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Abstract: In this work, we consider a coupled nonlinear viscoelastic Kirchhoftf equations with
degenerate damping, dispersion and source terms. Under suitable hypothesis, we will prove that when
the initial data are large enough (in the energy point of view), the energy grows exponentially and thus
so the L*P*Y_norm.
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1. Introduction

In this paper, we consider the following problem

" e = Au+ [yt = $)Au(s)ds — Auy + (|l + ') ™ w,
= fl (M,V), (.X,t) € QX(O’T)’

il vie = Av + [} ho(t = $)AV(s)ds — Avy + (V7 + ) v v,

:fZ(u’V)7 (x’t)GQX(O’T)’ (1'1)
ulx,t)y=vix,r) =0, (x,0)) € 0Q x (0, T),
u(x,0)=uo(x), u; (x,0) = u;y (x), x € Q,
V(.X,O):VO(X), Vt(x,()):Vl(X), XGQ,
where k,1,0,0 > 0; j,s > 1 for N = 1,2,and 0 < j, 5 < x—f%forN >3;andn > 0 for N = 1,2 and

0<npc< N2_2 for N > 3, hi(.)) : R - R* (i = 1,2) are positive relaxation functions which will be
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specified later. (l(.)l“ +]O)P ) |(.)t|T‘1 (.); and —A (.),, are the degenerate damping term and the dispersion
term, respectively.
And
fiu,v) = ailu + v*P O + v) + by|ulP.u.|v|P2, (1.2)
Ffo(u,v) = ajlu + v*P O+ v) + by|v|P.v.|ulP*>. ‘

It is well known that viscous materials are the opposite of elastic materials which have the capacity
to store and dissipate mechanical energy. As the mechanical properties of these viscous substances are
of great importance when they appear in many applications of other applied sciences.

Physically, the relationship between the stress and strain history in the beam inspired by Boltzmann
theory called viscoelastic damping term, where the kernel of the term of memory is the function &
(see [1-9]). If n > O, this type of problem has been studied by many authors. For more depth, here
are some papers that focused on the study of this damping. See for example [10-15]. The effect of the
degenerate damping terms often appear in many applications and piratical problems and turns a lot of
systems into different problems worth studying.

The well known “Growth” phenomenon is one of the most important phenomena of asymptotic
behavior, where many researches omit from its study especially when it comes from the evolution
problems. It gives us very important information to know the behavior of equation when time arrives
at infinity, it differs from global existence and blow up in both mathematically and in applications point
of view.

Recently, the stability, the asymptotic behavior, blowing up and exponential growth of solutions for
evolution systems with time degenerate damping has been studied by many authors. See [16-20].

The great importance of the source term with nonlinear functions f; and f, satisfying appropriate
conditions. In physics is that they appear in several issues and theories. Many researchers also touched
on this type of problem in several different issues, where the global existence of solutions, stability,
blow up and growth of solutions were studied. For more information, the reader is referred to ( [21-
28]). Recently, If y = 0,a; = 1 our problem (1.1) has been studied in [27], under some restrictions
on the initial datum, standard conditions on relaxation functions, the authors are established the global
existence and proved the general decay of solutions.

Based on all of the above, the combination of these terms of damping (Memory term, degenerate
damping, dispersion and the source terms ) we believe that it constitutes a new problem worthy of
study and research, different from the above that we will try to shed light on.

In fact it will be proved that the L2**» norm of the solution grows as an exponential function.
An essential tool of the proof is an idea used in the literature, which based on an auxiliary function
(which is a small perturbation of the total energy), in order to obtain a differential inequality leads to
the exponential growth result provided that under suitable hypothesis.

