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1. Introduction

Measure of non-compactness (MNC, in short) was initially introduced as a foremost tool to prove
generalization of the cantor intersection theorem by Kuratowski [1] in 1930 . In functional analysis,
MNC is a function which associates a number to a non-empty and bounded subset of metric spaces
in such a way that a compact set gets measure zero and all non-compact sets have measure greater
than zero. The MNC depends on the sets that to what extent they are apart from compactness. Sets
which are far-away from compactness will have a greater non-zero value of MNC (see [2]). Darbo
in 1955 continued the use of Kuratowski MNC for further analysis (see details in [1]). He presented
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a fixed point theorem (FPT) based on MNC which now in literature is a prominent result known by
Darbo’s fixed point theorem (DFPT). DFPT is very useful tool in fixed point theory which is obtained
by generalizing Schauder’s FPT. Also from Banach FPT, DFPT appends on the existence part, that is
contraction of condensing operators. An operator which for any set produces such images which are
themselves more compact than the considered set is known as condensing or densifying operator. In
more broad sense, the properties of condensing operators are similar to the compact operators. MNC
has wide range of applications in theory of fixed points and is helpful in investigation of integral,
integro-differential, differential and other operator equations. Also the mentioned concept has been
used very well to study integral, integro-differential and differential equations of fractional orders in
Banach spaces (see [3]).

In last few decades, many researchers obtained various existence results for above mentioned
equations by using MNC and other methods (we refer few papers as [4–13]). The authors [4] have
examined boundary value problem (BVP) of hybrid sequential fractional integro-differential equation
for existence of solution by using Krasnoselskii’s FPT. Deep et al. [14] extended Darbo’s FPT by using
MNC in a Banach space. They used the extended result for the existence of solution to a tripled system
of nonlinear equations containing triple integrals. Karakaya et al. [15] investigated the existence result
by using MNC for tripled fixed point problem of a class of densifying operators. For the purpose of
application they applied the existence result to a tripled system of differential equations.

Fractional order differential equations (FDEs) can be utilized as a powerful tool to model nonlinear
problems of real world with more detailed analysis. Coupled systems of FDEs are concerned
with interactions of two quantities, which provide interpretation of real world problems of coupled
phenomena, such models which describe chaotic behavior, ecological effects, anomalous diffusion
and biological phenomena. The idea of coupled systems can be transformed to more generalized the
form of tripled systems of FDEs, where interaction occurs between three quantities. The coupled
system of railway track is modeled and investigated which can be extended to a model of tripled
system if some external influence interact with existing quantities. This idea of railway track tripled
system can be generalized by using FDEs (we refer [16]). In the field of bio-mathematics, we
can see some more applications of tripled systems of fractional order epidemic models, such as
(susceptible-infected-susceptible) SIS and (susceptible-infected-recovered) SIR models with Caputo
fractional order derivative (see [17]). On the other hand quadratic perturbations of nonlinear FDEs
have attracted much attention in last two decades. The concerned problems are called hybrid
FDEs. The fundamental theory on nonlinear hybrid ordinary differential equations was given by
Dhage and Lakshmikantham [20]. Since the theory devoted to differential inequalities for hybrid
differential equations play important role in the qualitative study of nonlinear differential equations.
The tremendous work in this regards has been done by Lakshmikantham and Leela [21]. Inspired from
the aforementioned studies, researchers have also considered sequential type hybrid FDEs and their
systems for investigating the qualitative theory of existence of solutions under initial and boundary
conditions. Significant results have been produced for the mentioned problems by using hybrid fixed
point theory. Here we refer some published work for readers on sequential type hybrid FDEs [22–26].

Motivated from the aforementioned work, we investigate the tripled system of hybrid fractional
sequential integro-differential equations (HFSIDEs) with non-linear boundary conditions given by
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c
0Dθ

y

[ c
0Dσ

y µ(y) −
∑k

j=1 Iα j f1 j(y, µ(y))

g1(y, µ(y))

]
= h1(y, υ(y), Iγυ(y)),

c
0Dθ

y

[ c
0Dσ

y υ(y) −
∑k

j=1 Iα j f2 j(y, υ(y))

g2(y, υ(y))

]
= h2(y, ω(y), Iγω(y)),

c
0Dθ

y

[ c
0Dσ

y ω(y) −
∑k

j=1 Iα j f3 j(y, ω(y))

g3(y, ω(y))

]
= h3(y, µ(y), Iγµ(y)),

µ(0) = Φ1(µ(η)), c
0Dσ

y µ(0) = 0, µ(1) = Φ2(µ(η)),

υ(0) = ϕ1(υ(η)), c
0Dσ

y υ(0) = 0, υ(1) = ϕ2(υ(η)),

ω(0) = ψ1(ω(η)), c
0Dσ

y ω(0) = 0, ω(1) = ψ2ω(η),

(1.1)

where c
0Dθ

y and c
0Dσ

y denote the Caputo derivatives of non-integer orders θ and σ respectively. Further
0 < θ ≤ 1 and 1 < σ ≤ 2. Iγ is fractional order Riemann-Liouville integral operator with an
order γ > 0 and Iα j is the Riemann-Liouville fractional integral operator of order α j > 0. Moreover
gi, hi, fi j, (i = 1, 2, 3), ( j = 1, 2, ..., k), are continuous functions with each gi , 0, for all y ∈ J = [0, 1].
We develop sufficient conditions for the existence of solution to the proposed problem (1.1) by using
Darbo’s FPT. The concerned results are based on MNC criteria as we have discussed earlier. For some
applications of MNC, we refer [27, 28].

On the other hand stability theory is an important aspect of the qualitative analysis. It is important
from numerical and optimization point of view. In the existence literature, various concepts for stability
theory has been used. Here we recall some important concept like Laypunove, exponential, Mittag-
Leffler type stabilities which have been studied for various problems in FDEs. An important concept
of stability which was introduced by Ulam in 1940 and explained by Hyers in 1941 for functional
equations known as Hyers-Ulam (HU) stability (see [29]). The mentioned concept has been extended
very well for various problems in fractional calculus. Sufficient conditions have been established for
HU type stability by using the tools of nonlinear functional analysis. Here we refer few remarkable
work as [30–33]. Further, the aforementioned concepts of stability has been extended to coupled
hybrid FDEs. We refer some useful work as [34–38]. Inspired from the above discussion, we establish
necessary and sufficient conditions for the existence HU and generalized (GHU) stability results for
the proposed system. For this need, we utilize, some fundamental concept from nonlinear functional
analysis.

