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Abstract: The global burden of illegal drug-related death and disability continues to be a public
health threat in developed and developing countries. Hence, a fractional-order mathematical modeling
approach is presented in this study to examine the consequences of illegal drug usage in the community.
Based on epidemiological principles, the transmission mechanism is the social interaction between
susceptible and illegal drug users. A pandemic threshold value (Λ) is provided for the illegal drug-
using profession, which determines the stability of the model. The Lyapunov function is employed to
determine the stability conditions of illegal drug addiction equilibrium point of society. Finally, the
proposed model has been extended to include time lag in the delayed illegal drug transmission model.
The characteristic equation of the endemic equilibrium establishes a set of appropriate conditions for
ensuring local stability and the development of a Hopf bifurcation of the model. Finally, numerical
simulations are performed to support the analytical results.
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1. Introduction

Illegal drug addiction is a significant issue that threatens a large percentage of the global population,
leading to diseases like heart problems, a rise in the rate of toxins in the body, persistent stomach
infections, dyspepsia, psychological issues, and in some circumstances, death. There are also some
intellectual consequences of illegal drug usage, such as poor looks, excessive anxiety, tension, and
irritability. Illegal drug addiction is a brain disorder with behavioral and physiological features that
contribute to compulsive and persistent drug use despite the adverse effects. It is one of the most
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pressing concerns the government wants to address worldwide. Despite efforts to curb illegal drug
usage, persons who use illegal drugs increased by 20 million people between 2015 and 2016 [1].
According to the world health organization (WHO), 271 million individuals took illegal drugs at least
once in 2017, equivalent to around 5.6 % of the global population. In terms of fatalities, the Global
Burden of Disease Study estimated that 585,000 deaths and 42 million years of potential life were
destroyed globally in 2017 due to illegal drugs [2, 3].

Many researchers have explored the mathematical modeling of drug consumption [4–7] and a large
number of people interested in continuous-time and discrete-time modelling [8]. To explore the
propagation of heroin epidemics, Ma et al. [9] created many heroin epidemic models. In South
Africa, Nyabadza et al. [10] investigated the methamphetamine transmission model. Liu et al. [11]
studied global stability and backward bifurcation in a synthetic drug transmission model that included
therapy. Saha and Samanta [12] investigated the drug transmission model with optimum control.

Since, a fractional-order system has a memory effect, there are several studies on fractional-order
epidemiological systems [13–17]. Fractional calculus generalizes the order of derivatives, replacing
integer order with fractional order. During a systematic investigation, it is clear that the integer-order
model is a particular instance of the fractional-order model. The fractional-order system’s solution
must converge to the integer-order system when the order approaches one [18]. Fractional order
systems are more appropriate in many disciplines than integer order systems. An integer order
approach cannot describe the memory-related phenomena influenced by genetic factors [19]. The
fractional-order method appears to reflect the data obtained from real-life situations better.
Diethelm [20] compared the fractional-order systems numerical solutions to the integer-order
systems, concluding that the fractional-order approach gives a better intelligible interpretation.
Recently, many studies have been investigated in a fractional-order framework [14, 21, 22]. Several
numerical methods are proposed to solve the fractional differential and integral equations with delay,
based on the predictor-corrector of Adams-Bashforth-Moulton, finite difference, B-linear spline,
cubic spline, and integro quadratic spline interpolations [23–28]. The predictor-corrector method of
Adams-Bashforth-Moulton method is employed in order to reduce computations [23]. Also, several
numerical methods are proposed to solve the fractional differential equations with the nonlinear delay
with Markovian switching signals [29–31].

As recovery from illegal drug addiction takes time and the risk of relapse is high, successful
rehabilitation programs should be available and long-lasting to promote stable behavior change and
long-term abstinence. Scientists have also discovered that chronic drug misuse affects the structure
and chemistry of the brain, and these changes can continue for months or even years after the person
stops taking drugs. Volkow et al. [32] provided the primary example of the long-term effects of
addiction on the brain and heart. Crocq et al. discussed the cultural history of man’s relationship with
addictive drugs, as well as the historical roots of addiction research, which deals with addictive
substances and their patterns of usage throughout history [33].

Due to covid pandemic and lockdown, unemployment rates, assault, burglary, and drug addiction
are increasing [34]. As a result, drug transmission is a significant danger, and it is vital to establish
mechanisms to prevent drug transmission in society. To the best of our knowledge, a fractional delayed
model is, therefore, provided for the first time to determine the delay between a drug user and therapy
(to optimize the number of days with cost-effectiveness for a rehabilitation program). Fractional-
order models have an additional parameter (order of the derivative), which is beneficial for numerical
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simulations. Hence, changing the order of the derivative can stabilize (destabilize) some unstable
(stable) systems for particular parameter values around their equilibrium points. In a fractional-order
framework, we investigated the drug transmission model with the impact of the awareness campaign’s
psychological treatment. A drug user should have time before relapsing into physiological addiction
owing to the therapy’s effects and self-control. According to Duffy’s Napa Valley Rehab, thirty-five
percent of individuals who are in treatment for fewer than 90 days reported relapse in the following
year, compared to 17 percent of those in treatment for 90 days or more who reported relapse the next
year. But, the long-term rehabilitation approach has drawbacks such as cost and conflict with job and
household obligations. Motivated by the work of other dynamical systems with time delay, [35–37]
a fractional delayed model is introduced to estimate the time lag between a drug-addicted person and
their treatment.

In Section 2, we review some fundamental definitions and theories of fractional-order differential
equations, followed by a description and formulation of the drug model in Section 3. We also discuss
whether the solution of the proposed system exists, is unique, bounded, and non-negative in the next
Section 4. The equilibrium points and drug abuser number are calculated in Section 5. In Section 6
local and global stability of equilibrium points (both drug-free and drug addiction) systematically is
discussed. The delayed model is described in Section 7, and the stability of the delayed model is
discussed in Section 8. Finally, numerical simulations are performed in Section 9 to validate the
findings, followed by result and discussion; and conclusions of the whole work.

