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Abstract: In this paper, we consider the existence of gap solitons for a class of difference equations:
Lu, — wu, = f,(u,),n € Z,

where Lu, = a,u,,, + a,_u,_1 + b,u, is the discrete difference operator in one spatial dimension, {a,}
and {b,} are real valued T-periodic sequences, w € R, f,(-) € CR,R) and f,,7(-) = f,(-) for each n € Z.
Under general asymptotically linear conditions on the nonlinearity f,(-), we establish the existence of
gap solitons for the above equation via variational methods when #f,,(¢) is allowed to be sign-changing.
Our methods further extend and improve the existing results.
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1. Introduction

Difference equations represent the discrete counterpart of ordinary differential equations, and they
are applied in various research fields, such as computer science, economics and biology [1-4]. Many
authors have obtained excellent results for difference equations [5—8]. In this paper, we focus on the
discrete nonlinear Schrodinger (DNLS) equations which are widely utilized to describe a multitude
of physical and biological phenomena, such as nonlinear optics [9, 10], biomolecular chains [11], the
lattice dynamics of solids and the localization of electromagnetic waves in photonic crystals with a
nonlinear response [12]. For more reviews on this theme, we refer to [13-20].

In this paper, we consider the existence of discrete gap solitons for the following periodic (DNLS)
equation

Lu, — wu, = f,(u,),n € Z, (1.1)
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where L is a second order difference operator given by
Lu, = a,u,.1 + a,_1u,—1 + byu,, n € Z, (1.2)

{a,} and {b,} are real valued T-periodic sequences and w € R. f,(-) € CR,R), f,(0) = 0 and f,,7(?) =
Ja(0).

We are interested in the existence of gap solitons. This problem appears when we consider the
standing wave solutions for the following DNLS equation

ilr/‘/n = _Al//n + Vnwn - fn(lpn), ne Z’ (13)

where Ay, = Y41 + ¥,—1 — 2, is the discrete Laplacian in one spatial dimension, f,(-) is continuous
from C into C and f,(0) = O for every n € Z. The sequence {V,} of real numbers and the sequence
{f.()} of functions are assumed to be T-periodic, i.e., V.7 = V,, foar(-) = f.(-). The typical saturable

nonlinearities are as follows: 5

fult) = ——

141,12
and

flDy = 1=y,
where [, is a real valued T-periodic sequence. The saturable nonlinearities can describe optical pulse
propagation in various doped fibers [21,22]. In Eq (1.3), we suppose the nonlinearity f, is gauge in-
variant, 1.e.,
f.(e) = e £.(1), 0 € R. (1.4)

Spatially localized standing waves are often called breathers or solitons. Since solitons are spatially
localized time-periodic solutions and decay to zero at infinity, ¥, has the following form:

Un = pe”™,  lim u, =0, (1.5)

n—=+oo

where {u,} is a real valued sequence and w € R is the temporal frequency. Then, Eq (1.3) becomes

- Au, + V,u,, — ou, = f,(u,), ne?z, n1_1>rPoo u, = 0. (1.6)
In Eq (1.1), the operator L is a bounded and self-adjoint operator in the space /2. The spectrum o-(L) has
a band structure, i.e., o(L) is a union of a finite number of closed intervals [23]. Thus the complement
R\o (L) consists of a finite number of open intervals called spectral gaps, two of which are semi-
infinite. Generally, a soliton for Eq (1.3) with the temporal frequency w belonging to a spectral gap is
called a gap soliton. In this work, we fix one spectral gap by (—oo, 8) and consider exploring nontrivial
solutions that are not equal to 0 identically for the case w € (—o0, 3).

In 2006, Pankov [24] first studied the gap solitons for the periodic DNLS equation, Eq (1.3) with
the function f,(¢) = ,|f*|¢ given by the linking theorem in combination with periodic approximations.
Since then, the DNLS equations with saturable nonlinearities have also been studied very intensively.
These pioneering works have produced many novel and interesting results on the existence of solutions
[21,25-28]. In 2008, Pankov and Rothos [25] considered Eq (1.1) with a, = —1 and b, = 2 when the
nonlinearity f,(f) = f(¢) is saturable at co. Pankov obtained the following result.