2. Elementary definitions and results

In this portion, we present some fundamental definitions, results and properties for Caputo fractional
derivative, Riemann-Liouville fractional integrals and results of MNC [1, 2, 9, 14, 15, 18, 19, 27, 28],
which build up background knowledge for bringing forth the main results.

Definition 2.1. The Riemann-Liouville integral of fractional order δ > 0 of a function µ ∈ L1([a, b],R+)
is defined by

Iδµ(y) =
1

Γ(δ)

∫ y

0
(y − s)δ−1µ(s)ds,

provided that the integral on right side converges.
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Definition 2.2. The Caputo fractional derivative with order δ > 0 of a function µ ∈ C[a, b] is defined by
cDδµ(y) =

1
Γ(n − δ)

∫ y

0

µ(n)(s)
(y − s)δ−n+1 ds, n − 1 < δ < n,

dn

dyn [µ(y)], δ = n.

Lemma 2.3. [19] For any continuous function µ ∈ C(a, b) ∩ L[a, b], then the solution of FDE

cDδµ(y) = h(y), n − 1 < δ ≤ n

is given by
µ(y) = Iδh(y) + k0 + k1y + · · · + kn−1yn−1,

where ki for i = 0, 1, 2, . . . , n − 1 are real constants.

Property 2.4. [9] Let δ, σ > 0 and µ be a continuous function, then if Iθ and Iσ are Riemann-Liouville
fractional integral operators of orders δ and σ respectively, then we have

Iθ[Iσµ(y)] = Iθ+σµ(y),

which is known as semi-group property.

Throughout this paper, we assume B to be a Banach space, βB be the family of bounded subsets of
B, B̄ be closure of B and conv(B) be closed convex hull of B, then we proceed to the following results.

Definition 2.5. [1] For the family βB a mapping

% : βB → R+

is known as MNC defined by B, if it hold

(1) %(M) = 0 iff M is a precompact set.
(2) M ⊂ N =⇒ %(M) ≤ %(N).
(3) %(M) = %(M̄), for all M ∈ βB.
(4) %(convM) = %(M).
(5) %(cM + (1 − c)N) ≤ c%(M) + (1 − c)%(N), c ∈ [0, 1].
(6) Let {Mk} be a sequence of closed subsets of βB such that Mk+1 ⊆ Mk, (k ≥ 1) and lim

k→∞
%(Mk) = 0,

then M∞ =
∞⋂

k=1
Mk is a non-empty intersection set and M∞ is pre-compact.

Definition 2.6. Let B be a Banach space and T : B→ B be an operator. If for y ∈ B

T (y) = y,

then y is called fixed point of T .

Theorem 2.7. Schauder FPT [18]. If M is a nonempty, closed, bounded and convex subset of B. Then
every continuous compact mapping T : M → M has at least one fixed point solution.
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Theorem 2.8. Darbo’s FPT [27]. If M is a nonempty, closed, bounded and convex subset of B. If
T : M → M is a continuous mapping and if

%(TN) ≤ c%(N), c ∈ [0, 1), N ⊆ M,

then T has at least one fixed point solution.

The following theorem is an important generalization of Darbo’s fixed point theorem 2.8 proved by
Aghajani et al. [6].

Theorem 2.9. If M is a nonempty, closed, bounded and convex subset of B. If T : M → M is a
continuous mapping and if

%(TN) ≤ Ψ(%(N)), N ⊆ M,

where Ψ : R+ → R+ is an upper semi-continuous, non-decreasing function and ∀y ∈ R+, Ψ(y) < y.
Then T has at least one fixed point solution.

Definition 2.10. [15] A tripled point (µ, υ, ω) is known as a tripled fixed point of a mapT : M3 → M if

T (µ, υ, ω) = µ, T (υ, µ, ω) = υ, T (ω, υ, µ) = ω.

Theorem 2.11. [28] Let %1, %2, . . . , %n be MNCs in the Banach Spaces B1, B2, . . . , Bn respectively.
Assume that Ψ : Rn

+ → R+ be a convex mapping such that Ψ(µ1, µ2, . . . , µn) = 0 iff µ1 = µ2 = · · · =

µn = 0, then
%(B) = Ψ(%1(M1), %2(M2), . . . , %n(Mn)),

defines a MNC in B1 × B2 × · · · × Bn, where M1,M2, . . . ,Mn are the natural projections of B on
B1, B2, . . . , Bn respectively.

Corollary 2.12. Let %1, %2, %3 be MNCs in Banach Spaces B1, B2, B3 respectively. Assume that Ψ :
R3

+ → R+ be a convex mapping such that Ψ(µ1, µ2, µ3) = 0 iff µ1 = µ2 = µ3 = 0. Then

%(B) = Ψ(%1(M1), %2(M2), %3(M3)),

defines a MNC in B1 × B2 × B3, where M1,M2,M3 are the natural projections of B on B1, B2, B3

respectively.

Example 2.13. Let % be a MNC in a Banach Space B and Ψ(µ, υ, ω) = max{µ, υ, ω}, for (µ, υ, ω) ∈
R3

+. Clearly Ψ is convex and max{µ, υ, ω} = 0 iff µ = υ = ω = 0. We see that the conditions of
Corollary 2.12 are satisfied. Hence %(B) = max(%1(M1), %2(M2), %3(M3)) is a MNC in B1 × B2 × B3,

where M1,M2,M3 are the natural projections of B on B1, B2, B3 respectively.

Example 2.14. Let % be a MNC in a Banach Space B and Ψ(µ, υ, ω) = µ + υ + ω, for (µ, υ, ω) ∈ R3
+.

Clearly Ψ is convex and µ + υ + ω = 0 iff µ = υ = ω = 0. We see that the conditions of Corollary 2.12
are satisfied. Hence %(B) = %1(M1) + %2(M2) + %3(M3) is a MNC in B1 × B2 × B3, where M1,M2,M3

are the natural projections of B on B1, B2, B3 respectively.

Theorem 2.15. [14] If M is a nonempty, closed, bounded and convex subset of B. If T : M3 → M is
a continuous mapping and if

%(T (M1 × M2 × M3)) ≤ Ψ(%(M1), %(M2), %(M2)), ∀ M1,M2,M3 ⊆ M, (2.1)

where Ψ : R3
+ → R+ is a non-decreasing, upper semi-continuous function. Then T has at least one

tripled fixed point solution.
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3. Main results

In this section, first we derive extension of the required theorem for existence theory of solution to
the proposed problem. We prove our main result by using Theorem 2.15. Secondly, we evaluate an
equivalent integral form of the system of HFSIDEs (1.1) with boundary conditions. The last aim of the
section is to investigate existence of solution of system of HFSIDEs (1.1) by using our newly obtained
fixed point theorem.

