
http://www.aimspress.com/journal/Math

AIMS Mathematics, 7(1): 606–616.
DOI: 10.3934/math.2022038
Received: 14 July 2021
Accepted: 29 September 2021
Published: 14 October 2021

Research article

Modified BAS iteration method for absolute value equation

Cui-Xia Li1,∗ and Long-Quan Yong2

1 School of Mathematics, Yunnan Normal University, Kunming, Yunnan 650500, China
2 Shaanxi Key Laboratory of Industrial Automation, Shaanxi University of Technology, Hanzhong,

Shaanxi 723001, China

* Correspondence: Email: lixiatk@126.com; Tel: +8618211679797.

Abstract: In this paper, to improve the convergence speed of the block-diagonal and anti-block-
diagonal splitting (BAS) iteration method, we design a modified BAS (MBAS) method to obtain
the numerical solution of the absolute value equation. Theoretical analysis shows that under certain
conditions the MBAS method is convergent. Numerical experiments show that the MBAS method is
feasible.

Keywords: block-diagonal and anti-block-diagonal splitting; iteration method; absolute value
equation; convergence
Mathematics Subject Classification: 65F10, 90C05, 90C30

1. Introduction

To establish the efficient iteration method to obtain the numerical solution of the absolute value
equation (AVE)

Ax − |x| = b with A ∈ Rn×n and b ∈ Rn, (1.1)

the following equivalent two-by-two block nonlinear equation of the AVE (1.1) is considered in [1] Ax − y = b,

− |x| + y = 0,

i.e.,

Āz =

[
A −I
−D̂ I

] [
x
y

]
=

[
b
0

]
= b̄, (1.2)

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2022038

607

where D̂ = D(x) = diag(sign(x)), x ∈ Rn. Afterwards, using the following matrix splitting of matrix Ā,
that is,

Ā =

[
A −I
−D̂ I

]
=

[
αI + A 0

0 αI + I

]
−

[
αI I
D̂ αI

]
,

where α is a given appropriate constant, the block-diagonal and anti-block-diagonal splitting (BAS)
method for the nonlinear equation (1.2) was designed and described as follows:

The BAS method: Let initial vectors x(0) ∈ Rn and y(0) ∈ Rn. For k = 0, 1, · · · until the iteration
sequence {x(k), y(k)} is convergent, calculate

x(k+1) = (αI + A)−1(αx(k) + y(k) + b),

y(k+1) =
1

1 + α
(D̂x(k) + αy(k)),

(1.3)

or [
αI + A 0

0 αI + I

] [
x(k+1)

y(k+1)

]
=

[
αI I
D̂ αI

] [
x(k)

y(k)

]
+

[
b
0

]
, (1.4)

where α is a given appropriate constant.
In [1], some conditions were given to guarantee the convergence of the BAS method. Numerical

experiment results showed that the convergence behavior of the BAS method is better than the
generalized Newton (GN) method in [2] and the nonlinear HSS-like (NHSS) method [3, 4].

As is known, the AVE (1.1) is widely concerned because it is viewed as a very useful tool in a
number of practical problems, including linear programming, the quasi-complementarity problems,
bimatrix games, see [5–9]. Recently, many authors have exploited some feasible iteration methods to
obtain the numerical solution of the AVE (1.1), see [2,6,10–13,15–19]. In addition, the AVE (1.1) also
looks like the basis pursuit problem and generalized inverses computation, see [23–25].

In this paper, a new iteration method is designed to solve the AVE (1.1). Specifically, to improve
the convergence speed of the BAS iteration method, a modified BAS (MBAS) iteration method is
developed to solve the AVE (1.1). The convergence property of the MBAS method is studied under
certain conditions. The feasibility of the MBAS method is verified by numerical experiments.

The remainder of the paper is structured below. In Section 2, we establish the modified BAS
(MBAS) method to obtain the numerical solution of the AVE (1.1) and present some conditions to
guarantee the convergence of the MBAS iteration method. In Section 3, the effectiveness of the
MBAS method is verified by numerical experiments. In Section 4, we terminate the paper with some
conclusions.

