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1. Introduction

To establish the efficient iteration method to obtain the numerical solution of the absolute value
equation (AVE)

Ax − |x| = b with A ∈ Rn×n and b ∈ Rn, (1.1)

the following equivalent two-by-two block nonlinear equation of the AVE (1.1) is considered in [1] Ax − y = b,

− |x| + y = 0,

i.e.,

Āz =

[
A −I
−D̂ I

] [
x
y

]
=

[
b
0

]
= b̄, (1.2)
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where D̂ = D(x) = diag(sign(x)), x ∈ Rn. Afterwards, using the following matrix splitting of matrix Ā,
that is,

Ā =

[
A −I
−D̂ I

]
=

[
αI + A 0

0 αI + I

]
−

[
αI I
D̂ αI

]
,

where α is a given appropriate constant, the block-diagonal and anti-block-diagonal splitting (BAS)
method for the nonlinear equation (1.2) was designed and described as follows:

The BAS method: Let initial vectors x(0) ∈ Rn and y(0) ∈ Rn. For k = 0, 1, · · · until the iteration
sequence {x(k), y(k)} is convergent, calculate

x(k+1) = (αI + A)−1(αx(k) + y(k) + b),

y(k+1) =
1

1 + α
(D̂x(k) + αy(k)),

(1.3)

or [
αI + A 0

0 αI + I

] [
x(k+1)

y(k+1)

]
=

[
αI I
D̂ αI

] [
x(k)

y(k)

]
+

[
b
0

]
, (1.4)

where α is a given appropriate constant.
In [1], some conditions were given to guarantee the convergence of the BAS method. Numerical

experiment results showed that the convergence behavior of the BAS method is better than the
generalized Newton (GN) method in [2] and the nonlinear HSS-like (NHSS) method [3, 4].

As is known, the AVE (1.1) is widely concerned because it is viewed as a very useful tool in a
number of practical problems, including linear programming, the quasi-complementarity problems,
bimatrix games, see [5–9]. Recently, many authors have exploited some feasible iteration methods to
obtain the numerical solution of the AVE (1.1), see [2,6,10–13,15–19]. In addition, the AVE (1.1) also
looks like the basis pursuit problem and generalized inverses computation, see [23–25].

In this paper, a new iteration method is designed to solve the AVE (1.1). Specifically, to improve
the convergence speed of the BAS iteration method, a modified BAS (MBAS) iteration method is
developed to solve the AVE (1.1). The convergence property of the MBAS method is studied under
certain conditions. The feasibility of the MBAS method is verified by numerical experiments.

The remainder of the paper is structured below. In Section 2, we establish the modified BAS
(MBAS) method to obtain the numerical solution of the AVE (1.1) and present some conditions to
guarantee the convergence of the MBAS iteration method. In Section 3, the effectiveness of the
MBAS method is verified by numerical experiments. In Section 4, we terminate the paper with some
conclusions.

2. The MBAS method

In this section, we will establish the MBAS iteration method to acquire the numerical solution of the
AVE (1.1). For this purpose, our way is to use the x(k+1) of the first equation in (1.3) instead of the x(k)

of the second equation in (1.3). Clearly, the goal of our approach is that we not only can enhance the
convergence behavior of the BAS iteration method (1.3), but also can reduce the storage requirements
of the BAS iteration method (1.3). Based on this approach, we obtain the modified BAS (MBAS)
iteration method and describe as follows.
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The MBAS iteration method: Let initial vectors x(0) ∈ Rn and y(0) ∈ Rn. For k = 0, 1, · · · until the
iteration sequence {x(k), y(k)} is convergent, calculate

x(k+1) = (αI + A)−1(αx(k) + y(k) + b),

y(k+1) =
1

1 + α
(D̂x(k+1) + αy(k)),

(2.1)

where α is a given nonnegative constant.
The structure of the system (1.2) is two-by-two block and looks like the saddle point problem [26].

Further, from the form of the MBAS iteration method (2.1), in a way, it can be also seen as a special
case of parameterized inexact Uzawa method. For this, one can see [27] for more details.

Lemma 2.1 is introduced to obtain some conditions to guarantee the convergence of the MBAS
iteration method.

Lemma 2.1. [14] Let x2 − ax + b = 0 with a, b ∈ R, and λ be any root of this equation. Then |λ| < 1
iff |b| < 1 and |a| < 1 + b.