Theorem 3.1. If M is a nonempty subset of a Banach space B such that M is closed, bounded and
convex and Ti : M × M × M → M, i = 1, 2, 3 are continuous operators, if

||Ti(µ, υ, ω) − Ti(µ̄, ῡ, ω̄)||∞ ≤ Ψi
(
||µ − µ̄||∞, ||υ − ῡ||∞, ||ω − ω̄||∞

)
, (3.1)

for all µ, υ, ω, µ̄, ῡ, ω̄ ∈ M, where each Ψi : R3
+ → R+ is an upper semi-continuous, non-decreasing

function. Then Ti has atleast one tripled fixed point.

Proof. To show that the operator Ti has a fixed point, we prove that Ti : M × M × M → M satisfy the
condition (2.1) of Theorem 2.15. For this purpose, we define MNC in a Banach space B for a fixed
positive y on βB as

%(M) = W0(M) + lim sup
y→∞

diamM(y), (3.2)

where M(y) = {µ(y) : µ ∈ M}, diamM(y) = sup{|µ(y) − µ̄(y)| : µ, µ̄ ∈ M} and

W0(M) = lim
r→∞

Wr
0(M),

Wr
0(M) = lim

ε→0
Wr(M, ε),

Wr(M, ε) = sup{Wr(µ, ε) : µ ∈ M},

Wr(µ, ε) = sup{|µ(y) − µ(s)| : y, s ∈ [0, r], |y − s| ≤ ε}, r > 0,

where for µ ∈ M and ε > 0, Wr(µ, ε) is the modulus of continuity of µ on the closed compact interval
[0, r]. Now by Eq (3.1), we have

||Ti(µ(y), υ(y), ω(y)) − Ti(µ(s), υ(s), ω(s))||∞
≤ Ψ j

(
||µ(y) − µ(s)||∞, ||υ(y) − υ(s)||∞, ||ω(y) − ω(s)||∞

)
,

for which if we take the supremum and use the fact Ψi is non-decreasing, we get

Wr(Ti(µ, υ, ω), ε
)
≤ Ψi

(
Wr(µ, ε),Wr(υ, ε),Wr(ω, ε)

)
,

which gives
W0

(
Ti(M1 × M2 × M3)

)
≤ Ψi

(
W0(M1),W0(M2),W0(M3)

)
. (3.3)

Since µ, υ and ω are arbitrary and Ψi is non-decreasing, so

diamTi(M1 × M2 × M3)(y) ≤ Ψi(diamM1(y), diamM2(y), diamM3(y)).
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Moreover, M1,M2 and M3 are subspaces of M, therefore

lim sup
y→∞

diamTi(M1 × M2 × M3)(y) ≤ lim sup
y→∞

Ψi
(
diamM1(y), diamM2(y), diamM3(y)

)
≤ Ψi

(
lim sup

y→∞
diamM1(y), lim sup

y→∞
diamM2(y), lim sup

y→∞
diamM3(y)

)
.

Now using the last inequality with (3.3), then by Eq (3.2) we have

%(Ti(M1 × M2 × M3)) ≤ Ψi(%(M1), %(M2), %(M2)), ∀ M1,M2,M3 ⊆ M.

Hence Theorem 2.15 is satisfied, consequently Ti has a tripled fixed point solution. �

Theorem 3.2. Let 0 < θ ≤ 1, 1 < σ ≤ 2, γ > 0, and the function h1 : J × R × R → R is θ-time
integrable. Then for the BVP of HFSIDE

c
0Dθ

y

[ c
0Dσ

y µ(y) −
∑r

j=1 Iα j f1 j(y, µ(y))

g1(y, µ(y))

]
= h1(y, υ(y), Iγυ(y)),

µ(0) = Φ1(µ(η)), c
0Dσ

y µ(0) = 0, µ(1) = Φ2(µ(η)).
(3.4)

An equivalent integral form is

µ(y) =

∫ 1

0
G(y, s)g1(s, µ(s))

∫ s

0
(s − r)θ−1h1(r, υ(r), Iγυ(r))drds +

k∑
j=1

∫ 1

0
G j(y, s) f1 j(s, µ(s))ds

+ (1 − y)Φ1(µ(η)) + yΦ2(µ(η)),

(3.5)

where G(y, s) and G j(y, s) are the Green’s functions given by

G(y, s) =
−1

Γ(σ)Γ(θ)

y(1 − s)σ−1, y ≤ s,

y(1 − s)σ−1 − (y − s)σ−1, y > s,
(3.6)

and

G j(y, s) =
−1

Γ(α j + σ)

y(1 − s)α j+σ−1, y ≤ s,

y(1 − s)α j+σ−1 − (y − s)α j+σ−1, y > s.
(3.7)

Proof. Employing the Riemann-Liouville integral operator of fractional order θ to hybrid sequential
fractional integro-differential equation (3.4) and operating Lemma 2.3, we get

c
0Dσ

y µ(y) −
∑k

j=1 Iα j f1 j(y, µ(y))

g1(y, µ(y))
= Iθh1(y, υ(y), Iγυ(y)) + a0. (3.8)

In view of the initial condition c
0Dσ

y µ(0) = 0, we have a0 = 0 and then Eq (3.8) becomes

c
0Dσ

y µ(y) = g1(y, µ(y))
∫ y

0

(y − s)θ−1

Γ(θ)
h1(s, υ(s), Iγυ(s))ds +

k∑
j=1

Iα j f1 j(y, µ(y)). (3.9)
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Now the employment of the Riemann-Liouville integral operator of fractional order σ to Eq (3.9) with
using Lemma 2.3 and semi-group property (2.4), we get

µ(y) =

∫ y

0

(y − s)σ−1

Γ(σ)
g1(s, µ(s))

∫ s

0

(s − r)θ−1

Γ(θ)
h1(r, υ(r), Iγυ(r))drds

+

k∑
j=1

Iα j+σ f1 j(y, µ(y)) + a1 + a2y.
(3.10)

The initial condition µ(0) = Φ1(µ(η)) gives a1 = Φ1(µ(η)) and boundary condition µ(1) = Φ2(µ(η))
together with a1 = Φ1(µ(η)) gives

a2 = −

∫ 1

0

(y − s)σ−1

Γ(σ)
g1(s, µ(s))

∫ s

0

(s − r)θ−1

Γ(θ)
h1(r, υ(r), Iγυ(r))drds

−

k∑
j=1

Iα j+σ f1 j(1, µ(1)) − Φ1(µ(η)) + Φ2(µ(η)).