2. The MBAS method

In this section, we will establish the MBAS iteration method to acquire the numerical solution of the
AVE (1.1). For this purpose, our way is to use the x(k+1) of the first equation in (1.3) instead of the x(k)

of the second equation in (1.3). Clearly, the goal of our approach is that we not only can enhance the
convergence behavior of the BAS iteration method (1.3), but also can reduce the storage requirements
of the BAS iteration method (1.3). Based on this approach, we obtain the modified BAS (MBAS)
iteration method and describe as follows.

AIMS Mathematics Volume 7, Issue 1, 606–616.

608

The MBAS iteration method: Let initial vectors x(0) ∈ Rn and y(0) ∈ Rn. For k = 0, 1, · · · until the
iteration sequence {x(k), y(k)} is convergent, calculate

x(k+1) = (αI + A)−1(αx(k) + y(k) + b),

y(k+1) =
1

1 + α
(D̂x(k+1) + αy(k)),

(2.1)

where α is a given nonnegative constant.
The structure of the system (1.2) is two-by-two block and looks like the saddle point problem [26].

Further, from the form of the MBAS iteration method (2.1), in a way, it can be also seen as a special
case of parameterized inexact Uzawa method. For this, one can see [27] for more details.

Lemma 2.1 is introduced to obtain some conditions to guarantee the convergence of the MBAS
iteration method.

Lemma 2.1. [14] Let x2 − ax + b = 0 with a, b ∈ R, and λ be any root of this equation. Then |λ| < 1
iff |b| < 1 and |a| < 1 + b.

Let the iteration errors be
ex

k = x∗ − x(k), ey
k = y∗ − y(k),

where x∗ and y∗ satisfy Eq (1.2). Then the following main result with respect to the MBAS iteration
method (2.1) can be obtained. ‖ · ‖ denotes the Euclid norm.

Theorem 2.2. Let A ∈ Rn×n be nonsingular. Denote

β = ‖(αI + A)−1‖,

where α is a given nonnegative constant. When

α2β < (1 + α) <
1
β
, (2.2)

the MBAS iteration method (2.1) is convergent.

Proof. Combining (1.2) with (2.1), we have
ex

k+1 = α(αI + A)−1ex
k + (αI + A)−1ey

k,

ey
k+1 =

1
1 + α

(D̂ex
k+1 + αey

k).
(2.3)

From (2.3), we can get

‖ex
k+1‖ = ‖α(αI + A)−1ex

k + (αI + A)−1ey
k‖

≤ α‖(αI + A)−1ex
k‖ + ‖(αI + A)−1ey

k‖

≤ α‖(αI + A)−1‖ · ‖ex
k‖ + ‖(αI + A)−1‖ · ‖ey

k‖

= αβ‖ex
k‖ + β‖ey

k‖

and

AIMS Mathematics Volume 7, Issue 1, 606–616.

609

‖ey
k+1‖ = ‖

1
1 + α

(D̂ex
k+1 + αey

k)‖

≤ ‖
1

1 + α
D̂ex

k+1‖ + ‖
α

1 + α
ey

k‖

=
1

1 + α
‖D̂ex

k+1‖ +
α

1 + α
‖ey

k‖

≤
1

1 + α
‖D̂‖ · ‖ex

k+1‖ +
α

1 + α
‖ey

k‖

≤
1

1 + α
‖ex

k+1‖ +
α

1 + α
‖ey

k‖.

Further, let zk = ek = (ex
k , e

y
k)

T , then

zk+1 ≤

(
αβ β
αβ

1+α

α+β

1+α

)
zk

≤

(
αβ β
αβ

1+α

α+β

1+α

)2

zk−1

. . .

≤

(
αβ β
αβ

1+α

α+β

1+α

)k

z0.

Let

T =

(
αβ β
αβ

1+α

α+β

1+α

)
.

Clearly, if ρ(T) < 1, then limk→∞ T k = 0. This implies

lim
k→∞
‖ex

k‖ = 0 and lim
k→∞
‖ey

k‖ = 0.

In this way, the MBAS iteration method (2.1) can converge to the solution of the AVE (1.1).
Next, we just need to get the sufficient condition for ρ(T) < 1. Let λ be an eigenvalue of the matrix

T . Then λ satisfies

(λ − αβ)(λ −
α + β

1 + α
) −

αβ2

1 + α
= 0,

equivalently,

λ2 − (αβ +
α + β

1 + α
)λ +

α2β

1 + α
= 0. (2.4)

Using Lemma 2.1 for Eq (2.4), |λ| < 1 if and only if

|
α2β

1 + α
| < 1

and

|αβ +
α + β

1 + α
| < 1 +

α2β

1 + α
.

