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Abstract: We consider the nonergodic Gaussian Ornstein-Uhlenbeck processes of the second kind
defined by dX, = 6X,dt + dY,(” ,t >0, Xy = 0 with an unknown parameter 6§ > 0, where dY,(l) =e7'dG,,
and {G,,t > 0} is a mean zero Gaussian process with the self-similar index y € (%, 1) and g, = yei.
Based on the discrete observations {X,, : t; = iA,,i = 0,1,--- ,n}, two least squares type estimators
6, and 6, of 6 are constructed and proved to be strongly consistent and rate consistent. We apply our
results to the cases such as fractional Brownian motion, sub-fractional Brownian motion, bifractional
Brownian motion and sub-bifractional Brownian motion. Moreover, the numerical simulations confirm
the theoretical results.
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1. Introduction and main results

Recently, the study of fractional Ornstein-Uhlenbeck processes of the second kind (FOUSK) has
attracted interest. For example, Azmoodeh and Morlanes (2013) studied the drift parameter estimation
of FOUSK based on continuous observations in the ergodic case. Azmoodeh and Viitasaari (2015)
considered the drift parameter estimation of FOUSK based on discrete observations in the ergodic
case. For the nonergodic case, the drift parameter estimations of FOUSK based on continuous and
discrete observations were studied in EI Onsy et al. (2017) and EI Onsy et al. (2018), respectively.
Balde et al. (2018) investigated the infinite-dimensional version of FOUSK. Yu et al. (2017) studied
the problem of parameter estimation for Ornstein-Uhlenbeck processes of the second kind driven by
a-stable Lévy motions, based on continuous and discrete observations, respectively. Es-Sebaiy et al.
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(2019) considered least squares type estimations for discretely observed nonergodic Gaussian Ornstein-
Uhlenbeck processes.

Motivated by all these studies, in this paper, we will consider the nonergodic Gaussian Ornstein-
Uhlenbeck processes of the second kind (GOUSK) defined by

dX, = 0X,dt +dY"",t > 0,X, = 0, 1.1)

with an unknown parameter 6 > 0, where a’Yt(l) =e7'dG,, and G = {G,,t > 0} is a mean zero Gaussian
. .. . L . .

process with the self-similar index y € (%, 1) and a, = ye>. Based on the discrete observations {X, :

t;, =iA,,i=0,1,---,n}, we construct two least squares type estimators 6, and 0, of 6:

9 _ Z?:l XIH(XII' - Xti—l)
" A, S0 X?

ti-1

(1.2)

and )
XTn

T A Y X

ti-1

(1.3)

n

where T,, = nA, denotes the length of the *observation window’.
Let the covariance function of Gaussian process G be R(t, s) = E(G,G;),t > 0, s > 0. Denote

O’R(t, s)

o) = —6s

(1.4)

Assume that
o(t, s) < cYt — 5”772, (1.5)

where c(y) is a positive constant depending on y, and % <y < 1 is self-similar index of G.

For the assumption (1.5), many self-similar Gaussian processes satisfy the condition, such as
fractional Brownian motion, sub-fractional Brownian motion, bifractional Brownian motion and sub-
bifractional Brownian motion. Therefore our main results hold for the Gaussian processes mentioned
above.

Let {Z,} be a sequence of random variables. We say {Z,} is tight (or bounded in probability) if for
every € > 0, there exists M, > 0, such that

P(Z,| > M,) < e forall n.

Now we state our main results as follows.
Theorem 1.1. Assume that (1.5) holds and % <vy<l,and 8 > 0,A, — 0 and nA,l,+ﬁ — oo for
some 8 > 0 as n — oo. Then, we have, as n — oo,

a.s.

0, —> 0, (1.6)
and s
g, — 0. (1.7)

Theorem 1.2. Assume that (1.5) holds and % <y<l1l,and 8 > 0,A, — 0 and nA,lfﬁ — oo for
some B > 0 as n — oo. Then, we have
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(1) forany g > 0,

A2e’ (6, — 6) is not tight, (1.8)
) if nA?1 — 0asn — oo, then
T, — 0) is tight. (1.9)

Theorem 1.3. Assume that (1.5) holds and % <vy<l,and 8 > 0,A, — 0 and nA,lfﬁ — oo for
some B > 0 as n — oo. Then, we have
(1) for any ¢ > 0,