For values of a1 and a2, Eq (3.10) takes the form

µ(y) =

∫ y

0

(y − s)σ−1

Γ(σ)
g1(s, µ(s))

∫ s

0

(s − r)θ−1

Γ(θ)
h1(r, υ(r), Iγυ(r))drds +

k∑
j=1

Iα j+σ f1 j(y, µ(y))

− y
∫ 1

0

(1 − s)σ−1

Γ(σ)
g1(s, µ(s))

∫ s

0

(s − r)θ−1

Γ(θ)
h1(r, υ(r), Iγυ(r))drds − y

k∑
j=1

Iα j+σ f1 j(1, µ(1))

+ (1 − y)Φ1(µ(η)) + yΦ2(µ(η)).

Thus,

µ(y) =

∫ 1

0
G(y, s)g1(s, µ(s))

∫ s

0
(s − r)θ−1h1(r, υ(r), Iγυ(r))drds

+

k∑
j=1

∫ 1

0
G j(y, s) f1 j(s, µ(s))ds + (1 − y)Φ1(µ(η)) + yΦ2(µ(η)),

where G(y, s) and G j(y, s) are Green’s functions given as in (3.6) and (3.7). Hence we obtained the
desired integral form of the problem (3.4). �

In view of Theorem 3.2, the triple (µ, υ, ω) is the solution of the tripled system (1.1) if and only if
(µ, υ, ω) satisfies the following tripled system of integral equations

AIMS Mathematics Volume 7, Issue 10, 18708–18728.
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µ(y) =

∫ 1

0
G(y, s)g1(s, µ(s))

∫ s

0
(s − r)θ−1h1(r, υ(r), Iγυ(r))drds

+

k∑
j=1

∫ 1

0
G j(y, s) f1 j(s, µ(s))ds + (1 − y)Φ1(µ(η)) + yΦ2(µ(η)),

υ(y) =

∫ 1

0
G(y, s)g2(s, υ(s))

∫ s

0
(s − r)θ−1h2(r, ω(r), Iγω(r))drds

+

k∑
j=1

∫ 1

0
G j(y, s) f2 j(s, υ(s))ds + (1 − y)ϕ1(υ(η)) + yϕ2(υ(η)),

ω(y) =

∫ 1

0
G(y, s)g3(s, ω(s))

∫ s

0
(s − r)θ−1h3(r, µ(r), Iγµ(r))drds

+

k∑
j=1

∫ 1

0
G j(y, s) f3 j(s, ω(s))ds + (1 − y)ψ1(ω(η)) + yψ2(ω(η)).

(3.11)

For developing result concerning existence of solution, we put forth the following hypothesis.

(H1) The functions fi j ∈ C(J×B, B), gi ∈ C(J×B, B\{0}) and hi ∈ C(J×B2, B) are continuous and there
exist positive functions zi j(y), Θi(y), and λi(y) with bounds ‖zi j‖, ‖Θi‖, and ‖λi‖ respectively, for
i = 1, 2, 3, such that

| f1 j(y, µ(y)) − f1 j(y, µ̄(y)| ≤ z1 j(y)|µ(y) − µ̄(y)|,
| f2 j(y, υ(y)) − f2 j(y, ῡ(y)| ≤ z2 j(y)|υ(y) − ῡ(y)|,
| f3 j(y, ω(y)) − f3 j(y, ω̄(y)| ≤ z3 j(y)|ω(y) − ω̄(y)|,
|g1(y, µ(y)) − g1(y, µ̄(y)| ≤ Θ1(y)|µ(y) − µ̄(y)|,
|g2(y, υ(y)) − g2(y, ῡ(y)| ≤ Θ2(y)|υ(y) − ῡ(y)|,
|g3(y, ω(y)) − g3(y, ω̄(y)| ≤ Θ3(y)|ω(y) − ω̄(y)|,

|h1(y, υ(y), ῡ(y)) − h1(y, υ∗(y), ῡ∗(y)| ≤ λ1(y)(|υ(y) − υ∗(y)| + |ῡ(y) − ῡ∗(y)|)
|h2(y, ω(y), ω̄(y)) − h2(y, ω∗(y), ω̄∗(y)| ≤ λ2(y)(|ω(y) − ω∗(y)| + |ω̄(y) − ω̄∗(y)|),
|h3(y, µ(y), µ̄(y)) − h3(y, µ∗(y), µ̄∗(y)| ≤ λ3(y)(|µ(y) − µ∗(y)| + |µ̄(y) − µ̄∗(y)|),

for y ∈ J and µ, υ, ω, µ̄, ῡ, ω̄ ∈ B.
(H2) For j = 1, 2, . . . , k, | f1 j(y, µ(y))| ≤ φ1 j(y), | f2 j(y, υ(y))| ≤ φ2 j(y), | f3 j(y, ω(y))| ≤ φ3 j(y), where

φi j(y) ∈ C(J,R+) for i = 1, 2, 3.

|g1(y, µ(y))| ≤ χ1(y), |g2(y, υ(y))| ≤ χ2(y), |g3(y, ω(y))| ≤ χ3(y), |h1(y, υ(y), ῡ(y)| ≤ Ω1(y),

|h2(y, ω(y), ω̄(y)| ≤ Ω2(y), |h3(y, µ(y), µ̄(y)| ≤ Ω3(y), |Φ1(µ(y))| ≤ β1(y), |Φ2(µ(y))| ≤ ρ1(y),

|ϕ1(υ(y))| ≤ β2(y), |ϕ2(υ(y))| ≤ ρ2(y), |ψ1(ω(y))| ≤ β3(y), |ψ2(µ(y))| ≤ ρ3(y),

where Ωi(y), χi(y), βi(y), ρi(y) ∈ C(J,R+) for i = 1, 2, 3.
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(H3) For i = 1, 2, 3, there exists ri > 0, such that

‖χi‖‖Ωi‖

Γ(σ + 1)Γ(θ + 1)
+

k∑
j=1

‖φi j‖

Γ(α j + σ + 1)
+ ‖βi‖ + ‖ρi‖ ≤ ri.

(H4) For µ, υ, ω ∈ [0, 1], there exists L1i, L2i, L3i ∈ [0, 1), such that

Φi(y) ≤ L1iy,

ϕi(y) ≤ L2iy,

ψi(y) ≤ L3iy,

where i = 1, 2.

Now as an application we use our developed existence result of fixed point solution in Theorem 3.1
for the tripled system BVP of HFSIDEs (1.1).

