_n$, i.e. t_n is an increasing sequence such that $t_n \subseteq (0, 1]$. If $t_n \rightarrow t^*$ as $n \rightarrow \infty$, then $t^* = 1$. Otherwise, $0 < t^* < 1$. We distinguish two cases:

Case (i): There exists an integer N such that $t_N = t^*$. In this case, we know $t_n = t^*$, for all $n \geq N$. So for $n \geq N$, we have

$$u_{2n+1} = Fu_{2n} \leq F(t^*v_{2n}) \leq (t^*)^{-\alpha(t^*)}F(v_{2n}) = (t^*)^{-\alpha(t^*)}v_{2n+1},$$

i.e. $(t^*)^{\alpha(t^*)}u_{2n+1} \leq v_{2n+1}$. By the definition of t_{2n+1} , we have $t_{2n+1} = t^* \geq (t^*)^{\alpha(t^*)} > t^*$, which is a contradiction.

Case (ii): For all integer n , $t_n < t^*$. Then,

$$\begin{aligned} v_{2n+1} &= F(v_{2n}) \geq F(t_{2n}^{-1}u_{2n}) = F\left(\frac{t^*}{t_{2n}}\frac{u_{2n}}{t^*}\right) \\ &= F\left(\frac{\frac{t^*}{t_{2n}}u_{2n}}{t^*}\right) \geq (t^*)^{\alpha(t^*)}F\left(\frac{t^*}{t_{2n}}u_{2n}\right) = (t^*)^{\alpha(t^*)}F\left(\frac{u_{2n}}{\frac{t_{2n}}{t^*}}\right) \\ &\geq (t^*)^{\alpha(t^*)}\left(\frac{t_{2n}}{t^*}\right)^{\alpha\left(\frac{t_{2n}}{t^*}\right)}Fu_{2n} \geq (t^*)^{\alpha(t^*)}\left(\frac{t_{2n}}{t^*}\right)u_{2n+1} \\ &= t_{2n}(t^*)^{\alpha(t^*)-1}u_{2n+1}. \end{aligned} \quad (3.22)$$

By the definition of t_n , we have $t_{2n+1} \geq t_{2n}(t^*)^{\alpha(t^*)-1}$. If $n \rightarrow \infty$, we get $t^* \geq (t^*)^{\alpha(t^*)} > t^*$, which is a contradiction. Thus, $\lim_{n \rightarrow \infty} t_n = 1$. For any natural number p , we have

$$\theta \leq u_{2(n+p)} - u_{2n} \leq v_{2(n+p)} - t_{2n}v_{2n} \leq v_{2n} - t_{2n}v_{2n} = (1 - t_{2n})v_{2n} \leq (1 - t_{2n})v_0,$$

$$\theta \leq v_{2n} - v_{2(n+p)} \leq v_{2n} - u_{2n} \leq v_0 - u_{2n} \leq v_0 - t_{2n}v_0 \leq (1 - t_{2n})v_0.$$

Since P is normal, we have

$$\|u_{2(n+p)} - u_{2n}\| \leq N(1 - t_{2n})\|v_0\| \rightarrow 0 \quad (n \rightarrow \infty),$$

$$\|v_{2n} - v_{2(n+p)}\| \leq N(1 - t_{2n})\|v_0\| \rightarrow 0 \quad (n \rightarrow \infty),$$

where N is the normal constant. Hence, we can claim that u_{2n} and v_{2n} are Cauchy sequences. Since E is a complete space, there exist u^* and v^* such that $u_{2n} \rightarrow u^*$, $v_{2n} \rightarrow v^*$ as $n \rightarrow \infty$. By (3.20), we know that $u_{2n} \leq u^* \leq v^* \leq v_{2n}$ where $u^*, v^* \in P_h$. Then

$$\theta \leq v^* - u^* \leq v_{2n} - u_{2n} \leq (1 - t_{2n})v_0.$$

Furthermore,

$$\|v^* - u^*\| \leq N(1 - t_{2n})\|v_0\| \rightarrow 0 \quad (n \rightarrow \infty).$$