AZe?"(6, — 6) is not tight, (1.10)
(2) if nA> - 0 as n — oo, then
VT8, - 0) is tight. (1.11)

Remark. We study Gaussian Ornstein-Uhlenbeck processes of the second kind in this paper.
We know they are a subset of a much larger class Barndorft-Nielsen and Shephard type Ornstein-
Uhlenbeck processes (see Barndorff-Nielsen (2001) and Barndorff-Nielsen and Shephard (2001)). In
the future, we will extend our results to more general Ornstein-Uhlenbeck type models (see Salmon
and SenGupta (2021), Issaka and SenGupta (2017) and Roberts and SenGupta (2020)).

We have organized our paper as follows: In Sect.2 we present some preliminaries for the Gaussian
process G and main lemmas. Sect.3 is devoted to the proofs of Theorems 1.1-1.3. In Sect.4 we
apply our results to the cases such as fractional Brownian motion, sub-fractional Brownian motion,
bifractional Brownian motion and sub-bifractional Brownian motion, while Sect.5 contains numerical
simulations for four fractional Gaussian processes.

2. Preliminaries and main lemmas

In this section, we firstly recall some elements of the Malliavin calculus. We refer to Nualart
(2006) for detailed account these notions(see Moshrefi-Torbati and Hammond (1998), Meerschaert et
al. (2017), Ei-Nabulsi (2012,2015,2017), and Ei-Nabulsi and Golmankhaneh (2021)). Let /H be a real
separable Hilbert space associated with the Gaussian process G, which is defined by the closure of the
linear space & generated by the indicator functions {I;o, ¢ € [0, T]} with respect to the scalar product

Tjo., Lo, = R(2, 5).

We know that the covariance of G can be written as

R, s) = f f 3, v)dud, @.1)
0o Jo
where ¢(u, v) is defined by (1.4).

We can find a linear space of functions contained in H in the following way. Let |H| be the linear
space of measurable functions ¢ on [0, T'] such that

T T
el = f f e(llp(I(u, v)dudy < oo,
0o Jo
It is not difficult to show that |H] is a Banach space with the norm || e ||, and & is dense in |H].
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Moreover, for all ¢,y € |H|, it can be proved that

T T T T
E( f e(u)dG, f w(v)de): f f QU (V)P (u, v)dudv.
0 0 0 0

(2.2)

For every g > 1, let H, be the gth Wiener chaos of G, namely, the closed linear subspace of
L*(Q) generated by the random variables {H,(G(h)),h € H,|lhlly = 1}, where H, is the gth Hermite

polynomial defined as H,(x) = (—l)qe% % (e‘xzz). The mapping 1,(h®?) = H,(G(h)) provides a linear

isometry between the symmetric tensor product H®? (equipped with the modified norm || - |lged =

V!ll - llg=e) and H,. Specifically, for all f, g € 4 and g > 1, one has

E[1,()1,(8)] = g [, &)xe.

For the multiple stochastic integral 1,(f), it has the following property: for any p > 2,

1/2
b

(E02,HP1)" < etp. gy (BLLHP)

where c(p, g) is a positive constant only depending on p and g.
It is easy to obtain the solution of (1.1):

t
X, =é” f e *dyW, >0,
0

where the integral with respect to Yﬁl) is a Young integral (see Young (1936)).

Denote .
m:fawwntax
0

then,
X, = ¢n,.

By (2.6) and inl) =e'dG,, a; = yei and let a, = u, we get

t
= [,
0

At
— ,y((7‘+1)yf u_(9+1)7dGu-

ao

By (2.2) and% <7y <1, wehave, for0 < s <1,

E[(n, —ny)*] = 72(6+1)7f f ()" OV p(u, v)dudv.

In order to prove Theorems 1.1-1.3, we need the following some lemmas.

(2.3)

(2.4)

(2.5)

(2.6)

2.7)

(2.8)

(2.9)

Lemma 2.1. Letn = {n,,t > 0} be given by (2.6). Assume that (1.5) holds and % < vy < 1. Then,
(1) For all € € (0,7), the process i has a modification with (y — €)-Holder continuous paths, still

denoted 7 in the sequel.
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(2) Ast — oo,
M = Neo 1= y&DY f uw V4G, (2.10)
agp

almost surely and in L?(Q).