Theorem 3.3. Let the hypothesis (H1)–(H4) holds, Then there exists at least one triple point solution
for the BVP (1.1), in the space E = B × B × B.

Proof. First we set sup
y∈J
|zi j(y)| = ‖zi j‖, sup

y∈J
|φ j(y)| = ‖φ j‖, j = 1, 2, . . . , k, sup

y∈J
|Θi(y)| = ‖Θi‖, sup

y∈J
|λi(t)| =

‖λi‖, sup
y∈J
|Ωi(y)| = ‖Ωi‖ and sup

y∈J
|χi(y)| = ‖χi‖. where for all the supremum norms i = 1, 2, 3.

Now we consider a product space E = B× B× B and define a continuous operator Ti : E −→ B, i =

1,2,3, such that

T1(µ(y), υ(y), ω(y)) =

∫ 1

0
G(y, s)g1(s, µ(s))

∫ s

0
(s − r)θ−1h1(r, υ(r), Iγυ(r))drds

+

k∑
j=1

∫ 1

0
G j(y, s) f1 j(s, µ(s))ds + (1 − y)Φ1(µ(η)) + yΦ2(µ(η)),

T2(µ(y), υ(y), ω(y)) =

∫ 1

0
G(y, s)g2(s, υ(s))

∫ s

0
(s − r)θ−1h2(r, ω(r), Iγω(r))drds

+

k∑
j=1

∫ 1

0
G j(y, s) f2 j(s, υ(s))ds + (1 − y)ϕ1(υ(η)) + yϕ2(υ(η)),

T3(µ(y), υ(y), ω(y)) =

∫ 1

0
G(y, s)g3(s, ω(s))

∫ s

0
(s − r)θ−1h3(r, µ(r), Iγµ(r))drds

+

k∑
j=1

∫ 1

0
G j(y, s) f3 j(s, ω(s))ds + (1 − y)ψ1(ω(η)) + yψ2(ω(η)).

Now solution of the problem (1.1) is the fixed point of the operator Ti. Since gi, hi and fi j, for i = 1, 2, 3
and j = 1, 2, . . . , k, are continuous functions, so the operators Ti are continuous. To ensure that fixed
point of Ti exist, we verify conditions of Theorem 3.1.

Accordingly, for µ, υ, ω ∈ B,
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||T1(µ(y), υ(y), ω(y))|| =

∣∣∣∣∣∣∣∣∣∣ ∫ 1

0
G(y, s)g1(s, µ(s))

∫ s

0
(s − r)θ−1h1(r, υ(r), Iγυ(r))drds

+

k∑
j=1

∫ 1

0
G j(y, s) f1 j(s, µ(s))ds + (1 − y)Φ1(µ(η)) + yΦ2(µ(η))

∣∣∣∣∣∣∣∣∣∣
≤

∫ 1

0
G(y, s)‖g1(s, µ(s))‖

∫ s

0
(s − r)θ−1‖h1(r, υ(r), Iγυ(r)) ‖drds

+

k∑
j=1

∫ 1

0
G j(y, s)‖ f1 j(s, µ(s))‖ds + ‖Φ1(µ(η))‖ + ‖Φ2(µ(η))‖

≤
‖χ1‖‖Ω1‖

Γ(σ + 1)Γ(θ + 1)
+

k∑
j=1

‖φ1 j‖

Γ(α j + σ + 1)
+ ‖β1‖ + ‖ρ1‖.

Similarly, we can show that

||T2(µ(y), υ(y), ω(y))|| ≤
‖χ2‖‖Ω2‖

Γ(σ + 1)Γ(θ + 1)
+

k∑
j=1

‖φ2 j‖

Γ(α j + σ + 1)
+ ‖β2‖ + ‖ρ2‖

and

||T3(µ(y), υ(y), ω(y))|| ≤
‖χ3‖‖Ω3‖

Γ(σ + 1)Γ(θ + 1)
+

k∑
j=1

‖φ3 j‖

Γ(α j + σ + 1)
+ ‖β3‖ + ‖ρ3‖.

Thus by hypothesis (H3), for i = 1, 2, 3, we have

||Ti(µ(y), υ(y), ω(y))|| ≤ ri,

so we get Ti(B, B, B) ⊂ B. Furthermore

||T1(µ(y), υ(y), ω(y)) − T1(µ̄(y), ῡ(y), ω̄(y))||

=

∣∣∣∣∣∣∣∣∣∣ ∫ 1

0
G(y, s)g1(s, µ(s))

∫ s

0
(s − r)θ−1h1(r, υ(r), Iγυ(r))drds +

k∑
j=1

∫ 1

0
G j(y, s) f1 j(s, µ(s))ds

+ (1 − y)Φ1(µ(η)) + yΦ2(µ(η)) −
∫ 1

0
G(y, s)g1(s, µ̄(s))

∫ s

0
(s − r)θ−1h1(r, ῡ(r), Iγῡ(r))drds

−

k∑
j=1

∫ 1

0
G j(y, s) f1 j(s, µ̄(s))ds − (1 − y)Φ1(µ̄(η)) − yΦ2(µ̄(η))

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣ ∫ 1

0
G(y, s)g1(s, µ(s))

∫ s

0
(s − r)θ−1h1(r, υ(r), Iγυ(r))drds +

k∑
j=1

∫ 1

0
G j(y, s) f1 j(s, µ(s))ds

+ (1 − y)Φ1(µ(η)) + yΦ2(µ(η)) −
∫ 1

0
G(y, s)g1(s, µ̄(s))

∫ s

0
(s − r)θ−1h1(r, υ(r), Iγυ(r))drds

+

∫ 1

0
G(y, s)g1(s, µ̄(s))

∫ s

0
(s − r)θ−1h1(r, υ(r), Iγυ(r))drds
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−

∫ 1

0
G(y, s)g1(s, µ̄(s))

∫ s

0
(s − r)θ−1h1(r, ῡ(r), Iγῡ(r))drds

−

k∑
j=1

∫ 1

0
G j(y, s) f1 j(s, µ̄(s))ds − (1 − y)Φ1(µ̄(η)) − yΦ2(µ̄(η))

∣∣∣∣∣∣∣∣∣∣
≤

∫ 1

0
‖G(y, s)‖‖g1(s, µ(s)) − g1(s, ¯µ(s))‖

∫ s

0
(s − r)θ−1‖h1(r, υ(r), Iγυ(r))‖drds

+

∫ 1

0
‖G(y, s)‖‖g1(s, µ(s))‖

∫ s

0
(s − r)θ−1‖h1(r, υ(r), Iγυ(r)) − h1(r, ῡ(r), Iγῡ(r))‖drds

+

k∑
j=1

∫ 1

0
‖G j(y, s)‖‖ f1 j(s, µ(s)) − f1 j(s, µ̄(s))‖ds + ‖Φ1(µ(η)) − Φ1(µ̄(η))‖

+ ‖Φ2(µ(η)) − Φ2(µ̄(η))‖,

which by using hypothesis (H1)–(H4) yields

||T1(µ(y), υ(y), ω(y)) − T1(µ̄(y), ῡ(y), ω̄(y))||∞

≤

(
‖Ω1‖‖Θ1‖

Γ(σ + 1)Γ(θ + 1)
+

k∑
j=1

‖z1 j‖

Γ(α j + σ + 1)
+ L11 + L12

)
‖µ(y) − µ̄(y)‖∞

+
‖χ1‖‖λ1‖(1 + Γ(γ + 1))

