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Abstract: In this paper, we introduce the notion of pseudo-semi-normed linear spaces, following the
concept of pseudo-norm which was presented by Schaefer and Wolff, and illustrate their relationship.
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notion of fuzzy pseudo-norm initiated by Nãdãban. Moreover, we give some examples which are
according to the commonly used t-norms. Finally, we establish norm structures of fuzzy pseudo-semi-
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1. Introduction and preliminaries

In 1981, Katsaras [11] introduced the notion of fuzzy topological vector space by assuming that
the fuzzy topology of such a space contained all the constant fuzzy sets. Later, fuzzy semi-normed
spaces and fuzzy normed spaces were investigated by Katsaras [12]. In 1988, Morsi [15] provided a
different method for introducing fuzzy pseudo-metric topologies and fuzzy pseudo-normed topologies
on vector spaces, and showed them equivalent to Katsaras-type. Afterwards, Felbin [9], Cheng and
Mordeson [7], Bag and Samanta [2–5], proposed other concepts of fuzzy norms, respectively. Recently,
Nãdãban and Dzitac [17] introduced a generated fuzzy norm, by replacing the “min” of condition (N4)
with a general form, and obtained some decomposition theorems for fuzzy norms into a family of
semi-norms. Moreover, motivated by the work of Alege and Romaguera [1], Nãdãban, in 2016 [16],
proposed the notion of fuzzy pseudo-norm, and obtained a characterization of metrizable topological
linear spaces in terms of a fuzzy F-norm.

On the other hand, Das and Das [8] constructed a fuzzy topology in a fuzzy normed linear space,
which was proved to be fuzzy Hausdorff. Afterwards, many researchers devoted to providing some
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properties of these fuzzy topologies [10, 19, 20, 23–25], and it became a hot topic in developing fuzzy
functional analysis and its applications.

In this paper, on one hand, following the notion of pseudo-norm defined by Schaefer and Wolff
[21], we introduce a concept of pseudo-semi-norm, by replacing the condition (N2) with (NWP2), i.e
Nwp(x, t) = 0 for all t > 0 if x = θ, where θ is a zero element. On the other hand, following the notion of
fuzzy pseudo-normed linear spaces defined by Nãdãban, we further introduce a new concept of fuzzy
pseudo-semi-norm according to general t-norm. Also we give some examples with respect to ∗M, ∗P

and ∗L, respectively. Finally, we obtain (fuzzy) topologies induced by (fuzzy) pseudo-semi-normed
linear spaces, and prove that they are (fuzzy) Hausdorff.

Throughout this paper, X always denotes a non-empty set, the letters R, R+, C always denote the set
of real numbers, of positive real numbers and of complex numbers, respectively. From now, the scalar
field K means either the field R or C.

Definition 1.1. A pseudo-semi-norm on a linear space X is a real function ‖ · ‖ : X → R satisfying the
following conditions: ∀x, y ∈ X and for all λ ∈ K with |λ| ≤ 1,
(NPS1) ‖x‖ ≥ 0;
(NPS2) ‖x‖ = 0 if x = θ, where θ is a zero element of X;
(NPS3) ‖λx‖ ≤ ‖x‖;
(NPS4) ‖x + y‖ ≤ ‖x‖ + ‖y‖.

If a pseudo-semi-norm also satisfies (NPS5): ‖x‖ = 0 implies x = θ, then it is a pseudo-norm [21].
A pseudo(-semi)-normed space is a pair (X, ‖ · ‖) such that ‖ · ‖ is a pseudo(-semi)-norm on X.
Particularly, if ‖ · ‖ satisfies (NPS1),(NPS2),(NPS4),(NPS5) and (NPS6): ‖λx‖ = |λ|‖x‖ for all x ∈ X

and λ ∈ K, then it is a norm .
Apparently, the condition (NPS6) is weaker than (NPS3). Hence, each norm is a pseudo-norm.

Remark 1.2. It is obvious that each (pseudo-)norm is a pseudo(-semi)-norm, but we show that the
converse is not true as the following examples show:

Example 1.3. Let (X, ‖ ·‖) be a linear space, where X = R2. Define ‖ ·‖ : X → R by ‖x‖ = |x1 |

1+|x1 |
+ |x2 |

2(1+|x2 |)
for all x = (x1, x2) ∈ X. Then (X, ‖ · ‖) is a pseudo(-semi)-normed space.