Our paper is divided into several sections: in the next section we lay down the hypotheses, concepts
and lemmas we need. In the third section we prove our main result. Finally, a general conclusion has
been drawn up.
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2. Preliminaries

We prove the exponential growth of solutions under the following suitable assumptions.
(A1) h; : R, — R, are a differentiable and decreasing functions such that

hi(t) >0 , 1—f hi(s)ds=1;>0, i=1,2. 2.1)
0

(A2) There exists a constants &1, &, > 0 such that
R () < =&Ehi() , 120, i=1,2. (2.2)
Theorem 2.1. Assume (2.1) and (2.2) holds. Let

4 —
{—1<p< n n>3;

n-2’ - (2.3)
p=>-1, n=12

Then for any initial data
(uo, u1,vo,v1) € H,

the problem (1.1) has a unique solution, for some T > 0
u € C([0, T]; HX(Q) N Hy(Q)),
where
H = Hy(Q)x L*(Q)x Hy(Q) x L(Q).

In the next theorem we give the global existence result, its proof based on the potential well depth
method in which the concept of so-called stable set appears, where we show that if we restrict our
initial data in the stable set, then our local solution obtained is global in time, We will make use of
arguments in [15].

Theorem 2.2. Suppose that (2.1), (2.2) and (2.3) holds. If uy, vy € H(])(Q), u,v; € L*(Q)

(2(p +2)
(p+ 1l

where p > 0 is a constant. Then the local solution (u,v) is global in time.

p+1
E<0)) <1, (2.4)

To achieve our goal, we need the following lemmas.

Lemma 2.1. There exists a function F(u,v) such that

1
— [ufi(u,v) + vr(u,v)]

F -
wv) = 3052
1
= 3013 [allu + V2P 4 2b1|uv|”+2] > 0,
where
or oF
E = fl(u’ V), E = ‘f2(u’ V)’
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we take a; = b; = 1 for convenience.

Lemma 2.2. [2] There exist two positive constants cy and ¢, such that

€o 2(p+2) 2p+2) C1 2p+2) 2(p+2)
TR (1uP*2 + WPP*2) < Fu,v) < TP (12 + PP+2). (2.5)

Now, we define the energy functional

Lemma 2.3. Assume (2.1), (2.2) and (2.3) hold, let (u,v) be a solution of (1.1), then E(t) is non-
increasing, that is

1 1
B0 = [l + 2]+ 509 + 193]

+2
1 ! !
+§[(1— fo hl(s)ds)||Vu||§+(1— fo hz(s)ds)uwni]
+%[(h10Vu)(t)+(h20Vv)(t)]—fF(u,v)dx, (2.6)
0

satisfies
’ 1 ’ ’ 1 2 2
E@ < 5[(hlow>(r>+<hzow><r>]—E[hl(nnwnz+hz<r>||Vv||2]

- f (uf* + V)l dx - f (I + o dx
Q Q
< 0. o

Proof. By multiplying (1.1), (1.1), by u,, v; and integrating over Q, we get

E{mllutllﬁ + 77+—2||W||Z:§ + ElqutH% + E”V"t”%

1 f 1 f
+—(1— f hl(s)ds)IIVu||%+—(1— f hz(s)ds)nwng
2 0 2 0

1 1

+—=(h1oVu)(t) + =(h,oVv)(t) — fF(u, v)dx}
2 2 o

= - f(lul" + W)l dx — f(IVIe + )|, dx
Q Q

1, 1 Y 1 >

+=(hoVu) — zhi®|IVull5 + =(h,0Vv) — —hy(D)||VV]3, (2.8)
2 2 2 2

we obtain (2.6) and (2.7). O

3. Main result

In this section, we prove the exponential growth of solution with L*7+?-norm of problem (1.1).
First, we define the functional

1 1
H) = ~E0) =~} + 2] = 5|19t + 19w
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_%[(1 - fo thl(s)ds)uwui + (1 — fo t hz(s)ds)IIVvlli]

_%[(hmVu)(t) + (hzoVV)(t)]

2(p+2) p+2
+2(p ) [l + Vil 12) + 2llvll, 5]

Theorem 3.1. Assume (2.1), (2.2), and (2.3) hold, and suppose that E(0) < 0, and
. . n+2
2(p+2)>max{k+]+ Lil+j+1;0+s+1;0+s+ 1;?}.
n
Then the solution of problem (1.1) growth exponentially.