Γ(σ + 1)Γ(θ + 1)Γ(γ + 1)
‖υ(y) − ῡ(y)‖∞

≤ Ψ1
(
‖µ(y) − µ̄(y)‖∞, ‖υ(y) − ῡ(y)‖∞, ‖ω(y) − ω̄(y)‖∞

)
.

Similarly we can deduce the second inequality as

||T2(µ(y), υ(y), ω(y)) − T2(µ̄(y), ῡ(y), ω̄(y))||

=

∣∣∣∣∣∣∣∣∣∣ ∫ 1

0
G(y, s)g21(s, µ(s))

∫ s

0
(s − r)θ−1h2(r, υ(r), Iγυ(r))drds +

k∑
j=1

∫ 1

0
G j(y, s) f2 j(s, µ(s))ds

+ (1 − y)ϕ1(µ(η)) + yϕ2(µ(η)) −
∫ 1

0
G(y, s)g2(s, µ̄(s))

∫ s

0
(s − r)θ−1h2(r, ῡ(r), Iγῡ(r))drds

−

k∑
j=1

∫ 1

0
G j(y, s) f2 j(s, µ̄(s))ds − (1 − y)ϕ2(µ̄(η)) − yϕ2(µ̄(η))

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣ ∫ 1

0
G(y, s)g2(s, µ(s))

∫ s

0
(s − r)θ−1h2(r, υ(r), Iγυ(r))drds +

k∑
j=1

∫ 1

0
G j(y, s) f2 j(s, µ(s))ds

+ (1 − y)ϕ1(µ(η)) + yϕ2(µ(η)) −
∫ 1

0
G(y, s)g2(s, µ̄(s))

∫ s

0
(s − r)θ−1h2(r, υ(r), Iγυ(r))drds

+

∫ 1

0
G(y, s)g2(s, µ̄(s))

∫ s

0
(s − r)θ−1h2(r, υ(r), Iγυ(r))drds

−

∫ 1

0
G(y, s)g2(s, µ̄(s))

∫ s

0
(s − r)θ−1h2(r, ῡ(r), Iγῡ(r))drds
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−

k∑
j=1

∫ 1

0
G j(y, s) f2 j(s, µ̄(s))ds − (1 − y)ϕ1(µ̄(η)) − yϕ2(µ̄(η))

∣∣∣∣∣∣∣∣∣∣
≤

∫ 1

0
‖G(y, s)‖‖g2(s, µ(s)) − g2(s, ¯µ(s))‖

∫ s

0
(s − r)θ−1‖h2(r, υ(r), Iγυ(r))‖drds

+

∫ 1

0
‖G(y, s)‖‖g2(s, µ(s))‖

∫ s

0
(s − r)θ−1‖h2(r, υ(r), Iγυ(r)) − h2(r, ῡ(r), Iγῡ(r))‖drds

+

k∑
j=1

∫ 1

0
‖G j(y, s)‖‖ f2 j(s, µ(s)) − f2 j(s, µ̄(s))‖ds + ‖ϕ1(µ(η)) − ϕ1(µ̄(η))‖

+ ‖ϕ2(µ(η)) − ϕ2(µ̄(η))‖,

on using hypothesis (H1)–(H4), we have

||T2(µ(y), υ(y), ω(y)) − T2(µ̄(y), ῡ(y), ω̄(y))||∞

≤

(
‖Ω2‖‖Θ2‖

Γ(σ + 1)Γ(θ + 1)
+

k∑
j=1

‖z2 j‖

Γ(α j + σ + 1)
+ L21 + L22

)
‖υ(y) − ῡ(y)‖∞

+
‖χ2‖‖λ2‖(1 + Γ(γ + 1))

Γ(σ + 1)Γ(θ + 1)Γ(γ + 1)
‖ω(y) − ω̄(y)‖∞

≤ Ψ2
(
‖µ(y) − µ̄(y)‖∞, ‖υ(y) − ῡ(y)‖∞, ‖ω(y) − ω̄(y)‖∞

)
.

On same fashion, we can deduce the third inequality as given by

||T3(µ(y), υ(y), ω(y)) − T3(µ̄(y), ῡ(y), ω̄(y))||∞

≤

(
‖Ω3‖‖Θ3‖

Γ(σ + 1)Γ(θ + 1)
+

k∑
j=1

‖z3 j‖

Γ(α j + σ + 1)
+ L31 + L32

)
‖ω(y) − ω̄(y)‖∞

+
‖χ3‖‖λ3‖(1 + Γ(γ + 1))

Γ(σ + 1)Γ(θ + 1)Γ(γ + 1)
‖µ(y) − µ̄(y)‖∞

≤ Ψ3
(
‖µ(y) − µ̄(y)‖∞, ‖υ(y) − ῡ(y)‖∞, ‖ω(y) − ω̄(y)‖∞

)
.

Hence
||Ti(µ, υ, ω) − Ti(µ̄, ῡ, ω̄)||∞ ≤ Ψi

(
||µ − µ̄||∞, ||υ − ῡ||∞, ||ω − ω̄||∞

)
.

Thus all the conditions of Theorem 3.1 are satisfied, consequently the fixed point problem has one
tripled fixed point in E. Hence inview of this result, our proposed problem (1.1) has atleast one solution.