Theorem 1.1 [25]. Assume that the nonlinearity f(t) satisfies the following assumptions:
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(hl) f(t) =o(t)ast — O;
(h2) lim 22 =] < oo;

[t]— 00

(h3) f(t) € CR) and f(t)t < f()t* fort # 0;
(h4) g(t) = f(t) — It is bounded.

Assume w < 0 and | + w > 0. Then there exists a non-trivial ground-state solution u € I> of Eq (1.1).
In 2010, Pankov [26] considered the existence of gap solitons for Eq (1.1) with saturable nonlinear-

ities when w belongs to a spectral gap (a,3) of the linear part and O ¢ o(L). The main method of the

proof involves applying critical point theory in combination with periodic approximations of solutions.

Theorem 1.2 [26]. Assume the conditions (i) — (iv) hold:

(i) Yn € Z, the function f, : R — R is continuous, f,(t) = fo.7(t), /,(0) = 0 and f,(t) = o(t) as
t—0;
(if) lim @ = [, exists and is finite, and the function g,(t) = f,(t) — l,t is bounded;

|t|—o0

(iit) For every ry > 0, there exists 6o = 0o(ro) > 0 such that

%tfn(t) — F,(1) > 6o,

for|t| > ro and F,(t) > 0 fort € R.
(iv) 1= mi%l 1, > 6, where  is the bottom of the positive part of o(L).
ne.

Then there exists a nonzero solution u € I> of Eq (1.1).

Under the condition that the nonlinearity is saturable, Zhou and Yu obtained a new sufficient con-
dition for the existence of homoclinic solutions of the system by using the mountain pass lemma in
combination with periodic approximations in 2010 [27]. They proved that it is also necessary in some
special cases.

Theorem 1.3 [27]. Assume that w € (—o0,8), f, is continuous in t, f,(t) = f,.7(t) for any n € Z and
teR, f,(t) = o(t) as t — 0. And the following conditions hold.
(H1) @ is strictly increasing in (0, +00) and strictly decreasing in (—o0,0). Moreover, |llim @ =d, <
tl—o0
0o~

(H2) tf,(t) = 2F,(t) — oo as |t| — oo, and lim sup 1)
t—0

a—2F,@) — Pn < 0

Ifd, > B — wforn € Z, then Eq (1.1) has at least a nontrivial solution u € I.

Other related gap solitons results can be found in the literature [17-19, 28-31]. The existence
of solutions for Eq (1.1) has been widely considered under the condition of various assumptions on
the saturable nonlinearity f,(¢). To prove the existence of solutions for Eq (1.1), the main required
assumptions are (hl), (h3), (iii), (H1) and (H2) which are given in most papers [19, 30,32]. The
conditions (k1) and (h3) imply the condition (H1), that the function ¢ — f'ffl’) is strictly increasing in
(—00,0) and (0, +00). According to (H1), it follows that ¢f,(tr) > 2F,(t) > 0 for all ¢+ € R, that is,
tf,(¢) has an unchanging sign. We must point out that one essential assumption, (H1) must be used to
prove the critical functional satisfying the Palais-Smale (P.S.) condition in many studies. Moreover,

the assumption (H2), i.e., tf,(t) — 2F,(t) — +co need also be used during the proof in some studies,
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such as in Theorem 1.3 from [27]. In these situations, most of the authors established the existence of
solutions for Eq (1.1); see [27,31] for examples. Regarding the case that tf,(¢) is allowed to be sign
changing, there seems to be only a few papers that apply this for the DNLS equations. For the case in
which 7£(¢) 1s sign changing, we can find some results [19,33-35]. However, most of these papers deal
with the nonlinearity in the sup-cubic case rather than the saturable nonlinearity at infinity.

