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Abstract: In this paper, we discuss problems that integer part of nonlinear forms with prime variables
represent primes infinitely. We prove that under suitable conditions there exist infinitely many primes
p j, p such that [λ1 p2

1 + λ2 p2
2 + λ3 pk

3] = p and [λ1 p3
1 + · · · + λ4 p3

4 + λ5 pk
5] = p with k ≥ 2 and k ≥ 3

respectively, which improve the author’s earlier results.
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1. Introduction

Let [x] be the greatest integer not exceeding x. For any natural number k, an interesting question is
whether there exist s = s(k) and infinitely many primes p1, · · · , ps, p such that

[λ1 pk
1 + · · · + λs pk

s] = p,

where λ1, · · · , λs are real non-zero numbers and at least one of λi/λ j(1 ≤ i < j ≤ s) is irrational.
Following the work of Danicic [1] for the linear case k = 1 with s=2, Li and Wang [2] made progress
for the quadratic case k = 2 with s = 3, and Li and Su [3] for the cubic case k = 3 with s = 5.

In 1988, Srinivasan [4] established one result being of form [λ1 p1 + λ2 pk
2] = p. Inspired by

Srinivasan’s conclusion, in this paper, we prove two more general and sharper results as follows.
Theorem 1.1. Suppose that λ1, λ2, λ3 are positive real numbers, at least one of λi/λ j(1 ≤ i < j ≤ 3) is
irrational, and positive integer k ≥ 2, then there exist infinitely many primes p1, p2, p3, p such that

[λ1 p2
1 + λ2 p2

2 + λ3 pk
3] = p.
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Theorem 1.2. Suppose that λ1, · · · , λ5 are positive real numbers, at least one of λi/λ j(1 ≤ i < j ≤ 5) is
irrational, and positive integer k ≥ 3, then there exist infinitely many primes p1, · · · , p5, p such that

[λ1 p3
1 + · · · + λ4 p3

4 + λ5 pk
5] = p.

Here we only give the proof of Theorem 1.2, since Theorem 1.1 can be proved similarly. In
Section 2, we give the outline of the proof of Theorem 1.2. In Sections 3 and 4, we restrict our
attention to the neighbourhood of the origin and the intermediate region, respectively. In Section 5, we
consider the trivial region and complete the proof of Theorem 1.2.

Throughout the paper, we use standard notations in number theory. In particular, δ stands for a
sufficiently small positive number, ε is an arbitrarily small positive number, ν is positive real number,
and N is a sufficiently large real number.

2. Outline of the method

The basic method builds on the modification of the Hardy-Littlewood circle method first introduced
by Davenport and Heilbronn. Denote

Kν(α) = ν(
sin πνα
πνα

)2,

for ν > 0 and α , 0. By continuity, we define Kν(0) = ν. Then we have

Kν(α) � min(ν, ν−1|α|−2), (2.1)∫ +∞

−∞

e(αy)Kν(α)dα = max(0, 1 − ν−1|y|). (2.2)

Since at least one of the ratios λi/λ j(1 ≤ i < j ≤ 5) is irrational, we may assume that λ1/λ2 is
irrational, and for other cases, one may deal with them similarly. For λ1/λ2 is irrational, there are
infinitely many pairs of integers q, a with

|λ1/λ2 − a/q| ≤ q−2, (a, q) = 1, q > 0, a , 0.

We choose q to be large in terms of λ1, · · · , λ5, and make the following definitions.

L = log N, [N1−8δ] = q, τ = N−1+δ, Q = (|λ1|
−1 + |λ2|

−1)N1−δ, P = N6δ, T = T 3
1 = T k

2 = N
1
3 ,

S i(α) =
∑

(δN)
1
3 ≤p≤N

1
3

e(λi p3α) log p, i = 1, · · · , 4,

S 5(α) =
∑

(δN)
1
k ≤p≤N

1
k

e(λ5 pkα) log p, S 0(α) =
∑
p≤N

(log p)e(αp).