�

4. HU and GHU stability

This section is dedicated to the study of HU stability and GHU stability for our proposed tripled
system (1.1) of HFSIDEs. We take benefit from the definitions given in [39] to give definitions of HU
stability and GHU stability for the desired investigation of stability analysis.
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Definition 4.1. The tripled system (3.11) of integral equations is said to be HU stable if there exist
positive real numbers Di(i = 1, 2, 3), such that for every εi > 0 (i = 1, 2, 3) and for any arbitrary
solution (µ∗, υ∗, ω∗) of the system of inequities

∣∣∣∣∣µ∗(y) −
∫ 1

0
G(y, s)g1(s, µ∗(s))

∫ s

0
(s − r)θ−1h1(r, υ∗(r), Iγυ∗(r))drds

+

k∑
j=1

∫ 1

0
G j(y, s) f1 j(s, µ∗(s))ds + (1 − y)Φ1(µ∗(η)) + yΦ2(µ∗(η))

∣∣∣∣∣ ≤ ε1,∣∣∣∣∣υ∗(y) −
∫ 1

0
G(y, s)g2(s, υ∗(s))

∫ s

0
(s − r)θ−1h2(r, ω∗(r), Iγω∗(r))drds

+

k∑
j=1

∫ 1

0
G j(y, s) f2 j(s, υ∗(s))ds + (1 − y)ϕ1(υ∗(η)) + yϕ2(υ∗(η))

∣∣∣∣∣ ≤ ε2,∣∣∣∣∣ω∗(y) −
∫ 1

0
G(y, s)g3(s, ω∗(s))

∫ s

0
(s − r)θ−1h3(r, µ∗(r), Iγµ∗(r))drds

+

k∑
j=1

∫ 1

0
G j(y, s) f3 j(s, ω∗(s))ds + (1 − y)ψ1(ω∗(η)) + yψ2(ω∗(η))

∣∣∣∣∣ ≤ ε3,

there exist a unique solution (µ, υ, ω) of (3.11), such that

|µ(y) − µ∗(y)| ≤ D1ε,

|υ(y) − υ∗(y)| ≤ D2ε,

|ω(y) − ω∗(y)| ≤ D3ε,

where ε = max{ε1, ε2, ε3}.

Definition 4.2. The tripled system (3.11) of integral equations is said to be GHU stable if there exist
functions Υi : B → [0,∞), (i = 1, 2, 3), such that for every εi > 0 (i = 1, 2, 3) and for any arbitrary
solution (µ∗, υ∗, ω∗) of the system of inequalities

∣∣∣∣∣µ∗(y) −
∫ 1

0
G(y, s)g1(s, µ∗(s))

∫ s

0
(s − r)θ−1h1(r, υ∗(r), Iγυ∗(r))drds

+

k∑
j=1

∫ 1

0
G j(y, s) f1 j(s, µ∗(s))ds + (1 − y)Φ1(µ∗(η)) + yΦ2(µ∗(η))

∣∣∣∣∣ ≤ ε1,∣∣∣∣∣υ∗(y) −
∫ 1

0
G(y, s)g2(s, υ∗(s))

∫ s

0
(s − r)θ−1h2(r, ω∗(r), Iγω∗(r))drds

+

k∑
j=1

∫ 1

0
G j(y, s) f2 j(s, υ∗(s))ds + (1 − y)ϕ1(υ∗(η)) + yϕ2(υ∗(η))

∣∣∣∣∣ ≤ ε2,∣∣∣∣∣ω∗(y) −
∫ 1

0
G(y, s)g3(s, ω∗(s))

∫ s

0
(s − r)θ−1h3(r, µ∗(r), Iγµ∗(r))drds

+

k∑
j=1

∫ 1

0
G j(y, s) f3 j(s, ω∗(s))ds + (1 − y)ψ1(ω∗(η)) + yψ2(ω∗(η))

∣∣∣∣∣ ≤ ε3,
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there exist a unique solution (µ, υ, ω) of (3.11), such that

|µ(y) − µ∗(y)| ≤ Υ1(ε),
|υ(y) − υ∗(y)| ≤ Υ2(ε),
|ω(y) − ω∗(y)| ≤ Υ3(ε),

where ε = max{ε1, ε2, ε3}.

Theorem 4.3. Assume that (H1)–(H4) hold, then the solution of the considered system (1.1) of
HFSIDEs is HU stable.

Proof. To show that the tripled system (1.1) is HU stable, we use (3.11) which is an equivalent integral
form of (1.1). Assume that (µ∗, υ∗, ω∗) is an arbitrary solution and let (µ, υ, ω) be the exact solution
of (3.11), then by hypothesis (H1)–(H4), we have

|µ(y) − µ∗(y)| ≤
(

‖Ω1‖‖Θ1‖

Γ(σ + 1)Γ(θ + 1)
+

k∑
j=1

‖z1 j‖

Γ(α j + σ + 1)
+ L11 + L12

)
‖µ(y) − µ∗(y)‖∞

+
‖χ1‖‖λ1‖(1 + Γ(γ + 1))

Γ(σ + 1)Γ(θ + 1)Γ(γ + 1)
‖υ(y) − υ∗(y)‖∞.

‖µ − µ∗‖ ≤ C1ε1 + C2ε2, (4.1)

where

C1 =

(
‖Ω1‖‖Θ1‖

Γ(σ + 1)Γ(θ + 1)
+

k∑
j=1

‖z1 j‖

Γ(α j + σ + 1)
+ L11 + L12

)
,

C2 =
‖χ1‖‖λ1‖(1 + Γ(γ + 1))

Γ(σ + 1)Γ(θ + 1)Γ(γ + 1)
.

Let use D1 = C1 + C2, and ε = max{ε1, ε2}, we get from (4.1)

‖µ − µ∗‖ ≤ D1ε. (4.2)

In similar manner we can derive that
‖υ − υ∗‖ ≤ D2ε (4.3)

and
‖ω − ω∗‖ ≤ D3ε. (4.4)

Thus by the use of Definition 4.1, the solution of the problem (3.11) is HU stable. Consequently, the
solution of the system (1.1) of HFSIDEs is HU stable. �

Theorem 4.4. Assume that (H1)–(H4) hold, then the solution of the tripled system (1.1) of HFSIDEs is
GHU stable.
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Proof. Let for Υi(i = 1, 2, 3) are functions defined by Υi : B→ [0,∞), with each Υi(0) = 0. Then from
the inequalities (4.2)–(4.4), we choose D1ε = Υ1(ε), D2ε = Υ2(ε) and D3ε = Υ3(ε), which led us to
the conclusion that

‖µ − µ∗‖ ≤ Υ1(ε),
‖υ − υ∗‖ ≤ Υ2(ε),
‖ω − ω∗‖ ≤ Υ3(ε).

Hence bythe Definition 4.2, the solution of the problem (3.11) is GHU stable. Consequently, the
solution of the tripled system (1.1) of HFSIDEs is GHU stable. �

5. Examples

In this section, we present an example for the the tripled system BVP (1.1) of HFSIDEs to test our
respective existence and stability results.