2. Preliminaries

Fractional derivatives are robust tools for describing memory and heredity characteristics in many
systems and processes. Different approaches to differentiating and integrating arbitrary orders have
been proposed, each with unique characteristics. The Riemann-Liouville (R-L) and Caputo derivatives
are the most commonly used definitions [38–40]. Several papers have been presented in subsequent
years examining the concept and implementations of innovative fractional-order derivatives obtained
by substituting the R-L and Caputo derivatives with a non-singular kernel [41,42]. Strong mathematical
reasons demonstrate that these non-singular kernel variants have significant faults that should make
them unsuitable for deployment [43]. The definition with non-singular kernels violates the fundamental
theorem of fractional calculus [43]. As a result, the suggested model employs Caputo’s definition,
which is defined as:
Definition 1. Suppose that η > 0, t > 0. Then for n ∈ N

dη f (t)
dtη

=


1

Γ(n − η)

∫ t

0

f (n)(x)

(t − x)η+1−n dx, n − 1 < η < n

dn

dtn f (t), η = n

(2.1)

is called the Caputo fractional derivative of order η. When dealing with real-world problems, the
Caputo derivative is particularly useful since it allows conventional initial and boundary conditions
and the derivative of a constant is zero, which is not the case with the Riemann–Liouville fractional
derivative [38].
Definition 2. The Mittag-Leffler function arises in the solution of fractional differential equations [44],
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introduced by G. M. Mittag-Leffler, is given by

Eη(z) =

∞∑
k=0

zk

Γ(ηk + 1)
.

The two-parameter Mittag-Leffler function is defined by the series expansion:

Eη,γ(z) =

∞∑
k=0

zk

Γ(ηk + γ)
,

where η > 0 and γ > 0. G. M. Mittag Leffler developed the Laplace transform of the Mittag-Leffler
function [45]:

L(tγ−1Eη,γ(±atη)) =
sη−γ

sη ∓ a
. (2.2)

The Laplace transform of the Caputo fractional derivative is defined as [39]

L

(
dη f (t)

dtη

)
= sηF(s) −

n∑
k=1

sη−k f (k−1)(0) where n − 1 < η ≤ n. (2.3)

Lemma 1. Consider the fractional differential equation

dη f (t)
dtη

= y(t, x), t > t0

with 0 < η ≤ 1 and y : [t0,∞] × Ω → Rn,Ω ∈ Rn. Then a unique solution of above equation on
[t0,∞] ×Ω exists provided y(t, x) obeys the locally Lipchitz condition with respect to x [38].

Lemma 2. (Generalized Mean Value Theorem [46]) Let f (t) ∈ C[a, b] and
dη f (t)

dtη
∈ C[a, b] for

0 < η ≤ 1, then

f (t) = f (a) +
1

Γ(η)
dη

dtη
f (ε)(t − a)η with 0 ≤ ε ≤ t, ∀ t ∈ (a, b].

Remark 1. If f (t) ∈ C[0, b] and
dη f (t)

dtη
∈ C[0, b] for 0 < η ≤ 1. It is clear that if

dη f (t)
dtη

≥ 0 ∀ t ∈

(0, b], then f (t) is non-decreasing and if
dη f (t)

dtη
≤ 0 ∀ t ∈ (0, b], then f (t) is non-increasing for all

t ∈ [0, b] [46].

3. Formulation of mathematical model

According to the substance use status, the illegal drug addiction model divides the entire population
into four divisions. S (t) stands for susceptible and refers to someone who is in danger of abusing any
substance (illegal drug). Persons who use the substance (illegal drug) in any form occasionally are
categorized as drug users, I(t), individuals who use illegal drugs regularly in any form are defined as
a drug abuser, A(t), and those who quit using illegal drugs either via abstinence or rehabilitation are
labeled as recovered, R(t). Individuals enter the susceptible population at a rate of Π through births
and migration, according to the model. Susceptible people become drug users as a result of their
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interactions with drug users. The contact rate per capita is β in this scenario. The natural recovery rate
of drug users is δ, while the rate at which people relapse to drug usage is ρ. The natural death rate is
represented by µ, while the rate at which all drug users abuse drugs is σ. The death rates of drug users
and drug abusers are r and θ, respectively. All variables and parameters considered in the proposed
model are defined in Table 1. We formulate the following model, which is a system of nonlinear
fractional order differential equations with non-negative initial conditions, based on some assumptions
and the flow diagram (Figure 1):

dηS (t)
dtη

= Πη − βηS (t)(A(t) + I(t)) − µηS (t),

dηI(t)
dtη

= βηS (t)(A(t) + I(t)) − (ση + δη + rη + µη)I(t) + ρηR(t),

dηA(t)
dtη

= σηI(t) − (θη + γη + µη)A(t),

dηR(t)
dtη

= γηA(t) + δηI(t) − (ρη + µη)R(t),

(3.1)

where η ∈ (0, 1] is order of derivative for the proposed model, due to which memory property is
included in proposed model. In the L.H.S. of the system, the human population is in fractional time
with the dimension t−η. Every constant has power η in the R.H.S. of the system to maintain the system
dimensionally balance since death rate, birth rate, etc. always have dimension t−1. Hence, the use of
parameter, η, instead of integer parameter can apparently lead to better results since one has an extra
freedom degree.

Figure 1. Schematic diagram of the model.
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Table 1. Parameter description.

Parameter Description
Π Recruitment rate
β Contact rate
σ The rate from which people switch from drug user to the drug abuser
δ Natural recovery rate of drug users
µ Natural death rate
θ Death rate due to drug abuse
r Death rate due to drug use
γ Recovered from drug abuser
ρ Rate at which people relapse to drug use

4. Model analysis

First, we have verified the existence and uniqueness of the solution and then demonstrate that it is
non-negative and bounded.