By (2.2),

J(R) =:
∫ +∞

−∞

5∏
i=1

S i(α)S 0(−α)e(−
1
2
α)K 1

2
(α)dα
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≤ L6
∑

|λ1 p3
1+···+λ4 p3

4+λ5 pk
5−p− 1

2 |<
1
2

(δN)
1
3 ≤p1 ,··· ,p4≤N

1
3 ,(δN)

1
k ≤p5≤N

1
k ,p≤N

1

=: L6N(N).

Thus it suffices to establish a positive lower bound for J(R). In order to estimate J(R), we split
(−∞,+∞) into three parts C = {α ∈ R : |α| ≤ τ}, D = {α ∈ R : τ < |α| ≤ P}, c = {α ∈ R : |α| > P},
traditionally named the neighbourhood of the origin, the intermediate region, and the trivial region.

Thus
J(R) = J(C) + J(D) + J(c). (2.3)

In the following sections, we compute the integrals in the neighbourhood of the origin, the
intermediate region, and the trivial region, respectively.

3. The neighbourhood of the origin

In this section, we evaluate the contribution from the neighbourhood of the origin and give a
low bound.

Let ρ = β+ iγ be the zeros of the Riemann zeta function and C be a positive constant. By Lemma 5
of [5], one has

S 0(α) =

∫ N

1
e(yα)dy −

∑
|γ|≤T,β≥ 2

3

∑
n≤N

nρ−1e(nα) + O((1 + |α|N)N
2
3 LC)

=: I0(α) − J0(α) + B0(α),

S i(α) =

∫ N
1
3

(δN)
1
3

e(λiy3α)dy −
∑

|γ|≤T1,β≥
2
3

∑
(δN)

1
3 ≤n≤N

1
3

nρ−1e(λin3α) + O((1 + |α|N)N
2
9 LC)

=: Ii(α) − Ji(α) + Bi(α), i = 1, · · · , 4,

S 5(α) =

∫ N
1
k

(δN)
1
k

e(λ5ykα)dy −
∑

|γ|≤T2,β≥
2
3

∑
(δN)

1
k ≤n≤N

1
k

nρ−1e(λ5nkα) + O((1 + |α|N)N
2
3k LC)

=: I5(α) − J5(α) + B5(α).

Lemma 3.1. We have

S 0(α) � N, I0(α) � min(N, |α|−1),
∫ 1

2

− 1
2

|I0(α)|2dα � N,

∫ 1
2

− 1
2

|J0(α)|2dα � N exp(−L
1
5 ),

∫ τ

−τ

|B0(α)|2dα � N
1
3 +4δ,

∫ 1
2

− 1
2

|S 0(α)|2dα � NL.
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Proof. These can be deduced from Lemmas 6–8 of [5].
From Lemma 8 of [6], we can deduce the following Lemmas 3.2 and 3.3.

Lemma 3.2. For i = 1, · · · , 4, we have

S i(α) � N
1
3 , Ii(α) � N

1
3 min(1,N−1|α|−1),

∫ 1
2

− 1
2

|Ii(α)|2dα � N−
1
3 ,

∫ 1
2

− 1
2

|Ji(α)|2dα � N−
1
3 exp(−L

1
5 ),

∫ τ

−τ

|Bi(α)|2dα � N−
1
3 exp(−L

1
5 ),

∫ τ

−τ

|S i(α)|2dα � N−
1
3 .

Lemma 3.3. We have
S 5(α) � N

1
k , I5(α) � N

1
k min(1,N−1|α|−1),∫ 1

2

− 1
2

|I5(α)|2dα � N
2
k−1,

∫ 1
2

− 1
2

|J5(α)|2dα � N
2
k−1 exp(−L

1
5 ),∫ τ

−τ

|B5(α)|2dα � N
2
k−1 exp(−L

1
5 ),

∫ τ

−τ

|S 5(α)|2dα � N
2
k−1.

