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1. Introduction

Let m and n be two positive integers, m > 2 and n > 2, [n] be the set {1, 2, ...,n}, C (resp. R) be the
set of all complex (resp. real) numbers, R”" be the set of all dimension n real vectors, R be the set
of all order m dimension 7 real tensors. Let x = (x|, Xa,...,X,)" € R". Let A = (a;,i,.;,,) € R™", ie.,

Ajliy-iy € R, l] € [l’l], j€ [m]

Furthermore, A is called symmetric [15] if a;;,..;, =
permutation group of m indices.
Given a tensor A € R if there are A € C and x € C"\{0} such that

Qirityinom TOT 7 € I, where II,, is the
A ' =Ax and x'x=1,
where Ax""! is an n-dimensional vector whose ith component is

-1
(AX"); = Z Qiiyeveipg Xiy " * Ky

i2 ----- ime[n]
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then A is called an E-eigenvalue of A and x an E-eigenvector of A associated with A. If both A and x
are real, then A is called a Z-eigenvalue of A and x a Z-eigenvector of A associated with A. Let o (A)
be the set of all Z-eigenvalues of A.

The Z-eigenvalues of an even order real symmetric tensor (A is introduced by Qi in [15] in order to
identify the positive definiteness of an m-th degree homogeneous polynomial form

FO=A" = 3 i, XX Xy (1.1)

and f(x) is positive definite, i.e., f(x) > 0 for any x € R"\{0}, if and only if A is positive definite [15].
Furthermore, A is positive definite if and only if all of its Z-eigenvalues are positive. The positive
definiteness of f(x) is widely used in the stability study of nonlinear autonomous systems via
Lyapunov’s direct method in automatic control [1-4,17].

Next, a special tensor, the Z-identity tensor, is recalled.

Definition 1.1. [10,11,15] A tensor I = (e;,;,...) € R with m even is called a Z-identity tensor if
for any vector x € R",

IxX"'=x and x"x=1.

Note here that an even order n dimension Z-identity tensor is not unique in general. For instance,
the following two tensors are both Z-identity tensors:
Case L. ([11, Definition 2.1]): Let | = (e;,,..,) € R™", where

Cilitizin-—ixiy = 1’ il’ i2’ ey ik € [f’l], and m = 2k’

Case I1. ( [10, Property 2.4]): Let 7, = (e;,j,..;, ) € R"™", where

€ iy = m § 5iﬂ(l)iﬂ(2)6in(3)iﬂ(4) e 6in(m—l)i7r(ln)’

' rell,

where 6 is the standard Kronecker delta, i,e., 6;; = 1'if i = jand 6;; = 0if i # j.
For convenient applications, the Z-identity tensor 1, = (e;,;,..;,) € RI*" is listed as follows:

1, ifi1:i2:"':i69
I/Sa if(ilai2""’i6) € U {ﬂ'(l’ i’ ia i’ja J)}a
el

1/15a if(ilai2""’i6)€ U {ﬂ(iaiajaj’kak)}7

ik,
i,j.ke[n]

Cijipmig =

0, otherwise,

where {n(i|, 15, ...,1)} is the set of all combinations of iy, i», ..., ig; also see [22] for details.

According to Theorem 8.5 in [16], in order to judge the strong ellipticity condition of anisotropic
elastic materials, it is necessary to judge the positive definiteness of three second order symmetric
tensors, a fourth-order symmetric tensor and a sixth-order symmetric tensor based on Z-eigenvalues of
these tensors. Hence, one can calculate the smallest Z-eigenvalue or all Z-eigenvalues of an even order
tensor to judge its positive definiteness.

AIMS Mathematics Volume 7, Issue 1, 967-985.



969

However, when m and n are large, it is not easy to compute all Z-eigenvalues or even the smallest
Z-eigenvalue of a tensor. Fortunately, for the problem of judging the positive definiteness of an even
order real symmetric tensor A, we do not need to calculate all Z-eigenvalues of ‘A, but only need
to know the symbols of all Z-eigenvalues. In view of this, a general approach is adopted: one can
construct a set including all Z-eigenvalues of A, and if this set is just in the right-half complex plane,
then he can conclude that all Z-eigenvalues are positive, and consequently, the tensor A is positive
definite. The related results are showed in [6-8, 11-14, 18-31].