Motivated by the above works, in this paper, we further consider the gap soliton problems of Eq (1.1)
with saturable nonlinearity f,(?) at infinity. Let 6 = 8 — w > 0; we assume the following assumptions
are satisfied:

(F1) 1i1’{)1 @ = g uniformly for all n € Z, where |g| < ¢;
11—

(F2) There exists a constant d > 0 such that lim @ = d < 4oo uniformly for all n € Z and the

[f| >0

function g,(¢) = f,(t) — dt is bounded for each n € Z;
(F3) There exists a constant y € (0, 6) such that ¢£,(f) — 4F,(t) > —yt*, ¥n € Z.

The term tf,(¢) is allowed to be sign-changing based on the assumption (F3) and the assumption
(F1) implies that the nonlinear term represents the mixed nonlinearities that can be superlinear or
asymptotically linear at the origin. By using the mountain pass lemma in combination with periodic
approximations, we establish the existence of gap solitons for Eq (1.1) in /2.

Remark 1.1. Before proceeding further, we will first give a function that satisfies the conditions (F'1) —
(F3), but not (hl): f,(t) = o(t)ast — 0. For alln € Z, let f,(t) = £=2t fort € R. (F1)— (F2) are

1+£2
obvious, but the aforementioned function does not satisfy (hl). Since F,(t) = % - % In(1 + *), we can
4, 2 2 2
nd a constant y = 5 > 0 such that t£,(f) — 4F,(t) + 52 = ¥HH0U0WA) 5 0 gnd 1 £,(6) = =22 s
Y

(1+) T2
sign-changing.

2. Preliminaries

In order to establish the variational framework associated with Eq (1.1) and apply the critical point
theory, we will give some basic notations and lemmas that will be used to prove our main results. In
the Hilbert space E = [, we consider the functional

J(u) = %(Lu —wu, u) — Z F,(u,),

n=—oo

where (-, ) is the inner product in /2, and F,(¢) = fot fu(s)ds, n € Z. The corresponding norm in E is
denoted by || - ||. Then J € C!(E,R) and we can compute the Fre¢het derivative as

'@, vy = (Lu=wuv) = " filw)v,

n=-—0oo

forallu, v e E.

Equation (1.1) is the corresponding Euler-Lagrange equation for J. Thus, the nonzero critical points
of J are nontrivial solutions of Eq (1.1).

Let S be the following set of all two-sided sequences:

S ={u = {u,}lu, e R,n € Z}.
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Then, S is a vector space with au + bv = {au,, + bv,} foru,v € S and a,b € R.
For any fixed positive integer k, we define the subspace E; of S that consists of all kT -periodic
sequences:

E, = {l/t ={u,} C Slupur = u, forn € AR

Obviously, E; is the 2kT-dimensional Hilbert space. E; can be equipped with the inner product (-, -),

and norm || - || as follows:
kT—1

(U, V) = Z u, - v, foru,v € E;

n=—kT

and
kT-1 3
lull = ( > |u,,|2] for u € Ej.
n=—kT
We also define a norm || - || in Ej by
||utl|x00 = max{|u,| : n € Z} for u € E,.

Consider the following functional J; in Ey:

1 kT—-1
Juw) = 5 (Lt = wit, ) Z;T Fo(ty); 2.1)
then,
kT—-1
i), v) = (Lt = i, Vi = D i), (2.2)
n=—kT

for all u, v € E;, where L, is the operator L acting in Ej. This is a C'-functional in a finite dimensional
space and its critical points are exactly kT -periodic solutions of Eq (1.1).
We notice that o(Ly) is finite, o(L;) C o(L) and ||L|| < ||L|| for all k£ € Z, as described in [23].
Furthermore, U,cz0(Ly) is a dense subset of o-(L).
Then, we have that
(Lu — wu, u) > 6|lul|* for u € E. (2.3)

(Lyu — wu, u); > Ollullf for u € Ey. (2.4)

Let X be a real Banach space and J € C'(X,R). A sequence {u,} C X is called a P.S. sequence for
J it {J(u,)} is bounded and J'(u,) — 0 as n — co. We say that J satisfies the P.S. condition if any P.S.
sequence for J possesses a convergent subsequence in X.