Lemma 3.4. We have∫
C

|

5∏
i=1

S i(α)S 0(−α) −
5∏

i=1

Ii(α)I0(−α)|K 1
2
(α)dα � N

4
3 + 1

k L−1. (3.1)

Proof. Obviously,

5∏
i=1

S i(α)S 0(−α) −
5∏

i=1

Ii(α)I0(−α)

= (S 1(α) − I1(α))
5∏

i=2

S i(α)S 0(−α) + I1(α)(S 2(α) − I2(α))
5∏

i=3

S i(α)S 0(−α)

+ · · · +

4∏
i=1

Ii(α)(S 5(α) − I5(α))S 0(−α) +

5∏
i=1

Ii(α)(S 0(−α) − I0(−α)).

By Lemmas 3.1–3.3, we have∫
C

|(S 1(α) − I1(α))
5∏

i=2

S i(α)S 0(−α)|K 1
2
(α)dα

� N
5
3 + 1

k

(∫ τ

−τ

|B1(α)|2dα +

∫ τ

−τ

|J1(α)|2dα
) 1

2
(∫ τ

−τ

|S 2(α)|2dα
) 1

2

� N
4
3 + 1

k L−1,

∫
C

|

4∏
i=1

Ii(α)(S 5(α) − I5(α))S 0(−α)|K 1
2
(α)dα
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� N
4
3

(∫ τ

−τ

|B5(α)|2dα +

∫ τ

−τ

|J5(α)|2dα
) 1

2
(∫ τ

−τ

|S 0(−α)|2dα
) 1

2

� N
4
3 + 1

k L−1,

∫
C

|

5∏
i=1

Ii(α)(S 0(−α) − I0(−α))|K 1
2
(α)dα

� N
4
3

(∫ τ

−τ

|I5(α)|2dα
) 1

2
(∫ τ

−τ

|B0(−α)|2dα +

∫ τ

−τ

|J0(−α)|2dα
) 1

2

� N
4
3 + 1

k L−1.

The argument for other terms are similar, and the proof of Lemma 3.4 is concluded.
Lemma 3.5. We have ∫

|α|>N−1+δ

|

5∏
i=1

Ii(α)I0(−α)|K 1
2
(α)dα � N( 4

3 + 1
k )(1−δ), (3.2)

and ∫ +∞

−∞

5∏
i=1

Ii(α)I0(−α)e(−
1
2
α)K 1

2
(α)dα � N

4
3 + 1

k . (3.3)

Proof. For α , 0, we have

Ii(α) � |α|−
1
3 , i = 1, · · · , 4, I5(α) � |α|−

1
k , I0(−α) � |α|−1,

thus the left hand of (3.2)

�

∫
|α|>N−1+δ

|α|−
7
3−

1
k dα � N( 4

3 + 1
k )(1−δ).

The proof of (3.3) is similar to (36) in [5], we omit the details.
Combining (3.1), (3.2) and (3.3), we get

J(C) � N
4
3 + 1

k . (3.4)

4. The intermediate region

The goal of this section is to estimate the integral J(D).
Lemma 4.1. We have ∫ +∞

−∞

|S i(α)|8K 1
2
(α)dα � N

5
3 + 1

3 ε, i = 1, · · · , 4, (4.1)∫ +∞

−∞

|S 5(α)|2
k
K 1

2
(α)dα � N

1
k 2k−1+ε, (4.2)∫ +∞

−∞

|S 0(−α)|2K 1
2
(α)dα � NL. (4.3)
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Proof. By (2.1) and Hua’s inequality,∫ +∞

−∞

|S 5(α)|2
k
K 1

2
(α)dα �

+∞∑
m=−∞

∫ m+1

m
|S 5(α)|2

k
K 1

2
(α)dα

�

1∑
m=0

∫ m+1

m
|S 5(α)|2

k
dα +

+∞∑
m=2

m−2
∫ m+1

m
|S 5(α)|2

k
dα � N

1
k 2k−1+ε.