In order to obtain many sufficient conditions for the positive definiteness of an even order real
symmetric tensor, Li et al. [11] and Sang and Chen [22], respectively, presented their Z-eigenvalue
inclusion intervals with n parameters for an even order real tensor as follows:

Theorem 1.2. [11, Theorem 2.2] Let A = (a;,;,..;,) € R"™" with m being even. Then for any vector
a=(a,...,a," €R",

o(A) C G(A, @) = U (Qi(ﬂ, @) :={zeR:|z- ] < R(A )} ), (1.2)
ien]
where
(i2 ----- im)EAi (i2 ~~~~~ im)exi
and

A ={(ia, ... i) ¢ Ciiyiyy 0, d2,...,0m € [n]},

X,‘ = {(iz, cees lm) D€y, = O, i2, N lm € [I’l]}
Theorem 1.3. [22, Theorem 3.1] Let A = (a;,;,.;,) € R™" with m being even, and a = (ay,. ..,
a,)" € R". Then

(A CT(A,0) = | (YA, @) = zeR: l2- ] < ri(A, an)}), (1.4)

i€[n]

where

ri( A @) = AN A, @) + PENA @) + AN A + AN A,

1

ANA;

ri V(A@) = —— Z |aiiy i, — @ity |,
(m—=2)2 ,  iseann

ANA;
ro V(A @) = Z |Giiy-..iy, — Xi€iy-miyy |5

(240 mim)EANA;
™ 1

ANA;

PR = s ) lail
(m—2)> (20 )EAND;

ANA

s (A = Z |aiiy-..i,,|»
(1250 erim)EANA;
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and

{(ia, ... yip) 10 £ -+ # iy,0r only two of iy, ..., 1, € [n] are the same},

A =
Z:{(i27"-7im):(iZ?"-’im)eAa i2’-"’im€[n]}'

Furthermore, Y(A, a) C G(A, a).

From Theorems 1.2 and 1.3, it can be seen that the forms of R;(A, @;) and r;(A, ;) are closely
related to the Z-identify tensor 7. For convenient applications, when the Z-identify tensor [ is taken
as 1, the specific forms of R;(A,a;) and ri(A,a;) had been given in [11, Corollary 1]
and [22, Corollary 3]. However, when the Z-identify tensor 7 is taken as 7, the specific forms of
R/(A, ;) and ri(A, a;) have not been given.

Hence, we in this paper focus on giving the specific forms of R;(A, ;) and r;(A, ;) when the
Z-identify tensor 7 is taken as 7, and partially answering the two questions proposed in [22]:

Question 1: What is the specific form of Theorem 1.3 for m > 6 and m is even if the Z-identity
tensor J as J,?

Question 2: What is the specific form of the Z-identity tensor 7, for the order m > 8 and m is even?

The remaining chapters are arranged as follows. In Section 2, for a sixth-order tensor A, the
specific forms of the inclusion intervals G(A, @) and T(A, @) with a parameter vector « are given.
Subsequently, by selecting appropriate parameter vector @, the optimal interval of Y(A, @) is
presented. In Section 3, an application of the optimal Z-eigenvalue inclusion interval is considered.
This optimal interval is used to present a sufficient condition for the positive definiteness of
sixth-order real symmetric tensors (also homogeneous polynomial forms), which is used to judge the
asymptotically stability of time-invariant polynomial systems.

2. An optimal Z-eigenvalue inclusion interval for a sixth-order tensor with 7,

The specific forms of Theorems 1.2 and 1.3 are firstly listed.Subsequently, an appropriate parameter
vector « is taken to optimize the interval of V'(A, @) in Theorem 1.3.
Let m = 6 and the Z-identity tensor J be 7,. Consider R;(A, a;) in (1.3). Then, for each i € [n],

_ _ _ 1 ! . . .
and e;iiiii = 1, exgiiiijj) = €ntiijgjj = 5 a0d exijjrk = 15 for j,k € [n] and j # k # i. Consequently,
1 1
Z |Giiy...i,, — Qi€ityei, | =N iiiii — i + E g lay, — §Gi| + Z |ay, — gai|
(@250esim)EN; j#EL \veln(i,ii,j,j)} veln(i, ], j,j.J)}

F > - %ail, 2.1

JEk#I veln(i, . j.k.k)}

and

Z |aii2-~~i,,,|: Z |aii2~~-im|_ Z |aii2-~~im|

(i2,0esim)EA; i2,,im€[n] (i2,0-rim)EN;
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= Z |aii2---i,,,| — |aiiiiil — Z Z lag,| + Z || | — Z Z |y |,

12,.im €[] J#E \veln(i.ii, )} ve(n(i.j. o))} J#EkE veln(i, ), j.kk)}

where, in order to shorten formulas, >,  aj,..;, 1s written as ), a;, fori,i,...,is € [n] and a set S.
(i2,onri6)ES ves
Hence, the specific form of Theorem 1.2 for m = 6 is listed as follows:

Corollary 2.1. Let A = (a;j,-i;) € R and a = (v, ..., a,)" € R Then (1.2) holds, where

Ri(A, @) =laiiii — @il + Z Z lai, — %0/:1 + Z lai, — éaﬂ

J# \veln(iii, j, )} velr(i,j.j.Js D}
1
+ Z Z lai, — Eail + Z |tiiy i, |-
J#Ek#I ve{n(i, j, jk.k)} (i2seemsim)EN;