Let B, be the open ball centered at O of radius r in H, and 0B, denotes its boundary. The following
lemma will play an important role in the proof of our main results.

Lemma 2.1 (Mountain Pass Lemma [36]). Let H be a real Hilbert space, and assume that J €
C!(H,R) satisfies the P.S. condition if J(0) = 0 and the following conditions hold.
(G1) There exist constants p > 0 and a > 0 such that J(x) > « for all x € 0B, where B, = {x € H :

llxll < p}-
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(Gy) There exists e € H \Bp such that J(e) < 0.

Then ¢ = }ln;f sup J(h(s)) > a is a positive critical value of J, where
€l sef0,1]

I'=1{h € C([0, 1], H)|h(0) = 0, h(1) = e}.

3. Main results

If some of these conditions, i.e., (F1) — (F3) are violated or changed, Eq (1.1) has no nontrivial
solutions in /2. Thus, we have the following proposition.

Proposition 3.1. Assume that the conditions (F1) and (F2) hold and 6 — +co. Then, Eq (1.1) has no
nontrivial solutions in I>.

Proof. Arguing by contradiction, we assume that Eq (1.1) has a nontrivial solutions for u € [?, then, u
is a critical point of J that satisfies

(Lu — wu,u) = Z Ju(u)u,.

n=—oo

Since (F'1) and (F2) are satisfied, they imply that there exists a finite constant a; > 0 such that |¢£,(¢)| <
a;|t|* uniformly for all n € Z and ¢ € R. By Eq (2.3), we have that

+00
Sllull® < (Lu = wu,u) = > fulttn)u, < arllulP.

This is impossible from § — +co.

Remark 3.1. If we consider that the conditions (F1), (F2) and a; < B — w are satisfied, Eq (1.1) still
has no nontrivial solutions in *(see [27]).
We define the linear operator as

Liu = Lyu — du, u € E,.

Let G,(r) = fot gn(s)ds be the primitive functions of g, for all n € Z. Then we can represent the
functional J; and its derivative in the following forms:

kT-1

1 .
) = S (L= w0y = ) Golnn) 3.1)
n=—kT
and
kT—-1
i), v) = Lt = wu, vy = ' gulua)v, (3.2)
n=—kT

for all u, v € E,.

Lemma 3.1. Assume that the condition (F2) holds and w ¢ o (L;); then, the functional J;, satisfies the
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P.S. condition.

Proof. Let {u'”} C E; be a sequence such that Ji(u'”) is bounded and J;(u"”) — 0 as j — co. Since E
is finite dimensional, it is enough to show that the sequence {u} is bounded.

Let E; and E; be the positive spectral subspace and the negative spectral subspace of the operator
L, — win E, respectively; then, E; = E,j @ E; .

Hence, we can find a positive constant 77 > O such that

+ (L — wu, u); > nllull; foru € Ef. (3.3)
For each j € Z, we write u") = u* + 4U)~; then,
DR < L — wouth*, uimy,

= (L = wou®, uh*y,
kT—-1

=3 gnw(”)u(”* (3.4)
n=—kT
< [Pl + 2 g,

n=—kT

In view of (F2), we can take € = g > (0 and a sufficiently large M > O such that

g”()‘<— for|f| > M and n € Z. (3.5)

We have that _
D = {n: (1) < M,n € Z(~kT, kT — 1)},
RY = {n: u?| > M,n € Z(~KT, kT — 1)}.

Let M, = max{lgn(u(]))l }. Then

neQ
- N N N
Z 1, DI = 2 1ga(ui P+ 3 18n ()]
n=—kT nEQ(/) neR(’
)
<2UTM2 + Y 4|u(f &
nER(/)

2 .
< 2kT Mg + T2

The above inequality implies that

kT—-1 2
( D7 lg ) ] < V2T Mo + 1. (3.6)
n=—kT
Combining Eq (3.4), the Cauchy-Schwartz inequality and Eq (3.6), we obtain the following inequality
I < (1 + V2T Mo)lluD* [l + 31l . (3.7)
Similarly, we get
7N < (1 + V2T Mo)l|uD~ |l + 31l . (3.8)
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Since [[u?]? = [Ju*|2 + lu?~|? and [l P* ]|y + P [lk < V2[lu'|l;, by Egs (3.7) and (3.8), we have that

M1 < V201 + V2RT Mol + 211

Hence, the sequence {u} is bounded.
In the following theorem, we will use Lemma 2.1 and Lemma 3.1 to prove the existence of the
nonzero critical point u® of J; in E;.