Proof. From (2.6), we have
E() <E0)<O.

Therefore
H'(t)=-E'(t) > fg(lul"+IVI’)qulj“dX+L(IVIGHMIQ)IVIIS“dx,
hence
H'(t) > fg (ul* + Wl dx > 0
H'(f) > fg (W + v "' dx > 0.

By (3.1) and (2.5), we have

0 < H(0) < H(z)

IA

2(p+2) p+2
(1 + 13222 + 200 22)

2(p+2)

C1 2(p+2) 2(p+2)
ot 2)(||u||2(,,+2) FIIE2).

IA

We set

K@) = H@) + & f[ulu,l"ut+vlvt|”v,]dx
n+1Jg

+ef [Vu,Vu + Vv,Vv]dx,
Q

where £ > 0 to be assigned later.
By multiplying (1.1), (1.1), by u, v and with a derivative of (3.7), we get

’ / &
K@ = H@+ - 1(””t”2:§ + WI22) + (Vi3 + IVv3)

3.1

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)
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8fVuf g(t—s)Vu(s)dsdx+8vaf h(t — s)Vv(s)dsdx
0 0 Q 0

Ji J>
_ k 1 j-1 dx — 0 o s—1 d
e | (ul” + WPl wpudx—e | (V" + [ul®)v|* vi.vdx
Q Q
J3 J4

2 2 2(p+2) +2
eIVl + Vi) + el e+ vIE 2 + 2]

Js

We have

Ji = sf hl(t—s)a’stu.(Vu(s)—Vu(t))dxds+6fhl(s)dSIIVullg
0 Q 0

\%

e (" , €
Z f hy($)ds||Vul? = = (hjoVu).
2 Jo 2

J, = efhz(t—s)dsfVv.(Vv(s)—Vv(t))dxds+8fhz(s)dSIIVvllg
0 Q 0

e (" €
> f ho()dslIVVIE = = (ha0Vv).
2 Jy 2

From (3.8), we find

’ 4 &
K@ = H@+ l(lluzll"+2 + W73 + IV ulll3 + [IVv3)

n + n+2

(-5 [ mds)ivul + (1 - 1 [ ey )91

—g(hIOVu) - g(hzon) —Ts— i+ s,

At this point, we use Young’s inequality, for 6 > 0

0°Xr  §PXP 1 1
XY < + , o,f>0, —+-==1,
@ B a B
we get, for 61,0, > 0
j+1 . 1
. . —(£2) .
u | < A+ L
j+1 j+1
s+1 s (Hl)
-1 2 s+1 -5 s+1
v v € —=—p)"T + ——35, ¢ vt
vil"™ vy S+1|| 1% [vi]

Hence, we have

j+1
1 ()

. s .
i < e— f(lul" Pl dx + e — f(|u|k + ), dx,
J+1Ja j+1 Ja

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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s+1
62

—(£)

) s+1 50, 0 s+1

Jis < e—— | (W +u®)V T dx+e——— | (W + |u®|v,)" dx.
S + 1 Q S + 1 Q

Therefore, using (3.5) and by setting 6, 0; so that,
-5 )

.]6 _K S62 _K
j+1 27 s+1 2

substituting in (3.11), we get

+2 +2
(2 + v 2)

(-1 fo thl(s)a’s)IIVuH% +(1-3 fo ’h2<s>ds)||w||§]

E E
+8(||Vut||§ + IIVvtlli) = 5 (moVu) = 5(h0Vv)

K@) > [l - exH @) + —
n+

—£Cy (k) f (ul* + )l dx
Q

—£Cy(K) f (W + |V dx + Js,
Q

where

2j )f“ 1

2s )“'” 1
kG+1)/) j+1’

k(s+1)/) s+1°

Ci(k) := ( Cy(k) := (

we have
k ) i+1 k+j+1 [ j+1
fM+MwWM=Hm4ﬁfMWWL
Q Q
v+ W dx = IVICEE ] v .
(l | O+s+1
Q Q