Thus, $u^* = v^*$. Let $x^* = u^* = v^*$. Also, by (3.20), we have

$$\theta \leq v_{2n+1} - u_{2n} \leq v_{2n} - u_{2n},$$

$$\theta \leq u_{2n+1} - v_{2n+1} \leq v_{2n} - v_{2n+1}.$$

Then $v_{2n+1} \rightarrow x^*$ and $u_{2n+1} \rightarrow x^*$ as $n \rightarrow \infty$. By the inequality $u_{2n} \leq x^* \leq v_{2n}$ for $n = 1, 2, \dots$, we have

$$v_{2n+1} = Fv_{2n} \geq Fx^* \geq Fu_{2n} = u_{2n+1}.$$

If $n \rightarrow \infty$, we get $x^* = Fx^*$. That is, x^* is a fixed point of F in P_h . In the following, we prove that x^* is the unique fixed point of F in P_h . Let \bar{x} be any fixed point of F in P_h . Set $r_1 = \sup\{r > 0 \mid rx^* \leq \bar{x} \leq \frac{1}{r}x^*\}$. Evidently, $0 < r_1 < \infty$ and $r_1x^* \leq \bar{x} \leq \frac{1}{r_1}x^*$. Next, we prove that $r_1 \geq 1$. If $0 < r_1 < 1$,

$$r_1^{\alpha(r_1)}x^* \leq F\left(\frac{x^*}{r_1}\right) \leq \bar{x} = F\bar{x} \leq F(r_1x^*) \leq r_1^{-\alpha(r_1)}x^*.$$

However, by $r_1^{\alpha(r_1)}x^* \leq \bar{x}$, $r_1^{\alpha(r_1)} \leq r_1$. Since $r_1^{\alpha(r_1)} > r_1$, we get a contradiction. Hence, $r_1 \geq 1$ and we get $\bar{x} \geq r_1x^* \geq x^*$. Similarly, we can prove that $x^* \geq \bar{x}$, and $x^* = \bar{x}$. Therefore, F has a unique fixed point x^* in P_h . That is to say, $Tx + x_0 = x$ has a unique solution in P_h . \square

Comment 3.4. In [26], Theorem 3.3 is proved by Hilbert's projective metric method where, α is constant function. But, the successively sequence that converges to the fixed point has not been obtained.

Theorem 3.5. Consider that P is a normal cone, $A, B : P \rightarrow P$ are decreasing operators, and $C : P \rightarrow P$ is a decreasing $(-\alpha)$ -convex operator. Assume that

- (i) there exists $h > \theta$ such that $Ah \in P_h$, $Bh \in P_h$ and $Ch \in P_h$;
- (ii) $h \cdot h \in P_h$.

Then, the operator Eq (1.1) has a unique solution x^* in P_h . Moreover, for the constructing successively sequence $y_n = Ay_{n-1} + By_{n-1} \cdot Cy_{n-1}$, $n = 1, 2, \dots$ and for any initial value $y_0 \in P_h$, we have $y_n \rightarrow x^*$ as $n \rightarrow \infty$.

Proof. Since $Ah, Bh, Ch \in P_h$, there exist constants $\lambda_1, \lambda_2, \mu_1, \mu_2, \nu_1, \nu_2 > 0$ such that $\lambda_1h \leq Ah \leq \lambda_2h$, $\mu_1h \leq Bh \leq \mu_2h$, $\nu_1h \leq Ch \leq \nu_2h$. Similar to the proof of the Theorem 3.1, we can prove that, if the operator $T = A + B \cdot C$ is defined by $Tx = Ax + Bx \cdot Cx$. Then, $T : P \rightarrow P$ and $Th \in P_h$. Next, we show that $T : P_h \rightarrow P_h$. By (2.1) and the monotonicity of A, B , we have

$$A\left(\frac{1}{t}x\right) \geq Ax, \quad B\left(\frac{1}{t}x\right) \geq Bx, \quad C\left(\frac{1}{t}x\right) \geq t^\alpha Ax, \quad t \in (0, 1), x \in P.$$