Proof. Since the proof is similar to that of Lemma 2.2 in EI Onsy et al. (2017), we omit the
details.

Lemma 2.2. Let/ > 0 and {Z,},cn be a sequence of random variables. Suppose that, for every
p > 1, there exists a constant ¢, > 0 such that, for all n € N,

ENZD" < cp-n.
Then, for all € > 0, there exists a random variable &, such that, for any n € N,
|Z,| < & -n7 as.,

moreover, E[|£.|] < oo for all p > 1.
Proof. See the proof in Kloeden and Neuenkirch (2007).
Lemma 2.3. Let

n—1
Ry = e MGp ), @.11)
i=1
and .
Sn=My ) X2 (2.12)
i=1
Then, we have
A
20T, ¢ _ n 2
e S}’l - engn _ 1 (ntnfl _Rn) . (2.13)

Assume that (1.5) holds and % <y<l,and 6> 0,A, — 0 and nA,]fﬂ — oo for some B > 0 as n — oo,

then,
a.s.

R, — 0. (2.14)
In particular, as n — oo, we have
B A
e s, — = (2.15)

20’
where 7., is defined by (2.10).
Proof. By (2.7), we obtain

n

e—ZHTnSn — e_ZHT"An § 629(1_1)An77t2,-,1
i=1

A <
_ n —29(n—i+1)An( 20A, ) 2
= — e e -1 n..
200 — ;_14 fi-1

A n
_ n ( o208 _ e—ze(n—i+1)An) 2
2208, _ | 2 : T
i=1
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n—1
_ —-26(n— l)A .2 )
- er)A [ e 77:, 77t,»,1 :

i=1

A,
= e%,A—(Thn  — Ry,

which shows that (2.13) holds.
Using (2.9) and (1.5) and making the change of variables r =

S =
a’ll,

E[(7, — n,,)*] = y*ODY f T @)y Y g, vydudy

Ay YAy

iy 1;
< c(,y),y2(0+1)7 f f (uv)—(9+1)y|u _ v|2y—2dudv
a. a,_
An An
. Y ¥
— c(,y),y2ye—20(z—l)An f f (rs)—(9+1)y|r _ s|2y—2drds
1 1

MM
. Y Y
< c(y)y? e %D f f Ir — s|?2drds
I 1

2y p=26G-Dbn 2y
- (P -1) 2.16)
yQy -1
By (2.10) and 7 is Gaussian, we also obtain, for every p > 1,
1/p 1/2
( [|nt, t, 1 p]) S C(p) (E [(nli - nti_1)2]) ’ (2.17)

where c(p) is a constant depending on p. In fact, we have, by Cauchy-Schwarz inequality,

Bl =2 I = €[+ nl I =n )

12 1/2 l/p
s (1en | o)

1/2p)
< [E2napr]"” [E I = 11 |2,,] !

< C(p) (E [(nli ~ My )2])1/2 ’

the last inequality comes from the fact: if £ is Gaussian and p > 2, then

[Eler]"? < c(p) [Bie?] .

By (2.17) and (2.16) and the Minkowski inequality, we deduce that

n—1
EIRPD7 < 3 e (B[l - 2 1)
i=1
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n—1

< c(p)\Jety)yy” o0 ( o l)y Z o~ 0n=i=DA,
V)’(Q)/ -1 i=1
y . y 1 _ ,—0(n—-1)A,
_ DN g, (e% _ 1) <
Y@y -1) I—e
% Ay
Vy@y -1 1 —e™
A Y
_ c(p)\e(y) (An)y_le_H”A"[ey - 1) . P

Ay efbn—1
0 )/(2)/ - 1) a2 oA,
< c(p) ye(y)e (A -l
Oy2y -1
where c is a constant, and the last inequality comes from the fact: as x — 0,
X _
-1 — 1.
X

Note that for any @ > 0, as n — oo,
(A e = o(n™®).

In fact,

a+l-y

a+
P e

1 - T,
(nA,iJrﬁ )T

. 1+
Since nA, B oo for some 8 > 0 as n — oo, we have

- 9Tn

a+l—y

(nA,lfﬁ)T — o0.

In addition,
+ a+l-y

. @ —
im7, 7 ¢ =0.

n—oo

Thus (2.19) is obtained from (2.20)—(2.22).
By (2.19), we have, for any ¢ > 0,

(An)’y—le—BT,, — n—a—é.