It is trivial to verify the conditions (NPS1), (NPS2) and (NPS5). We will check the conditions
(NPS3) and (NPS4) as follows:

(NPS3) Let x = (x1, x2) ∈ X, λ ∈ K and |λ| ≤ 1. We have

‖λx‖ = |λx1 |

1+|λx1 |
+ |λx2 |

2(1+|λx2 |)
≤

|λ||x1 |

1+|λ||x1 |
+ |λ||x2 |

2(1+|λ||x2 |)
≤

|x1 |

1+|x1 |
+ |x2 |

2(1+|x2 |)
= ‖x‖

(NPS4) Let x = (x1, x2), y = (y1, y2) ∈ X. We have

‖x + y‖ =
|x1+y1 |

1+|x1+y1 |
+

|x2+y2 |

2(1+|x2+y2 |)
≤

|x1 |+|y1 |

1+|x1 |+|y1 |
+

|x2 |+|y2 |

2(1+|x2 |+|y2 |)

and
|x1 |+|y1 |

1+|x1 |+|y1 |
+

|x2 |+|y2 |

2(1+|x2 |+|y2 |)
≤

|x1 |

1+|x1 |
+ |x2 |

2(1+|x2 |)
+

|y1 |

1+|y1 |
+

|y2 |

2(1+|y2)| .

It follows that ‖x + y‖ ≤ ‖x‖ + ‖y‖.
However, it is not a norm. Indeed, set x0 = (1, 0), λ0 = 1

2 . We have ‖λ0x0‖ = 1
3 and |λ0|‖x0‖ = 1

4 . So
‖λ0x0‖ , |λ0|‖x0‖.
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Example 1.4. Let (X, ‖ · ‖) be a linear space, where X = Rn. Define ‖ · ‖ : X → R by ‖x‖ = |xn| for all
x = (x1, x2, . . . , xn) ∈ X. Then (X, ‖ · ‖) is a pseudo-semi-normed space, but it is not a pseudo-normed
space.

It is trivial to verify the conditions (NPS1) and (NPS2). We will check the conditions (NPS3) and
(NPS4) as follows:

(NPS3) Let x = (x1, x2, . . . , xn) ∈ X, λ ∈ K and |λ| ≤ 1. We have

‖λx‖ = |λxn| = |λ||xn| ≤ |xn| = ‖xn‖

(NPS4) Let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ X. We have

‖x + y‖ = |xn + yn| ≤ |xn| + |yn| = ‖x‖ + ‖y‖

However, since ‖x‖ = |xn| = 0 does not imply x = θ, it is not a pseudo-norm.
In addition to following sections, we will recall some basic concepts on triangular norms and fuzzy

normed linear spaces.

Definition 1.5. [14] A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is called a continuous triangular
norm (briefly t-norm) if it satisfies the following conditions:
(T1) ∗ is associative and commutative;
(T2) ∗ is continuous;
(T3) a ∗ 1 = a for all a ∈ [0, 1];
(T4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

The following are the three basic t-norms: minimum, usual product and Lukasiewicz t-norm, which
are given by, respectively: a ∗M b = min{a, b}, a ∗P b = ab and a ∗L b = max{0, a + b − 1}, for all
a, b ∈ [0, 1].

Definition 1.6. [2] Let X be a linear space over K. A fuzzy set N of X ×R is called a fuzzy norm on X
if it satisfies the following conditions: ∀x, y ∈ X and λ ∈ K,
(FN1) N(x, t) = 0 for all t ∈ R with t ≤ 0;
(FN2) N(x, t) = 1 for all t ∈ R+ if and only if x = θ, where θ is a zero element of X;
(FN3) N(λx, t) = N(x, t

|λ|
) for all t ∈ R, λ , 0;

(FN4) N(x + y, t + s) ≥ min{N(x, t),N(y, s)} for all x, y ∈ X, s, t ∈ R;
(FN5) limt→+∞ N(x, t) = 1.
The pair (X,N) is called to be a fuzzy normed space linear space. Obviously, if N is a fuzzy norm, then
N(x, ·) is non-decreasing for all x ∈ X.