For any $x \in P_h$, we can select a sufficiently small number $t_0 \in (0, 1)$ such that

$$t_0 h \leq x \leq \frac{1}{t_0} h. \quad (3.23)$$

$T : P \rightarrow P$ is decreasing and by (3.23) we have,

$$\begin{aligned} Tx &= Ax + Bx \cdot Cx \geq A\left(\frac{1}{t_0} h\right) + B\left(\frac{1}{t_0} h\right) \cdot C\left(\frac{1}{t_0} h\right) \\ &\geq Ah + t_0^\alpha Bh \cdot Ch \geq \lambda_2 h + \mu_2 \nu_2 t_0^\alpha h \cdot h. \end{aligned}$$

By (ii), there exist $s > 0$ such that $\frac{1}{s} h \leq h \cdot h \leq sh$. So, we have $Tx \geq J_2 h$ where $J_2 = \lambda_2 + \mu_2 \nu_2 \frac{1}{s} t_0^\alpha$. Also,

$$\begin{aligned} Tx &= Ax + Bx \cdot Cx \leq A(t_0 h) + B(t_0 h) \cdot C(t_0 h) \\ &\leq Ah + t_0^{-\alpha} Bh \cdot Ch \leq \lambda_1 h + \mu_1 \nu_1 t_0^{-\alpha} h \cdot h. \end{aligned}$$

Hence, we have $Tx \leq K_2 h$, where $K_2 = \lambda_1 + \mu_1 \nu_1 t_0^{-\alpha} s$. Thus, $Tx \in P_h$. So, $T : P_h \rightarrow P_h$. Moreover, $A : P_h \rightarrow P_h$, $B : P_h \rightarrow P_h$, and $C : P_h \rightarrow P_h$. On the other hand, for any $t \in (0, 1)$ and $x \in P_h$,

$$Ax + t^{-\alpha} Bx \cdot Cx \leq t^{-\alpha} (Ax + Bx \cdot Cx).$$

Then,

$$T(tx) = A(tx) + B(tx) \cdot C(tx) \leq t^{-\alpha} T(x) \quad \forall t \in (0, 1), x \in P_h.$$

Therefore, T is the $(-\alpha)$ -convex operator. Let, $x_0 = \theta$. Application of Theorem 3.3 implies that the equation $Tx = x$ has a unique solution x^* in P_h . That is, the operator Eq (1.1) has a unique solution x^* in P_h . Now, we construct successively the sequence $y_n = Ay_{n-1} + By_{n-1} \cdot Cy_{n-1}$ ($n = 1, 2, \dots$) for any initial point $y_0 \in P_h$. Since $y_0 \in P_h$ and $Ty_0 \in P_h$, we can choose a sufficiently small number $t_0 \in (0, 1)$ such that

$$t_0 y_0 \leq Ty_0 \leq \frac{1}{t_0} y_0. \quad (3.24)$$

Since $0 < \alpha(t_0) < 1$, we can also take a positive integer k such that

$$k > \frac{1}{1 - \alpha(t_0)}. \quad (3.25)$$

Set $u_0 = t_0^k y_0$, $v_0 = \frac{1}{t_0^k} y_0$. Let $u_{n+1} = Tu_n$, $v_{n+1} = Tv_n$ ($n = 1, 2, \dots$). By Theorem 3.3, $u_n \rightarrow x^*$ and $v_n \rightarrow x^*$ (as $n \rightarrow \infty$). By (3.25), we have $u_0 \leq y_1 \leq v_0$. Let us define $y_{n+1} = Ty_n$. Since T is monotone decreasing and by (3.20), we get

$$v_{2n-1} \leq y_{2n} \leq u_{2n-1}, \quad v_{2n} \leq y_{2n+1} \leq u_{2n}, \quad n = 1, 2, \dots. \quad (3.26)$$