Hence (2.18) becomes
c(p)+/c(y)c
(E [|Rn|p])l/p < (p) (7 n_a_(j.
OyQ2y -1
By Lemma 2.2, there exists a random variable &, such that

R,| < é,n7%, a.s.

for all n € N. Moreover, E|£,|P < oo for all p > 1. Therefore (2.14) holds.

Finally, we can get (2.15) using (2.13), (2.14), (2.10) and lim,,_,, ezgf—,’]_l =

2.3 is finished.

AIMS Mathematics
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2.21)
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3. Proofs of Theorems

In this section, we will give proofs of Theorems 1.1-1.3.
By (2.7), we can rewrite @n and 6, as follows, respectively,

no e nooy2
2ic1 € X, — X X

A

6, =
Sh
_ Z?:] egt"(ﬂz,- - n[i—l)X[i—l + (Z?:l egtinli—IX[i—l - Z?:l thi—l)
= S
_ zr'l:l eeti(nti — My )Xli—l + (eGA,, - 1) er‘lzl th,-,l)
= S
Vv, e —1
_ Y, , 3.1
S A (3.1)
where .
Vn = Z eeti(nti - nt,',l)Xt,;l s
i=1
and )
~ n
I (3.2)

"7 2eTS,
Proof of Theorem 1.1. For (1.6), according to (2.15) and (3.1), it suffices to prove that, as n — oo,
ey, 25 0. (3.3)

By the Minkowski inequality and (2.16), we have

1172 1 ?
] = e_zaT" E Z eeti(ﬂn - nl[-l)Xli—l

i=1

1/2

[E |2y,

n
1/2

_ i /
<e 26T, Z 60 An (E)(i_l)l/2 [E(ﬂ;, - nt,‘—l)z]

i=1
lc y Ay Y &

< e‘zm&e%" (67 - 1) Z(EX?H)UZ
Vy2y-1) =1

< o2, ey s (eA; B 1)y (Em2)'"? Z Hi=DA,

VYQ2y—-1) i=1
0T,

Y g5 1

N e

(—c Y Ay y 1_ —0T,

()/))/ e@An(Eni)l/z (ey _ 1) e_eTn L

VyQy -1 e —1
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c Y An Y 1

< YW o2 12 (6’ - 1) "5

VyQ2y -1 et =1
An Y

S S [ey _ l] i &

An EHA”—I
02y - 1) A -
\ely)e
< Y g2, ptem, (3.4)
O\y(2y -1
where c is a generic constant, and the last inequality also comes from the fact: as x — 0,
e -1 - 1.
X

Using similar arguments as the proof of (2.14), we can obtain (3.3). Thus (1.6) holds.

We can easily obtain (1.7) from (3.2), (2.15) and lim,—,« 77; = 1] a.S., and this completes the proof
of Theorem 1.1.

Proof of Theorem 1.2. (1) Firstly, we consider the case g > % By (3.1), we get

A V, e
A%, — 0) = Ade"T (— + - 9)

S}’l An
Aje ™V, ~1 6T, ( ,6A
=gt (e —1-04,). (3.5)

. 2 .
Since e — 1 — 6A, ~ SA; as A, — 0, we obtain

92
lim AL e (™ = 1= 0A,) = lim —Af* ™

n—oo n—oo 2
pin g1 b,
1 148\ B8
= lim = (n,7) " —
;
T,

1
Because nA,”* — oo for some B> 0asn — ooand

Then, we have
lim AL (™ = 1 - 6A, ) = co. (3.6)

n—oo

On the other hand, by (3.4), we get, as n — oo,

E|ALe V| < A (EV2)"

< c(y)e (E i )1/2 Az+y—1
O\y2y-1)

AIMS Mathematics Volume 7, Issue 1, 1095-1114.
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- 0, (3.7)

since y > % Consequently, by (3.5)—(3.7) and (2.15), for any g > %, Ale’™ (8, — 0) is not tight.