2. Fuzzy pseudo-semi-normed spaces

Definition 2.1. Let X be a linear space over K and ∗ be a continuous t-norm. A fuzzy set Nps of X ×R
is called a fuzzy pseudo-semi-norm on X if it satisfies the following conditions: ∀x, y ∈ X and λ ∈ K
with |λ| ≤ 1,
(FNPS1) Nps(x, t) = 0 for all t ∈ R with t ≤ 0;
(FNPS2) Nps(x, t) = 1 for all t ∈ R+ if x = θ, where θ is a zero element of X;
(FNPS3) Nps(λx, t) ≥ Nps(x, t) for all t ∈ R;
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(FNPS4) Nps(x + y, t + s) ≥ Nps(x, t) ∗ Nps(y, s) for all x, y ∈ X, s, t ∈ R ;
(FNPS5) limt→+∞ Nps(x, t) = 1.
The triple (X,Nps, ∗) is called to be a fuzzy pseudo-semi-normed linear space.

If a fuzzy pseudo-semi-norm with aspect to ∗M also satisfies (FNPS2∗): Nps(x, t) = 1 for all t ∈ R+

implies x = θ, then it is a fuzzy pseudo-norm [16].

Remark 2.2. (1) It is easy to see that Nps(−x, t) = Nps(x, t), ∀x ∈ X, t ∈ R.
(2) For all x ∈ X, Nps(x, ·) is non-decreasing.
(3) Every fuzzy normed linear space is a fuzzy pseudo-(semi-)normed linear space with respect to ∗M.

Indeed, let t > s > 0. By (NPS4), we have Nps(x, t) = Nps(x, s + (t − s)) ≥ Nps(x, s) ∗ Nps(θ, t − s) =

Nps(x, s) ∗ 1 = Nps(x, s) for all x ∈ X. Thus, Remark 2.2 (2) holds.
Furthermore, if (X,Nps, ∗) is a fuzzy normed linear space, we only check (FNPS3) in the following

cases:
Case 1: Suppose that λ = 0. By (FNPS1), we have Nps(λx, t) = Nps(θ, t) = 1 for all t ∈ R+. Thus

Nps(λx, t) ≥ Nps(x, t) for all x ∈ X, t ∈ R.
Case 2: For all λ ∈ K with |λ| ≤ 1 and λ , 0, by Remark 2.2 (2), we have Nps(x, t

|λ|
) ≥ Nps(x, t).

From (FN3), it implies that Nps(λx, t) = Nps(x, t
|λ|

). Hence, Nps(λx, t) ≥ Nps(x, t).

Example 2.3. Let X be a linear space over K and ‖ · ‖ be a pseudo-semi-norm. Define a fuzzy set Nps:
X × R→ [0, 1] by

Nps(x, t) =

 t
t+‖x‖ , t > 0;
0, t ≤ 0.

for all x ∈ X. Then (X,Nps, ∗M) is a fuzzy pseudo-semi-normed space.
It is trivial to verify (FNPS1),(FNPS2) and (FNPS5).
We need to verify the conditions (FNPS3) and (FNPS4), respectively.
(FNPS3): We will distinguish in the following cases:
Case 1: Suppose that t ≤ 0. It implies that Nps(λx, t) = Nps(x, t) = 0.
Case 2: For all λ ∈ K with |λ| ≤ 1, by (NPS3), we have Nps(λx, t) = t

t+‖λx‖ ≥
t

t+‖x‖ = Nps(x, t) for all
x ∈ X.

(FNPS4): We will distinguish in following cases:
Case 1: Suppose that t ≤ 0 or s ≤ 0. It follows that Nps(x, t) = 0 or Nps(x, s) = 0 for all x ∈ X, then

Nps(x, t) ∗M Nps(y, s) = 0. Hence, Nps(x + y, t + s) ≥ Nps(x, t) ∗M Nps(y, s).
Case 2: For any x, y ∈ X, t, s > 0, without loss of generality, suppose that s‖x‖ ≥ t‖y‖, namely,

Nps(x, t) ≤ Nps(y, s), that is Nps(x, t) ∗M Nps(y, s) = Nps(x, t). By (NPS4), we have Nps(x + y, t + s) =
t+s

t+s+‖x+y‖ ≥
t+s

t+s+‖x‖+‖y‖ . Since s‖x‖ ≥ t‖y‖, it follows that t+s
t+s+‖x‖+‖y‖ ≤

t+s
t+s+‖x‖+ s

t ‖x‖
= t

t+‖x‖ . Thus, we can
deduce that Nps(x + y, t + s) ≥ Nps(x, t) ∗M Nps(y, s).