Next, the specific form of Theorem 1.3 for m = 6 is considered. Let m = 6. Then
={n(j,k, L, s,0),n(j, jk,I,s), where jk,I,s,te[n] and j#k#1+ s #1},

and

Do aiil= D0 Dl > > lawl

(i2,.ig)EA JjrkElEsE veln(Gik 5,0} jEkElESs veln(jik,l,s)

Corollary 2.2. Let A = (a;,j,.i;) € R and a = (v, ..., a,)" € R Then (1.4) holds, where

ri(A, @) =laiiii — ail + Z Z lai, — %aﬂ + Z lai, — %0&1

J# \veln(iii,j,))} veln(i, j,),j,J)}

S - a4 A, 22)

JjEk#i ve{n(i,j, jk.k)} 15
where
D0 iyl 2<n<3; (2.3)
(iz ..... i())EKl
ni(A) = 15
D lanil=gg D) laml.  nzd (2.4)
(125006 )EA; (i2,--16)EA

Moreover, when 2 < n < 3, then T(A, @) = G(A, @); when n > 4, then T(A, @) C G(A, @).

Proof. Let
={(i2,...,lg) : i2,..., 16 € [n]}.
The proof is divided into two parts depending on the difference of dimension.
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(i) When2 <n <3,then A =10 and A = N, consequently, AN A; = AN A =0,ANA; = A, and

AN K,- = A;. Hence,

MA@ = MR =0, N = Y il

and consequently,
F( A @) =N (AL @) + PR @) + MR + A

= Z |aii2---i6 - a’ieiiz---i6| + Z |aii2---i6| = Ri(A, ;).

(i2,.-,16)EN (ip

By (2.1) and (2.3), (2.2) follows, which implies T(A, @) = G(A, a).

(2.5)

(i1) If n > 4, then A # 0, but AN A; = 0, consequently, AN A; = A;and AN A; = A, which implies

that (2.5) holds, " (A, a;) = 0 and

< 1
ANA; _ o
rp (A = 6 E @i, i |-

(12,...,i6)EA

ByA;=NNA; =(AUA)NA; = (ANA)UANA;) = AUANA;), we have ANA; = A; — A. Hence,

ANA;
ry (A = Z |aiiy-..ig| — Z |G -..ig |-

(i250i6)EA; (2,16 )€A

Consequently,

ri(A, a;) :rl.AnA" (A, a;) + riEmA"(ﬂ, a;) + rl.mx" (A + rl.KnK" (A

1
= Z |aii2~~-i6—ai€ii2mié|+E Z |aiiy...ig| + Z @ity ...ig) — Z |Gty ..ig|

(i2,...,i6)EN; (12,...,i6)EA (i mig)EA; (12,..-,i6)EA
15
= Z |aii2~-~i6_a'ieii2~-~i6|+ Z |aii2~~-i6|_E Z |aii2~~-i6|
(12,.i6)EA (i2s-mig)EA; (i2,...,i6)EA
15
_Ri(ﬂ’ (07 1_6 |allz lﬁl
(i2,...,i6)EA

By (2.1) and (2.4), (2.2) follows, which implies T(A, a) C G(A, a) by ' Z |aii,....| = 0 fori € [n].

O

It is showed in Theorem 1.3 that Y'(A, @) C G(A, @). When m = 6, it is easy to see the relationship
T(A, a) € G(A, a) from Corollaries 2.1 and 2.2. Next, we considered this problem: How to choose
a parameter vector @ to optimize the inclusion interval Y(A, @) in Corollary 2.2. Before that, two

lemmas are listed.
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Lemma 2.1. [22, Lemma 4.2] Let

1
fO)=x== > Ix=bl-c

i€[n]

be a real valued function about x, where a is a positive integer, b; € R and by < by < --- < b, with
n > a, and c € R. Assume that a is odd.
(i) If n is odd, then

n+a

ITES -
max f(x) = —( b; — bi) -,
xeR a

i=1 =144 ]

and this takes place for every x € [b%a,bgﬂ] ifb% + b%H, and only for x = b% ifb% = b%aﬂ.
Note that let [b%, b%ﬁ] be [b%, +00) ifbgﬂ does not exist.
(ii) If n is even, then

n+a-1

n)}eaRXf(x) = é( ZZ: b; — an bi) - C,

and this maximum is reached when x = bn+g+1.

Lemma 2.2. [22, Lemma 4.1] Let

1
=x+ - - bi| +
8x) = x+ — § lx = bi| +c

i€[n]

be a real valued function about x, where a is a positive integer, b; € R and by < b, < --- < b, with
n>a+1, and c € R. Assume that a is odd.
(i) If n is odd, then

xeR

1 < —
min g(x) = —( b, — b,») +c
a\ . :

and this takes place for every x € [bue,bra ] if bra # brayy, and only for x = bue if bra = brayy.

nT
(ii) If n is even, then

T}?E%lg(x) = é( i b; — Zzl bi)+c

1

and this minimum is reached when x = bn—;+l.

Now, the optimal inclusion interval of the interval (A, «) for sixth-order tensors is presented.