The proofs of (4.1) and (4.3) are similar.
Lemma 4.2. Suppose ε > 0 is given. Let f (x) be a real valued polynomial in x of degree k ≥ 2.
Suppose α is the leading coefficient of f and there are integers a, q such that |qα − a| < q−1 with
(a, q) = 1. Then we have ∑

p≤X

(log p)e( f (p)) � X1+ε(q−1 + X−
1
2 + qX−k)41−k

.

Proof. This is Theorem 1 of [7].
Lemma 4.3. For every real number α ∈ D, let W(α) = min(|S 1(α)|, |S 2(α)|), then

W(α) � N
1
3−

1
16 δ+ε.

Proof. The proof is similar to Lemma 9 in [3]. In α ∈ D, we know that at least one j, P < q j � Q, and
Lemma 4.3 can be established.

Using Hölder’s inequality, we have

J(D) � max
α∈D
|W(α)|

1
2k−3

(∫ +∞

−∞

|S 1(α)|8K 1
2
(α)dα

) 1
8−

1
2k 4∏

i=2

(∫ +∞

−∞

|S i(α)|8K 1
2
(α)dα

) 1
8

·

(∫ +∞

−∞

|S 5(α)|2
k
K 1

2
(α)dα

) 1
2k

(∫ +∞

−∞

|S 0(−α)|2K 1
2
(α)dα

) 1
2

+ max
α∈D
|W(α)|

1
2k−3

(∫ +∞

−∞

|S 2(α)|8K 1
2
(α)dα

) 1
8−

1
2k ∏

i=1,3,4

(∫ +∞

−∞

|S i(α)|8K 1
2
(α)dα

) 1
8

·

(∫ +∞

−∞

|S 5(α)|2
k
K 1

2
(α)dα

) 1
2k

(∫ +∞

−∞

|S 0(−α)|2K 1
2
(α)dα

) 1
2

.

Hence, by Lemmas 4.1 and 4.3, we have

J(D) � N
4
3 + 1

k−
1

2k+1 δ+ε. (4.4)

5. The trivial region and completion of the proof

In this section, we consider the contribution from the trivial region, and then establish Theorem 1.2.
Lemma 5.1. Let V(α) =

∑
e(α f (x1, · · · , xm)), where f is any real function and the summation is over
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any finite set of values of x1, · · · , xm. Then, for any A > 4, we have∫
|α|>A
|V(α)|2Kν(α)dα ≤

16
A

∫ ∞

−∞

|V(α)|2Kν(α)dα.

Proof. This is Lemma 2 of [8].
By Lemmas 5.1, 4.1 and Schwarz’s inequality,

∫
c

|

5∏
i=1

S i(α)S 0(−α)|K 1
2
(α)dα

�
1
P

∫ +∞

−∞

|

5∏
i=1

S i(α)S 0(−α)|K 1
2
(α)dα

� N−6δ max
α∈R
|S 5(α)|

4∏
i=1

(∫ +∞

−∞

|S i(α)|8K 1
2
(α)dα

) 1
8
(∫ +∞

−∞

|S 0(α)|2K 1
2
(α)dα

) 1
2

� N
4
3 + 1

k−6δ+ε.

Thus, we have
J(c) � N

4
3 + 1

k−6δ+ε. (5.1)

Combining (2.3), (3.4), (4.4) and (5.1), we get

J(R) � N
4
3 + 1

k , N(N) � N
4
3 + 1

k L−6,

i.e., under the conditions of Theorem 1.2,

|λ1 p3
1 + · · · + λ4 p3

4 + λ5 pk
5 − p −

1
2
| <

1
2

(5.2)

has infinitely many primes solutions p1, · · · , p5, p.
By (5.2), we have

p < λ1 p3
1 + · · · + λ4 p3

4 + λ5 pk
5 < p + 1,

and
[λ1 p3

1 + · · · + λ4 p3
4 + λ5 pk

5] = p.

This proves Theorem 1.2.

6. Conclusions

In this work, using the circle method, we have established two theorems that integer part of
nonlinear forms with prime variables represent primes infinitely. The results presented in this article
are new and improve the author’s earlier results.
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