Example 2.4. Let X = R2 be a linear space over R and ‖ · ‖ be a pseudo-semi-norm. Define a fuzzy set
Nps: X × R→ [0, 1] by

Nps(x, t) =

 t2
(t+|x1 |)(t+|x2 |)

, t > 0;

0, t ≤ 0.

for all x = (x1, x2) ∈ X. Then (X,Nps, ∗P) is a fuzzy pseudo-semi-normed space.
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It is trivial to verify (FNPS1),(FNPS2) and (FNPS5).
We need to verify the conditions (FNPS3) and (FNPS4), respectively.
(FNPS3): We will distinguish in the following cases:
Case 1: Suppose that t ≤ 0. It implies that Nps(λx, t) = Nps(x, t) = 0.
Case 2: For all λ ∈ K with |λ| ≤ 1, by (NPS3), we have Nps(λx, t) = t2

(t+|λ||x1 |)(t+|λ||x2 |)
≥ t2

(t+|x1 |)(t+|x2 |)
=

Nps(x, t) for all x ∈ X.
(FNPS4): In [4], the authors proved that Nps(x + y, t + s) ≥ Nps(x, t) ∗P Nps(y, s) for all x, y ∈ R.

Example 2.5. Let X be a linear space over K and ‖ · ‖ be a pseudo-semi-norm. Define a fuzzy set Nps:
X × R→ [0, 1] by

Nps(x, t) =

1, ‖x‖ < t;
0, ‖x‖ ≥ t.

for all x ∈ X, t ∈ R. Then (X,Nps, ∗L) is a fuzzy pseudo-semi-normed space.
It is trivial to verify (FNPS1), (FNPS2) and (FNPS5).
We need to verify the conditions (FNPS3) and (FNPS4), respectively.
(FNPS3): We will distinguish in the following cases:
Case 1: Suppose that Nps(x, t) = 0. It is obvious that Nps(λx, t) ≥ Nps(x, t).
Case 2: Suppose that Nps(x, t) = 1, that is ‖x‖ < t. For all λ ∈ K with |λ| ≤ 1, by (NPS3), we have

‖λx‖ ≤ ‖x‖ < t. Thus, Nps(λx, t) = 1, namely, Nps(λx, t) = Nps(x, t).
(FNPS4): Since

Nps(x, t) + Nps(y, s) − 1 =


−1, ‖x‖ ≥ t, ‖y‖ ≥ s;
0, ‖x‖ ≥ t, ‖y‖ < s or ‖x‖ < t, ‖y‖ ≥ s;
1, ‖x‖ < t, ‖y‖ < s.

it follows that

max{0,Nps(x, t) + Nps(y, s) − 1} =

1, ‖x‖ < t, ‖y‖ < s;
0, otherwise.

namely, Nps(x, t) ∗L Nps(y, s) = 0 or 1.
We will distinguish in the following cases:
Case 1: Suppose that Nps(x, t) ∗L Nps(y, s) = 0. It is easy to show that Nps(x + y, t + s) ≥ Nps(x, t) ∗L

Nps(y, s) for all x, y ∈ R.
Case 2: For all ‖x‖ < t, ‖y‖ < s, by (NPS4), we have ‖x+y‖ ≤ ‖x‖+‖y‖ < t+ s, then Nps(x+y, t+ s) =

1. Thus, Nps(x + y, t + s) = Nps(x, t) ∗L Nps(y, s).

The following example shows that not every fuzzy pseudo-semi-normed linear space is a fuzzy
pseudo-normed linear space.

Example 2.6. Let X = Rn be a linear space over R and ‖ · ‖ be a pseudo-semi-norm. Define a fuzzy set
Nps: X × R→ [0, 1] by

Nps(x, t) =

 t
t+limn→+∞ |xn |

, t > 0;
0, t ≤ 0.

for all x = (x1, x2, . . . , xn) ∈ X. Then (X,Nps, ∗M) is a fuzzy pseudo-semi-normed space.
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It is trivial to verify (FNPS1), (FNPS2) and (FNPS5).
We need to verify the conditions (FNPS3) and (FNPS4), respectively.
(FNPS3): We will distinguish in the following cases:
Case 1: Suppose that t ≤ 0. We have Nps(λx, t) = Nps(x, t) = 0.
Case 2: For all t > 0, by (NPS3), we have

Nps(λx, t) = t
t+limn→+∞ |λxn |

≥ t
t+limn→+∞ |xn |

= Nps(x, t),

for all ∀x ∈ X and λ ∈ K with |λ| ≤ 1.
(FNPS4): We will distinguish in the following cases:
Case 1: Suppose that t ≤ 0 or s ≤ 0. It follows that Nps(x, t) = 0 or Nps(y, s) = 0, that is

Nps(x, t) ∗M Nps(y, s) = 0. Thus, Nps(x + y, t + s) ≥ Nps(x, t) ∗M Nps(y, s) for all x, y ∈ R.
Case 2: For all x, y ∈ R, s, t > 0, without loss of generality, suppose that s|xn| ≥ t|yn|, namely,

Nps(x, t) ≤ Nps(y, s), that is Nps(x, t) ∗M Nps(y, s) = Nps(x, t). Then, we have

Nps(x + y, t + s) = t+s
t+s+limn→+∞ |xn+yn |

≥ t+s
t+s+limn→+∞ |xn |+limn→+∞ |yn |

.