Therefore, ρ(T) < 1 when the condition (2.2) holds. �

AIMS Mathematics Volume 7, Issue 1, 606–616.

610

Theorem 2.3. Let A ∈ Rn×n be symmetric positive definite, λmin indicate the minimum eigenvalue of
matrix A and α ≥ 0. When

1 < λmin,

the MBAS iteration method (2.1) is convergent.

Proof. By calculation, we have

β(1 + α) = (1 + α)‖(αI + A)−1‖

= (1 + α)‖(αI + A)−1‖

=
1 + α

α + λmin

and

βα2 = α2‖(αI + A)−1‖

= α2‖(αI + A)−1‖

=
α2

α + λmin
< 1 + α.

Obviously, when 1 < λmin, we have β(1 + α) < 1. �

Corollary 2.4. Let A ∈ Rn×n be nonsingular and α ≥ 0. When

||A−1‖ ≤
1

1 + 2α
, (2.5)

the MABS iteration method (2.1) is convergent.

Proof. Utilizing the Banach perturbation lemma in [20], we obtain

β(1 + α) ≤
(1 + α)‖A−1‖

1 − α‖A−1‖
and βα2 ≤

α2‖A−1‖

1 − α‖A−1‖
.

To make the condition (2.2) valid, we only need

(1 + α)‖A−1‖

1 − α‖A−1‖
< 1 and

α2‖A−1‖

1 − α‖A−1‖
< 1 + α.

By the simple computations, it is easy to see that the results of Corollary 2.4 hold under the
condition (2.5). �

Corollary 2.4 is the same as Corollary 1 in [1]. That is to say, the convergence conditions of
Corollary 2.1 are suitable for the BAS method.

AIMS Mathematics Volume 7, Issue 1, 606–616.

611

3. Numerical experiments

In this section, to detect the feasiblity of the MBAS method (2.1) to gain the numerical solution of
the AVE (1.1), we give some numerical experiments. Here, by the iteration steps (IT) and the CPU
time (CPU) in seconds, we contrast the MBAS method (2.1) with the SOR-like method in [21], the
BAS method (1.3), and the following new iteration (NI) method in [22]

 x(k+1) = A−1(y(k) + b),
y(k+1) = α|x(k+1)| + (1 − α)y(k),

(3.1)

where α > 0.

In these testing four methods, we choose zero vector as all initial vectors, and all iterations of these
four methods are stopped when RES ≤ 10−6, where ‘RES’ indicates the relative residual error and is
of form

RES =
‖Ax(k) − |x(k)| − b‖

‖b‖
,

or the number of iteration outnumbers 500. The right-hand side vector b of the AVE (1.1) is taken in a
way such that the vector x = (x1, x2, . . . ,)T with

xi = (−1)i, i = 1, 2, . . . ,

is the exact solution. The iteration parameters used in the above four iteration methods are the
experimental optimal ones, which minimize the numbers of iteration steps. If the experimental
optimal iteration parameters form an interval, then they are further optimized according to the least
CPU time. Naturally, in the following tables, αexp indicates the the experimentally optimal parameters
for these testing four methods. Here, we use MATLAB R2016B for all the tests.

Example 1. Let the AVE in (1.1) be

A = tridiag(−1, 4,−1) ∈ Rn×n, x∗ = (−1, 1,−1, 1, . . .)T ∈ Rn,

and b = Ax∗ − |x∗| in [21].

For Example 1, the numerical results (including IT, CPU and αexp) for these testing four methods
are listed in Table 1. Clearly, these testing four methods can converge rapidly under the corresponding
experimentally optimal parameters. Further, on the base of these numerical results in Table 1, we
can find that the number of iterations of these testing four methods are nearly sensitivity when the
mesh sizes are changed. According to the numerical results in Table 1, the MBAS method has better
computational efficiency by the iteration steps and the CPU times, compared with the BAS method,
the SOR-like method and the NI method.