For the case 0 < g < 1, note that
A —1 1 A
Ale(B, - 0) = A, ? (A; "0, - 9)),

1

and lim,_,c AY ? = co and the previous case g = % The proof of (1.8) is finished.
(2) By (3.1), it is obvious that

. M1 —gA, Te 2,
Tl — 0) = A[nr3E 4 YTne . (3.8)

A2 e S,

. 0An _1_, 2
Since nA} — 0 and =% _, &

e >, we have, as n — oo,
n

" —1-6A,
== 0 (3.9)

Furthermore, by (3.4), we get, as n — oo,
1/2
E ‘ \/Fne—zen v,| < \/Tn [E |e—2€T,, v, 2]
Vey)e

< (Eni)l/zAZ_l Tne—()Tn
Oy2y-1) VI,

_ VC(Y)C (E772 )1/2 T, e
Oy2y-1)
— 0. (3.10)

By (3.8)—(3.10) and (2.15), we deduce (1.9). Hence, we complete the proof of Theorem 1.2.

Proof of Theorem 1.3. (1) Fix g > %, by (3.2) and (2.13), we obtain

AL (8, - 6)

2
— AqeGTn TITn _ 0
T 2e-20T,S
AZeGTn 2 5 29An 0 _20T An )
= _26'_2€T"Sn [(Utn 1,0t (1 T p26A, _ 1)?7:,” - 260 (6 "Sa— 208, _ 177:,,1)
AZeQTn 2 2 29An 2 29An
= 26_26THSYI l(ntn - ntrrl) + (1 - eZHAn . l)ntnl + (gZHAn _ 1)Rn . (311)

By (2.16), we have, as n — oo,

1/2 1/4

[E (Age™ (n?. n;jl))z] < [EGm, +m, )" [E (¢, ~ m,,l))4]

AIMS Mathematics Volume 7, Issue 1, 1095-1114.
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<2V3[ER] " Al [E (", - '7’""))2]1/2

An Y
2\/_ VC()/ 1/2 eAnAq*'}’[ey —1]
= - T &

Y
- 0.
We also get
26A e — 1 -20A, A
0T, n +1 0T, n
Aje (1 T p200, _ 1) Ape A2 2200, —
14\ en @208 — 1 —20A, A,
( A, ) ) A2 0200, — |
Tn/f n
— 00, as n — 0o,
4+ _ &n &0/ —1-20A,,

since lim, ., nA,” = oo for some g > 0, lim,_, < = oo, lim,

g+l
r,”

2
An

Ay 1
hmn—wo 2051 — 29°

Moreover, by (2.18), we deduce, as n — oo,
12 172
[EiALe™R,[]" = Ase™ [EIR,]"

o OV
6 \y2y—1)

- 0.

(3.12)

(3.13)
= 26* and

(3.14)

where ¢(2) denotes c(p) = ¢(2) in (2.18). Combining (3.11)—(3.14) and (2.15), we conclude that for

every ¢ > 3, Ane?(6, — 6) is not tight.
For the case 0 < g <
holds.

(2) By (3.2) and (2.13), note that 7, =

T, - 6)

0=

t, = n/\,, we can write

T, 26A
26—26T S ( tn - ntn ]) +

20A,, ) "
engn — 1 ) nt’l—l + (629An — 1)Rn:| '
Similarly to (3.12)—(3.14), we obtain, as n — oo,

[E(«/Tn(m,, ’hnl))] = m(
20A

200, _ 1 _
—") — /nA3e 1
208 — 1 " A%

Er) " e ™) 0,

20A, A,
ezeA,, -1 - O’

VI 1-

AIMS Mathematics

, we obtain it similarly to the proof of (1) in Theorem 1.2. Hence (1.10)

(3.15)

(3.16)

(3.17)

Volume 7, Issue 1, 1095-1114.



1106

and

[E| \/ERHIZ]I/ZS c(2) yJc(y)e \/EE_HT”AZ_I
O\yQ2y—-1)

1, 1y
_ ) Nee T, T e
O+y2y - 1) (n Arﬁ)%’

— 0. (3.18)
By (3.15)—(3.18), we can easily get (1.11).
Thus, we finish the proof of Theorem 1.3.

4. Applications to fractional Gaussian processes

This section is devoted to some examples of the Gaussian process G. For example fractional
Brownian motion, sub-fractional Brownian motion, bifractional Brownian motion and sub-bifractional
Brownian motion.