Since s|xn| ≥ t|yn|, it follows that t+s
t+s+|xn |+|yn |

≤ t+s
t+s+|xn |+

s
t |xn |

= t
t+|xn |

. Thus, we can deduce that Nps(x +

y, t + s) ≥ Nps(x, t) ∗M Nps(y, s).

However, the statement is not true which limn→+∞ |xn| = 0 implies x = θ. Thus it is not a fuzzy
pseudo-normed linear space with respect to ∗M.

Furthermore, we will present some decomposition theorems for fuzzy pseudo-semi-norms, and
construct a fuzzy pseudo-semi-normed space from the family of fuzzy pseudo-semi-norms.

Theorem 2.7. Let (X,Nps, ∗) be a fuzzy pseudo-semi-normed linear space. Define ‖x‖0 =∧
{t > 0 : Nps(x, t) = 1},∀x ∈ X. Then ‖x‖0 is a pseudo-semi-norm on X.

Proof. It is trivial to verify (NPS1) and (NPS2).
We need to verify the conditions (NPS3) and (NPS4).
(NPS3): First, we have {t > 0 : Nps(x, t) = 1} ⊂ {t > 0 : Nps(x, t) ≤ 1}. Then, it implies that ‖x‖0 =∧
{t > 0 : Nps(x, t) = 1} ≥

∧
{t > 0 : Nps(x, t) ≤ 1}. By (FNPS3), we have Nps(λx, t) ≥ Nps(x, t) for all

λ ∈ K with |λ| ≤ 1. It follows that {t > 0 : Nps(λx, t) = 1} = {t > 0 : Nps(x, t) ≤ 1}, that is, ‖λx‖0 =∧
{t > 0 : Nps(λx, t) = 1} =

∧
{t > 0 : Nps(x, t) ≤ 1}. Hence, ‖x‖0 ≥ ‖λx‖0 for all x ∈ X, λ ∈ K with

|λ| ≤ 1.
(NPS4): From the definition of ‖x‖0, it is easy to see Nps(x, ‖x‖0 + ε

2 ) = 1 and Nps(y, ‖y‖0 + ε
2 ) = 1

for all x, y ∈ X, ε > 0. By (FNPS4), we have

Nps(x + y, ‖x‖0 + ‖y‖0 + ε) ≥ Nps(x, ‖x‖0 + ε
2 ) ∗ Nps(y, ‖y‖0 + ε

2 ) = 1 ∗ 1 = 1.

Thus Nps(x + y, ‖x‖0 + ‖y‖0 + ε) = 1, it follows that ‖x + y‖0 ≤ ‖x‖0 + ‖y‖0 + ε. By the arbitrariness of
ε, we have ‖x + y‖0 ≤ ‖x‖0 + ‖y‖0. �

Theorem 2.8. Let (X,Nps, ∗) be a fuzzy pseudo-semi-normed linear space. Define ‖x‖α =∧
{t > 0 : Nps(x, t) > 1 − α},∀x ∈ X. Then the following statements hold:
(1) {‖x‖α : α ∈ (0, 1)} is non-increasing with respect to α.
(2) {‖x‖α : α ∈ (0, 1)} is a left-continuous function on α ∈ (0, 1).
Furthermore, {‖x‖α : α ∈ (0, 1)} is a continuous function on α ∈ (0, 1) if Nps is strictly increasing.
(3) {‖x‖α : α ∈ (0, 1)} is a pseudo-semi-norm family corresponding to the fuzzy pseudo-semi-norm

Nps on X.

AIMS Mathematics Volume 7, Issue 1, 467–477.