By Young’s inequality, we find for 63,64 > 0

. I+ j+ / 1 I+j+1 .
Iy, 1+1 SO D4+ Jt ST
fglvl " dx < [+ 741 N | [+ 741 0y el 410
ety Qo (Mm o+s+1 s+1 _(QHH o+s+1
[ul’v*"dx < m 4 || ||Q+S+1 m 4 || ||Q+S+1-
Q
Hence
il + bl < Tl + o Il
o - k+j+1 +]+ I+j+1
(J+ 1) (Hlﬂ)” ||l+]:+1
I+ +1 byt

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)
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) 1
WP+ O dx < e+ —@ s e
Q B rstl Do+ s+ 1 otstl
(S + 1) _(QHH o+s+1
torsel Iy Wlgss1-

(3.19)

By using (3.6) and (3.2), since 2(p+2) > k+ j+1, we have from the embedding L>P*?(Q) — L*/*1(Q),

k+j+1

k+j+l k+j+1 2(p+2) 22
{771 < Cllullsy ) < (|| ||2(,,+2)) ,
since 0 < ;‘;’:21) < 1, to find by using the algebraic inequality

1
Bgs(B+1)S(1+E)(B+b), VB>0, 0<¢<1, b>0,

k+j+1

2(p+2) | P2 2(p+2)
()™ < Ky + s,

where K = 1 + =— H(O)

Similarly, by (3.2) we get

k+j+1

k+j+1 2(p+2) \ 2P+ 2(p+2)
VIl < (VIS < K(llully 275 + H(0)),
k+j (p+2) (p+2)

k+j+1
g+s+l 2p+2) |+ 2(p+2)
Wiz < (ME) " < KAl + Eo)),
k+j+1

2(p+2) |20 2p+2)
()™ < Ky + Hon.

IA

O+s+1
”””9::1

Hence, by fixed 3,64 > 0, and (3.19), gives

f(lulk + )l dx
Q

l+]+l) . _(M)
16\ (j+1)s
o B
f(IVI9+Iu|")IVI”1dx
Q
o+s+1 _ g+v+1
< 00y * ) (s+Dg, ¢

M2(1+ +
o+s+1 o+s+1

for some constants M, M, > 0.
Now, for 0 < a < 1, from (3.1)

2(p+2)
2(p+2)

2(p+2)
2(p+2)

p+2

Js = &lllu + | P2

+ 2uv||PT alllu + v|| + 2||uv||

+2]

AIMS Mathematics Volume 7, Issue 1
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(3.20)

(3.21)

(3.22)

(3.23)

(3.24)
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L2600 =a) e

n+2 2
+&(p +2)(1 = a)(IVu i3 + Vv, l5)

+e(p+2)(1 —a)(1 - fo g(s)ds)|Vully

+ [vl3)

+e(p +2)(1 —a)(1 - f h(s)ds)||Vv[3
0

—&(p + 2)(1 — a)((hjoVu) + (h,oVv))
+&2(p + 2)(1 — a)H(7).

Substituting in (3.15), and by using (2.5), we get

K@) > {1 _ 8K}H'(l‘) + 6{(p +2)(1 —a) + 1}(||vu,||§ £ IVvIB)

2¢p+2)1-a) 1
o ST O

n+
+el(p+ 20 - a)(l - j(;lhl(s)ds) - (1 - %j:hl(s)ds)}nvung
+el(p+2)(1 - a)(l - fot hz(s)ds) - (1 - %j: hz(s)ds)}nvvug

{
{
+8{(p +2)(1 —a) - —}(hmVu + hyoVv)
{
{

+efca = (MaCi0) + MaCow) (IR0 + w130 )

+amwum—m(%aw+mgwﬁwx

where
1+j+1 l+/+l
B 8,7 (s
M; = M, 1+ - + >0
[+j+1 [+j+1
(g+s+1) _(g+s+l)
o, ¢ s+ 1), °
M, = M2(1+Q4 +( )4 )>O
o+s+1 o+s+1