4.1. Existence and uniqueness

Theorem 1. There is a unique solution of model (3.1) along with non-negative initial conditions for
t ≥ 0. Furthermore, all the solutions are bounded.

Proof. Let N(t) be the total population at any time, then

N(t) = S (t) + I(t) + A(t) + R(t),
dηN(t)

dtη
=

dηS (t)
dtη

+
dηI(t)

dtη
+

dηA(t)
dtη

+
dηR(t)

dtη

= Πη − µηN(t) − rηI(t) − θηA(t)
≤ Πη − µηN(t).

(4.1)

By taking Laplace transformation of Eq (4.1):

N(s) ≤
Πη

s + sη−1N(0)
S η + µη

,

Now, by taking inverse Laplace transformation:

N(t) ≤
Πη

µη
[1 − Eη(−µηtη)] + N(0)Eη(−µηtη).

It is known that Eη(−x) is completely monotonic for x > 0 if 0 < η ≤ 1 and 0 ≤ Eη(−µηtη) ≤ 1 [44,47].

=⇒ N(t) ≤
Πη

µη
. (4.2)

According to Lemma 1, the solution of the proposed model (3.1) along with initial conditions for t > 0
exists, unique and bounded. �
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4.2. Positivity of solution

As population cannot be negative, so, this section demonstrates the positivity of solutions. Consider
that the condition (positivity of solution) is failed at some point to demonstrate (S , I, A,R) ≥ 0. Let

t0 = in f {t > 0|(S , I, A,R) < (R+
0 )4}.

Since
(S (t0), I(t0), A(t0),R(t0)) ∈ (R+

0 )4 then one ofS (t0), I(t0), A(t0),R(t0) is zero.

Then,

dηS (t)
dtη

∣∣∣∣∣∣
S (t0)=0

=Πη ≥ 0,

dηI(t)
dtη

∣∣∣∣∣∣
I(t0)=0

=βηS (t0)A(t0) + ρηR(t0) ≥ 0,

dηA(t)
dtη

∣∣∣∣∣∣
A(t0)=0

=σηI(t0) ≥ 0,

dηR(t)
dtη

∣∣∣∣∣∣
R(t0)=0

=γηA(t0) + δηI(t0) ≥ 0.

(4.3)

The solution of the proposed model is non-negative from Remark 1 of Lemma 2.

4.3. Invariant set

The set Ω is invariant if for all the initial conditions are in Ω, the solution of model (3.1) remains in
Ω. As a consequence, a positively invariant set will have positive solutions.
Hence, from Eqs 4.2 and 4.3

Ω =

{
(S , I, A,R) ∈ R4

+ : 0 ≤ S + I + A + R ≤
Πη

µη

}
(4.4)

is positively invariant region.

5. Equilibrium points

• Illegal drug-free equilibrium: When there are no illegal drug users (illegal drug users and drug
abusers).

• Illegal drug addiction equilibrium: When illegal drug users are not zero.

5.1. Illegal drug-free equilibrium

The illegal drug-free equilibrium (E0) is determined when I = 0; A = 0; R = 0. Therefore, the
illegal drug free steady state is given by

(
Πη

µη
, 0, 0, 0

)
.
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5.2. Drug abuser number

The drug abuser number is defined as the number of newly addicted persons generated by a single
addicted individual throughout the contagious period (Λ = 10 indicates a person with drug addiction
would transmit it to an average of 10 additional people). The largest eigenvalue of ζ∗ξ∗−1 at E0 is used
to calculate the drug abuser number Λ of given system [48].[

dηS (t)
dtη

,
dηI(t)

dtη
,

dηA(t)
dtη

,
dηR(t)

dtη

]T

= ζ(t) − ξ(t), (5.1)

where ξ(t) = ξ−i (t) − ξ+
i (t) and matrices ζi(t), ξ−i (t), ξ+

i (t) are given by

ζi(t) =


0

βηS (t)(A(t) + I(t))
0
0

 , ξ+
i (t) =


Πη

ρηR(t)
σηI(t)

γηA(t) + δηI(t)

 , ξ−i (t) =


βηS (t)(A(t) + I(t)) + µηS (t)

(ση + δη + rη + µη)I(t)
(θη + µη + γη)A(t)

(µη + ρη)R(t)

 .
At E0, the Jacobian matrix of ζ(t) is given by

ζ∗ =


0 0 0 0
0 βηΠη

µη
βηΠη

µη
0

0 0 0 0
0 0 0 0

 .
The Jacobian matrix of ξ(t) is

ξ∗ =


µη βηΠη

µη
βηΠη

µη
0

0 ση + δη + rη + µη 0 −ρη

0 −ση θη + µη + γη 0
0 −δη −γη µη + ρη

 .
The drug abuser number Λ is obtained as

Λ =
βηΠη[(ρη + µη)(ση + γη + θη + µη)]

µη[(µη + γη + θη)[µη(µη + rη + δη + ση) + ρη(µη + rη)] + µηρηση + ρησηθη]
. (5.2)

5.3. Illegal drug addiction equilibrium

The illegal drug addiction equilibrium (E1) is determined when I , 0; A , 0. Therefore, the drug
addiction steady state is given by (S 1, I1, A1,R1), where

S 1 =
Πη(θη + µη + γη)

βη(θη + µη + γη + ση)I1 + µη(θη + µη + γη)
, A1 =

σηI1

θη + µη + γη
,

R1 =
[γηση + δη(θη + µη + γη)]I1

(ρη + µη)(θη + µη + γη)
and I1 =

(θη + µη + γη)(Λ − 1)
βη(θη + µη + γη + ση)

.