473

Proof. (1) Case 1: If x = θ, it is evident.
Case 2: Let x , θ, for all α, β ∈ (0, 1), α < β, by Remark 2.2 (2), we have

{t > 0 : Nps(x, t) > 1 − α} ⊂ {t > 0 : Nps(x, t) > 1 − β},

that is
∧
{t > 0 : Nps(x, t) > 1 − α} ≥

∧
{t > 0 : Nps(x, t) > 1 − β}. Thus ‖x‖α ≥ ‖x‖β. Hence,

{‖x‖α : α ∈ (0, 1)} is non-increasing.
(2) First, from Theorem 2.8 (1), it is clear that ‖x‖α−ε ≥ ‖x‖α for all 0 < ε < α, 0 < α < 1. Thus

limε→0+ ‖x‖α−ε ≥ ‖x‖α. Additionally, we claim that limε→0+ ‖x‖α−ε ≤ ‖x‖α for all α ∈ (0, 1), x ∈ X.
Otherwise, assume that limε→0+ ‖x‖α−ε > ‖x‖α. Then, there exists t0 > 0 such that limε→0+ ‖x‖α−ε > t0 >

‖x‖α. It implies that ‖x‖α−ε > t0 > ‖x‖α for all 0 < ε < α. Since t0 > ‖x‖α and ‖x‖α−ε > t0, by the
definition of ‖x‖α, we have 1 − α < Nps(x, t0) and Nps(x, t0) ≤ 1 − α + ε. By the arbitrariness of α, we
have Nps(x, t0) ≤ 1 − α, which is a contradiction.

Furthermore, from Theorem 2.8 (2), we will prove that Nps is right-continuous if Nps is strictly
increasing, i.e. limε→0+ ‖x‖α+ε = ‖x‖α for all α ∈ (0, 1). It is easy to see that limε→0+ ‖x‖α+ε ≤ ‖x‖α,
then we only prove that limε→0+ ‖x‖α+ε ≥ ‖x‖α. Otherwise, suppose that limε→0+ ‖x‖α+ε < ‖x‖α. For all
‖x‖α+ε < t < ‖x‖α, by the definition of ‖x‖α, we have 1 − α − ε < Nps(x, t) ≤ 1 − α. By the arbitrariness
of α, it follows that Nps(x, t) = 1 − α. Since Nps is strictly increasing, thus, it is a contradiction.

(3) It is trivial to verify (NPS1), (NPS2) and (NPS3), then we only check (NPS4). Indeed, by
(FNPS4), we have

‖x‖α + ‖y‖α =
∧
{t > 0 : Nps(x, t) > 1 − α} +

∧
{t > 0 : Nps(y, s) > 1 − α}

=
∧
{t + s > 0 : Nps(x, t) > 1 − α,Nps(y, s) > 1 − α}

=
∧
{t + s > 0 : Nps(x, t) ∗M Nps(y, s) > 1 − α}

≥
∧
{t + s > 0 : Nps(x + y, t + s) > 1 − α}

= ‖x + y‖α,

for all x, y ∈ X, α ∈ (0, 1). �

Following Theorem 3.8 [16], we have the following proposition:

Proposition 2.9. Let {‖x‖α : α ∈ (0, 1)} be a pseudo-semi-norm family linear space, which is
continuous and non-decreasing. Define

Nps(x, t) =


∨
{α ∈ (0, 1) : ‖x‖α < t}, t > 0;

0, t ≤ 0 or {α ∈ (0, 1) : ‖x‖α < t} = ∅.

Then (X,Nps, ∗) is a fuzzy pseudo-semi-normed linear space, where ∗ is a continuous t-norm.

3. (Fuzzy) topology on fuzzy pseudo-semi-normed linear space

According to Bag and Samanta [2] investigated the connection which the fuzzy metric could be
induced by the fuzzy norm, Nãdãban and Dzitac [17] obtained that P = {pα(x)}α∈(0,1) is an ascending
family of semi-norms. In addition, Das and Das [8] defined a fuzzy topology on the fuzzy normed
linear space. We will obtain the fuzzy pseudo-metric induced by the pseudo-semi-norm in following
section. Firstly, we will recall some notions and results related to fuzzy pseudo-metrics.
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Definition 3.1. [18] A triple (X,Mpk , ∗) is called a fuzzy pseudo-metric space if X is an arbitrary
nonempty set, ∗ is a continuous t-norm and M: X × X × [0,+∞) → [0, 1] is a map satisfying the
following conditions: ∀x, y, z ∈ X and t, s ≥ 0,
(FPM1) M(x, y, 0) = 0;
(FPM2) M(x, x, t) = 1 for all t > 0;
(FPM3) M(x, y, t) = M(y, x, t);
(FPM4) M(x, z, t + s) ≥ M(x, y, t) ∗ M(y, z, s);
(FPM5) The function M(x, y, ·) : [0,+∞)→ [0, 1] is left-continuous;
(FPM6) limt→+∞ M(x, y, t) = 1.
The map M is called a fuzzy pseudo-metric.