AIMS Mathematics Volume 7, Issue 1, 606–616.

612

Table 1. Numerical comparison of Example 1.

n 3000 4000 5000 6000 7000
MBAS IT 11 11 11 11 11

CPU 0.0019 0.0029 0.0031 0.0056 0.0071
αexp 0.02 0.02 0.02 0.02 0.02

BAS IT 21 21 21 21 21
CPU 0.2632 0.4424 0.6071 0.8973 1.1976
αexp 0.02 0.02 0.02 0.01 0.02

SOR-like IT 16 16 16 17 17
CPU 0.0042 0.0066 0.0079 0.0099 0.0117
αexp 1 1 1 1.02 1.01

NI IT 16 16 16 17 17
CPU 0.0048 0.0066 0.0076 0.0088 0.0126
αexp 1 1 1 1.01 1.01

Example 2. Let the AVE in (1.1) be A = Ā + µI, where

Ā =



W −I −I 0 · · · 0 0
0 W −I −I · · · 0 0
0 0 W −I · · · 0 0
...

...
. . .

. . .
. . .

...
...

...
...

. . .
. . .

. . .
... −I

...
...

. . .
. . .

. . . W −I

0 0 . . .
. . .

. . . 0 W


∈ Rn×n,

with

W = tridiag(−1, 4,−1) =



4 −1 0 · · · 0 0
−1 4 −1 · · · 0 0
0 −1 4 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 4 −1
0 0 0 · · · −1 4


∈ Rm×m,

and

x∗ = (−1, 1,−1, 1, . . .)T ∈ Rn and b = Ax∗ − |x∗|.

Similar to Table 1, for Example 2, Tables 2 and 3 for the different value of µ enumerate the numerical
results (including IT, CPU and αexp) of these testing four methods. In our numerical experiments, we
take µ = 2, 4. These numerical results in Tables 2 and 3 further verify the observed result from
Table 1, i.e., the MBAS method precedes the BAS method [1], the SOR-like method [21] and the NI
method [22] in the aspect of the computational efficiency under certain conditions.

AIMS Mathematics Volume 7, Issue 1, 606–616.

613

Table 2. Numerical comparison of Example 2 with µ = 2.

m 60 70 80 90
MBAS IT 11 11 11 11

CPU 0.2154 0.3107 0.4328 0.5799
αexp 0.01 0.03 0.01 0.02

BAS IT 21 21 21 21
CPU 1.7489 3.2116 5.5408 8.9070
αexp 0.03 0.03 0.01 0.01

SOR-like IT 16 16 16 17
CPU 0.3434 0.4983 0.7140 0.8760
αexp 1 1 1 1.02

NI IT 16 16 16 17
CPU 0.3706 0.5125 0.8135 0.8948
αexp 1 1 1 1.01

Table 3. Numerical comparison of Example 2 with µ = 4.

m 60 70 80 90
MBAS IT 8 8 8 8

CPU 0.1630 0.2465 0.3345 0.4238
αexp 0.01 0.01 0.01 0.01

BAS IT 15 15 15 15
CPU 1.2469 2.2818 3.9165 6.3493
αexp 0.01 0.02 0.01 0.01

SOR-like IT 12 12 12 12
CPU 0.2430 0.4105 0.4834 0.7020
αexp 1.01 1.01 1.01 1

NI IT 12 12 12 12
CPU 0.2617 0.3308 0.5424 0.6945
αexp 1 1 1 1

Example 3. [22] Consider the AVE in (1.1), where the matrix A = Â + µIm2(µ ≥ 0) with

Â = Tridiag(−Im, S m,−Im) ∈ Rm2×m2
, S m = tridiag(−1, 4,−1) ∈ Rm×m,

and
x∗ = (−1, 1,−1, 1, . . .)T ∈ Rn and b = Ax∗ − |x∗|.

For Example 3, we still investigate the efficiency of the above four methods. The corresponding
numerical results are listed in Tables 4 and 5. The numerical results in Table 4 correspond to µ = 4,
naturally, the numerical results in Table 5 correspond to µ = 8.

These numerical results in Tables 4 and 5 still verify the observed result from Table 1. Under
the corresponding experimentally optimal parameters, the four testing methods converge rapidly to the
unique solution of Example 3. Among four testing methods, the computational efficiency of the MBAS

AIMS Mathematics Volume 7, Issue 1, 606–616.