For the existence of positive steady state Λ must be greater than or equal to one. If Λ = 1 drug addiction
steady state become drug free steady state. So, the drug addiction steady state is exists iff Λ > 1.
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6. Stability analysis

Theorem 2. The illegal drug free equilibrium point E0 =
(

Πη

µη
, 0, 0, 0

)
of the system (3.1) is globally

asymptotically stable under some restriction on parameters when Λ < 1; otherwise it is unstable.

Proof. Jacobian matrix at E0 is

JE0 =


−µη −

βηΠη

µη
−
βηΠη

µη
0

0 βηΠη

µη
− (ση + δη + rη + µη) βηΠη

µη
ρη

0 ση −(θη + µη + γη) 0
0 δη γη −(ρη + µη)

 .
Clearly, one of the eigen-values is −µη lies in 2nd quadrant.
Now, for checking stability system we have to check rest of eigen-values. So for this we consider,

βηΠη

µη
− (ση + δη + rη + µη) βηΠη

µη
ρη

ση −(θη + µη + γη) 0
δη γη −(ρη + µη)

 .
The equation of characteristic of above matrix is given by

λ3 + P1λ
2 + P2λ + P3 = 0

where P1 = −

(
βηΠη

µη
− (ση + δη + rη + µη)

)
+ (θη + µη + γη) + (ρη + µη);

for Λ < 1 =⇒
βηΠη

µη
− (ση + δη + rη + µη) < 0 =⇒ P1 > 0 whenever Λ < 1,

P2 = (θη + µη + γη)(ρη + µη)−
[
βηΠη

µη
− (ση + δη + rη + µη)

]
[(θη + µη + γη) + (ρη + µη)]− ρηδη −

βηΠηση

µη
,

P3 = [(µη + rη + θη)[µη(µη + rη + δη + ση) + ρη(µη + rη)] + ρηση(µη + θη)][1 − Λ] > 0 iff Λ < 1.

By using Routh-Hurwitz criteria [49], if P1 > 0, P3 > 0, P1P2 − P3 > 0; then all the eigenvalues of
the matrix will have negative real parts. Hence, the system (3.1) is stable whenever Λ < 1 [50]. Here
(I(t), A(t),R(t)) → (0, 0, 0) as t → ∞, so, (S (t), I(t), A(t),R(t)) →

(
Πη

µη
, 0, 0, 0

)
as t → ∞. So E0 is

globally asymptotically stable for Λ < 1 whenever P1 > 0, P3 > 0, P1P2 − P3 > 0. �

Theorem 3. The illegal drug addiction steady state E1 = (S 1, I1, A1,R1) exists and is locally
asymptotically stable iff Λ > 1.

Proof. For illegal drug addiction equilibrium point E1 = (S 1, I1, A1,R1) the Jacobian matrix of the
given model (3.1) at is obtained as follows:

J1 =


−(βη(A1 + I1) + µη) −βηS 1 −βηS 1 0

βη(A1 + I1) βηS 1 − (ση + δη + rη + µη) βηS 1 ρη

0 ση −(θη + µη + γη) 0
0 δη γη −(ρη + µη)

 .
AIMS Mathematics Volume 7, Issue 10, 18173–18193.
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The characteristic equation corresponding to J1 is

λ4 + Q1λ
3 + Q2λ

2 + Q3λ + Q4 = 0. (6.1)

The proposed system is stable if the characteristics equation has roots with negative real parts. The
following conditions are required for the stability of the system [49]:

Q1 > 0; Q4 > 0; Q1Q2 − Q3 > 0; Q1Q2Q3 − Q2
3 − Q4Q2

1 > 0. (6.2)

As a result, E1 = (S 1, I1, A1,R1) is locally asymptotically stable if the above conditions are met. �

Theorem 4. The illegal drug addiction steady state E1 = (S 1, I1, A1,R1) is globally asymptotically
stable iff Λ > 1.

Proof. Let the positive definite Lyapunov function be defined by:

U(S 1, I1, A1,R1) =

(
S − S 1 − S 1 ln

(
S
S 1

))
+

(
I − I1 − I1 ln

(
I
I1

))
+

(
A − A1 − A1 ln

(
A
A1

))
+

(
R − R1 − R1 ln

(
R
R1

))
.

Now, the ηth order derivative of Lyapunov function is given by [51]:

dηU
dtη
≤

(S − S 1

S

) dηS
dtη

+

( I − I1

I

) dηI
dtη

+

(A − A1

A

) dηA
dtη

+

(R − R1

R

) dηR
dtη

,

dηU
dtη
≤ L − M;

L =Πη + µηS 1 + βηS 1(A + I) + (θη + µη + γη)A1 + (ρη + µη)R1

M =µηS +
ΠηS 1

S
+ (rη + µη)I +

βηS (A + I)I1

I
+ (ση + δη + rη + µη)I1 +

ρηRI1

I

+ (θη + µη)A +
σηIA1

A
+
γηIR1

R
+
δηIR1

R

If L < M, then
dηU
dtη
≤ 0.

According to Gallegos and Duarte-Mermoud [52], the drug addiction steady state is globally
asymptotically stable in Ω if L < M. �

7. Delayed model

An illegal drug user in treatment should have some time before relapsing into physiological
addiction owing to the therapy’s effects and self-control. Hence, a fractional delayed model is
introduced to estimate the time lag between a drug-addicted person and their treatment. The
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fractional-order mathematical model subject to non-negative initial condition in the Banach space
C([−τ, 0],R4

+) of continuous functions mapping the interval [−τ, 0] to R4
+, is as follows:

dηS (t)
dtη

= Πη − βηS (t)(A(t) + I(t)) − µηS (t),

dηI(t)
dtη

= βηS (t)(A(t) + I(t)) − (ση + δη + rη + µη)I(t) + ρηR(t),

dηA(t)
dtη

= σηI(t) − γηA(t − τ) − (θη + µη)A(t),

dηR(t)
dtη

= γηA(t − τ) + δηI(t) − (ρη + µη)R(t).

(7.1)

All variables and parameters considered in the proposed model are defined in Table 1.