4.1. Fractional Brownian motion

The fractional Brownian motion (fBm) BY = {Bf{ ,1> O} with Hurst parameter H € (0, 1) is defined
as a centered Gaussian process starting from zero with covariance

(P + s = |t = sPM). 4.1)

| =

R(t,s) =E(B/'BT) =

Note that, when H = %, B? is a standard Brownian motion. By (4.1), we get

O’R(t, 5)

o = HQH - )|t — s]*172. (4.2)

¢(t,5) =

It is well-known that the self-similar index of fBm is H. Thus when % < H < 1, fBm satisfies the
assumption (1.5). Hence Theorems 1.1-1.3 hold for the fBm B (% < H < 1), namely, corresponding

to Theorems 4, 6, and 7 in EI Onsy et al. (2019).

4.2. Sub-fractional Brownian motion

The sub-fractional Brownian motion (sfBm) S = {S At > O} with Hurst parameter H € (0, 1) is
defined as a centered Gaussian process starting from zero with covariance

1
R(t,s) =E(S/'sH) ="+ 27 - 3 (G + 9 +1e = s). (4.3)
Note that, when H = %, S is a standard Brownian motion. The self-similar index for sfBm is also H.
For more on sub-fractional Brownian motion, we can see Kuang and Xie (2015,2017), Kuang and Liu

(2015,2018) and so on.

AIMS Mathematics Volume 7, Issue 1, 1095-1114.
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By (4.3), we have

O*R(t, s)
otos

When 1 < H < 1, by (4.4), we get

é(t, s) = = HQH - 1) [t = sP"72 = (¢ + 5y (4.4)

#(t,s) < HQH - D))t — s>, 4.5)

which shows that the assumption (1.5) holds for stBm. Hence Theorems 1.1-1.3 hold for the sfBm
SHGA <H <.

4.3. Bifractional Brownian motion

The bifractional Brownian motion (bfBm) B*X = {BfI’K > O} with parameters H € (0, 1) and
K € (0, 1] is defined as a centered Gaussian process starting from zero with covariance

R(t,5) = E (BBl = ziK ((tZH + 2 - s|2HK). 4.6)

Note that, the case K = 1 corresponds to the fBm with Hurst parameter H. The self-similar index of

bfBm is HK. By (4.6), we obtain

O°R(t, s)

_ A2-Kgp2 o, 2\K2 . oH-1
o =2 HK(K = 1) (2" + &) (1)

o2, 5) =

+2"KHKQHK - )|t — s]*1%2, 4.7)

Since K <1, when 1 < 2HK < 2, we have
o(t,s) < 2"KHKQHK — 1|t — 5|52, (4.8)

The assumption (1.5) holds for the bfBm B”X(1 < 2HK < 2). Thus we also obtain Theorems 1.1-1.3
for the bfBm B*X(1 < 2HK < 2).

4.4. Sub-bifractional Brownian motion

El-Nouty and Journé (2013) introduced the process S X = (S tH’K ,t > 0} with indices H € (0, 1) and
K € (0, 1], named the sub-bifractional Brownian motion (sbfBm) and defined as follows:

1
HK _ H,K H.K
S = sz (B + BEE),

where {B,H’K ,t € R} is a bifractional Brownian motion (bfBm) with indices H € (0,1) and K € (0, 1].
Clearly, the sbfBm is a centered Gaussian process such thatS g{’K = 0, with probability 1, and
Var (SfI’K) = (ZK — 22HK‘1) X Note that since 2H-1)K—1 < K—1 < 0, it follows that 2HK —1 < K.
We can easily verify that S %K is self-similar with index HK. When K = 1, S! is the sub-fractional
Brownian motion (sfBm). Straightforward computations show that for all s, 7 > 0,

1
R(t,5) = E(S/FS 1K) = (12 + 1)K - 3 |t + 9K + |t — 5P (4.9)
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and
2
Cilt - sP% < E [(S,’” — S 1K) ] < Cylt — K, (4.10)

where
Ci = min(2% — 1,25 - 2%K71) - C; = max(1,2 - 22571},

So S %K has (HK — €)-Holder continuous paths for any € € (0, HK) thanks to Kolmogorov’s continuity
criterion. Kuang (2019) studied the collision local time of sub-bifractional Brownian Motions. Kuang
and Li (2020) obtained Berry-Esséen bounds and proved the almost sure central limit theorem for the
quadratic variation of the sub-bifractional Brownian motion.