614

method is best, compared with the BAS method [1], the SOR-like method [21] with the NI method [22]
under certain conditions.

Table 4. Numerical comparison of Example 3 with µ = 4.

m 30 50 70 90
MBAS IT 8 8 8 8

CPU 0.0082 0.0223 0.0576 0.0967
αexp 0.02 0.01 0.01 0.01

BAS IT 15 15 15 15
CPU 0.0156 0.0755 0.2196 0.5442
αexp 0.01 0.01 0.01 0.01

SOR-like IT 11 12 12 12
CPU 0.0121 0.0345 0.1028 0.1775
αexp 1 1.01 1.01 1

NI IT 11 12 12 12
CPU 0.0128 0.0340 0.1210 0.1736
αexp 1 1 1 1

Table 5. Numerical comparison of Example 3 with µ = 8.

m 30 50 70 90
MBAS IT 7 7 7 7

CPU 0.0061 0.0178 0.0477 0.0792
αexp 0.06 0.06 0.03 0.04

BAS IT 13 13 13 13
CPU 0.0129 0.0612 0.2009 0.5094
αexp 0.008 0.008 0.005 0.006

SOR-like IT 9 9 9 9
CPU 0.0087 0.0253 0.1080 0.1155
αexp 1.01 1 1 1.02

NI IT 9 9 9 9
CPU 0.0106 0.0265 0.0816 0.1277
αexp 1 1 1 1.01

4. Conclusions

In this paper, to accelerate the block-diagonal and anti-block-diagonal splitting (BAS) iteration
method, we have presented a modified BAS (MBAS) iteration method to solve the absolute value
equation (AVE). To guarantee the convergence of the MBAS method, we give some convergence
conditions under certain conditions. Numerical experiments manifest that the MBAS method
compared to some existing numerical methods (such as the SOR-like method [21] and the NI
method [22]) is feasible for the AVE under certain conditions.

AIMS Mathematics Volume 7, Issue 1, 606–616.

615

Acknowledgments

The authors would like to thank two anonymous referees for providing helpful suggestions, which
greatly improved the paper. This research was supported by National Natural Science Foundation
of China (No.11961082) and Key Project of Shaanxi Provincial Education Department under grant
20JS021.

Conflict of interest

The authors declare that they have no competing interests.

References

1. C. X. Li, S. L. Wu, Block-diagonal and anti-block-diagonal splitting iteration method for
absolute value equation, In: Simulation tools and techniques, 12th EAI International Conference,
SIMUtools 2020, Guiyang, China, 369 (2021), 572–581. doi: 0.1007/978-3-030-72792-5 45.

2. O. L. Mangasarian, A generalized Newton method for absolute value equations, Optim. Lett., 3
(2009), 101–108. doi: 10.1007/s11590-008-0094-5.

3. Z. Z. Bai, X. Yang, On HSS-based iteration methods for weakly nonlinear systems, Appl. Numer.
Math., 59 (2009), 2923–2936. doi: 10.1016/j.apnum.2009.06.005.

4. M. Z. Zhu, Y. E. Qi, The nonlinear HSS-like iteration method for absolute value equations, arXiv.
Available from: https://arxiv.org/abs/1403.7013v4.

5. J. Rohn, A theorem of the alternatives for the equation Ax + B|x| = b, Linear Multilinear A., 52
(2004), 421–426. doi: 10.1080/0308108042000220686.

6. O. L. Mangasarian, Absolute value programming, Comput. Optim. Applic., 36 (2007), 43–53. doi:
10.1007/s10589-006-0395-5.

7. O. L. Mangasarian, R. R. Meyer, Absolute value equations, Linear Algebra Appl., 419 (2006),
359–367. doi 10.1016/j.laa.2006.05.004.

8. S. L. Wu, P. Guo, Modulus-based matrix splitting algorithms for the quasi-complementarity
problems, Appl. Numer. Math., 132 (2018), 127–137. doi: 10.1016/j.apnum.2018.05.017.

9. R. W. Cottle, J. S. Pang, R. E. Stone, The linear complementarity problem, Society for Industrial
and Applied Mathematics, 2009. doi: 10.1137/1.9780898719000.