Then by Lemma 2.1, $y_{2n} \rightarrow x^*$, $y_{2n+1} \rightarrow x^*$ as $n \rightarrow \infty$. Thus, for $\varepsilon > 0$, there exists an integer N such that for $n \geq N$,

$$\|y_{2n} - x^*\| < \varepsilon, \quad \|y_{2n+1} - x^*\| < \varepsilon. \quad (3.27)$$

Therefore, (3.27) show that $y_n \rightarrow x^*$ as $n \rightarrow \infty$. \square

4. Applications to nonlinear integral equation

Theorem 4.1. Assume that $E = C[0, 1]$, $P = \{x(t) \in C[0, 1] \mid x(t) \geq 0, \forall t \in [0, 1]\}$,

(H1) $g(t, x) : [0, 1] \times [0, \infty) \rightarrow [0, \infty)$, $u(t, x) : [0, 1] \times [0, \infty) \rightarrow [0, \infty)$ and $f(t, x) : [0, 1] \times [0, \infty) \rightarrow [0, \infty)$ are increasing operators with respect to x ;

(H2) there exists $h > \theta$ in P such that $g(t, h), u(t, h) \in P_h$ and $h \cdot h \in P_h$;

(H3) $g(t, x)$ is an α -concave operator, $f(t, x)$ is a γ_1 -concave operator, and $u(t, x)$ is a γ_2 -concave operator with respect to x such that $\gamma_1 + \gamma_2 = \gamma \leq 1$;

(H4) $G(t, s)$ is non-negative for any $t, s \in [0, 1]$. Also, for any fixed $t \in [0, 1]$, the function $G(t, s)$ is bounded in $[0, 1]$ and for any fixed $s \in [0, 1]$, we have $G(t, s) \in P_h$;

(H5) there exists $\delta_0 > 0$ such that for any $t \in [0, 1]$ and any $y \in [0, \infty)$ we have

$$g(t, y) \geq \delta_0 u(t, y) \cdot \int_0^1 G(t, s) f(s, y) ds.$$

Then the problem

$$x(t) = g(t, x(t)) + u(t, x(t)) \int_0^1 G(t, s) f(s, x(s)) ds$$

has a unique positive solution x^* in P_h . Moreover, for any $x_0 \in P_h$ and for the constructing successively sequence

$$x_{n+1}(t) = g(t, x_n(t)) + u(t, x_n(t)) \int_0^1 G(t, s) f(s, x_n(s)) ds, \quad n = 0, 1, 2, \dots,$$

we have $\|x_n - x^*\| \rightarrow 0$ as $n \rightarrow \infty$.

Proof. Let us define the operators $A : P \rightarrow E$, $B : P \rightarrow E$, and $C : P \rightarrow E$ as the following:

$$(Ax)(t) = g(t, x(t)), \quad (Bx)(t) = u(t, x(t)),$$

$$(Cx)(t) = \int_0^1 G(t, s) f(s, x(s)) ds.$$

It can easily be noticed that x^* is a solution of the problem (4.1) if $x^* = Ax^* + Bx^* \cdot Cx^*$. By (H1) and (H4), we notice that $A : P \rightarrow P$, $B : P \rightarrow P$ and $C : P \rightarrow P$. By (H3), for any $\lambda \in (0, 1)$ and $x \in P$, we have

$$\begin{aligned} C(\lambda x)(t) &= \int_0^1 G(t, s) f(s, \lambda x(s)) ds \\ &\geq \lambda^{\gamma_1} \int_0^1 G(t, s) f(s, x(s)) ds = \lambda^{\gamma_1} C(x)(t). \end{aligned}$$

Then, C is a γ_1 -concave operator with respect to x . By (H2), $Ah \in P_h$ and $Bh \in P_h$. By (H4), for any $s \in [0, 1]$ there exist $\lambda(s), \mu(s) > 0$ such that

$$\lambda(s)h(t) \leq G(t, s) \leq \mu(s)h(t).$$

Since $G(t, s)$ is bounded, $\lambda(s), \mu(s)$ are bounded positive real numbers (for any $s \in [0, 1]$). Therefore,

$$Ch(t) = \int_0^1 G(t, s) f(s, h(s)) ds \leq \int_0^1 \mu(s)h(t) f(s, 1) ds = h(t) \int_0^1 \mu(s) f(s, 1) ds$$

and

$$Ch(t) = \int_0^1 G(t, s)f(s, h(s))ds \geq \int_0^1 \lambda(s)h(t)f(s, 0)ds = h(t) \int_0^1 \lambda(s)f(s, 0)ds.$$