AIMS Mathematics Volume 7, Issue 1, 967-985.



974

Theorem 2.3. Let A = (a;;,..;;) € RI®". Then

o(A) € VA = |t ],

ieln]
where l; and u; are taken by the following methods:
(i) If n is odd, then
| |5n22+15 1502 . 1502 15n22—15
= X bum Y ) -m and w=o( ) b Y b+ Ay
k=1 f= 1502417 k= 15n2-13 k=1
2
(ii) If n is even, then
| 15n22+]4 1502 | 1502 15:122—16
li = E( Z bix — Z bi,k)—ﬂi(ﬂ) and u; = B( Z bix — Z bi,k)+77i(ﬂ)*
k=1 k=15n2+18 f= 130212 k=1
2 2
Here, for eachi € [n], bjj < bjp < -+ < b;5,2 is an arrangement in non-decreasing order of ajjii;

Proof. Let A € o(A). By Corollary 2.2, there exists i € [n] such that
1 -l <r( A, @), ie, Ae€[fla) gla)l (2.6)
for any real number «;, where

fla) =a; — ri(A, a;)

=a; — |aiii — ai| — Z[ ) Z lai, — %CM + Z ; lai, — %aﬂ]

ve(n(i,i,i,j,j)} ve(n(i, j, j. ).

Y Y - e

ki veln(i,.jk o)

=a; — %{15|aiiz’iii —aj|+3 Z ( Z 15a;, — a;| + Z 15a;, — CYi|)

J#E veln(iii,j. )} veln(i, j,j,j.))}

+ Z Z [15a;, — a,-l} —1i(A)

J#Ek#i ve{n(i,j,j.k.k)}

1
=q; — E Z |b,',k - - Th(ﬂ)

ke[15n2]

and
g(;) =a; + ri(A, a;)
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1 1
=; + @i — il + Z Z law — zail + Z lay, — zail
et > )} >

veln(iii,j,j)} Ve{n(i, ), ), )]

EY Y - e+

J#Ek#i ve{n(i,j,jk.k)}

=a; + %{15|aiz’iiii —a|+3 Z ( Z 15a;, — a;| + Z 15a;, — CVi|)

J# veln(iii,j )Y veln(i,j.j.j.))}

+ Z Z 115a;, — ail} + 1:(A)

J#Ek#I ve{n(i, j,j.k.k)}

1
=0tz ) b= al + (.

ke[15n2]

Note here that b;; < b;» < --- < b; 5,2 1s an arrangement in non-decreasing order of

iiiiiis - + -+ » Qi s Iijnss iy Iiss Iy Sy, Sy 15a;, 2.7)
N——
the number is 15 veln(i,ii,jj)}.j#i  veln(,jjjp)j#i  veln(,j,jkk)b, j#k#i

for j, k € [n]. By the fact that there are n — 1 ways to pick j € [n] with j # i and

(i, 0,0, j, DY =G, 60, 4 ), G 4, g 4, ), (a4 s o D), (s Jo 8y 4 ), (G s By s ),
@ J, i, 0, (G, 1, 8,8, J), (i 1, 1, J, 1), ()i 4, J, 1, D), (J, Jo B 6, D)}
it can be seen that the number of elements in 5a;,, 5a;,, 5a;, is 3 X 10 X (n — 1) and the number of
——————

ve(n(i,ii,j, )} j#l

elements in Sa;,, 5a;,,, Sa;, is 3 X 5 X (n — 1). By the fact that there are (n=1)(n=2)
——————

S—— ways to pick j, k € [n]

veln (i, j.j. . D} j#
with j # k # i and
(i, J, js k. 0O} ={G g o ks k), (i By o ks k), G gy B ks k), (s o ks 16D, (s s ks ks D), G g ks KD,
(. ik, . k), (o k. 0, . k), (s ks g, 6, K), (G k, )k, D), G g ks K ), (s 1 ks K ),
(s ks i, k, ), (s ks ks 1, ), (s ks k, 7 ), (G k, gk, ), (ks 0 gk, ), (K, o0 K, ),
(k, j k.1, ), (k, J.k, D), (s ks J, o k), (K, 0, J, G, k), (k, G, J, k), (K, g, s 1K),
(k, j, Jo k. D), (G, ko ks g, ), (k6 kG, ), (ks ks 4 s ), (ks ks 3 ), (KK s DY,

it can be seen that the number of elements in 15a;, is 1 x30 x W Hence, the number of
——

veln(i, j,j koK), jEk#i
elements in (2.7) is

—Dn-2
15+3><10><(n—1)+3><5><(n—1)+1x30x%:15n2.