10. J. Rohn, An algorithm for solving the absolute value equations, Electron. J. Linear Algebra, 18
(2009), 589–599. doi: 10.13001/1081-3810.1332.

11. J. Rohn, V. Hooshyarbakhsh, R. Farhadsefat, An iterative method for solving absolute value
equations and sufficient conditions for unique solvability, Optim. Lett., 8 (2014), 35–44. doi:
10.1007/s11590-012-0560-y.

12. D. K. Salkuyeh, The Picard-HSS iteration method for absolute value equations, Optim. Lett., 8
(2014), 2191–2202. doi: 10.1007/s11590-014-0727-9.

13. O. L. Mangasarian, A hybrid algorithm for solving the absolute value equation, Optim. Lett., 9
(2015), 1469–1474. doi: 10.1007/s11590-015-0893-4.

AIMS Mathematics Volume 7, Issue 1, 606–616.

https://arxiv.org/abs/1403.7013v4

616

14. S. L. Wu, T. Z. Huang, X. L. Zhao, A modified SSOR iterative method for augmented systems, J.
Comput. Appl. Math., 228 (2009), 424–433. doi: 10.1016/j.cam.2008.10.006.

15. C. X. Li, S. L. Wu, Modified SOR-like iteration method for absolute value equations, Math. Probl.
Eng., 2020 (2020), 9231639. doi: 10.1155/2020/9231639.

16. A. X. Wang, H. J. Wang, Y. K. Deng, Interval algorithm for absolute value equations, Cent. Eur. J.
Math., 9 (2011), 1171–1184. doi: 10.2478/s11533-011-0067-2.

17. S. Ketabchi, H. Moosaei, An efficient method for optimal correcting of absolute value equations
by minimal changes in the right hand side, Comput. Math. Appl., 64 (2012), 1882–1885. doi:
10.1016/j.camwa.2012.03.015.

18. C. Zhang, Q. J. Wei, Global and finite convergence of a generalized newton method for absolute
value equations, J. Optim. Theory. Appl., 143 (2009), 391–403. doi: 10.1007/s10957-009-9557-9.

19. C. X. Li, A preconditioned AOR iterative method for the absolute value equations, Inter. J. Comput.
Meth., 14 (2017), 1750016. doi: 10.1142/S0219876217500165.

20. J. M. Ortega, W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables,
Academic Press, 1970. doi: 10.1016/C2013-0-11263-9.

21. Y. F. Ke, C. F. Ma, SOR-like iteration method for solving absolute value equations, Appl. Math.
Comput., 311 (2017), 195–202. doi: 10.1016/j.amc.2017.05.035.

22. Y. F. Ke, The new iteration algorithm for absolute value equation, Appl. Math. Lett., 99 (2020),
105990. doi: 10.1016/j.aml.2019.07.021.

23. T. Saha, S. Srivastava, S. Khare, P. S. Stanimirovic, M. D. Petkovic, An improved algorithm
for basis pursuit problem and its applications, Appl. Math. Comput., 355 (2019), 385–398. doi:
10.1016/j.amc.2019.02.073.

24. M. D. Petkovic, Generalized Schultz iterative methods for the computation of outer inverses,
Comput. Math. Appl., 67 (2014), 1837–1847. doi: 10.1016/j.camwa.2014.03.019.

25. M. D. Petkovic, M. A. Krstic, K. P. Rajkovic, Rapid generalized Schultz iterative methods
for the computation of outer inverses, J. Comput. Appl. Math., 344 (2018), 572–584 doi:
10.1016/j.cam.2018.05.048.

26. M. Benzi, G. H. Golub, J. Liesen, Numerical solution of saddle point problems, Acta Numer., 14
(2005), 1–137. doi: 10.1017/S0962492904000212.

27. Z. Z. Bai, Z. Q. Wang, On parameterized inexact Uzawa methods for generalized saddle point
problems, Linear Algebra Appl., 428 (2008), 2900–2932. doi: 10.1016/j.laa.2008.01.018.

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 1, 606–616.

http://creativecommons.org/licenses/by/4.0

	Introduction
	The MBAS method
	Numerical experiments
	Conclusions