8. Stability analysis of delayed model

The endemic equilibrium point of Eq (7.1) is (S 1, I1, A1,R1), and equations for (S 1, I1, A1,R1) are
provided in Section 5. The effect of gradual increases in time delay on stability was investigated in this
paper. The characteristic equation for system (7.1) at the equilibrium point (S 1, I1, A1,R1) is,∣∣∣Jτ0 + e−λτJτ1 − λI

∣∣∣ = 0,

Jτ0 =


−(βη(A1 + I1) + µη) −βηS 1 −βηS 1 0

βη(A1 + I1) βηS 1 − (ση + δη + rη + µη) βηS 1 ρη

0 ση −(θη + µη) 0
0 δη 0 −(ρη + µη)

 ,

Jτ1 =


0 0 0 0
0 0 0 0
0 0 −γη 0
0 0 γη 0

 .
After solving, we get

λ4 + P1λ
3 + P2λ

2 + P3λ + P4 + e−λτ[P5λ
3 + P6λ

2 + P7λ + P8] = 0. (8.1)

The transcendental equation is known to have an unlimited number of complex roots. It is quite
difficult to discern the indications of the roots when there is a time delay (τ). As a result, we begin
our research by determining that the temporal delay (τ) is zero, and then develop stability criteria for
τ > 0.

At τ = 0, the Eq (8.1) becomes Eq (6.1), and the condition of stability for Eq (6.1) is described in
Section 6. Hence,

Theorem 5. The equilibrium point (S 1, I1, A1,R1) of system (7.1) is globally asymptotically stable for
τ = 0 iff condition (6.2) satisfied.
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If τ > 0, then the equation of characteristic (8.1) will have an indefinite number of roots. The
existence of entirely imaginary solutions to the Eq (8.1) is a necessary for the variation in stability of
E1. Let iν0 be the root of the Eq (8.1), then

ν4
0 − P2ν

2
0 + P4 = [P6ν

2
0 − P8] cos(ν0τ) + [P5ν

3
0 − P7ν0] sin(ν0τ), (8.2)

P1ν
3
0 − P3ν0 = [P6ν

2
0 − P8] sin(ν0τ) − [P5ν

3
0 − P7ν0] cos(ν0τ). (8.3)

Squaring and adding above two equations,

ν8
0 + N1ν

6
0 + N2ν

4
0 + N3ν

2
0 + N4 = 0 (8.4)

where

N1 =P2
1 − 2P2 − P2

5,

N2 =P2
2 + 2P4 − 2P1P3 − P2

6 + 2P7P5,

N3 =P2
3 − 2P2P4 + 2P6P8 − P2

7,

N4 =P2
4 − P2

8.

If N4 < 0; there must be two completely imaginary roots iν0 of the Eq (8.3) exists. The Eq (8.2) is
used to obtained τ,

τk =
1
ν0

cos−1
[
(P6ν

2
0 − P8)(ν4

0 − P2ν
2
0 + P4) − ν0(P5ν

3
0 − P7ν0)(P1ν

2
0 − P3)

(P6ν
2
0 − P8)2 + (P5ν

3
0 − P7ν0)2

]
+

2kπ
ν0

.

By taking derivative of the Eq (8.1) with respect to τ,(
dλ
dτ

)−1

=
4λ3 + 3P1λ

2 + 2P2λ + P3

−λ(λ4 + P1λ3 + P2λ2 + P3λ + P4)
+

3P5λ
2 + 2P6λ + P7

λ(P5λ3 + P6λ2 + P7λ + P8)
−
τ

λ
.

Let us considerRe
(
dλ
dτ

)−1
λ=iν0

=

{
Re

(
4λ3 + 3P1λ

2 + 2P2λ + P3

−λ(λ4 + P1λ3 + P2λ2 + P3λ + P4)
+

3P5λ
2 + 2P6λ + P7

λ(P5λ3 + P6λ2 + P7λ + P8)
−
τ

λ

)}
λ=iν0

= {G1 + G2}, where

G1 =
4ν3

0 + ν6
0(3P2

1 − 2P2) + ν4
0(4B4 − 2P3P1 + 2P2

2) + ν2
0(P2

3 − 2P2P4)

(P3ν
2
0 − P1ν

4
0)2 + (P1ν

3
0 − P4ν0 − ν

2
0)2

,

G2 =
ν4

0(P2
5 − 2P2

6 + 3P5P7) + ν2
0(2P6P8 − P7P5) − 3ν6

0P2
5

(P5ν
4
0 − P7ν

2
0)2 + (P8ν0 − P6ν

3
0)2

.

If G1,G2 are positive then
Re

(
dλ
dτ

)−1
λ=iν0

> 0 which gives near τ = τη, there is a bifurcation of

periodic solutions from E1 = (S 1, I1, A1,R1). Hence,

Theorem 6. Suppose that G1,G2 > 0 for system (7.1), then E1 = (S 1, I1, A1,R1) is asymptotically
stable for τ ∈ [0, τη) and unstable when τ > τη and exhibiting Hopf bifurcation at E1 = (S 1, I1, A1,R1)
when τ = τη.
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9. Numerical simulation

We exhibit numerical results in this part to show the dynamic nature of illegal drug propagation
model, and to evaluate the analytical conclusions for various values of derivatives with time delays.
The proposed model is solved using predictor-corrector method of Adams-Bashforth-Moulton which
is implemented in MATLAB [23]. The variables and parameters used for evaluation are shown in
Table 2 which were retrieved from [53]. It reveal that the equilibrium points for the proposed model
are asymptotically stable for η = 0.7, 0.8, 0.9, 1, as shown in Figure 2. As η is raised, the population
converges quicker to its equilibria, as seen in Figure 2. The suggested model’s stability is demonstrated
by the trajectory of all populations, irrespective of order.
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Figure 2. Variations of Susceptible population S , Illegal Drug Users I, Drug Abusers A,
and Recovered population R with time for different order of derivative (η) 0.7, 0.8, 0.9, 1
respectively, which shows R rises with time as well as with order of derivative.