Next, the maximum of f(a;) and the minimum of g(a;) for @; € R are considered for two cases: n
is odd or even.
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(i) Let n be odd. Then 15n% is odd. By Lemma 2.1 (taking a = 15), we have

1502415 )
1 5 15n
ma ) = £, ) = 75 25 b= ). 7bi,k) = () 2 f(b, 2. 3)
= k= 15n“+1
By Lemma 2.2 (taking a = 15), we have
. 1502 15n22715
min g() = 8(b, 2.0 = = D, b= D, bia) + 1) < g0b, s005) 29)
! k= 15n22—13 k=1

Taking «; = b 13213 and a; = b JERNE in (2.6), respectively, we have A € [f(b 1522 15213 ) g(b 1522 n)] and
A€ [f(b 152 +15) g(b 152 +15)] By (2.8), (2.9) and the existence of A, we have

€ | f(b, 15205), (b, 15215) |,
2 )

which implies that A € [[;,u;] € U [1;, u;].

i€[n]
(i) Let n be even. Then 1512 is even. By Lemma 2.1 (taking a = 15), we have

15”2%‘4 1512
max f(@) = fb, ) = 1 D) a3 ) =2 f(b, o) (2.10)
k=1 ke 1502218
By Lemma 2.2 (taking a = 15), we have
min g(a:) = 805, 2.) = 75| IS bis) + 1) < 8(b, s .11
k=13=12 =

Taking «; = b gERST and a; = b 132416 in (2.6), respectively, we have A € [ f(b 1522 1512214 )5 g(b 1522 14)] and
A€ [f(b 152 +](,) g(b 152 +]6)] Furthermore, by (2.10), (2.11) and the existence of /l, we have

L€ S b, 1526, 88, 1520)],
—) T2

i.e., 4 € [l;,u;], and consequently, 1 € | [/;, u;]. O
icln]
By Corollary 2.2 and the proof of Theorem 2.3, the following comparison theorem among Corollary

2.1, Corollary 2.2 and Theorem 2.3 is given easily.

Theorem 2.4. Let A = (aj,i,.i;) € R, Then, for any vector a = (a/, ..., a,)" € R,
T(A) C V(A @) C GA, ).
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3. An application of the optimal Z-eigenvalue inclusion interval for sixth-order tensors

In this section, we give the application of the optimal Z-eigenvalue inclusion interval Y(A) in
Theorem 2.3 for a sixth-order tensor A in determining the positive definiteness of a sixth-order tensor
and the asymptotically stability of time-invariant polynomial systems.

3.1. The positive definiteness of homogeneous polynomial forms

As shown in [11,20-22,30], a Z-eigenvalue inclusion interval can provide a sufficient condition for
the positive definiteness of tensors. Based on the inclusion interval T'(A) in Theorem 2.3, a sufficient
condition for the positive definiteness of a sixth-order real symmetric tensor is given.

Corollary 3.1. Let A = (a;,..;;) € R and A be a Z-eigenvalue of A.
(i) If I; > O for each i € |n], then A > 0, where

2
1 s 1502
E( Z bix = Z bi,k) -ni(A), n isodd,
k=1 k= 15n2417
L, = 2
2
1 % 15n?
B( Z bix = Z bi,k) - ni(A), n iseven,
k=1 e 32418
- 2
biy < bip < -+ < b;ys,2 Is an arrangement in non-decreasing order of a;;; with its number 15, Say,

Jj # i, 15a;, with its number 1 for v € {n(i, j, j k,k)} and j # k # i, for j, k € [n], and n;(A) is defined
in (2.3) and (2.4).

(ii) Furthermore, if A is symmetric, then A is positive definite, consequently, f(x) defined by (1.1)
is positive definite.

In order to judge the positive definiteness of an order 6 dimension 2 or 3 real symmetric tensor for
convenience, the conditions of Corollary 3.1 and the interval T(A) in Theorem 2.3 are listed.
Let A = (a;,.;,) € RI*? be a symmetric tensor with elements defined as follows:

annn =di, anne =dy, annn =ds, annn =ds, annn =ds, aimn =de, A = d.

By Theorem 2.3, we have

I = %(bu bt b — b — - — bigo) — (Sldo] + 10\dal + dg)),
" = %(_bl,l — o= b+ biog + -+ bgo) + (Slda| + 101dy] + |dg)),
b= %am ot bosy = basg =+ = bago) — (Idal + 10ld] + 5lde).
iy = %(—bz,l oo —byy + bygy + - + bago) + (o] + 10ldy] + Sld]),
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where b;; < bjy < -+ < b1 1S an arrangement in non-decreasing order of d; with its number
15, 5d; with its number 30, 5ds with its number 15; b, < by, < --- < by¢o 1S an arrangement in
non-decreasing order of d; with its number 15, 5ds with its number 30, 5d; with its number 15.

Let A = (a;,.i,) € R[%3! be a symmetric tensor with elements defined as follows:

ajnin =di, anne = da, annzn =ds, i = ds, anome = ds, i = d, annn = ds,
anns =ds, ann = do, annzs =dio, anins =di, anss = diz, anss = diz, Aoz = dia,
a3 = dis, a112333 = die, 113333 = di7, Q120023 = di3, Q122033 = d19, Q122333 = dao, Q123333 = day,

133333 = dp, 203 = doz, G033 = dos, Ar2333 = das, Ax3333 = dos, 33333 = da7, 333333 = dog.