Thus, $Ch \in P_h$. Hence, the condition (i) of Theorem 3.1 is satisfied. By (H2), the condition (iii) of Theorem 3.1 is satisfied and by (H5) the condition (ii) of Theorem 3.1 is satisfied. Then, Theorem 4.1 follows from Theorem 3.1. \square

Example 4.1. Assume that $E = C[0, 1]$, $P = \{x(t) \in C[0, 1] \mid x(t) \geq 0, \forall t \in [0, 1]\}$. Let us define

$$g(t, x(t)) = \frac{\sqrt{x(t)}}{1 + \sqrt{x(t)}}, \quad u(t, x(t)) = \frac{x(t)}{\sqrt{1 + x^2(t)}}, \quad f(t, x(t)) = \sqrt{1 + x(t)}$$

for $t \in [0, 1]$ and $x \in P$. It is easy to prove that g is α -concave (for $\alpha = \frac{1}{2}$). Also, f is a γ_1 -concave operator (for $\gamma_1 = 0$) and u is a γ_2 -concave operator (for $\gamma_2 = 1$) with respect to x . Suppose that $G(t, s) = \frac{e^{-ts}}{1+ts}$ (for $t, s \in [0, 1]$). It is easy to see that g , u , f , and G are satisfied in all assumptions of Theorem 4.1 for $h(t) = 1$. Hence, the problem

$$x(t) = \frac{\sqrt{x(t)}}{1 + \sqrt{x(t)}} + \frac{x(t)}{\sqrt{1 + x^2(t)}} \int_0^1 \frac{e^{-ts} \sqrt{1 + x(s)}}{1 + ts} ds$$

has a unique positive solution.

Theorem 4.2. Assume that $E = C[0, 1]$, $P = \{x(t) \in C[0, 1] \mid x(t) \geq 0, \forall t \in [0, 1]\}$,

(H1) $g(t, x) : [0, 1] \times [0, \infty) \rightarrow [0, \infty)$, $u(t, x) : [0, 1] \times [0, \infty) \rightarrow [0, \infty)$ and $f(t, x) : [0, 1] \times [0, \infty) \rightarrow [0, \infty)$ are decreasing with respect to x ;

(H2) there exists $h > \theta$ in P such that $g(t, h), u(t, h) \in P_h$, and $h \cdot h \in P_h$;

(H3) $f(t, x)$ is $(-\alpha)$ -convex with respect to x ;

(H4) $G(t, s)$ is non-negative for any $t, s \in [0, 1]$, for any fixed $t \in [0, 1]$, the function $G(t, s)$ is bounded in $[0, 1]$, and for any fixed $s \in [0, 1]$, we have $G(t, s) \in P_h$.

Then, the problem

$$x(t) = g(t, x(t)) + u(t, x(t)) \int_0^1 G(t, s)f(s, x(s))ds,$$

has a unique positive solution x^* in P_h . Moreover, for any $x_0 \in P_h$ and for the constructing successively sequence

$$x_{n+1}(t) = g(t, x_n(t)) + u(t, x_n(t)) \int_0^1 G(t, s)f(s, x_n(s))ds, \quad n = 0, 1, 2, \dots$$

we have $\|x_n - x^*\| \rightarrow 0$ as $n \rightarrow \infty$.