Table 2. Variable and parameter description.

Parameter Π β µ σ δ r ρ γ θ

Value 0.040 0.02 0.020 0.01 0.200 0.003 0.025 0.210 0.002
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Figure 3. The proposed model is unstable for τ ≥ τ0.7 = 9.7 and stable for selected τ = 9.4,
η = 0.7.
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Figure 4. The proposed model is unstable for τ ≥ τ0.8 = 9.1 and stable selected τ = 8.9,
η = 0.8.
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Figure 5. The proposed model is unstable for τ ≥ τ0.9 = 8.4 and stable for selected τ = 8.2,
η = 0.9.
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Figure 6. The proposed model is unstable for τ ≥ τ1 = 7.9 and stable for selected τ = 7.7,
η = 1.
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(a) Variation of Drug Abuser number (Λ) with the rate at
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Figure 7. Relation of Λ with ρ, σ, η.
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Table 3. Time delay coefficient for different order.

η 0.7 0.8 0.9 1
τ 9.7 9.1 8.4 7.9

The behaviour of delayed model (7.1) for η = 0.7, 0.8, 0.9, 1 is shown in Figures 3–6. The plots
show that the time delay for different order of derivative η = 0.7, 0.8, 0.9, 1, and demonstrate that the
system is stable for τ < τη. The value time delay coefficient for the different order of derivative η are
shown in Table 3. Figures clearly indicate that when the order of derivative grows, the delay reduces,
showing that the model’s stability zone widens. According to Figure 7 drug abuser number increases
as order (η). As the rate at which people relapse to drug use (ρ) increases the drug abuser number
increases which means the drug user population increases.

10. Result and disscussion

According to Duffy’s Napa Valley Rehab, thirty-five percent of individuals in treatment for fewer
than 90 days reported relapse in the following year, compared to 17 percent of those in treatment for 90
days or more who reported deterioration the next year. But, the long-term rehabilitation approach has
drawbacks such as cost and conflict with job and household obligations. To the best of our knowledge,
a fractional delayed model is, therefore, provided for the first time to determine the delay between
a drug user and therapy (to optimize the number of days with cost-effectiveness for a rehabilitation
program).

There are two equilibrium points for the proposed model: illegal drug-free and illegal drug
addiction. The drug abuser number (Λ) is also obtained for the proposed model. The illegal drug-free
equilibrium point is stable whenever Λ < 1, whereas the drug addiction equilibrium point exists and is
globally asymptotically stable whenever Λ > 1. The proposed delayed model exhibits Hopf
bifurcation at the drug addiction equilibrium point. The predictor-corrector method of
Adams-Bashforth-Moulton to solve fractional differential equations with or without delay is
employed in order to reduce computations. The different plots for delayed model show that the time
delay for different order of derivative η = 0.7, 0.8, 0.9, 1, and demonstrate that the system is stable for
τ < τη.

According to our research, an illicit drug user can decrease drug intake in 9.7 weeks. On the other
hand, the integer-order model predicts that an illegal drug user may reduce drug intake in 7.9 weeks.
Since the success rate of a long-term rehab program is high in reality, a fractional-order model has a
greater success rate than an integer-order model. Most rehab programs are 30, 60, and 90 days. Since
the success rate of 90 days rehab program is high, in contrast, the long-term rehabilitation approach also
has some disadvantages such as cost and conflict with job and household obligations. Therefore, the
current study concludes that treatment programs lasting 70 to 75 days are more successful in reducing
drug addiction.

11. Conclusions

This research presents an illegal drug transmission model of fractional differential equations to
explain the dynamics of illegal drug transmission better while considering drug users’ histories. It is
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clear from this study that if the drug abuser number (Λ) is less than unity, drug propagation can be
regulated, and the illegal drug-free equilibrium can be maintained worldwide asymptotically. The drug
abusers number increases as the value of the order of derivative (η) grows to a specific value of η. The
number of people who continue to use illegal drugs occasionally and regularly rises over time so does
the susceptible population decrease with time. The people who have decided to either quit using drugs
or avoid them due to education or self-awareness of the consequences of using these substances, as
well as the anti-drug campaign is one of the causes for the reduction or avoidance of illegal drug usage
might be this. So, the recovered population increases. The fractional-order illegal drug transmission
mathematical model includes the delay coefficient (τ). The delayed model’s results indicate that after
the delay reaches a certain point, the model will oscillate repeatedly. The delay reduces as the order
of derivatives grows from 0 to 1, showing that the model’s stability zone widens. In this case, we find
that an illegal drug user can reduce drug consumption in 9.7 weeks, whereas the integer-order model
predicts that an illegal drug user can reduce drug consumption in 7.9 weeks. Because the success rate
of a long-term rehab program is high in reality, the success rate of a fractional-order model is higher
than that of an integer order model.

The proposed model can be generalized in the future by taking into account a variety of different
elements. Different approaches may be used to get the best value for the fractional order of derivatives.
Real-life data from various places may be used to confirm the simulation results.

Acknowledgments

Komal Bansal is grateful to the CSIR for providing financial assistance with 1091/(CSIR-UGC
NET DEC. 2018). Along with that author want to thanks INTI International University, Malaysia for
guiding and supporting in providing resources for this research.

Conflict of interest

We declare that we have no financial or personal relationships with other people or organisations
that could improperly influence our work, and that we have no professional or other personal interest
in any product, service, or company that could be interpreted as influencing the position presented in
the manuscript.