Let the iteration errors be
ex

k = x∗ − x(k), ey
k = y∗ − y(k),

where x∗ and y∗ satisfy Eq (1.2). Then the following main result with respect to the MBAS iteration
method (2.1) can be obtained. ‖ · ‖ denotes the Euclid norm.

Theorem 2.2. Let A ∈ Rn×n be nonsingular. Denote

β = ‖(αI + A)−1‖,

where α is a given nonnegative constant. When

α2β < (1 + α) <
1
β
, (2.2)

the MBAS iteration method (2.1) is convergent.

Proof. Combining (1.2) with (2.1), we have
ex

k+1 = α(αI + A)−1ex
k + (αI + A)−1ey

k,

ey
k+1 =

1
1 + α

(D̂ex
k+1 + αey

k).
(2.3)

From (2.3), we can get

‖ex
k+1‖ = ‖α(αI + A)−1ex

k + (αI + A)−1ey
k‖

≤ α‖(αI + A)−1ex
k‖ + ‖(αI + A)−1ey

k‖

≤ α‖(αI + A)−1‖ · ‖ex
k‖ + ‖(αI + A)−1‖ · ‖ey

k‖

= αβ‖ex
k‖ + β‖ey

k‖

and

AIMS Mathematics Volume 7, Issue 1, 606–616.



609

‖ey
k+1‖ = ‖

1
1 + α

(D̂ex
k+1 + αey

k)‖

≤ ‖
1

1 + α
D̂ex

k+1‖ + ‖
α

1 + α
ey

k‖

=
1

1 + α
‖D̂ex

k+1‖ +
α

1 + α
‖ey

k‖

≤
1

1 + α
‖D̂‖ · ‖ex

k+1‖ +
α

1 + α
‖ey

k‖

≤
1

1 + α
‖ex

k+1‖ +
α

1 + α
‖ey

k‖.

Further, let zk = ek = (ex
k , e

y
k)

T , then

zk+1 ≤

(
αβ β
αβ

1+α

α+β

1+α

)
zk

≤

(
αβ β
αβ

1+α

α+β

1+α

)2

zk−1

. . .

≤

(
αβ β
αβ

1+α

α+β

1+α

)k

z0.

Let

T =

(
αβ β
αβ

1+α

α+β

1+α

)
.

Clearly, if ρ(T ) < 1, then limk→∞ T k = 0. This implies

lim
k→∞
‖ex

k‖ = 0 and lim
k→∞
‖ey

k‖ = 0.

In this way, the MBAS iteration method (2.1) can converge to the solution of the AVE (1.1).
Next, we just need to get the sufficient condition for ρ(T ) < 1. Let λ be an eigenvalue of the matrix

T . Then λ satisfies

(λ − αβ)(λ −
α + β

1 + α
) −

αβ2

1 + α
= 0,

equivalently,

λ2 − (αβ +
α + β

1 + α
)λ +

α2β

1 + α
= 0. (2.4)

Using Lemma 2.1 for Eq (2.4), |λ| < 1 if and only if

|
α2β

1 + α
| < 1

and

|αβ +
α + β

1 + α
| < 1 +

α2β

1 + α
.

Therefore, ρ(T ) < 1 when the condition (2.2) holds. �
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Theorem 2.3. Let A ∈ Rn×n be symmetric positive definite, λmin indicate the minimum eigenvalue of
matrix A and α ≥ 0. When

1 < λmin,

the MBAS iteration method (2.1) is convergent.

Proof. By calculation, we have

β(1 + α) = (1 + α)‖(αI + A)−1‖

= (1 + α)‖(αI + A)−1‖

=
1 + α

α + λmin

and

βα2 = α2‖(αI + A)−1‖

= α2‖(αI + A)−1‖

=
α2

α + λmin
< 1 + α.

Obviously, when 1 < λmin, we have β(1 + α) < 1. �

Corollary 2.4. Let A ∈ Rn×n be nonsingular and α ≥ 0. When

||A−1‖ ≤
1

1 + 2α
, (2.5)

the MABS iteration method (2.1) is convergent.

Proof. Utilizing the Banach perturbation lemma in [20], we obtain

β(1 + α) ≤
(1 + α)‖A−1‖

1 − α‖A−1‖
and βα2 ≤

α2‖A−1‖

1 − α‖A−1‖
.