Definition 3.2. Let (X,Nps, ∗) be a fuzzy pseudo-semi-normed linear space. For all x ∈ X, 0 < α <

1, t > 0, a set B(x, r, t) = {y ∈ X : Nps(x − y, t) > 1 − α} is called an open ball.

Definition 3.3. [6, 8] A fuzzy topology on a set X is a family T of fuzzy subsets of X satisfying the
following conditions:
(FT1) The fuzzy subsets 0, 1 are in T ;
(FT2) T is closed under finite intersection of fuzzy subsets;
(FT3) T is closed under arbitrary union of fuzzy subsets.
The pair (X,T ) is called a fuzzy topological space.

Definition 3.4. [8] A fuzzy topological space (X,T ) is said to be fuzzy Hausdorff if for x, y ∈ X and
x , y, there exist µ, η ∈ T with µ(x) = η(y) = 1 and µ ∩ η = ∅.

Theorem 3.5. Suppose (X,Nps, ∗) is a fuzzy pseudo-semi-normed linear space such that satisfies
(FNPS6) :(∀)x ∈ X, N(x, ·) is left-continuous. Define a mapping M: X × X × [0,+∞) → [0, 1] by
M(x, y, t) = Nps(x − y, t) for all x, y ∈ X and t ≥ 0. Then (X,M, ∗) is a fuzzy pseudo-metric space.

Proof. It is trivial to prove that (X,M, ∗) satisfies (FPM1), (FPM2), (FPM5) and (FPM6). We verify
conditions (FPM3) and (FPM4) as follows:

(FPM3): By Remark 2.2 (1), we have M(x, y, t) = Nps(x − y, t) = Nps(y − x, t) = M(y, x, t).
(FPM4): By (FNPS4), we have M(x, z, t + s) = Nps(x − z, t + s) = Nps(x − y + y − z, t + s) ≥

Nps(x − y, t) ∗ Nps(y − z, s) = M(x, y, t) ∗ M(y, z, s). �

Proposition 3.6. Let (X,Nps, ∗) be a fuzzy pseudo-semi-normed linear space. Define a family of subsets
of X by
TNps = {V ⊂ X : x ∈ V if and only if there exist t > 0, r ∈ (0, 1) such that B(x, r, t) ⊂ V}.
Then the following statements hold:

(1) TNps is a topology on X.
(2) (X,TNps) is Hausdorff if ∗ satisfies (T5):

∨
a∈(0,1) a ∗ a = 1 and Nps satisfies (FNPS7): Nps(x, t) > 0

for all t > 0 implies x = θ.

Proof. (1) We will prove TNps is a topology on X in the following steps:
Step 1: It is clear that ∅, X ∈ TNps .
Step 2: Let V1,V2 ∈ TNps . For any x ∈ V1∩V2, by the definition of TNps , there exist ti > 0, ri ∈ (0, 1),

such that B(x, ri, ti) ⊂ Vi, where i = 1, 2. Taking r = min{ri : i = 1, 2}, t = max{ti : i = 1, 2}, it follows
that 1 − r ≥ 1 − ri and B(x, r, t) ⊂ Vi, i = 1, 2. Thus, B(x, r, t) ⊂ V1 ∩ V2.
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Step 3: Let Vγ ∈ TNps , γ ∈ Γ, where Γ is an index set. For any x ∈
⋃

γ∈Γ Vγ, we have x ∈ Vγ0

for some γ0 ∈ Γ. Since Vγ0 ∈ TNps , by the definition of TNps , there exist t > 0, r ∈ (0, 1), such that
B(x, r, t) ⊂ Vγ0 ⊂

⋃
γ∈Γ Vγ. Hence,

⋃
γ∈Γ Vγ ∈ TNps .

(2) Let x, y ∈ X, x , y. Then there exists t0 > 0, such that Nps(x − y, t0) < 1. Otherwise, suppose
that Nps(x − y, t0) = 1 for all t > 0. By (FNSP7), we have x − y = θ, namely x = y, which is a
contradiction. Set r = N(x − y, t0). By (T5), there is r0 ∈ (0, 1), such that r0 ∗ r0 > r. Thus, we
have B(x, 1 − r0,

t
2 ) ∩ B(y, 1 − r0,

t
2 ) = ∅. Otherwise, suppose that B(x, 1 − r0,

t
2 ) ∩ B(y, 1 − r0,

t
2 ) , ∅.