By (4.9), we have

2 _
o1, 5) = gzg;S) = 4HPK(K - 1) + ) s
+HKQHK - 1) [|r i s)zHK-2] . 4.11)

Since K <1, when 1 < 2HK < 2, we have
#(t,s) < HKQHK — )|t — s[*7%2, (4.12)

which means the assumption (1.5) also holds for the sbfBm S7X(1 < 2HK < 2). Hence Theorems
1.1-1.3 also hold for the sbfBm S#X(1 < 2HK < 2).

5. Numerical simulations

In this section, we firstly simulate the sample paths of the process X given by (1.1). By (2.7) and
(2.8), we have

t
X, = e@t,y(0+1)y f w46, .
ao

Lett; = iA,,i=0,1,--- ,n,X,, =0, then,

dy;
Xt,- — e()tiy(é)ﬂ)yf u—(9+l)deu

ap

i1 i
— eeti,y(ﬂﬂ)y (f u_(9+1)deu +f u—(6+1)deu]
ap a;.

li-1

dy;
— €9A”Xz,-,l + e()tl-,y(é)Jrl)y f u~ 0y dG,
a

li-1

(G, + a; @Dy
0, 0+1)y 6in, (G T Gy
e A e I (A

i iBy =hag \ 1@+ DY
— eGA"Xri_l + ’)’(9+1)7691An [% (e Trer )] ’ (Ga,,- - Gati_1 ) > 5.1

fori=1,2,--- ,n.
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Ga, = | /Var(Gat[_) <&, 1=0,1,---,nm, (5.2)

where &(i =0, 1,--- ,n) are standard normal random variables.
We know that

Let

?:1 Xfi—l (Xli - Xt,'_1)
Ay X Xi,

™

and
X%n
C2A, Y X2

n

Thus, we can obtain the simulations of 8, and 8,.
Case 1: if G is fBm BH(% < H < 1), then (5.1) and (5.2) become (5.3) and (5.4), respectively,

. H [ i (i-1)An -@+HH
X, = eeAnXti_1 4 [6+DH L0id, [5 (eﬁ + eH)] (BZ - BZ._I)’ (5.3)
and n
B! =(He®) -& =01 .n. (5.4)

Case 2: if G is sfBm SH(% < H < 1), then (5.1) and (5.2) become (5.5) and (5.6), respectively,

A 1 A H iAn (i-)An —+DH
Xli = ¢ "Xt[_l + H(9+ )Heet n [5 (eﬁ + ey)] . (SZI‘ — SZH)’ (5.5
and o
S = N2-21(Hew) -&, i=0,1,---.n. (5.6)

Case 3: if G is bfBm B#X(1 < 2HK < 2), then (5.1) and (5.2) are replaced by (5.7) and (5.8),
respectively,

CTHK { on, \ @+ DHK
X, = eeAnXtF1 + (HK)(GH)HKeOzAn [7 (egk + e( -ha )] ) (BZK _ BaH,f) , (5.7)

and HK

B = (HKew) &, i=0,1,--,n. (5.8)

a,

Case 4: if G is sbfBm S”X(1 < 2HK < 2), then (5.1) and (5.2) become (5.9) and (5.10),
respectively,

. . —-(0+1)HK
th- — eQAnXti_l + (HK)(9+1)HK€9iA" [# (eﬁ['é n e(l;‘}?” )] . (SZ,K _ Sg,f(l) , (59)
and o HK
SHK = VoK — MK (HKew) - &, i=0,1,---,n. (5.10)

Now we take A, = 0.0002,n = 2 x 10°, and simulate 500 sample paths of X for different values
of H,0 or H, K, 6. The results of simulations are summarized in Tables 1-4 respectively. From these
results, it can be seen that the mean of both constructed parameter estimators are close to the true
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parameter values and the standard deviations of 6, and 6, are very small. Hence the numerical

simulations confirm the theoretical research.

Table 1. Mean and standard deviation of two estimators for fBm.