To make the condition (2.2) valid, we only need

(1 + α)‖A−1‖

1 − α‖A−1‖
< 1 and

α2‖A−1‖

1 − α‖A−1‖
< 1 + α.

By the simple computations, it is easy to see that the results of Corollary 2.4 hold under the
condition (2.5). �

Corollary 2.4 is the same as Corollary 1 in [1]. That is to say, the convergence conditions of
Corollary 2.1 are suitable for the BAS method.

AIMS Mathematics Volume 7, Issue 1, 606–616.



611

3. Numerical experiments

In this section, to detect the feasiblity of the MBAS method (2.1) to gain the numerical solution of
the AVE (1.1), we give some numerical experiments. Here, by the iteration steps (IT) and the CPU
time (CPU) in seconds, we contrast the MBAS method (2.1) with the SOR-like method in [21], the
BAS method (1.3), and the following new iteration (NI) method in [22]

 x(k+1) = A−1(y(k) + b),
y(k+1) = α|x(k+1)| + (1 − α)y(k),

(3.1)

where α > 0.

In these testing four methods, we choose zero vector as all initial vectors, and all iterations of these
four methods are stopped when RES ≤ 10−6, where ‘RES’ indicates the relative residual error and is
of form

RES =
‖Ax(k) − |x(k)| − b‖

‖b‖
,

or the number of iteration outnumbers 500. The right-hand side vector b of the AVE (1.1) is taken in a
way such that the vector x = (x1, x2, . . . , )T with

xi = (−1)i, i = 1, 2, . . . ,

is the exact solution. The iteration parameters used in the above four iteration methods are the
experimental optimal ones, which minimize the numbers of iteration steps. If the experimental
optimal iteration parameters form an interval, then they are further optimized according to the least
CPU time. Naturally, in the following tables, αexp indicates the the experimentally optimal parameters
for these testing four methods. Here, we use MATLAB R2016B for all the tests.

Example 1. Let the AVE in (1.1) be

A = tridiag(−1, 4,−1) ∈ Rn×n, x∗ = (−1, 1,−1, 1, . . .)T ∈ Rn,

and b = Ax∗ − |x∗| in [21].

For Example 1, the numerical results (including IT, CPU and αexp) for these testing four methods
are listed in Table 1. Clearly, these testing four methods can converge rapidly under the corresponding
experimentally optimal parameters. Further, on the base of these numerical results in Table 1, we
can find that the number of iterations of these testing four methods are nearly sensitivity when the
mesh sizes are changed. According to the numerical results in Table 1, the MBAS method has better
computational efficiency by the iteration steps and the CPU times, compared with the BAS method,
the SOR-like method and the NI method.
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Table 1. Numerical comparison of Example 1.

n 3000 4000 5000 6000 7000
MBAS IT 11 11 11 11 11

CPU 0.0019 0.0029 0.0031 0.0056 0.0071
αexp 0.02 0.02 0.02 0.02 0.02

BAS IT 21 21 21 21 21
CPU 0.2632 0.4424 0.6071 0.8973 1.1976
αexp 0.02 0.02 0.02 0.01 0.02

SOR-like IT 16 16 16 17 17
CPU 0.0042 0.0066 0.0079 0.0099 0.0117
αexp 1 1 1 1.02 1.01

NI IT 16 16 16 17 17
CPU 0.0048 0.0066 0.0076 0.0088 0.0126
αexp 1 1 1 1.01 1.01

Example 2. Let the AVE in (1.1) be A = Ā + µI, where

Ā =



W −I −I 0 · · · 0 0
0 W −I −I · · · 0 0
0 0 W −I · · · 0 0
...

...
. . .

. . .
. . .

...
...

...
...

. . .
. . .

. . .
... −I

...
...

. . .
. . .

. . . W −I

0 0 . . .
. . .

. . . 0 W


∈ Rn×n,

with

W = tridiag(−1, 4,−1) =



4 −1 0 · · · 0 0
−1 4 −1 · · · 0 0
0 −1 4 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 4 −1
0 0 0 · · · −1 4


∈ Rm×m,

and

x∗ = (−1, 1,−1, 1, . . .)T ∈ Rn and b = Ax∗ − |x∗|.