By Theorem 2.3, we have

L= %(bl,l + -+ bigs —bige — - — bizs) — mi(A),
U = %(—bu = =Dbigo +bie1 + -+ Dii3s) + mi(A),
L= %(bll + o+ bags —baze — - — bazs) — ma(A),
Uy = %(—bz,l = =Dbygo + brg1 + - + Doi3s) + Ma(A),
I = %(bil + o+ bygs —b3ze — - — b3zs) — (A,
Uz = %(—bm = =Dbago + b3 + -+ D33s) + 13(A),

where

M(A) =5|do| + 10ld4| + |de| + Slds| + 20|do| + 30Id 11| + 30ld)2| + 10Id 3
+ 20|d14| + 20ld 16| + Sldig| + 10|d 10| + 10|da0| + Slda1| + |d2al,
2(A) =|do| + 10lds| + 5lde| + Sldo| + 20d11] + 10ld 12| + 30ld 14| + 10]d6]
+ 20Id1s| + 30ld o] + 20|dao| + Slda1| + Sldas| + 10ldas| + |dasl,
1m3(A) =lds| + Sldo| + 10ldy1| + 20ld 12| + 10ld13| + 10|d14] + 30ld 16| + 5ldis|
+ 20|d 19| + 30|d>0| + 20\da1| + Sldaz| + |das| + 10ldps| + Slda,

and by; < by, < --- < by 35 1S an arrangement in non-decreasing order of d; with its number 15, 5d;
with its number 30, 5d;¢ with its number 30, 5ds with its number 15, 5d;; with its number 15, 15d;5
with its number 30; by < by, < -+ < by i35 i an arrangement in non-decreasing order of d; with
its number 15, 5ds with its number 30, 5d»4 with its number 30, 545 with its number 15, 5d,¢ with its
number 15, 15d;5 with its number 30; b3, < b3, < --- < b3 35 is an arrangement in non-decreasing
order of d,g with its number 15, 5d;; with its number 30, 5d,¢ with its number 30, 5d;, with its number
15, 5d,4 with its number 15, 15d;5 with its number 30.

Example 3.1. Let A = (a,,,..;;) € R!®3! be a symmetric tensor with elements defined as follows:
ajnin = annn = a3z = 20, ajnss = 1.3,
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aniie = a2 = 122222 = Ai11113 = 4111123 = 4111223 = 4111233 = 4111333 = A112223 = A112333
= 120003 = 122233 = A122333 = (123333 = (133333 = (200003 = 222333 = 33333 = —0.1

Az = Az = dr22 = 4113333 = 4222233 = a223333 = 3.9.

Our goal is to judge the positive definiteness of A. Firstly, the method in Corollary 2 of [21] is
considered. By computations, we have

At
annn =20<222 = Z | 1iyeig] + 7 @ gy,

where

AL,
rp P (A) =I5an12020 = @l + 110ag11122 = 2an 1l + 15ani3333 — @

+ [10a111133 — 2ai11n1l + 130a112233 — 2aii1111l,

which shows that the conditions of Corollary 2 of [21] are not satisfied. Hence, we do not use
Corollary 2 of [21] to judge the the positive definiteness of ‘A. Moreover, by

ajinn =20 # 19.5 = 5ay11122 = Sania2: = 15a11233,

it can be seen that Proposition 1 of [21] is also not used to judge the the positive definiteness of ‘A.
Next, we use Corollaries 2.1 and 2.2 to judge the positive definiteness of A. Corollary 2.2 shows
that T(A, ) = G(A, @) when n = 3 and hence only G(A, @) is showed. By computations, we have

di=d;=dy =20, dy=ds=d=di;=dy=dy=39, ds=123,
dy=dy =ds=ds =dy =dyy =dip=di3 =diy =dig = dig = dyo = do
=dy = dy = dy; = drs = dy; = —0.1,

and hence

A= ) il =182, =123,

(i2,.ees ig)EN;
Let @ = (@, @, @3)" € R3. By Corollary 2.1, we have

Ri(A, ay) =|d; — a1| + [10d;5 — 20| + |5ds — a;| + [10d10 — 2a,| + |5d17 — ]
+130d;5 — 2a| + ni(A),

Ry(A, @) =ld7 — ao| + [10ds — 2as| + [Sd5 — as| + [10d2y — 2as| + [Sdas — sl
+130d15 — 2as| + na(A),

R3(A, a3) =ldps — a3| + |10d17 — 23] + |5d1o — @3] + [10das — 2a3| + [5day — a3
+130d;5 — 2a3| + n3(A),

and

GA, ) = U [a; — Ri(A, @), a; + Ri(A, a;)].
i€[3]
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In order to judge the positive definiteness of A by Corollary 2.1, we need to take a specific « to
obtain the Z-eigenvalue inclusion interval G(A, a) and observe the position of G(A, @) in the complex
plane. If G(A, @) is just in the right-half complex plane, then we can conclude that A is positive
definite. However, taking @ = (10, 10,10)" € R3, we have

G(A. @) = [<94.2, 114.2] U [-94.2, 114.2] U [-94.2, 114.2] = [-94.2, 114.2];
and taking o = (20,20, 20)" € R?, we have
GA, o) =[-2.2,42.21U[=-2.2,42.2] U [-2.2,42.2] = [-2.2,42.2].