References

1. UNODC, World drug report, United Nations Office on Drugs and Crime, 2016.

2. WHO, HIV drug resistance surveillance guidance, World Health Organization, 2016.

3. A. Labzai, A. Kouidere, B. Khajji, O. Balatif, M. Rachik, Mathematical modeling and optimal
control strategy for a discrete time drug consumption model, Discrete Dyn. Nat. Soc., 2020 (2020),
5671493. http://doi.org/10.1155/2020/5671493

4. F. Guerrero, F. J. Santonja, R. J. Villanueva, Analysing the Spanish smoke-free legislation of 2006:
A new method to quantify its impact using a dynamic model, Int. J. Drug Policy, 22 (2011), 247–
251. http://doi.org/10.1016/j.drugpo.2011.05.003

AIMS Mathematics Volume 7, Issue 10, 18173–18193.

http://dx.doi.org/http://doi.org/10.1155/2020/5671493
http://dx.doi.org/http://doi.org/10.1016/j.drugpo.2011.05.003


18190

5. Z. Y. Hu, Z. D. Teng, H. J. Jiang, Stability analysis in a class of discrete SIRS epidemic models,
Nonlinear Anal.-Real, 13 (2012), 2017–2033. http://doi.org/10.1016/j.nonrwa.2011.12.024

6. J. B. H. Njagarah, F. Nyabadza, Modelling the role of drug barons on the prevalence of drug
epidemics, Math. Biosci. Eng., 10 (2013), 843–860. http://doi.org/10.3934/mbe.2013.10.843

7. A. Labzai, O. Balatif, M. Rachik, Optimal control strategy for a discrete time smoking
model with specific saturated incidence rate, Discrete Dyn. Nat. Soc., 2018 (2018), 5949303.
http://doi.org/10.1155/2018/5949303

8. O. Latif, A. Labzai, M. Rachik, A discrete mathematical modeling and optimal control of the
electoral behavior with regard to a political party, Discrete Dyn. Nat. Soc., 2018 (2018), 9649014.
http://doi.org/10.1155/2018/9649014

9. M. J. Ma, S. Y. Liu, H. Xiang, J. Li, Dynamics of synthetic drugs transmission model
with psychological addicts and general incidence rate, Physica A, 491 (2018), 641–649.
http://doi.org/10.1016/j.physa.2017.08.128

10. F. Nyabadza, J. B. H. Njagarah, R. J. Smith, Modelling the dynamics of crystal meth(‘tik’) abuse
in the presence of drug-supply chains in South Africa, Bull. Math. Biol., 75 (2013), 24–48.
http://doi.org/10.1007/s11538-012-9790-5

11. P. Y. Liu, L. Zhang, Y. F. Xing, Modelling and stability of a synthetic drugs transmission model with
relapse and treatment, J. Appl. Math. Comput., 60 (2019), 465–484. http://doi.org/10.1007/s12190-
018-01223-0

12. S. Sangeeta, G. P. Samanta, Synthetic drugs transmission, Lett. Biomath., 6 (2019), 1–31.
http://doi.org/10.30707/LiB6.2Saha

13. M. Das, G. P. Samanta, A prey-predator fractional order model with fear effect and group defense,
Int. J. Dyn. Control, 9 (2021), 334–349. http://doi.org/10.1007/s40435-020-00626-x

14. M. Das, G. P. Samanta, Stability analysis of a fractional ordered COVID-19 model, Comput. Math.
Biophys., 9 (2021), 22–45. http://doi.org/10.1515/cmb-2020-0116

15. M. Das, G. P. Samanta, Optimal control of fractional order COVID-19 epidemic
spreading in Japan and India 2020, Biophys. Rev. Lett., 15 (2020), 207–236.
http://doi.org/10.1142/S179304802050006X

16. K. S. Pritam, Sugandha, T. Mathur, S. Agarwal, Underlying dynamics of crime transmission with
memory, Chaos Soliton. Fract., 146 (2021), 110838. http://doi.org/10.1016/j.chaos.2021.110838

17. K. Bansal, S. Arora, K. S. Pritam, T. Mathur, S. Agarwal, Dynamics of crime
transmission using fractional-order differential equations, Fractals, 30 (2022), 2250012.
http://doi.org/10.1142/S0218348X22500128

18. G. S. Teodoro, J. A. T. Machado, E. C. de Oliveira, A review of definitions of
fractional derivatives and other operators, J. Comput. Phys., 388 (2019), 195–208.
https://doi.org/10.1016/j.jcp.2019.03.008

19. M. L. Du, Z. H. Wang, H. Y. Hu, Measuring memory with the order of fractional derivative, Sci.
Rep., 3 (2013), 3431. https://doi.org/10.1038/srep03431

20. K. Diethelm, Efficient solution of multi-term fractional differential equations using P(EC)mE
methods, Computing, 71 (2003), 305–319. http://doi.org/10.1007/s00607-003-0033-3

AIMS Mathematics Volume 7, Issue 10, 18173–18193.

http://dx.doi.org/http://doi.org/10.1016/j.nonrwa.2011.12.024
http://dx.doi.org/http://doi.org/10.3934/mbe.2013.10.843
http://dx.doi.org/http://doi.org/10.1155/2018/5949303
http://dx.doi.org/http://doi.org/10.1155/2018/9649014
http://dx.doi.org/http://doi.org/10.1016/j.physa.2017.08.128
http://dx.doi.org/http://doi.org/10.1007/s11538-012-9790-5
http://dx.doi.org/http://doi.org/10.1007/s12190-018-01223-0
http://dx.doi.org/http://doi.org/10.1007/s12190-018-01223-0
http://dx.doi.org/http://doi.org/10.30707/LiB6.2Saha
http://dx.doi.org/http://doi.org/10.1007/s40435-020-00626-x
http://dx.doi.org/http://doi.org/10.1515/cmb-2020-0116
http://dx.doi.org/http://doi.org/10.1142/S179304802050006X
http://dx.doi.org/http://doi.org/10.1016/j.chaos.2021.110838
http://dx.doi.org/http://doi.org/10.1142/S0218348X22500128
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2019.03.008
http://dx.doi.org/https://doi.org/10.1038/srep03431
http://dx.doi.org/http://doi.org/10.1007/s00607-003-0033-3


18191

21. M. Das, A. Maitis, G. P. Samanta, Stability analysis of a prey-predator fractional
order model incorporating prey refuge, Ecol. Genet. Genomics, 7-8 (2018), 33–46.
http://doi.org/10.1016/j.egg.2018.05.001

22. M. Das, G. P. Samanta, A delayed fractional order food chain model with fear effect and prey
refuge, Math. Comput. Simul., 178 (2020), 218–245. http://doi.org/10.1016/j.matcom.2020.06.015

23. K. Diethelm, A. D. Freed, The FracPECE subroutine for the numerical solution of differential
equations of fractional order, Forsch. und wissenschaftliches Rechnen, 1998, 57–71.