Similar to Table 1, for Example 2, Tables 2 and 3 for the different value of µ enumerate the numerical
results (including IT, CPU and αexp) of these testing four methods. In our numerical experiments, we
take µ = 2, 4. These numerical results in Tables 2 and 3 further verify the observed result from
Table 1, i.e., the MBAS method precedes the BAS method [1], the SOR-like method [21] and the NI
method [22] in the aspect of the computational efficiency under certain conditions.
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Table 2. Numerical comparison of Example 2 with µ = 2.

m 60 70 80 90
MBAS IT 11 11 11 11

CPU 0.2154 0.3107 0.4328 0.5799
αexp 0.01 0.03 0.01 0.02

BAS IT 21 21 21 21
CPU 1.7489 3.2116 5.5408 8.9070
αexp 0.03 0.03 0.01 0.01

SOR-like IT 16 16 16 17
CPU 0.3434 0.4983 0.7140 0.8760
αexp 1 1 1 1.02

NI IT 16 16 16 17
CPU 0.3706 0.5125 0.8135 0.8948
αexp 1 1 1 1.01

Table 3. Numerical comparison of Example 2 with µ = 4.

m 60 70 80 90
MBAS IT 8 8 8 8

CPU 0.1630 0.2465 0.3345 0.4238
αexp 0.01 0.01 0.01 0.01

BAS IT 15 15 15 15
CPU 1.2469 2.2818 3.9165 6.3493
αexp 0.01 0.02 0.01 0.01

SOR-like IT 12 12 12 12
CPU 0.2430 0.4105 0.4834 0.7020
αexp 1.01 1.01 1.01 1

NI IT 12 12 12 12
CPU 0.2617 0.3308 0.5424 0.6945
αexp 1 1 1 1

Example 3. [22] Consider the AVE in (1.1), where the matrix A = Â + µIm2(µ ≥ 0) with

Â = Tridiag(−Im, S m,−Im) ∈ Rm2×m2
, S m = tridiag(−1, 4,−1) ∈ Rm×m,

and
x∗ = (−1, 1,−1, 1, . . .)T ∈ Rn and b = Ax∗ − |x∗|.

For Example 3, we still investigate the efficiency of the above four methods. The corresponding
numerical results are listed in Tables 4 and 5. The numerical results in Table 4 correspond to µ = 4,
naturally, the numerical results in Table 5 correspond to µ = 8.

These numerical results in Tables 4 and 5 still verify the observed result from Table 1. Under
the corresponding experimentally optimal parameters, the four testing methods converge rapidly to the
unique solution of Example 3. Among four testing methods, the computational efficiency of the MBAS
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method is best, compared with the BAS method [1], the SOR-like method [21] with the NI method [22]
under certain conditions.

Table 4. Numerical comparison of Example 3 with µ = 4.

m 30 50 70 90
MBAS IT 8 8 8 8

CPU 0.0082 0.0223 0.0576 0.0967
αexp 0.02 0.01 0.01 0.01

BAS IT 15 15 15 15
CPU 0.0156 0.0755 0.2196 0.5442
αexp 0.01 0.01 0.01 0.01

SOR-like IT 11 12 12 12
CPU 0.0121 0.0345 0.1028 0.1775
αexp 1 1.01 1.01 1

NI IT 11 12 12 12
CPU 0.0128 0.0340 0.1210 0.1736
αexp 1 1 1 1

Table 5. Numerical comparison of Example 3 with µ = 8.

m 30 50 70 90
MBAS IT 7 7 7 7

CPU 0.0061 0.0178 0.0477 0.0792
αexp 0.06 0.06 0.03 0.04

BAS IT 13 13 13 13
CPU 0.0129 0.0612 0.2009 0.5094
αexp 0.008 0.008 0.005 0.006

SOR-like IT 9 9 9 9
CPU 0.0087 0.0253 0.1080 0.1155
αexp 1.01 1 1 1.02

NI IT 9 9 9 9
CPU 0.0106 0.0265 0.0816 0.1277
αexp 1 1 1 1.01

4. Conclusions

In this paper, to accelerate the block-diagonal and anti-block-diagonal splitting (BAS) iteration
method, we have presented a modified BAS (MBAS) iteration method to solve the absolute value
equation (AVE). To guarantee the convergence of the MBAS method, we give some convergence
conditions under certain conditions. Numerical experiments manifest that the MBAS method
compared to some existing numerical methods (such as the SOR-like method [21] and the NI
method [22]) is feasible for the AVE under certain conditions.
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