In this stage, we take a > 0 small enough so that
L=(p+2)(1-a)-1>0,

and we assume

max{ f " hi(s)ds, f whz(s)ds}< (p +2)(1_“)_1 - 212111’
0 0 (p+2)(1-a) - 3) :

gives

L = {((p+2)(1—a)—l)—f(:hl(s)ds((p+2)(l—a)—%)}>0,

(3.25)

(3.26)

(3.27)
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f 1
A = {((p +2)(1 —a) - 1) _ fo hz(s)ds((p +2)(1-a)- 5)} >0,
then we choose « so large that
A = aco— (MgCl(K) + M4c2(;<)) >0,

As

2p +2)(1 - a) - (M3C1(/<) + M4c2(/<)) > 0.

Finally, we fixed «, a, and we appoint & small enough so that

Adg=1—-ek>0,
and, from (3.7)
2(p+2) p+2
K@) < 5oyl vl s + 2l ]
Ci 2(p+2) 2(p+2)
< 3oy hG + MR

Thus, for some 8 > 0, estimate (3.26) becomes

K@) = ﬁ{H(t) + 753 + IillZ23 + Vw3 + IV + (Va3 + VI3

n+2 n+2
2(p+2 2(p+2
+(h10Vu) + (hpoVv) + [lul073) + ||u||zgjz§}.
By (2.5), for some 8; > 0, we obtain

+2 +2 2 2 2 2
K@) = ﬁl{H(t) iy + WAl + IVally + 1Vvilly + 1IVally + V9113

2(p+2) +2
+(h,oVu) + (h,oVv) + ||lu + v||2(§+2) + 2||uv||Z+2}.

and
K@) > K0O)>0, t>0.

Next, using Holder’s and Young’s inequalities, we have

‘fﬁme+wmwmu
Q

[
< Ol +

+||V||g(p+2) + ”Vt”/,;z s
where ﬁ + é =1.
We take u = (7 + 2), to get

_(n+2)
6 = D) <2(p+2).

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)
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Subsequently, by using (3.2) and (3.21) , we obtain

n+2
(+1)

2p+2)
Wdiy™, < KRl +Ho)
n+2
nt 2(p+2)
M, < KAWIED + H@), Vi > 0.
Therefore,
f(u|u,|"u, + viv,["v)dx
Q
< en{IBE + MBS + s + vl + HO . (333)
Hence,
K@) = (H(t) T f @l + vIvlvdx + & f (VitsVu + Vv,Vv)dx)
n+1Ja Q
n+2 n+2 2 2 2 2
< C(H(t) + gl 5 + vl s + IVully + [IVVIG + [Val; + [1Vvilly
+(h10Vu) + (h0V) + |lul3 1) + ||v||§§’;§;). (3.34)
From (3.29) and (3.34), gives
K'(t) = AK(1), (3.35)
where A > 0, this depends only on 5 and c.
by integration of (3.35), we obtain
K(t) > K(0)e", ¥t > 0. (3.36)
From (3.7) and (3.28), we have
C1 2(p+2) 2(p+2)
KO < 305 GG + MGG ) (3.37)

By (3.36) and (3.37), we have

2p+2)
llaelly

2(p+2) A
2y T VL) = Ce, ¥t > 0.

2(p+2)

Hence, we conclude that the solution in the L*7*?—norm is growths exponentially. This completes the
proof.
]

4. Conclusions

The purpose of this work was to study when the initial data are large enough, the energy grows
exponentially with L*?*?-norm of solutions for a coupled nonlinear viscoelastic Kirchhoff equations
with degenerate damping, dispersion and source terms. This type of problem is frequently found
in some mathematical models in applied sciences. Especially in the theory of viscoelasticity. What
interests us in this current work is the combination of these terms of damping (degenerate damping,
dispersion and source terms), which dictates the emergence of these terms in the problem. In the
next work, we will try to using the same method with same problem. But in added of other damping
(Balakrishnan-Taylor damping and Logarithmic terms).
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