Example 5.1. Consider the following BVP tripled system of HFSIDEs

c
0D

2
5
y

[ c
0D

5
3
y µ(y) −

∑k
j=1 Iα j f1 j(y, µ(y))

y2 sec(πy
6 )

(
3|µ(y)|

3(|µ(y)|+1)

) ]
= y + cos(

πy
6

)
( e−y|υ(y)|
|υ(y)| + 13

+ I2.8υ(y)
)
,

c
0D

2
5
y

[ c
0D

5
3
y υ(y) −

∑k
j=1 Iα j f2 j(y, υ(y))

y tan(y)
(
|υ(y)|
|υ(y)|+2

) ]
= sin(

πy
2

)
(
|ω(y)|
|ω(y)| + 1

+ I3.5ω(y)
)
,

c
0D

2
5
y

[ c
0D

5
3
yω(y) −

∑k
j=1 Iα j f3 j(y, ω(y))

cot(y)
(
|υ(y)|+3
|υ(y)|+4

) ]
=
√

ycos(y)
(
|µ(y)| + 5
|µ(y)| + 6

+ I4.2µ(y)
)
,

µ(0) = µ2(0.5), c
0D

5
3
y µ(0) = 0, µ(1) = sin(µ(0.5)),

υ(0) = cos(υ(0.5)), c
0D

5
3
y υ(0) = 0, υ(1) =

1
6

sin(υ(0.5)),

ω(0) = ω2(0.5), c
0D

5
3
yω(0) = 0, ω(1) = 2ω(0.5),

(5.1)

where
3∑

j=1

Iα j f1 j(y, µ(y)) =I
3
5

(
sin

(y
4
)
|µ(y)| + ey sin y

)
+ I

4
7

(
√

y sin y|µ(y)| +
5

2 − y3

)
+ I

3
8

(
|µ(y)| cot

( √y
3

)
+

y2

ey + 1

)
,

(5.2)

3∑
j=1

Iα j f2 j(y, υ(y)) =I
3
5

(
cos

(πy
7

)
|υ(y)| + ey2

)
+ I

4
7

( √
y3 cos y|υ(y)| +

√
y + 1

)
+ I

3
8

(
|υ(y)| tan

( √
y3

5
)

+
y

e2y + 3

)
,

(5.3)
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3∑
j=1

Iα j f3 j(y, ω(y)) =I
3
5

(y2
√

y + 1
ey |ω(y)| + ey sin y

)
+ I

4
7

(
√

y sin y|ω(y)| +
5

2 − y3

)
+ I

3
8

(
|ω(y)| tan

( √y
3

)
+

y2

ey + 1

)
.

(5.4)

Now from Eqs (5.1)–(5.4), we have θ = 2
5 , σ = 5

3 , α1 = 3
5 , α2 = 4

7 , α3 = 3
8 , γ = 2.8, η = 0.5,

f11(y, µ(y)) = sin(
y
4

)|µ(y)| + ey sin y, f12(y, µ(y)) =
√

y sin y|µ(y)| +
5

2 − y3 ,

f13(y, µ(y)) = |µ(y)| cot
( √y

3
)

+
y2

ey + 1
, f21(y, υ(y)) = cos

(πy
7

)
|υ(y)| + ey2

,

f22(y, υ(y)) =
√

y3 cos y|υ(y)| +
√

y + 1, f23(y, υ(y)) = |υ(y)| tan
( √

y3

5
)

+
y

e2y + 3
,

f31(y, ω(y)) =
y2

√
y + 1
ey |ω(y)| + ey sin y, f32(y, ω(y)) =

√
y sin y|ω(y)| +

5
2 − y3 ,

f33(y, ω(y)) = |ω(y)| tan
( √y

3
)

+
y2

ey + 1
, g1(y, µ(y)) = y2 sec(

πy
6

)
( 3|µ(y)|
3(|µ(y)| + 1)

)
g2(y, υ(y)) = y tan(y)

(
|υ(y)|
|υ(y)| + 2

)
, g3(y, ω(y)) = cot(y)

(
|υ(y)| + 3
|υ(y)| + 4

)
.

Moreover,

h1(y, υ(y), Iγυ(y)) = y + cos(
πy
6

)
( e−y|υ(y)|
|υ(y)| + 13

+ I2.8υ(y)
)
,

h2(y, ω(y), Iγω(y)) = sin(
πy
2

)
(
|ω(y)|
|ω(y)| + 1

+ I3.5ω(y)
)

and
h3(y, µ(y), Iγµ(y)) =

√
ycos(y)

(
|µ(y)| + 5
|µ(y)| + 6

+ I4.2µ(y)
)
.

Then it is simple to show that hypothesis (H1)–(H4) holds. Hence by Theorem 3.3 BVP tripled
system (5.1) of HFSIDEs has atleast one solution. Furthermore, by Theorem 4.3 the solution of the
system (5.1) is HU stable and by Theorem 4.4, the solution of the system (5.1) is GHU stable.

6. Conclusions

Varieties of existence and uniqueness results appears in a range from theoretical aspects in the
literature of analysis. FDEs appears in mathematical modeling of different process and phenomenon in
various fields like blood flow phenomena, electro-dynamics, visco-elasticity and biophysics. Modeling
through systems of differential equations is an important class of bio-mathematics, physics, applied
chemistry and many more areas. Also the area has been extended recently to FDEs as well. BVPs have
many applications in engineering and physical sciences. Therefore, systems of BVP of FDEs have been
investigated very well. In this paper, we have established sufficient conditions for the existence theory
and HU and GHU stability analysis for the tripled system of HFSIDEs under boundary conditions. Our
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proposed system (1.1) can easily reduce to a system of fractional order Volterra integro-differential
equations. The said equations have been studied in various articles which have lots of applications.
For instance authors [40] have presented the model of physical system of fractional order Volterra
integro-differential equations which is characterized by Levy jumps. The authors solved the Levy
jumps problem by reduction of fractional order Schrodinger equation to fractional order Volterra
integro-differential equations with hyper singular kernel. So the tripled system of HFSIDEs studied
in this work has many applications for modelling different phenomena. Moreover in this study, as a
result of Darbo’s fixed point theorem and literature of MNC, we concluded a new fixed point result
given as a Theorem 3.1. For the application purpose, we utilized Theorem 3.1 for the existence of
solution to the considered tripled system (1.1) of hybrid fractional integro-differential equations. HU
and GHU stabilities are also investigated for the problem (1.1). In last section, we presented an example
which justify all our acquired results. In future, we can extend the above results for tripled systems of
HFSIDEs under non-singular kernel type derivatives.
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