Then there exists z ∈ B(x, 1 − r0,
t
2 ) ∩ B(y, 1 − r0,

t
2 ), that is, z ∈ B(x, 1 − r0,

t
2 ) and z ∈ B(y, 1 − r0,

t
2 ),

which implies that Nps(x − z, t
2 ) > r0 and Nps(y − z, t

2 ) > r0. By (FNPS4), we have Nps(x − y, t) ≥
Nps(x − z, t

2 ) ∗ Nps(y − z, t
2 ) > r0 ∗ r0 > r, which is a contradiction. �

Proposition 3.7. Let (X,Nps, ∗) be a fuzzy pseudo-semi-normed linear space. Define a family of subsets
of X by T ∗Nps

= {µ ∈ IX : ∀x ∈suppµ and r ∈ (0, 1) there exist ε > 0, such that x + Bε ∩ r̃ ⊂ µ}, where
the fuzzy real number r̃: R → I is given as follows: For all s ∈ R, r̃(s) = 1 when s < r, and r̃(s) = 0
when s ≥ r. Then the following statements hold:
(1) T ∗Nps

is a fuzzy topology on X.
(2) (X,T ∗Nps

) is fuzzy Hausdorff if Nps satisfies (FNPS7∗): ∀x , θ, there is tx > 0, such that Nps(x, tx) =

0.

Proof. (1) We will prove T ∗Nps
is a fuzzy topology on X in the following steps:

Step 1: It is clear that 0, 1 ∈ T ∗Nps
.

Step 2: Let µ1, µ2 ∈ T
∗
Nps

, and (µ1 ∩ µ2)(x) > r > 0. It follows that µ1(x) > r > 0 and µ2(x) > r > 0.
By the definition of T ∗Nps

, there exist εi > 0, i = 1, 2, such that x + Bε1 ∩ r̃ ⊂ µ1 and x + Bε2 ∩ r̃ ⊂
µ2. Taking ε = min{ε1, ε2}. It follows that Nps(x, ε) ≤ Nps(x, ε1) and Nps(x, ε) ≤ Nps(x, ε2). Thus,
x + Bε ∩ r̃ ⊂ x + Bε1 ∩ r̃ and x + Bε ∩ r̃ ⊂ x + Bε2 ∩ r̃. which implies that x + Bε ∩ r̃ ⊂ µ1 ∩ µ2. Thus,
µ1 ∩ µ2 ∈ T

∗
Nps

.
Step 3: Let µγ ∈ T ∗Nps

, γ ∈ Γ, and (
⋃

γ∈Γ µγ)(x) > r > 0, where Γ is an index set. Then there exist
γ0 ∈ Γ, such that µ0(x) > r > 0. Thus, there is some ε0 > 0, such that x + Bε0 ∩ r̃ ⊂

⋃
γ∈Γ µγ. Hence,⋃

γ∈Γ µγ ∈ T
∗
Nps
.

(2) Let x, y ∈ X, x , y. By (FNPS7∗), there exists t0 > 0, such that Nps(x − y, t0) = 0. Set 0 < ε < t0,
we claim that (x + B ε

2
) ∩ (y + B ε

2
) = ∅. Otherwise, suppose that (x + B ε

2
) ∩ (y + B ε

2
) , ∅. There exists

z ∈ X such that (x + B ε
2
)∩ (y + B ε

2
)(z) > 0. Then, (x + B ε

2
)(z) > 0 and (y + B ε

2
)(z) > 0. By (FNSP4) and

Remark 2.2 (1), we have

Nps(x − y, t0) ≥ Nps(x − z,
t0

2
) ∗ Nps(z − y,

t0

2
)

= Nps(x − z,
t0

2
) ∗ Nps(y − z,

t0

2
)

≥ Nps(x − z,
ε

2
) ∗ Nps(y − z,

ε

2
)

≥ 0 ∗ 0 = 0,

which is a contradiction. �
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4. Conclusions

In this paper, firstly, we introduce the notion of pseudo-semi-norm. Moreover, we take definition
of a fuzzy pseudo-norm on a linear space in its general form, and present some examples of fuzzy
pseudo-semi-normed spaces. In Section 3, we construct (fuzzy) topologies which were induced by
(fuzzy) pseudo-semi-norms, and show that these spaces are Hausdoff.
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