From —94.2 < 0 and —-2.2 < 0, it can be seen that G(A, @) is not used to judge the positive definiteness
of A when « is taken as such two vectors and that it is not easy to choose the optimal parameter vector
a* to minimize the interval G(A, a).

By (2.8) and (2.9) in Theorem 2.3, we can calculate that bi’w”z%u =bj75 =195 = b;g = bi,U"zT*B for
i € [n] and n = 3, and hence the optimal parameter vector is

a* =(19.5,19.5,19.5)" € R’,
and the minimize interval of G(A, «) for any @ € R? is
T(A) = G(A, ") =[0.8,38.2] U [0.8,38.2] U [0.8,38.2] = [0.8, 38.2].

Because the interval Y(A) is in the right-half complex plane, which implies that all Z-eigenvalues
of A lie in the interval [0.8,38.2], we can conclude that A is positive definite.
Finally, we use Corollary 3.1 to judge the positive definiteness of A. By computations, we have

1
li = E(bi,l + -+ bigs —bize — -+ — biizs) — ni(A) = 0.8 >0,

where b;; < b;, < --- < b; 135 1s an arrangement in non-decreasing order of 19.5 with its number 120
and 20 with its number 15 for i € [3]. Hence, by Corollary 3.1, A is positive definite. In fact, all
different Z-eigenvalues of A are 17.5333, 20.0250, 20.0618, 20.2302. O

3.2. The asymptotically stability of the time-invariant polynomial system

As shown in Section 3.2 of [4] that any time-invariant polynomial system can be written as

> Xl = Z A1iy Xiy + E iyis Xiy Xiy +---+ Z AiyevigXiy " Xiys
1240000l

ir€[n] ipiz€n] iy, im€ln]
: 3.1)
Xy = Z Qi X, + Z Cnis iz Xiy Xiy + -+ + Z Ay Xiy " Xy
i2€[n] i2,i3€[n] i2,.im€[n]
where a;;,..;, € R are invariant under any permutation of indices i, ..., i,. Particularly, when m = 3,

the system X can be regarded as the epidemic model; for details, see [5]. The stability is a basic
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property of a system. Deng, Li and Bu in [4] represented the time-invariant polynomial system (3.1)
by tensors as follows

Yik= Fox + A+ + A

where A; = (a;,;,i) € RV (1 =2,...,m)and x = (xi,..
the following nonlinear system

Y= Aox + A + o+ Ayt

., Xx,)", and gave the analysis of stability of

(3.2)
by Lyapunov stability theorem [9] and the positive definiteness of tensors as follows.

Theorem 3.1. [4, Theorem 3.3] For the nonlinear system X in (3.2), if — A, t = 2,4,...,2k, is positive
definite, then the equilibrium point of X is asymptotically stable.
Next, we give a nonlinear polynomial system and write it in the form of (3.2). By the positive

definiteness of tensors, we analyse the stability of the system.

Example 3.2. Let

Xixi=—=3x1+x+x3— 4.5x? - 0.3x%x2 - O.3x1x§ - 1.5x1x§ - O.3x2x§

—20x] + 0.5x]x; + 0.5x7x3 — 39x

3

2 3.2 3 2.3
X5 = 39x7x5 + 2x7 %03 + X7X5 + X]X5

2.3

2.2 2. .2 4 4 3 2.2 3
+ 3x7x5x3 + 3x7x2x5 — 19.5x1x5 — 19.5x,x5 + 2x165x3 — 39x105x5 + 2x1X0%3

3

+0.15 + 0.5x5x3; + 145 + x5x + 0.5xx; +0.1x,

Xy =x1 = 3x + x3 — 0.1 — 1.5x7x, — 0.3x125 — 3.2x3 — 0.3x5x3 — 1.5x0%3

+0.1x] — 19.5x7x; + 0.5xx3 + X723 + X35 + 2x; X203 — 39x

2.3
1%y T X7Xx3

2.3

2.2 2. .2 4 3 2.2 3 4
+ 3x7x5x3 — 39x7x2x5 + 0.5x1 X5 + 2x105x3 + 3x165x5 + 2x1x0x35 + 0.5x x5

—20x; + 0.5x3x3 — 39x03x5 + x5x3 — 19.5x,x5 + 0.1x3,

X3 =x1 + X, — 3x3 — 0.3x%x3 —0.6x1x0x3 — 0.1x§ - 1.5x§x3 - 4.4x§

5 4 4 3.2, 3.2 3 23 2 3
+0.1x7 + 0.5x7x2 — 19.5x7x3 + x7x5 + Xx7x5 + 2x7x0x3 + x7x5 — 39x7x3

— 39x725x3 + 3xT x5 + 0.5x1 X5 + 2x165x3 + 3x,25X5 + 2x1 %003 + 0.5x,x3

+ 0.1 — 19.5x3x3 + 505 — 39x

3 4 5
X3+ 0.5x:x5 — 20x3.