H=0.55 H =0.60 H =0.65 H=0.70

0=0.38

Mean(6,) 0.8000 0.8000 0.8000 0.8000
SD(4,) 8.9194e-08 2.6459¢-07 1.4519e-07 5.6355e-07

Mean(6,) 0.8001 0.8001 0.8001 0.8001
SD(8,) 8.9197e-08 2.6461e-07 1.4520e-07 5.6338e-07
0=1.7

Mean(6,) 1.7001 1.7001 1.7001 1.7001
SD(8,) 1.0967e-14 3.1736e-14 1.2694e-14 1.2644e-14

Mean(6,) 1.7003 1.7003 1.7003 1.7003
SD(@,) 1.0865e-14 3.1832¢-14 1.2580e-14 1.3038e-14
0=3.7

Mean(6,) 3.7007 3.7007 3.7007 3.7007
SD(4,) 1.1281e-14 1.0869¢-14 1.1878e-14 1.1458e-14

Mean(6,) 3.7014 3.7014 3.7014 3.7014
SD(8,) 1.0194e-14 9.9964e-15 1.1395e-14 1.1431e-14

Table 2. Mean and standard deviation of two estimators for sfBm.

H =0.55 H =0.60 H =0.65 H=0.70

0=0.8

Mean(é,,) 0.7967 0.8000 0.8000 0.8000
SD(6,) 2.6371e-02 3.9579¢-07 2.0294e-07 1.2505e-06

Mean(é,) 0.8000 0.8001 0.8001 0.8001
SD(6,) 2.0488e-04 3.9564e-07 2.0297e-07 1.2463e-06
6=1.7

Mean(,) 1.7001 1.7001 1.7001 1.7001
SD(6,) 1.2324e-14 1.6913e-14 1.3377e-14 1.6702e-14

Mean(é,) 1.7003 1.7003 1.7003 1.7003
SD(,) 1.1958e-14 1.6863e-14 1.3260e-14 1.6726e-14
0=3."7

Mean(é,) 3.7007 3.7007 3.7007 3.7007
SD(6,) 1.1491e-14 1.0355e-14 1.0807e-14 1.0539e-14

Mean(é,) 3.7014 3.7014 3.7014 3.7014
SD(,) 1.1411e-14 1.0602e-14 1.0469e-14 1.0630e-14
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Table 3. Mean and standard deviation of two estimators for bfBm.

H=06 K=09 H=08 K=09 H=09 K=09

0=0.28

Mean(,) 0.8000 0.8000 0.8000
SD(,) 3.4198e-07 2.7941e-06 3.5679¢-07

Mean(8,) 0.8001 0.8001 0.8001
SD(,) 3.4207e-07 2.6092e-06 3.5678e-07
0=1.7

Mean(,) 1.7001 1.7001 1.7001
SD(,) 1.0361e-14 4.0730e-12 1.0888¢-14

Mean(8,) 1.7003 1.7003 1.7003
SD(,) 9.4681e-15 4.0742e-12 1.0035¢-14
0=237

Mean(,) 3.7007 3.7007 3.7007
SD(,) 1.0713e-14 1.2432¢-14 1.1264e-14

Mean(8,) 3.7014 3.7014 3.7014
SD(,) 1.0130e-14 1.1353e-14 1.0026e-14

Table 4. Mean and standard deviation of two estimators for sbfBm.

H=06 K=09 H=08 K=09 H=09 K=09

0=038

Mean(6,) 0.8000 0.8000 0.8000
SD(6,) 5.1295e-07 2.9938e-07 7.7103e-07

Mean(6,) 0.8001 0.8001 0.8001
SD(6,) 5.1320e-07 2.9930e-07 7.7119e-07
0=17

Mean(6,) 1.7001 1.7001 1.7001
SD(6,) 1.2144e-14 1.1284e-14 1.4808e-14

Mean(6,) 1.7003 1.7003 1.7003
SD(6,) 1.1640e-14 1.1001e-14 1.4746e-14
0=37

Mean(6,) 3.7007 3.7007 3.7007
SD(6,) 1.1830e-14 1.0794e-14 1.1455e-14

Mean(6,) 3.7014 3.7014 3.7014
SD(6,) 1.0983e-14 9.7612e-15 1.1214e-14

6. Conclusions

EI Onsy et al. (2018) considered the parameter estimation for discretely observed nonergodic
fractional Ornstein-Uhlenbeck process of the second kind. We extend their results to the case of
Gaussian Ornstein-Uhlenbeck process of the second kind. We prove that two least squares type
estimators are strongly consistent and rate consistent. Moreover, we give the numerical simulations
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which confirm the theoretical results. In the future, we will extend our results to more general Ornstein-
Uhlenbeck type models such as Barndorff-Nielsen and Shephard type Ornstein-Uhlenbeck processes.
On the other hand, we will consider the case of 0 < y < % for the self-similar index y of Gaussian
process G.
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