Proof. Let us define the operators $A : P \rightarrow E$, $B : P \rightarrow E$ and $C : P \rightarrow E$ as the following:

$$(Ax)(t) = g(t, x(t)), \quad (Bx)(t) = u(t, x(t)),$$

$$(Cx)(t) = \int_0^1 G(t, s)f(s, x(s))ds.$$

It is easily noticed that if $x^* = Ax^* + Bx^* \cdot Cx^*$, x^* is a solution of the problem (4.1). By (H1) and (H4), we have $A : P \rightarrow P$, $B : P \rightarrow P$ and $C : P \rightarrow P$. By (H3), for any $\lambda \in (0, 1)$ and $x \in P$ we have,

$$C(\lambda x)(t) = \int_0^1 G(t, s)f(s, \lambda x(s))ds \geq \lambda^{-\alpha} \int_0^1 G(t, s)f(s, x(s))ds = \lambda^{-\alpha} C(x)(t).$$

Hence, C is an $(-\alpha)$ -convex operator. By (H2), we have $Ah \in P_h$ and $Bh \in P_h$. By (H4), for any $s \in [0, 1]$, there exist $\lambda(s)$ and $\mu(s) > 0$ such that

$$\lambda(s)h(t) \leq G(t, s) \leq \mu(s)h(t).$$

Since $G(t, s)$ is bounded, $\lambda(s)$ and $\mu(s)$ are bounded positive real numbers (for any $s \in [0, 1]$). Therefore, we have

$$\begin{aligned} Ch(t) &= \int_0^1 G(t, s)f(s, h(s))ds \leq \int_0^1 \mu(s)h(t)f(s, 0)ds \\ &= h(t) \int_0^1 \mu(s)f(s, 0)ds \end{aligned}$$

and

$$\begin{aligned} Ch(t) &= \int_0^1 G(t, s)f(s, h(s))ds \geq \int_0^1 \lambda(s)h(t)f(s, 1)ds \\ &= h(t) \int_0^1 \lambda(s)f(s, 1)ds. \end{aligned}$$

Thus, $Ch \in P_h$. Hence, the assumption (i) of Theorem 3.5 is satisfied. By (H2), the assumption (iii) of Theorem 3.5 is satisfied. Then, Theorem 4.2 follows from Theorem 3.5. \square

Example 4.2. Assume that $E = C[0, 1]$, $P = \{x(t) \in C[0, 1] \mid x(t) \geq 0, \forall t \in [0, 1]\}$. Let us define,

$$g(t, x(t)) = \frac{1}{1 + x^2(t)}, \quad u(t, x(t)) = \arccot(x(t) - 4), \quad f(t, x(t)) = \frac{1}{\sqrt{1 + x(t)}},$$

for $t \in [0, 1]$ and $x \in P$. It can be proved that f is $(-\alpha)$ -convex (for $\alpha = \frac{1}{2}$). Also u, g are convex sub-homogeneous in x . Suppose that $G(t, s) = \frac{e^{-ts}}{1+ts}$ (for $t, s \in [0, 1]$). We can see that g, u, f , and G are satisfied in all assumptions of Theorem 4.2 for $h(t) = 1$. Then the problem

$$x(t) = \frac{1}{1 + x^2(t)} + \arccot(x(t) - 4) \int_0^1 \frac{e^{-ts}}{1+ts} \frac{1}{\sqrt{1 + x(t)}} ds$$

has a unique positive solution.

5. Conclusions

In this paper, we firstly proved the existence of a positive solution for the Eq (1.1) and approximated it by the constructing successively sequence, where A is an α -concave operator, $B : P \rightarrow P$ is an increasing γ_1 -concave operator and $C : P \rightarrow P$ is an increasing γ_2 -concave operator such that $\gamma_1 + \gamma_2 = \gamma \leq 1$.

Secondly, we proved the existence of a positive solution for the Eq (1.1) and approximated it by the constructing successively sequence, where A, C are decreasing operators and C is a $(-\alpha)$ -convex operator.

Thirdly, we proved the existence a positive solution for some nonlinear integral equations and approximated it by the constructing successively sequence (especially in the case of quadratic integral equation).