24. B. P. Moghaddam, J. A. T. Machado, Extended algorithms for approximating variable
order fractional derivatives with applications, J. Sci. Comput., 71 (2017), 1351–1374.
http://doi.org/10.1007/s10915-016-0343-1

25. B. P. Moghaddam, Z. S. Mostaghim, Modified finite difference method for solving
fractional delay differential equations, Bol. Soc. Parana. Mat., 35 (2017), 49–58.
http://dx.doi.org/10.5269/bspm.v35i2.25081

26. J. A. T. Machado, B. P. Moghaddam, A robust algorithm for nonlinear variable-order fractional
control systems with delay, Int. J. Nonlinear Sci. Numer. Simul., 19 (2018), 231–238.
http://doi.org/10.1515/ijnsns-2016-0094

27. S. Yaghoobi, B. P. Moghaddam, K. Ivaz, An efficient cubic spline approximation for variable-
order fractional differential equations with time delay, Nonlinear Dyn., 87 (2017), 815–826.
https://doi.org/10.1007/s11071-016-3079-4

28. F. K. Keshi, B. P. Moghaddam, A. Aghili, A numerical approach for solving a class of variable-
order fractional functional integral equations, Comput. Appl. Math., 37 (2018), 4821–4834.
http://doi.org/10.1007/s40314-018-0604-8

29. Q. X. Zhu, T. W. Huang, control of stochastic networked control systems with time-varying
delays: The event-triggered sampling case, Int. J. Robust Nonlinear Control, 31 (2021), 9767–
9781. http://doi.org/10.1002/rnc.5798

30. Y. Zhao, Q.X. Zhu, Stabilization of stochastic highly nonlinear delay systems with neutral-term,
IEEE T. Automat. Contr., 2022. http://doi.org/10.1109/TAC.2022.3186827

31. X. T. Yang, H. Wang, Q. X. Zhu, Event-triggered predictive control of
nonlinear stochastic systems with output delay, Automatica, 140 (2022), 110230.
http://doi.org/10.1016/j.automatica.2022.110230

32. N. D. Volkow, T. K. Li, Drug addiction: The neurobiology of behaviour gone awry, Nat. Rev.
Neurosci., 5 (2004), 963–970. http://doi.org/10.1038/nrn1539

33. M. A. Crocq, Historical and cultural aspects of man’s relationship with addictive drugs, Dialogues
Clin. Neuro., 9 (2007), 355–361. http://doi.org/10.31887/DCNS.2007.9.4/macrocq

34. M. Costantini, I. Meco, A. Paradiso, Do inequality, unemployment and deterrence affect crime over
the long run? Reg. Stud., 52 (2018), 558–571. http://doi.org/10.1080/00343404.2017.1341626

35. S. Kundu, S. Maitra, Dynamics of a delayed predator-prey system with stage
structure and cooperation for preys, Chaos Soliton. Fract., 114 (2018), 453–460.
http://doi.org/10.1016/j.chaos.2018.07.013

AIMS Mathematics Volume 7, Issue 10, 18173–18193.

http://dx.doi.org/http://doi.org/10.1016/j.egg.2018.05.001
http://dx.doi.org/http://doi.org/10.1016/j.matcom.2020.06.015
http://dx.doi.org/http://doi.org/10.1007/s10915-016-0343-1
http://dx.doi.org/http://dx.doi.org/10.5269/bspm.v35i2.25081
http://dx.doi.org/http://doi.org/10.1515/ijnsns-2016-0094
http://dx.doi.org/https://doi.org/10.1007/s11071-016-3079-4
http://dx.doi.org/http://doi.org/10.1007/s40314-018-0604-8
http://dx.doi.org/http://doi.org/10.1002/rnc.5798
http://dx.doi.org/http://doi.org/10.1109/TAC.2022.3186827
http://dx.doi.org/http://doi.org/10.1016/j.automatica.2022.110230
http://dx.doi.org/http://doi.org/10.1038/nrn1539
http://dx.doi.org/http://doi.org/10.31887/DCNS.2007.9.4/macrocq
http://dx.doi.org/http://doi.org/10.1080/00343404.2017.1341626
http://dx.doi.org/http://doi.org/10.1016/j.chaos.2018.07.013


18192

36. X. Y. Meng, J. G. Wang, Analysis of a delayed diffusive model with
Beddington–DeAngelis functional response, Int. J. Biomath., 12 (2019), 1950047.
http://doi.org/10.1142/S1793524519500475

37. Z. Z. Zhang, Y. G. Wang, Hopf bifurcation of a heroin model with time delay and saturated
treatment function, Adv. Differ. Equ., 2019 (2019), 64. http://doi.org/10.1186/s13662-019-2009-
4

38. I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional
differential equations, to methods of their solution and some of their applications, San Diego:
Academic Press, 1999.

39. K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential
equations, New York: Wiley, 1993.

40. E. C. de Oliveira, J. A. T. Machado, A review of definitions for fractional derivatives and integral,
Math. Probl. Eng., 2014 (2014), 238459. http://doi.org/10.1155/2014/238459
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