Theorem 3.1. Assume that the conditions (F1)-(F2) hold and w ¢ o(Ly). If d > B — w, then J;
has at least one nonzero critical point u® in E,. Moreover; |[u® ||, is bounded and there exist positive
constants & and u such that

& < Nu®lleo < . (3.9)

Proof. The functional J; satisfies the P.S. condition according to Lemma 3.1. Next, we need only to
verify that J; satisfies the conditions G| and G, in Lemma 2.1. In fact, J,(0) = 0; let € = g - % > 0;
then, there exists some positive constant p > 0 such that

)

F.(t) < th for Vn € Z and 1| < p. (3.10)

kT-1

Since ||ullkeo < |lulli, we have that . F,(u,) < gllulli for all u € E; with ||u|l; < p; then,
n=—kT
kT-1
Ji(u) = %(Lu — WU, U — Z Fo(u,)

sz e (3.11)
Slleelly — Z1luell

v

31112
lloell-

Taking @ = gpz, we get Ji(u) > a for all u € 0B,; hence, J; satisfies the condition G; of Lemma 2.1.

Next, we will verify the condition G,.

Let B be the lowest point in o(L;). According to the spectral theory of periodic difference opera-
tors, endpoints of spectral gaps are either T-periodic or T -antiperiodic, eigenvalues of the difference
operator L. Since 3 is one of endpoints, we see that either 8, = 8 for all integers k > 1, or that 55, = 8
for all integers k > 1. Since w ¢ o(L;) and d > B — w, it is easy to verify that E; # (0 fork > 1.

We denote A by the lowest positive point in o"(; — w) in E;. Let z¥ € E[ be a unit eigenvector of
Ly — w with the eigenvalue 1. We can find that y # 0 in E;. Letu = ¥ + 72—, where T € R. We have

[l >
that
T =T (& + 1)

[Illk

(7 k ok (7 v s
= 3 (T - @) 2) + 5 (- O ), = 2 Galw) (3.12)
kT-1
<4 _ 172 G,(u,).
2 2 nzng ( )
By (F2), |G,(?)| has, at most, linear growth for all n € Z; we have that
<4 _ 1.2
Jiw) <5 =47+ Clul G1%)

= —3llull; + Cllully + 5 — —o0 as [lully — oo.

2
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Thus, we can choose 7o € R such that [luglly = /1 + 75 > p and Ji(uo) = Ji (zk + Tom) <0.

All of the assumptions of Lemma 2.1 have been verified; then, J; possesses a critical value ¢, > a
with

¢ = Inf sup Ji(h(s)),
helk seq0,1]
where
T = {h € C([0, 11, E)Ih(0) = 0,h(1) = ug = Z° + TOW € Ex\B,}.

Given that a critical point u® of J; corresponds to ¢; in E;, u® is nonzero as ¢, > 0. We denote

h el ash(s) = s(zk + Tonyﬁ) for s € [0, 1]; then,

Ju®) < sup Jk( (z b2 )) (3.14)
s€[0,1] [yllx
In fact,
J (S(Zk+T L)) <4ds? - "TO 2+ C |1 +12s
k Oipik)) =2 0 (3.15)
<4+C, / 1+72.
Hence,

|
Jeu®) < >+ CyJl +72=M,. (3.16)

Let 0 <y < 6. We see from (F3), Eq (2.1) and (2.2) that

M, >Jk(u(k))
— Z (fn(u(k) (k) F(u(k)))

= z (A + 5@ = Py + 5 i (i = y?y?) (3.17)
S "Tzl (L@ - 1ay)
ok

> Zu®f;.
So the sequence {u®} is bounded in E;. In particular, Eq (3.16) implies that [u"| < 2 s forn € Z,
that is,

M
el < 2| 5— = .