Remark 5.1. *It is suggested that the Theorems 3.1 and 3.5 be proved without the assumption $h \cdot h > \theta$, and also the Theorem 3.1 be proved without assumption (ii). Another interesting topic can be the comparison of the results of Theorems 3.1 and 3.5 with the results of theorems that are proven by the measure of non-compactness [2] and Dhage's techniques [13].*

Acknowledgments

The authors would like to thank the anonymous referee for his/her comments that helped us improve this article.

Conflict of interest

Authors state no conflicts of interest.

References

1. H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, *SIAM Rev.*, **18** (1976), 602–709. <https://doi.org/10.1137/1018114>
2. J. Banaś, K. Sadarangani, Solutions of some functional-integral equations in Banach algebra, *Math. Comput. Model.*, **38** (2003), 245–250. [https://doi.org/10.1016/S0895-7177\(03\)90084-7](https://doi.org/10.1016/S0895-7177(03)90084-7)
3. A. Boscaggin, G. Feltrin, F. Zanolin, Uniqueness of positive solutions for boundary value problems associated with indefinite φ -Laplacian-type equations, *Open Math.*, **19** (2021), 163–183. <https://doi.org/10.1515/math-2021-0003>
4. S. Chandrasekhar, *Radiative transfer*, New York: Dover Publications, 1960.
5. F. Chouia, T. Moussaoui, Some fixed point theorems in ordered Banach spaces and application, *Appl. Math. E-Notes*, **19** (2019), 433–444.
6. Y. Cheng, T. Carson, M. B. M. Elgindi, A note on the proof of the Perron-Frobenius theorem, *Appl. Math.*, **3** (2012), 1697–1701. <https://doi.org/10.4236/am.2012.311235>
7. C. Zhai, C. Guo, On α -convex operators, *J. Math. Anal. Appl.*, **316** (2006), 556–565. <https://doi.org/10.1016/j.jmaa.2005.04.064>
8. M. Cichoń, M. M. A. Metwali, On a fixed point theorem for the product of operators, *J. Fixed Point Theory Appl.*, **18** (2016), 753–770. <https://doi.org/10.1007/s11784-016-0319-7>
9. M. Cichoń, M. M. A. Metwali, On monotonic integrable solutions for quadratic functional integral equations, *Mediterr. J. Math.*, **10** (2013), 909–926. <https://doi.org/10.1007/s00009-012-0218-0>