Then X can be written as X = A x + Asx® + Agx’, where x = (x1, x2, X3)7,

a dp daps -3 1
o= an an as |=| 1 -3 1 |,

az; ax 4y 1 -3
ainr 4z dinas i dizir Arziz 4iz13 Az A3z 413z
aper dizz dnes i dilr Are @123 Azl A1z 4a132;3
ajzr Az 4nss s dieslr A3z Age3s A3zl Az Adisss
azi1r dz112 Az113 | A2211 Az12 42213 | d2311  d2312 42313
Ay =| a1 ann G223 i Qo1 G2 G203 | G321 G232 (2323
az131  Az132 42133 i Ap231 Q2232 42233 i 42331 42332 42333
asiin Aasriz 4asli3 Azl Aasziz Aspg3 i Aszrl 4szlz 4ssns
asjzr  dsizz  ds123 | A3zl A3 3223 | A332] d3322 43323
aszj3zr  ds132  ds133 i d3z3l 433 A333 | A333]  d3332 43333

AIMS Mathematics
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45 01 0:01 05 0 0 0 0.1
01 05 005 0 0 0 0 01
0 00:0 0 01:01 01 0
01 05 0:05 0 0 0 0 Ol

o

=—[05 0 0 0 3201 0 01 05],
0 0 01;0 01 05 0.1 05 0
0 0 01{0 0 01 01 01 0
0 0 01:0 01 0501 05 0

01 01 001 05 0 0 0 44
and A = (ai,iy-is) € RI[®3! is a symmetric tensor with elements defined as follows:

ainn = anm = azszssz = =20, ajes = —1.3,
ainiie = di1222 = A122222 = Aq11113 = 4111123 = A111223 = A111233 = 4111333 = A112223 = A112333
= a12203 = 122233 = Q122333 = A123333 = 4133333 = (220203 = (20333 = 33333 = 0.1

apinie = a3 = a2 = 4113333 = 22033 = a3z = —3.9.

It is proved in Example 3 of [4] that both —A, and —A, are positive definite. Example 3.1 shows
that —Ag is positive definite. Furthermore, by Theorem 3.1, it can be seen that the polynomial system
X is asymptotically stable. m|

4. Conclusions

In this paper, we in Corollaries 2.1 and 2.2 gave the specific forms of two GerSgorin-type
Z-eigenvalue inclusion intervals G(A, @) in Theorem 1.2 (i.e., Theorem 2.2 in [11]) and Y(A, @) in
Theorem 1.3 (i.e., Theorem 3.1 in [22]) with a parameter vector a for a sixth-order tensor A.
Subsequently, we chose an appropriate parameter vector « to minimize the interval T(A, @) and hence
derived an optimal interval Y'(A). As an application, we used the interval Y'(A) to obtain a sufficient
condition for the positive definiteness of a sixth-order real symmetric tensor (also a homogeneous
polynomial form), which is used to judge the asymptotically stability of time-invariant polynomial
systems.

Now, we answer Question 2: What is the specific form of the Z-identity tensor 7, for the order
m > 8 and m is even? This question is answered only for m = 8. By calculation, the specific form of
the Z-identity tensor 7, = (e;,;,..;;) € RI® is as follows:
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1, ifilzizz"':ig,

1/7, if (iy, 02, ..., 08) € U A, 0 J, Ji o Jo Js DY
#],
i.jeln]

3/357 if (ila iZa B lS) € U {ﬂ(i9 ia i’ i’ j9 ja j’ .])}’
#],
i.jeln]

R TNNBS, i Gy ig) e U G,y ok kK K)),
i
1/105, if (iy,i,...,i8) € U {n(i,1i,J, j,k,k,1,1)},
i
0, otherwise,
where {n(i, i5, ..., i3)} is the set of all combinations of i, i, ..., is.

Let m = 8. Using the Z-identity tensor 7, and the same method as Corollaries 2.1 and 2.2, the
specific forms of the Z-eigenvalue inclusion intervals G(A, @) in Theorem 1.2 and T'(A, @) in Theorem
1.3 can be derived. And by using the similar methods as in Theorem 2.3, we can also choose an
appropriate parameter vector « to optimize the interval Y'(A, a) and present a sufficient condition for
the positive definiteness of eighth-order real symmetric tensors. This can be taken as a further question.
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