On the other hand, from Eq (2.4), we have that

IO < (Lu® - ou® )
— (T (0N ) )y, 0
= (J,(u®), u >+n_§Tfn(u (3.18)
kT —

SZ

n=—kT

ﬁz(u(k) (k)
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From (F'1), we have that ¢ = % —|g| > 0 and find a positive number £ such that

5
0 < |fu(d < th forn € Zand |f| < £. (3.19)

Consequently, from Eq (3.18), we get Iu,(lk)l >¢forneZ, so

k
[ 3

Now, we can give the proof of our main result.

Theorem 3.2. Assume that the conditions (F1)-(F3) hold. If d > B — w and w ¢ o(L — d), then Eq
(1.1) possesses at least one nontrivial solution u in I.

Proof u® = {u,(f)} € E} is a critical point obtained via Theorem 3.1, and there exists n; € Z such that

E< U < p (3.20)
Note that
anu® | + a, u®| ¥ (by — 0u® = £,u®), n e Z. (3.21)

By the periodicity of the coeflicients in Eq (3.21), we see that {ufﬁ)T} is also a solution of Eq (3.21).
Making some shifts if necessary, and without loss of generality, we can assume that 0 <n; <7 — 1 in
Eq (3.20). Moreover, passing to a subsequence of {u®} if necessary, we can also assume that n; = n*
for k > 1 and some integer n* such that 0 < n* < T — 1. It follows from Eq (3.20) that we can choose a
subsequence, still denoted by {u#®}, such that

u® — u, ask — oo forn € Z.

Obviously, from Eq (3.21), given k — oo, we can obtain the following:

ApUpyl + QpqUy—1 + (bn - w)un = fn(un)’ ne Z, (322)

that is, u is a nonzero solution of Eq (1.1), as Eq(3.20) implies & < Iu,(ﬁ)l.

u =u, € I>. For each s € N, let k > s. Then, it follows from (3.17) that

Now, we will verify that

4M,

S
(k)2 *))12
2 < Il <

n=-—s

S
Let k — co. We obtain Y (u,)* < %. By the arbitrariness of s, we know that u = u, € I*>. The
n=-—s

proof is completed.
4. Conclusions

In this paper, through the use of variational methods, we consider the existence of gap solitons for
the class of difference equations described by Eq (1.1) in one spatial dimension. Under general asymp-

totically linear conditions on nonlinearity f,(-) at infinity, we find a gap soliton for Eq (1.1). Most of
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the pioneering work requires that the function t — ﬁf,(f) is strictly increasing in (—oo,0) and (0, +00),

and that 7f,(r) > 2F,(t) > 0 for all t € R; see Theorems 1.1, 1.2 and 1.3. Obviously, the assumptions
of these conditions are stronger than ours and ¢ f,(f) has an unchanging sign, but our conditions require
that ¢f,(¢) is sign-changing according to (#3). This is different from the previous assumptions of (43),
(iii) or (H2). Moreover, for Theorems 1.1, 1.2 and 1.3, the corresponding authors have decided to
assume f(f) = o(t) at the origin; we give a general assumption (F'1) in this paper; it implies that the
nonlinear term represents the mixed nonlinearities that can be superlinear or asymptotically linear at
the origin. We must point out that our work is different from previous works, and that the results of
this paper improve, extend and complement some related results in the literature [25-27]. Our solu-
tions are obtained by applying the variational approach in combination with periodic approximations;
additionally, the functional J is required to satisfy the P.S. conditions; hence, some technical methods
are used to deal with the process of proof.

The dynamic behavior of solitons has recently attracted much interest. In future work, we will ana-
lyze the existence problem for multiple solitons in Schrodinger lattice systems and the stability of gap
solitons in lattices, as well as investigate the nonlinear evolution of unstable solitons under perturba-
tions. Moreover, we plan to explore the stability of the solitons by investigating the linearization and
to verify our results via direct simulations.
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