10. K. Cichoń, M. Cichoń, M. M. A. Metwali, On some fixed point theorems in abstract duality pairs, *Rev. Union Math. Argent.*, **61** (2020), 249–266. <https://doi.org/10.33044/revuma.v61n2a04>
11. M. Cichoń, M. M. A. Metwali, On the Banach algebra of integral-variation type Holder spaces and quadratic fractional integral equations, *Banach J. Math. Anal.*, **16** (2022), 34. <https://doi.org/10.1007/s43037-022-00188-4>
12. C. Cowan, A. Razani, Singular solutions of a Lane-Emden system, *Discrete Cont. Dyn. Syst.*, **41** (2021), 621–656. <http://dx.doi.org/10.3934/dcds.2020291>
13. B. C. Dhage, On some variants of Schauder's fixed point principle and applications to nonlinear integral equations, *J. Math. Phys. Sci.*, **25** (1988), 603–611.
14. G. Garcia, G. Mora, A fixed point result in Banach algebras based on the degree of nondensifiability and applications to quadratic integral equations, *J. Math. Anal. Appl.*, **472** (2019), 1220–1235. <https://doi.org/10.1016/j.jmaa.2018.11.073>
15. D. Guo, V. Lakshmikantham, *Nonlinear problems in abstract cones*, Academic Press, 1988.
16. S. Hong, Fixed points for mixed monotone multivalued operators in Banach spaces with applications, *J. Math. Anal. Appl.*, **156** (2008), 333–342. <https://doi.org/10.1016/j.jmaa.2007.03.091>
17. A. Jeribi, B. Krichen, B. Mefteh, Fixed point theory in WC-Banach algebras, *Turk. J. Math.*, **40** (2016), 283–291. <https://doi.org/10.3906/mat-1504-42>
18. M. A. Krasnoselskii, L. A. Ladyzhenskii, The scope of the concept of a u_0 -concave operator, *Izv. Vyssh. Uchebn. Zaved. Mat.*, **5** (1959), 112–121.
19. M. A. Krasnosel'skii, L. A. Ladyzhenskii, The structure of the spectrum of positive nonhomogeneous operators, *Tr. Mosk. Mat. Obs.*, **3** (1954), 321–346.
20. M. A. Krasnoselskii, P. P. Zabreiko, *Geometrical methods of nonlinear analysis*, Moscow, 1975.
21. M. Kunze, On a special class of nonlinear integral equations, *J. Integral Equ. Appl.*, **7** (1995), 329–350. <https://doi.org/10.1216/jiea/1181075882>
22. K. Li, J. Liang, T. J. Xiat, A fixed point theorem for convex and decreasing operators, *Nonlinear Anal.*, **63** (2005), 206–209. <https://doi.org/10.1016/j.na.2004.12.014>
23. Z. D. Liang, W. X. Wang, S. J. Li, On concave operators, *Acta Math. Sinica*, **22** (2006), 577–582. <https://doi.org/10.1007/s10114-005-0687-1>
24. Mohamed M. A. Metwali, Solvability of Gripenberg's equations of fractional order with perturbation term in weighted L_p -spaces on R^+ , *Turk. J. Math.*, **22** (2022), 481–498. <https://doi.org/10.3906/mat-2106-84>
25. E. Picard, *Traité d'analyse*, Tome III, Paris: Gauthier-Villars, 1908.
26. A. J. B. Potter, Applications of Hilbert's projective metric to certain classes of non-homogenous operators, *Q. J. Math.*, **28** (1977), 93–99. <https://doi.org/10.1093/qmath/28.1.93>
27. W. Rudin, *Functional analysis*, 2 Eds., New York: McGraw-Hill, 1991.
28. Y. Sang, Y. Ren, Nonlinear sum operator equations and applications to elastic beam equation and fractional differential equation, *Bound. Value Probl.*, **2019** (2019), 49. <https://doi.org/10.1186/s13661-019-1160-x>

29. Y. Sang, L. He, Existence of an approximate solution for a class of fractional multi-point boundary value problems with the derivative term, *Bound. Value Probl.*, **2021** (2021), 20. <https://doi.org/10.1186/s13661-021-01497-7>

30. S. Song, L. Zhang, B. Zhou, N. Zhang, Existence-uniqueness of positive solutions to nonlinear impulsive fractional differential systems and optimal control, *Bound. Value Probl.*, **2020** (2020), 162. <https://doi.org/10.1186/s13661-020-01461-x>

31. Y. Yang, D. Ji, Properties of positive solutions for a fractional boundary value problem involving fractional derivative with respect to another function, *AIMS Math.*, **5** (2020), 7359–7371. <https://doi.org/10.3934/math.2020471>

32. C. Zhai, Li. Wang, φ -(h, e)-concave operators and applications, *J. Math. Anal. Appl.*, **454** (2017), 571–584. <https://doi.org/10.1016/j.jmaa.2017.05.010>

33. C. Zhai, F. Wang, Properties of positive solutions for the operator $Ax = \lambda x$ and applications to fractional differential equations with integral boundary conditions, *Adv. Differ. Equ.*, **2015** (2015), 366. <https://doi.org/10.1186/s13662-015-0704-3>

34. C. Zhai, C. Yang, X. Zhang, Positive solutions for nonlinear operator equations and several classes of applications to functional equations, *Math. Z.*, **266** (2010), 43–63. <https://doi.org/10.1007/s00209-009-0553-4>

35. C. Zhai, C. Yang, C. M. Guo, Positive solutions of operator equation on ordered Banach spaces and applications, *Comput. Math. Appl.*, **56** (2008), 3150–3156. <https://doi.org/10.1016/j.camwa.2008.09.005>

AIMS Press

© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (<http://creativecommons.org/licenses/by/4.0>)